-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Pnp evaluator #5108
Pnp evaluator #5108
Changes from 5 commits
c22f7fc
9b0f092
e68a217
a9f9e20
1491041
496583a
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/positive_negative_pair_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
class PositiveNegativePairOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext *ctx) const override { | ||
PADDLE_ENFORCE( | ||
ctx->HasInput("Score"), | ||
"Input(Score) of PositiveNegativePairOp should not be null."); | ||
PADDLE_ENFORCE( | ||
ctx->HasInput("Label"), | ||
"Input(Label) of PositiveNegativePairOp should not be null."); | ||
PADDLE_ENFORCE( | ||
ctx->HasInput("QueryID"), | ||
"Input(QueryID) of PositiveNegativePairOp should not be null."); | ||
PADDLE_ENFORCE( | ||
ctx->HasOutput("PositivePair"), | ||
"Output(PositivePair) of PositiveNegativePairOp should not be null."); | ||
PADDLE_ENFORCE( | ||
ctx->HasOutput("NegativePair"), | ||
"Output(NegativePair) of PositiveNegativePairOp should not be null."); | ||
PADDLE_ENFORCE( | ||
ctx->HasOutput("NeutralPair"), | ||
"Output(NeutralPair) of PositiveNegativePairOp should not be null."); | ||
auto scalar_dim = framework::make_ddim({1}); | ||
if (ctx->HasInput("AccumulatePositivePair") || | ||
ctx->HasInput("AccumulateNegativePair") || | ||
ctx->HasInput("AccumulateNeutralPair")) { | ||
PADDLE_ENFORCE(ctx->HasInput("AccumulatePositivePair") && | ||
ctx->HasInput("AccumulateNegativePair") && | ||
ctx->HasInput("AccumulateNeutralPair"), | ||
"All optional inputs(AccumulatePositivePair, " | ||
"AccumulateNegativePair, AccumulateNeutralPair) of " | ||
"PositiveNegativePairOp are required if one of them is " | ||
"specified."); | ||
PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulatePositivePair"), scalar_dim, | ||
"Shape of AccumulatePositivePair should be {1}."); | ||
PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulateNegativePair"), scalar_dim, | ||
"Shape of AccumulateNegativePair should be {1}."); | ||
PADDLE_ENFORCE_EQ(ctx->GetInputDim("AccumulateNeutralPair"), scalar_dim, | ||
"Shape of AccumulateNeutralPair should be {1}."); | ||
} | ||
|
||
auto score_dim = ctx->GetInputDim("Score"); | ||
auto label_dim = ctx->GetInputDim("Label"); | ||
auto query_dim = ctx->GetInputDim("QueryID"); | ||
PADDLE_ENFORCE_EQ(score_dim.size(), 2, "Score should be a 2-D tensor."); | ||
PADDLE_ENFORCE_EQ(label_dim.size(), 2, "Label should be a 2-D tensor."); | ||
PADDLE_ENFORCE_EQ( | ||
label_dim[0], score_dim[0], | ||
"Tensor Score and Label should have the same height (batch size)."); | ||
PADDLE_ENFORCE_EQ(label_dim[1], 1, | ||
"The width of Label should be 1, i.e. each item should " | ||
"have a scalar label."); | ||
PADDLE_ENFORCE(query_dim == label_dim, | ||
"QueryID should have the same shape as Label."); | ||
if (ctx->HasInput("Weight")) { | ||
PADDLE_ENFORCE(ctx->GetInputDim("Weight") == label_dim, | ||
"Weight should have the same shape as Label."); | ||
} | ||
int column = ctx->Attrs().Get<int>("column"); | ||
auto depth = score_dim[1]; | ||
PADDLE_ENFORCE(column < depth && column >= -depth, | ||
"Attribute column should be in the range of [-%l, %l)", | ||
depth, depth); | ||
|
||
ctx->SetOutputDim("PositivePair", scalar_dim); | ||
ctx->SetOutputDim("NegativePair", scalar_dim); | ||
ctx->SetOutputDim("NeutralPair", scalar_dim); | ||
} | ||
|
||
protected: | ||
framework::DataType IndicateDataType( | ||
const framework::ExecutionContext &ctx) const override { | ||
return framework::ToDataType(ctx.Input<Tensor>("Score")->type()); | ||
} | ||
}; | ||
|
||
class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
PositiveNegativePairOpMaker(framework::OpProto *proto, | ||
