Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Revert "【Hackathon 6th Fundable Projects 3 No.158】fused_gate_attention"[fluid_ops] #65898

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
set(fluid_manual_functions
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/fluid_manual/forwards/fused_gate_attention_fwd_func.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/fluid_manual/forwards/fused_feedforward_fwd_func.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/fluid_manual/forwards/fused_attention_fwd_func.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/fluid_manual/forwards/fused_gemm_epilogue_fwd_func.cc
Expand Down

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
set(fluid_manual_nodes
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/fluid_manual/nodes/fused_gate_attention_node.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/fluid_manual/nodes/fused_feedforward_node.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/fluid_manual/nodes/fused_attention_node.cc
${PADDLE_SOURCE_DIR}/paddle/fluid/eager/api/manual/fluid_manual/nodes/fused_gemm_epilogue_node.cc
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,242 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "paddle/fluid/eager/api/manual/fluid_manual/nodes/nodes.h"
#include "paddle/fluid/eager/api/utils/global_utils.h"
#include "paddle/fluid/eager/utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/imperative/tracer.h"
#include "paddle/phi/api/all.h"

paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
fused_gate_attentionGradNodeCompat::operator()(
paddle::small_vector<std::vector<paddle::Tensor>,
egr::kSlotSmallVectorSize>& grads,
bool create_graph,
bool is_new_grad) {
VLOG(3) << "Running Eager Backward Node: fused_gate_attentionGradNodeCompat";

const auto& out_metas = OutputMeta();
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
outputs(12);
paddle::small_vector<std::vector<paddle::Tensor>, egr::kSlotSmallVectorSize>
hooked_grads0 =
fused_gate_attentionGradNodeCompat::ApplyGradientHooks(grads);

bool merge_qkv = true;
if (attr_map_.count("merge_qkv")) {
merge_qkv = PADDLE_GET_CONST(bool, attr_map_.at("merge_qkv"));
}

bool has_gating = true;
if (attr_map_.count("has_gating")) {
has_gating = PADDLE_GET_CONST(bool, attr_map_.at("has_gating"));
}

bool use_flash_attn = false;
if (attr_map_.count("use_flash_attn")) {
use_flash_attn = PADDLE_GET_CONST(bool, attr_map_.at("use_flash_attn"));
}

std::map<std::string, std::vector<std::shared_ptr<egr::EagerVariable>>> ins0 =
{{"FMHAOut",
egr::EagerUtils::TrySyncToVars(
egr::EagerUtils::RecoverTensorWrapper(&this->FMHAOut_))},
{"Out@GRAD", egr::EagerUtils::TrySyncToVars(hooked_grads0[7])},
{"OutLinearBias",
egr::EagerUtils::TrySyncToVars(
egr::EagerUtils::RecoverTensorWrapper(&this->OutLinearBias_))},
{"OutLinearWeight",
egr::EagerUtils::TrySyncToVars(
egr::EagerUtils::RecoverTensorWrapper(&this->OutLinearWeight_))},
{"Query",
egr::EagerUtils::TrySyncToVars(
egr::EagerUtils::RecoverTensorWrapper(&this->Query_))},
{"SoftmaxOut",
egr::EagerUtils::TrySyncToVars(
egr::EagerUtils::RecoverTensorWrapper(&this->SoftmaxOut_))}};
std::map<std::string, std::vector<std::shared_ptr<egr::EagerVariable>>> outs0;

if ((!out_metas[11].empty()) && (!(out_metas[11][0].IsStopGradient()))) {
outs0.insert({"OutLinearBias@GRAD",
{std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())}});
}
if ((!out_metas[10].empty()) && (!(out_metas[10][0].IsStopGradient()))) {
outs0.insert({"OutLinearWeight@GRAD",
{std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())}});
}
if ((!out_metas[0].empty()) && (!(out_metas[0][0].IsStopGradient()))) {
outs0.insert({"Query@GRAD",
{std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())}});
}

