-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
det_keypoint_unite_infer.py
374 lines (328 loc) · 14 KB
/
det_keypoint_unite_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
import cv2
import math
import numpy as np
import paddle
import yaml
from det_keypoint_unite_utils import argsparser
from preprocess import decode_image
from infer import Detector, DetectorPicoDet, PredictConfig, print_arguments, get_test_images, bench_log
from keypoint_infer import KeyPointDetector, PredictConfig_KeyPoint
from visualize import visualize_pose
from benchmark_utils import PaddleInferBenchmark
from utils import get_current_memory_mb
from keypoint_postprocess import translate_to_ori_images
KEYPOINT_SUPPORT_MODELS = {
'HigherHRNet': 'keypoint_bottomup',
'HRNet': 'keypoint_topdown'
}
def predict_with_given_det(image, det_res, keypoint_detector,
keypoint_batch_size, run_benchmark):
keypoint_res = {}
rec_images, records, det_rects = keypoint_detector.get_person_from_rect(
image, det_res)
if len(det_rects) == 0:
keypoint_res['keypoint'] = [[], []]
return keypoint_res
keypoint_vector = []
score_vector = []
rect_vector = det_rects
keypoint_results = keypoint_detector.predict_image(
rec_images, run_benchmark, repeats=10, visual=False)
keypoint_vector, score_vector = translate_to_ori_images(keypoint_results,
np.array(records))
keypoint_res['keypoint'] = [
keypoint_vector.tolist(), score_vector.tolist()
] if len(keypoint_vector) > 0 else [[], []]
keypoint_res['bbox'] = rect_vector
return keypoint_res
def topdown_unite_predict(detector,
topdown_keypoint_detector,
image_list,
keypoint_batch_size=1,
save_res=False):
det_timer = detector.get_timer()
store_res = []
for i, img_file in enumerate(image_list):
# Decode image in advance in det + pose prediction
det_timer.preprocess_time_s.start()
image, _ = decode_image(img_file, {})
det_timer.preprocess_time_s.end()
if FLAGS.run_benchmark:
results = detector.predict_image(
[image], run_benchmark=True, repeats=10)
cm, gm, gu = get_current_memory_mb()
detector.cpu_mem += cm
detector.gpu_mem += gm
detector.gpu_util += gu
else:
results = detector.predict_image([image], visual=False)
results = detector.filter_box(results, FLAGS.det_threshold)
if results['boxes_num'] > 0:
keypoint_res = predict_with_given_det(
image, results, topdown_keypoint_detector, keypoint_batch_size,
FLAGS.run_benchmark)
if save_res:
save_name = img_file if isinstance(img_file, str) else i
store_res.append([
save_name, keypoint_res['bbox'],
[keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
])
else:
results["keypoint"] = [[], []]
keypoint_res = results
if FLAGS.run_benchmark:
cm, gm, gu = get_current_memory_mb()
topdown_keypoint_detector.cpu_mem += cm
topdown_keypoint_detector.gpu_mem += gm
topdown_keypoint_detector.gpu_util += gu
else:
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
visualize_pose(
img_file,
keypoint_res,
visual_thresh=FLAGS.keypoint_threshold,
save_dir=FLAGS.output_dir)
if save_res:
"""
1) store_res: a list of image_data
2) image_data: [imageid, rects, [keypoints, scores]]
3) rects: list of rect [xmin, ymin, xmax, ymax]
4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
5) scores: mean of all joint conf
"""
with open("det_keypoint_unite_image_results.json", 'w') as wf:
json.dump(store_res, wf, indent=4)
def topdown_unite_predict_video(detector,
topdown_keypoint_detector,
camera_id,
keypoint_batch_size=1,
save_res=False):
video_name = 'output.mp4'
if camera_id != -1:
capture = cv2.VideoCapture(camera_id)
else:
capture = cv2.VideoCapture(FLAGS.video_file)
video_name = os.path.split(FLAGS.video_file)[-1]
# Get Video info : resolution, fps, frame count
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print("fps: %d, frame_count: %d" % (fps, frame_count))
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
out_path = os.path.join(FLAGS.output_dir, video_name)
fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
index = 0
store_res = []
keypoint_smoothing = KeypointSmoothing(
width, height, filter_type=FLAGS.filter_type, beta=0.05)
while (1):
ret, frame = capture.read()
if not ret:
break
index += 1
print('detect frame: %d' % (index))
frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = detector.predict_image([frame2], visual=False)
results = detector.filter_box(results, FLAGS.det_threshold)
if results['boxes_num'] == 0:
writer.write(frame)
continue
keypoint_res = predict_with_given_det(
frame2, results, topdown_keypoint_detector, keypoint_batch_size,
FLAGS.run_benchmark)
if FLAGS.smooth and len(keypoint_res['keypoint'][0]) == 1:
current_keypoints = np.array(keypoint_res['keypoint'][0][0])
smooth_keypoints = keypoint_smoothing.smooth_process(
current_keypoints)
keypoint_res['keypoint'][0][0] = smooth_keypoints.tolist()
im = visualize_pose(
frame,
keypoint_res,
visual_thresh=FLAGS.keypoint_threshold,
returnimg=True)
if save_res:
store_res.append([