framework::OpAttrChecker *op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("Score", | ||
"(Tensor, float) Model Score on an item (with " | ||
"respect to QueryID). It's a 2-D tensor with shape [batch_size, " | ||
"depth], where the column specified by the attribute \"column\" " | ||
"is used as item score."); | ||
AddInput("Label", | ||
"(Tensor, float) Label of an item (with repsect to " | ||
"QueryId). It's a 2-D tensor with shape [batch_size, 1]."); | ||
AddInput("QueryID", | ||
"(Tensor, int) Query ID that indicates the context. Its shape " | ||
"should be the same as Label."); | ||
AddInput( | ||
"AccumulatePositivePair", | ||
"(float) Optional. The accumulated number of positive pairs over a " | ||
"stream of data. If provided, the output PositivePair will be " | ||
"initialized with this number rather than 0. it won't be modified " | ||
"in place.") | ||
.AsDispensable(); | ||
AddInput( | ||
"AccumulateNegativePair", | ||
"(float) Optional. The accumulated number of negative pairs over a " | ||
"stream of data. If provided, the output NegativePair will be " | ||
"initialized with this number rather than 0. it won't be modified " | ||
"in place.") | ||
.AsDispensable(); | ||
AddInput("AccumulateNeutralPair", | ||
"(float) Optional. The accumulated number of neutral pairs over a " | ||
"stream of data. If provided, the output NeutralPair will be " | ||
"initialized with this number rather than 0. it won't be modified " | ||
"in place.") | ||
.AsDispensable(); | ||
AddInput("Weight", | ||
"(float) Optional. Weight of current item. If specified, its " | ||
"shape should be the same as Label, and the meaning of the output " | ||
"changes from numbers of pairs to the total sum of pairs' " | ||
"weights. Weight of a pair of items is the average of their " | ||
"weights.") | ||
.AsDispensable(); | ||
AddOutput("PositivePair", | ||
"(float) Number of positive pairs, i.e. the pairs of " | ||
"items that are ranked correctly."); | ||
AddOutput("NegativePair", | ||
"(float) Number of negative pairs, i.e. the pairs of " | ||
"items that are ranked incorrectly."); | ||
AddOutput("NeutralPair", | ||
"(float) Number of neutral pairs, i.e. the pairs of items " | ||
"that have the same score.") | ||
.AsDispensable(); | ||
AddAttr<int>( | ||
"column", | ||
"(int, default -1) The column position of Score used to rank items in " | ||
"descending order. It must be in the range of [-rank(Score), " | ||
"rank(Score)). " | ||
"If `dim < 0`, the dim to reduce is `rank + dim`. " | ||
"Noting that reducing on the first dim will make the LoD info lost.") | ||
.SetDefault(0); | ||
AddComment(R"DOC( | ||
PositiveNegativePairOp can be used to evaluate Learning To Rank(LTR) | ||
model performance. | ||
Within some context, e.g. the "query", a LTR model generates scores | ||
for a list of items, which gives a partial order of the items. | ||
PositiveNegativePairOp takes a list of reference rank order | ||
(Input("Label")) and the model generated scores (Input(Score)) as | ||
inputs and counts the pairs that ranked correctly and incorrectly. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_WITHOUT_GRADIENT(positive_negative_pair, | ||
ops::PositiveNegativePairOp, | ||
ops::PositiveNegativePairOpMaker); | ||
REGISTER_OP_CPU_KERNEL( | ||
positive_negative_pair, | ||
ops::PositiveNegativePairKernel<paddle::platform::CPUPlace, float>, | ||
ops::PositiveNegativePairKernel<paddle::platform::CPUPlace, double>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
#include <unordered_map> | ||
#include <vector> | ||
#include "paddle/framework/eigen.h" | ||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/utils/Logging.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
using LoDTensor = framework::LoDTensor; | ||