if (merge_qkv) {
auto QKVTransposeOut =
egr::EagerUtils::RecoverTensorWrapper(&this->QKVTransposeOut_);
if (QKVTransposeOut.defined())
ins0["QKVTransposeOut"] = egr::EagerUtils::TrySyncToVars(QKVTransposeOut);
auto QKVWeight = egr::EagerUtils::RecoverTensorWrapper(&this->QKVWeight_);
if (QKVWeight.defined())
ins0["QKVWeight"] = egr::EagerUtils::TrySyncToVars(QKVWeight);
if (QKVWeight.defined() && (!out_metas[5].empty()) &&
(!out_metas[5][0].IsStopGradient()))
outs0["QKVWeight@GRAD"] = {std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())};
} else {
auto Key = egr::EagerUtils::RecoverTensorWrapper(&this->Key_);
if (Key.defined()) ins0["Key"] = egr::EagerUtils::TrySyncToVars(Key);
auto QueryWeight =
egr::EagerUtils::RecoverTensorWrapper(&this->QueryWeight_);
if (QueryWeight.defined())
ins0["QueryWeight"] = egr::EagerUtils::TrySyncToVars(QueryWeight);
auto KeyWeight = egr::EagerUtils::RecoverTensorWrapper(&this->KeyWeight_);
if (KeyWeight.defined())
ins0["KeyWeight"] = egr::EagerUtils::TrySyncToVars(KeyWeight);
auto ValueWeight =
egr::EagerUtils::RecoverTensorWrapper(&this->ValueWeight_);
if (ValueWeight.defined())
ins0["ValueWeight"] = egr::EagerUtils::TrySyncToVars(ValueWeight);
auto QueryTransposeOut =
egr::EagerUtils::RecoverTensorWrapper(&this->QueryTransposeOut_);
if (QueryTransposeOut.defined())
ins0["QueryTransposeOut"] =
egr::EagerUtils::TrySyncToVars(QueryTransposeOut);
auto KeyTransposeOut =
egr::EagerUtils::RecoverTensorWrapper(&this->KeyTransposeOut_);
if (KeyTransposeOut.defined())
ins0["KeyTransposeOut"] = egr::EagerUtils::TrySyncToVars(KeyTransposeOut);
auto ValueTransposeOut =
egr::EagerUtils::RecoverTensorWrapper(&this->ValueTransposeOut_);
if (ValueTransposeOut.defined())
ins0["ValueTransposeOut"] =
egr::EagerUtils::TrySyncToVars(ValueTransposeOut);

if (Key.defined() && (!out_metas[1].empty()) &&
(!out_metas[1][0].IsStopGradient()))
outs0["Key@GRAD"] = {std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())};
if (QueryWeight.defined() && (!out_metas[2].empty()) &&
(!out_metas[2][0].IsStopGradient()))
outs0["QueryWeight@GRAD"] = {std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())};
if (KeyWeight.defined() && (!out_metas[3].empty()) &&
(!out_metas[3][0].IsStopGradient()))
outs0["KeyWeight@GRAD"] = {std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())};
if (ValueWeight.defined() && (!out_metas[4].empty()) &&
(!out_metas[4][0].IsStopGradient()))
outs0["ValueWeight@GRAD"] = {std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())};
}

if (has_gating) {
auto GateBias = egr::EagerUtils::RecoverTensorWrapper(&this->GateBias_);
if (GateBias.defined())
ins0["GateBias"] = egr::EagerUtils::TrySyncToVars(GateBias);
auto GateWeight = egr::EagerUtils::RecoverTensorWrapper(&this->GateWeight_);
if (GateWeight.defined())
ins0["GateWeight"] = egr::EagerUtils::TrySyncToVars(GateWeight);
auto GateOut = egr::EagerUtils::RecoverTensorWrapper(&this->GateOut_);
if (GateOut.defined())
ins0["GateOut"] = egr::EagerUtils::TrySyncToVars(GateOut);
if (GateBias.defined() && (!out_metas[9].empty()) &&
(!out_metas[9][0].IsStopGradient()))
outs0["GateBias@GRAD"] = {std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())};
if (GateWeight.defined() && (!out_metas[8].empty()) &&
(!out_metas[8][0].IsStopGradient()))
outs0["GateWeight@GRAD"] = {std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())};
}