index, keypoint_res['bbox'],
[keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
])
writer.write(im)
if camera_id != -1:
cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
writer.release()
print('output_video saved to: {}'.format(out_path))
if save_res:
"""
1) store_res: a list of frame_data
2) frame_data: [frameid, rects, [keypoints, scores]]
3) rects: list of rect [xmin, ymin, xmax, ymax]
4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
5) scores: mean of all joint conf
"""
with open("det_keypoint_unite_video_results.json", 'w') as wf:
json.dump(store_res, wf, indent=4)
class KeypointSmoothing(object):
# The following code are modified from:
# https://github.com/jaantollander/OneEuroFilter
def __init__(self,
width,
height,
filter_type,
alpha=0.5,
fc_d=0.1,
fc_min=0.1,
beta=0.1,
thres_mult=0.3):
super(KeypointSmoothing, self).__init__()
self.image_width = width
self.image_height = height
self.threshold = np.array([
0.005, 0.005, 0.005, 0.005, 0.005, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01
]) * thres_mult
self.filter_type = filter_type
self.alpha = alpha
self.dx_prev_hat = None
self.x_prev_hat = None
self.fc_d = fc_d
self.fc_min = fc_min
self.beta = beta
if self.filter_type == 'OneEuro':
self.smooth_func = self.one_euro_filter
elif self.filter_type == 'EMA':
self.smooth_func = self.ema_filter
else:
raise ValueError('filter type must be one_euro or ema')
def smooth_process(self, current_keypoints):
if self.x_prev_hat is None:
self.x_prev_hat = current_keypoints[:, :2]
self.dx_prev_hat = np.zeros(current_keypoints[:, :2].shape)
return current_keypoints
else:
result = current_keypoints
num_keypoints = len(current_keypoints)
for i in range(num_keypoints):
result[i, :2] = self.smooth(current_keypoints[i, :2],
self.threshold[i], i)
return result
def smooth(self, current_keypoint, threshold, index):
distance = np.sqrt(
np.square((current_keypoint[0] - self.x_prev_hat[index][0]) /
self.image_width) + np.square((current_keypoint[
1] - self.x_prev_hat[index][1]) / self.image_height))
if distance < threshold:
result = self.x_prev_hat[index]
else:
result = self.smooth_func(current_keypoint, self.x_prev_hat[index],
index)
return result
def one_euro_filter(self, x_cur, x_pre, index):
te = 1
self.alpha = self.smoothing_factor(te, self.fc_d)
dx_cur = (x_cur - x_pre) / te
dx_cur_hat = self.exponential_smoothing(dx_cur, self.dx_prev_hat[index])
fc = self.fc_min + self.beta * np.abs(dx_cur_hat)
self.alpha = self.smoothing_factor(te, fc)
x_cur_hat = self.exponential_smoothing(x_cur, x_pre)
self.dx_prev_hat[index] = dx_cur_hat
self.x_prev_hat[index] = x_cur_hat
return x_cur_hat
def ema_filter(self, x_cur, x_pre, index):
x_cur_hat = self.exponential_smoothing(x_cur, x_pre)
self.x_prev_hat[index] = x_cur_hat
return x_cur_hat
def smoothing_factor(self, te, fc):
r = 2 * math.pi * fc * te
return r / (r + 1)
def exponential_smoothing(self, x_cur, x_pre, index=0):
return self.alpha * x_cur + (1 - self.alpha) * x_pre
def main():
deploy_file = os.path.join(FLAGS.det_model_dir, 'infer_cfg.yml')
with open(deploy_file) as f:
yml_conf = yaml.safe_load(f)
arch = yml_conf['arch']
detector_func = 'Detector'
if arch == 'PicoDet':
detector_func = 'DetectorPicoDet'
detector = eval(detector_func)(FLAGS.det_model_dir,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
threshold=FLAGS.det_threshold)
topdown_keypoint_detector = KeyPointDetector(
FLAGS.keypoint_model_dir,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=FLAGS.keypoint_batch_size,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
use_dark=FLAGS.use_dark)
keypoint_arch = topdown_keypoint_detector.pred_config.arch
assert KEYPOINT_SUPPORT_MODELS[
keypoint_arch] == 'keypoint_topdown', 'Detection-Keypoint unite inference only supports topdown models.'
# predict from video file or camera video stream
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
topdown_unite_predict_video(detector, topdown_keypoint_detector,
FLAGS.camera_id, FLAGS.keypoint_batch_size,
FLAGS.save_res)
else:
# predict from image
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
topdown_unite_predict(detector, topdown_keypoint_detector, img_list,
FLAGS.keypoint_batch_size, FLAGS.save_res)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
topdown_keypoint_detector.det_times.info(average=True)
else:
mode = FLAGS.run_mode
det_model_dir = FLAGS.det_model_dir
det_model_info = {
'model_name': det_model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(detector, img_list, det_model_info, name='Det')
keypoint_model_dir = FLAGS.keypoint_model_dir
keypoint_model_info = {
'model_name': keypoint_model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(topdown_keypoint_detector, img_list, keypoint_model_info,
FLAGS.keypoint_batch_size, 'KeyPoint')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU'
], "device should be CPU, GPU or XPU"
main()