diff --git a/README.md b/README.md index 6cad1eb4..38a72106 100644 --- a/README.md +++ b/README.md @@ -70,12 +70,18 @@ You can also refer [K8S cluster application and kubectl installation](./paddle_f ## Benchmark task Gru4Rec [9] introduces recurrent neural network model in session-based recommendation. PaddlePaddle's Gru4Rec implementation is in https://github.com/PaddlePaddle/models/tree/develop/PaddleRec/gru4rec. An example is given in [Gru4Rec in Federated Learning](https://paddlefl.readthedocs.io/en/latest/examples/gru4rec_examples.html) +## Release note -## On Going and Future Work - -- Experimental benchmark with public datasets in federated learning settings. +- v0.2.0 released + - Support Kubernetes easy deployment + - Add api for [LEAF](https://arxiv.org/abs/1812.01097) dataset which is in federated settings, supporting benchmark experiments. + - Add FL-scheduler, acting as a central controller during the training phase. + - Add FL-Submitter to support cluster task submission + - Add secure aggregation algorithm + - Support more optimizers in PaddleFL such as Adam + - More examples available -- Federated Learning Systems deployment methods in Kubernetes. +## On Going and Future Work - Vertical Federated Learning Strategies and more horizontal federated learning strategies will be open sourced. diff --git a/README_cn.md b/README_cn.md index e5e0a2db..aa0bf2c5 100644 --- a/README_cn.md +++ b/README_cn.md @@ -69,13 +69,17 @@ kubectl apply -f ./paddle_fl/examples/k8s_deployment/master.yaml Gru4Rec [9] 在基于会话的推荐中引入了递归神经网络模型。PaddlePaddle的GRU4RC实现代码在 https://github.com/PaddlePaddle/models/tree/develop/PaddleRec/gru4rec. 一个基于联邦学习训练Gru4Rec模型的示例请参考[Gru4Rec in Federated Learning](https://paddlefl.readthedocs.io/en/latest/examples/gru4rec_examples.html) - +## 版本更新 +- v0.2.0 发布 + - 支持 Kubernetes 简易部署 + - 添加在联邦学习设定下的[LEAF](https://arxiv.org/abs/1812.01097) 公开数据集接口,支持基准的设定 + - 添加 FL-scheduler, 在训练过程中充当中心控制器的角色 + - 添加 FL-Submitter 功能,支持集群任务部署 + - 添加 secure aggregation 算法 + - 支持更多的机器学习优化器,例如:Adam + - 增加更多的实际应用例子 ## 正在进行的工作 -- 联邦学习在公共数据集上的实验基准。 - -- kubernetes中联邦学习系统的部署方法。 - - 垂直联合学习策略和更多的水平联合学习策略将是开源的。 ## 参考文献 diff --git a/paddle_fl/examples/submitter_demo/conf.txt b/paddle_fl/examples/submitter_demo/conf.txt index f2f0d48d..ec3fdc87 100644 --- a/paddle_fl/examples/submitter_demo/conf.txt +++ b/paddle_fl/examples/submitter_demo/conf.txt @@ -7,7 +7,7 @@ monitor_cmd= #train_cmd=python test_hadoop.py hdfs_path=afs://xingtian.afs.baidu.com:9902 -ugi=mlarch,Fv1M87 +ugi=your_fs_name, your_ugi hdfs_output=/user/feed/mlarch/sequence_generator/dongdaxiang/job_44 worker_nodes=2 server_nodes=1 diff --git a/paddle_fl/version.py b/paddle_fl/version.py index 2c95b454..8540fde4 100644 --- a/paddle_fl/version.py +++ b/paddle_fl/version.py @@ -12,5 +12,5 @@ # See the License for the specific language governing permissions and # limitations under the License. """ PaddleFL version string """ -fl_version = "0.1.11" -module_proto_version = "0.1.11" +fl_version = "0.2.0" +module_proto_version = "0.2.0"