|
||
template <typename Place, typename T> | ||
class PositiveNegativePairKernel : public framework::OpKernel<T> { | ||
public: | ||
struct PredictionResult { | ||
PredictionResult(T score, T label, T weight) | ||
: score(score), label(label), weight(weight) {} | ||
T score; | ||
T label; | ||
T weight; | ||
}; | ||
|
||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto score_t = context.Input<Tensor>("Score"); | ||
auto label_t = context.Input<Tensor>("Label"); | ||
auto query_t = context.Input<Tensor>("QueryID"); | ||
auto acc_positive_t = context.Input<Tensor>("AccumulatePositivePair"); | ||
auto acc_negative_t = context.Input<Tensor>("AccumulateNegativePair"); | ||
auto acc_neutral_t = context.Input<Tensor>("AccumulateNeutralPair"); | ||
auto positive_t = context.Output<Tensor>("PositivePair"); | ||
auto negative_t = context.Output<Tensor>("NegativePair"); | ||
auto neutral_t = context.Output<Tensor>("NeutralPair"); | ||
auto weight_t = context.Input<Tensor>("Weight"); | ||
|
||
auto score = score_t->data<T>(); | ||
auto label = label_t->data<T>(); | ||
auto query = query_t->data<int32_t>(); | ||
const T* weight = nullptr; | ||
auto has_weight = weight_t != nullptr; | ||
if (has_weight) { | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Why not There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done. |
||
weight = weight_t->data<T>(); | ||
} | ||
T* positive = positive_t->mutable_data<T>(context.GetPlace()); | ||
T* negative = negative_t->mutable_data<T>(context.GetPlace()); | ||
T* neutral = neutral_t->mutable_data<T>(context.GetPlace()); | ||
|
||
auto score_dim = score_t->dims(); | ||
auto batch_size = score_dim[0]; | ||
auto width = score_dim[1]; | ||
auto column = context.Attr<int32_t>("column"); | ||
if (column < 0) { | ||
column += width; | ||
} | ||
|
||
// construct document instances for each query: Query => List[<score#0, | ||
// label#0>, ...] | ||
std::unordered_map<int32_t, std::vector<PredictionResult>> predictions; | ||
for (auto i = 0; i < batch_size; ++i) { | ||
if (predictions.find(query[i]) == predictions.end()) { | ||
predictions.emplace( | ||
std::make_pair(query[i], std::vector<PredictionResult>())); | ||
} | ||
predictions[query[i]].push_back(PredictionResult( | ||
score[i * width + column], label[i], has_weight ? weight[i] : 1.0)); | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 这里是不是也可以用
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done. |
||
} | ||
|
||
// for each query, accumulate pair counts | ||
T pos = 0, neg = 0, neu = 0; | ||
if (acc_positive_t != nullptr && acc_negative_t != nullptr && | ||
acc_neutral_t != nullptr) { | ||
pos = acc_positive_t->data<T>()[0]; | ||
neg = acc_negative_t->data<T>()[0]; | ||
neu = acc_neutral_t->data<T>()[0]; | ||
} | ||
auto evaluate_one_list = [&pos, &neg, | ||
&neu](std::vector<PredictionResult> vec) { | ||
for (auto ite1 = vec.begin(); ite1 != vec.end(); ++ite1) { | ||
for (auto ite2 = ite1 + 1; ite2 != vec.end(); ++ite2) { | ||
if (ite1->label == ite2->label) { // labels are equal, ignore. | ||
continue; | ||
} | ||
T w = (ite1->weight + ite2->weight) * 0.5; | ||
if (ite1->score == ite2->score) { | ||
neu += w; | ||
} | ||
(ite1->score - ite2->score) * (ite1->label - ite2->label) > 0.0 | ||
? pos += w | ||
: neg += w; | ||
} | ||
} | ||
}; | ||
for (auto prediction : predictions) { | ||
evaluate_one_list(prediction.second); | ||
} | ||
*positive = pos; | ||
*negative = neg; | ||
*neutral = neu; | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
我们要不要考虑
query id
有可能不是数字的情况?即使我们只支持数字的话,这里用
size_t
是不是更合适?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
int32_t
确实和它们用int64_t
不一致,所以我把这里改为int64_t
了。size_t
是unsigned,和这里语义有区别。