This repository has been archived by the owner on Jan 24, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
train.py
315 lines (262 loc) · 11.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from __future__ import print_function
import math, os
import numpy as np
import paddle
import paddle.dataset.conll05 as conll05
import paddle.fluid as fluid
import six
import time
import argparse
with_gpu = os.getenv('WITH_GPU', '0') != '0'
word_dict, verb_dict, label_dict = conll05.get_dict()
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
pred_dict_len = len(verb_dict)
mark_dict_len = 2
word_dim = 32
mark_dim = 5
hidden_dim = 512
depth = 8
mix_hidden_lr = 1e-3
IS_SPARSE = True
PASS_NUM = 10
BATCH_SIZE = 10
embedding_name = 'emb'
def parse_args():
parser = argparse.ArgumentParser("label_semantic_roles")
parser.add_argument(
'--enable_ce',
action='store_true',
help="If set, run the task with continuous evaluation logs.")
parser.add_argument(
'--use_gpu', type=int, default=0, help="Whether to use GPU or not.")
parser.add_argument(
'--num_epochs', type=int, default=100, help="number of epochs.")
args = parser.parse_args()
return args
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
**ignored):
# 8 features
predicate_embedding = fluid.embedding(
input=predicate,
size=[pred_dict_len, word_dim],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr='vemb')
mark_embedding = fluid.embedding(
input=mark,
size=[mark_dict_len, mark_dim],
dtype='float32',
is_sparse=IS_SPARSE)
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [
fluid.embedding(
size=[word_dict_len, word_dim],
input=x,
param_attr=fluid.ParamAttr(name=embedding_name, trainable=False))
for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
hidden_0_layers = [
fluid.layers.fc(input=emb, size=hidden_dim, act='tanh')
for emb in emb_layers
]
hidden_0 = fluid.layers.sums(input=hidden_0_layers)
lstm_0 = fluid.layers.dynamic_lstm(
input=hidden_0,
size=hidden_dim,
candidate_activation='relu',
gate_activation='sigmoid',
cell_activation='sigmoid')
# stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]
for i in range(1, depth):
mix_hidden = fluid.layers.sums(input=[
fluid.layers.fc(input=input_tmp[0], size=hidden_dim, act='tanh'),
fluid.layers.fc(input=input_tmp[1], size=hidden_dim, act='tanh')
])
lstm = fluid.layers.dynamic_lstm(
input=mix_hidden,
size=hidden_dim,
candidate_activation='relu',
gate_activation='sigmoid',
cell_activation='sigmoid',
is_reverse=((i % 2) == 1))
input_tmp = [mix_hidden, lstm]
feature_out = fluid.layers.sums(input=[
fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'),
fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh')
])
return feature_out
def train(use_cuda, save_dirname=None, is_local=True):
# define data layers
word = fluid.data(
name='word_data', shape=[None, 1], dtype='int64', lod_level=1)
predicate = fluid.data(
name='verb_data', shape=[None, 1], dtype='int64', lod_level=1)
ctx_n2 = fluid.data(
name='ctx_n2_data', shape=[None, 1], dtype='int64', lod_level=1)
ctx_n1 = fluid.data(
name='ctx_n1_data', shape=[None, 1], dtype='int64', lod_level=1)
ctx_0 = fluid.data(
name='ctx_0_data', shape=[None, 1], dtype='int64', lod_level=1)
ctx_p1 = fluid.data(
name='ctx_p1_data', shape=[None, 1], dtype='int64', lod_level=1)
ctx_p2 = fluid.data(
name='ctx_p2_data', shape=[None, 1], dtype='int64', lod_level=1)
mark = fluid.data(
name='mark_data', shape=[None, 1], dtype='int64', lod_level=1)
if args.enable_ce:
fluid.default_startup_program().random_seed = 90
fluid.default_main_program().random_seed = 90
# define network topology
feature_out = db_lstm(**locals())
target = fluid.layers.data(
name='target', shape=[1], dtype='int64', lod_level=1)
crf_cost = fluid.layers.linear_chain_crf(
input=feature_out,
label=target,
param_attr=fluid.ParamAttr(name='crfw', learning_rate=mix_hidden_lr))
avg_cost = fluid.layers.mean(crf_cost)
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=fluid.layers.exponential_decay(
learning_rate=0.01,
decay_steps=100000,
decay_rate=0.5,
staircase=True))
sgd_optimizer.minimize(avg_cost)
crf_decode = fluid.layers.crf_decoding(
input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))