auto NonbatchedBias =
egr::EagerUtils::RecoverTensorWrapper(&this->NonbatchedBias_);
if (NonbatchedBias.defined()) {
ins0["NonbatchedBias"] = egr::EagerUtils::TrySyncToVars(NonbatchedBias);
if ((!out_metas[6].empty()) && (!out_metas[6][0].IsStopGradient()))
outs0["NonbatchedBias@GRAD"] = {std::make_shared<egr::EagerVariable>(
egr::Controller::Instance().GenerateUniqueName())};
}

if (use_flash_attn) {
auto SrcMask = egr::EagerUtils::RecoverTensorWrapper(&this->SrcMask_);
ins0["SrcMask"] = egr::EagerUtils::TrySyncToVars(SrcMask);
auto SoftmaxLse = egr::EagerUtils::RecoverTensorWrapper(&this->SoftmaxLse_);
ins0["SoftmaxLse"] = egr::EagerUtils::TrySyncToVars(SoftmaxLse);
}

auto& attrs_map0 = this->attr_map_;
// Pass the entire attribute map to TraceOp
// The underlying kernel will pickup whatever attribute they need at runtime
egr::Controller::Instance().GetCurrentTracer()->TraceOp(
"fused_gate_attention_grad",
ins0,
outs0,
attrs_map0,
egr::Controller::Instance().GetExpectedPlace(),
&this->default_attr_map_,
false,
{});

if (outs0.find("Query@GRAD") != outs0.end()) {
outputs[0] = egr::EagerUtils::GetOutputs(outs0["Query@GRAD"]);
}
if (outs0.find("OutLinearBias@GRAD") != outs0.end()) {
outputs[11] = egr::EagerUtils::GetOutputs(outs0["OutLinearBias@GRAD"]);
}
if (outs0.find("OutLinearWeight@GRAD") != outs0.end()) {
outputs[10] = egr::EagerUtils::GetOutputs(outs0["OutLinearWeight@GRAD"]);
}

if (merge_qkv) {
if (outs0.find("QKVWeight@GRAD") != outs0.end()) {
outputs[5] = egr::EagerUtils::GetOutputs(outs0["QKVWeight@GRAD"]);
}
} else {
if (outs0.find("Key@GRAD") != outs0.end()) {
outputs[1] = egr::EagerUtils::GetOutputs(outs0["Key@GRAD"]);
}
if (outs0.find("QueryWeight@GRAD") != outs0.end()) {
outputs[2] = egr::EagerUtils::GetOutputs(outs0["QueryWeight@GRAD"]);
}
if (outs0.find("KeyWeight@GRAD") != outs0.end()) {
outputs[3] = egr::EagerUtils::GetOutputs(outs0["KeyWeight@GRAD"]);
}
if (outs0.find("ValueWeight@GRAD") != outs0.end()) {
outputs[4] = egr::EagerUtils::GetOutputs(outs0["ValueWeight@GRAD"]);
}
}

if (has_gating) {
if (outs0.find("GateBias@GRAD") != outs0.end()) {
outputs[9] = egr::EagerUtils::GetOutputs(outs0["GateBias@GRAD"]);
}
if (outs0.find("GateWeight@GRAD") != outs0.end()) {
outputs[8] = egr::EagerUtils::GetOutputs(outs0["GateWeight@GRAD"]);
}
}

if (NonbatchedBias.defined()) {
if (outs0.find("NonbatchedBias@GRAD") != outs0.end()) {
outputs[6] = egr::EagerUtils::GetOutputs(outs0["NonbatchedBias@GRAD"]);
}
}

if (NeedComplexToRealConversion()) HandleComplexGradToRealGrad(&outputs);
return outputs;
}
2 changes: 2 additions & 0 deletions paddle/fluid/operators/fused/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ register_operators(
fused_multi_transformer_int8_op
resnet_unit_op
fused_gemm_epilogue_op
fused_gate_attention_op
resnet_basic_block_op)

if(WITH_XPU)
Expand All @@ -32,6 +33,7 @@ if(WITH_GPU OR WITH_ROCM)
endif()
# HIP not support cudnnTransformTensor
# HIP not support cudnnConvolutionBiasActivationForward
op_library(fused_gate_attention_op)
# fused_bn_add_activation
# HIP not support bn act fuse in MIOPEN
if((NOT WITH_ROCM) AND (NOT ${CUDNN_VERSION} VERSION_LESS 7401))
Expand Down
Loading