if args.enable_ce:
train_data = paddle.batch(
paddle.dataset.conll05.test(), batch_size=BATCH_SIZE)
else:
train_data = paddle.batch(
paddle.reader.shuffle(paddle.dataset.conll05.test(), buf_size=8192),
batch_size=BATCH_SIZE)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
feeder = fluid.DataFeeder(
feed_list=[
word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target
],
place=place)
exe = fluid.Executor(place)
def train_loop(main_program):
exe.run(fluid.default_startup_program())
embedding_param = fluid.global_scope().find_var(
embedding_name).get_tensor()
embedding_param.set(
load_parameter(conll05.get_embedding(), word_dict_len, word_dim),
place)
start_time = time.time()
batch_id = 0
for pass_id in six.moves.xrange(PASS_NUM):
for data in train_data():
cost = exe.run(
main_program, feed=feeder.feed(data), fetch_list=[avg_cost])
cost = cost[0]
if batch_id % 10 == 0:
print("avg_cost:" + str(cost))
if batch_id != 0:
print("second per batch: " + str((
time.time() - start_time) / batch_id))
# Set the threshold low to speed up the CI test
if float(cost) < 60.0:
if args.enable_ce:
print("kpis\ttrain_cost\t%f" % cost)
if save_dirname is not None:
# TODO(liuyiqun): Change the target to crf_decode
fluid.io.save_inference_model(save_dirname, [
'word_data', 'verb_data', 'ctx_n2_data',
'ctx_n1_data', 'ctx_0_data', 'ctx_p1_data',
'ctx_p2_data', 'mark_data'
], [feature_out], exe)
return
batch_id = batch_id + 1
train_loop(fluid.default_main_program())
def infer(use_cuda, save_dirname=None):
if save_dirname is None:
return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be fed
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# Setup inputs by creating LoDTensors to represent sequences of words.
# Here each word is the basic element of these LoDTensors and the shape of
# each word (base_shape) should be [1] since it is simply an index to
# look up for the corresponding word vector.
# Suppose the length_based level of detail (lod) info is set to [[3, 4, 2]],
# which has only one lod level. Then the created LoDTensors will have only
# one higher level structure (sequence of words, or sentence) than the basic
# element (word). Hence the LoDTensor will hold data for three sentences of
# length 3, 4 and 2, respectively.
# Note that lod info should be a list of lists.
lod = [[3, 4, 2]]
base_shape = [1]
# The range of random integers is [low, high]
word = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
pred = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=pred_dict_len - 1)
ctx_n2 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
ctx_n1 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
ctx_0 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
ctx_p1 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
ctx_p2 = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=word_dict_len - 1)
mark = fluid.create_random_int_lodtensor(
lod, base_shape, place, low=0, high=mark_dict_len - 1)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
assert feed_target_names[0] == 'word_data'
assert feed_target_names[1] == 'verb_data'
assert feed_target_names[2] == 'ctx_n2_data'
assert feed_target_names[3] == 'ctx_n1_data'
assert feed_target_names[4] == 'ctx_0_data'
assert feed_target_names[5] == 'ctx_p1_data'
assert feed_target_names[6] == 'ctx_p2_data'
assert feed_target_names[7] == 'mark_data'
results = exe.run(
inference_program,
feed={
feed_target_names[0]: word,
feed_target_names[1]: pred,
feed_target_names[2]: ctx_n2,
feed_target_names[3]: ctx_n1,
feed_target_names[4]: ctx_0,
feed_target_names[5]: ctx_p1,
feed_target_names[6]: ctx_p2,
feed_target_names[7]: mark
},
fetch_list=fetch_targets,
return_numpy=False)
print(results[0].lod())
np_data = np.array(results[0])
print("Inference Shape: ", np_data.shape)
def main(use_cuda, is_local=True):
if use_cuda and not fluid.core.is_compiled_with_cuda():
return
# Directory for saving the trained model
save_dirname = "label_semantic_roles.inference.model"
train(use_cuda, save_dirname, is_local)
infer(use_cuda, save_dirname)
if __name__ == '__main__':
args = parse_args()
use_cuda = args.use_gpu
PASS_NUM = args.num_epochs
main(use_cuda)