-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Seq expand op #4740
Seq expand op #4740
Changes from all commits
901b041
acd1aae
f984cba
23701ff
555ab3f
8de04be
31531ab
a5adffd
a94b3dd
74b283c
00ad751
d697b6a
4e8fccf
2961674
97f1b98
35e7944
fab6f30
9f32b61
8d4e2d4
84f471b
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/operators/seq_expand_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using framework::Tensor; | ||
|
||
class SeqExpandOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X")); | ||
PADDLE_ENFORCE(ctx->HasOutput("Out")); | ||
PADDLE_ENFORCE(ctx->HasInput("Y")); | ||
framework::DDim out_dim; | ||
out_dim = ctx->GetInputDim("Y"); | ||
ctx->ShareLoD("Y", "Out"); | ||
ctx->SetOutputDim("Out", out_dim); | ||
} | ||
}; | ||
|
||
class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
SeqExpandOpMaker(framework::OpProto* proto, | ||
framework::OpAttrChecker* op_checker) | ||
: OpProtoAndCheckerMaker(proto, op_checker) { | ||
AddInput("X", | ||
"(Tensor or LoDTensor) The input(X) of this operator can be a " | ||
"LoDTensor or a base Tensor."); | ||
AddInput("Y", | ||
"(LoDTensor)The reference input(Y) of seq_expand op." | ||
"It must be a LoDTensor with k-level(k>0)." | ||
"The input(X) will be expanded according to LOD of input(Y)." | ||
"The element numbers of last level in input(Y) " | ||
"must be equal to dims[0] of input(X)."); | ||
AddOutput("Out", | ||
"(LodTensor)The output of seq_expand op." | ||
"The lod of output will be as same as input(Y)'s lod."); | ||
AddComment(R"DOC( | ||
Expand input(X) according to LOD of input(Y). | ||
|
||
Case 1: | ||
|
||
Given 2-level a LoDTensor input(X) | ||
X.lod = [[0, 2, 3], | ||
[0, 1, 3, 4]] | ||
X.data = [a, b, c, d] | ||
X.dims = [4, 1] | ||
and input(Y) | ||
Y.lod = [[0, 2, 4], | ||
[0, 3, 6, 7, 8]] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Add the necessary condition? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Fixed. |
||
with condition len(Y.lod[-1]) -1 == X.dims[0] | ||
then we get 2-level LoDTensor | ||
Out.lod = [[0, 2, 4], | ||
[0, 3, 6, 7, 8]] | ||
Out.data = [a, a, a, b, b, b, c, d] | ||
Out.dims = [8, 1] | ||
|
||
Case 2: | ||
|
||
Given a 0-level LoDTensor input(X) | ||
X.data = [a, b, c] | ||
X.lod = NULL | ||
X.dims = [3, 1] | ||
and input(Y) | ||
Y.lod = [[0, 2, 3, 6]] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Also add the necessary condition: len(Y.lod[0]) -1 == X.dims[0] There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Fixed. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Also add the necessary condition: len(Y.lod[0]) == X.dims[0] There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Fixed. |
||
with condition len(Y.lod[-1]) -1 == X.dims[0] | ||
then we get 1-level LoDTensor | ||
Out.lod = [[0, 2, 3, 6]] | ||
Out.data = [a, a, b, c, c, c] | ||
Out.dims = [6, 1] | ||
|
||
Case 3: | ||
|
||
Given a 0-level LoDTensor input(X) | ||
X.data = [[a, b], [c, d], [e, f]] | ||
X.lod = NULL | ||
X.dims = [3, 2] | ||
and input(Y) | ||
Y.lod = [[0, 2, 3, 6]] | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. same as above. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Fixed. |
||
with condition len(Y.lod[-1]) -1 == X.dims[0] | ||
then we get 1-level LoDTensor | ||
Out.lod = [[0, 2, 3, 6]] | ||
Out.data = [[a,b], [a,b] [c,d], [e, f], [e, f], [e, f]] | ||
Out.dims = [6, 2] | ||
|
||
Case 4: | ||
|
||
Given 2-level a LoDTensor input(X) | ||
X.lod = [[0, 2, 3], | ||
[0, 1, 3, 4]] | ||
X.data = [a, b, c, d] | ||
X.dims = [4, 1] | ||
and input(Y) | ||
Y.lod = [[0, 2, 4], | ||
[0, 3, 6, 6, 8]] | ||
with condition len(Y.lod[-1]) -1 == X.dims[0] | ||
then we get 2-level LoDTensor | ||
Out.lod = [[0, 2, 4], | ||
[0, 3, 6, 6, 8]] | ||
Out.data = [a, a, a, b, b, b, d, d] | ||
Out.dims = [8, 1] | ||
|
||
|
||
)DOC"); | ||
} | ||
}; | ||
|
||
class SeqExpandOpGrad : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
protected: | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
PADDLE_ENFORCE(ctx->HasInput("X")); | ||
PADDLE_ENFORCE(ctx->HasInput("Out")); | ||
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), | ||
"The input(Out@GRAD) should not be null"); | ||
auto x_dims = ctx->GetInputDim("X"); | ||
auto x_grad_name = framework::GradVarName("X"); | ||
if (ctx->HasOutput(x_grad_name)) { | ||
ctx->SetOutputDim(x_grad_name, x_dims); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP(seq_expand, ops::SeqExpandOp, ops::SeqExpandOpMaker, | ||
seq_expand_grad, ops::SeqExpandOpGrad); | ||
REGISTER_OP_CPU_KERNEL(seq_expand, | ||
ops::SeqExpandKernel<paddle::platform::CPUPlace, float>); | ||
REGISTER_OP_CPU_KERNEL( | ||
seq_expand_grad, | ||
ops::SeqExpandGradKernel<paddle::platform::CPUPlace, float>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#define EIGEN_USE_GPU | ||
#include "paddle/operators/seq_expand_op.h" | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_GPU_KERNEL(seq_expand, | ||
ops::SeqExpandKernel<paddle::platform::GPUPlace, float>); | ||
REGISTER_OP_GPU_KERNEL( | ||
seq_expand_grad, | ||
ops::SeqExpandGradKernel<paddle::platform::GPUPlace, float>); |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "paddle/framework/op_registry.h" | ||
#include "paddle/memory/memcpy.h" | ||
#include "unsupported/Eigen/CXX11/Tensor" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using LoDTensor = framework::LoDTensor; | ||
|
||
template <typename Place, typename T> | ||
class SeqExpandKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto* x = context.Input<LoDTensor>("X"); | ||
auto* out = context.Output<LoDTensor>("Out"); | ||
const T* x_data = x->data<T>(); | ||
auto x_dims = x->dims(); | ||
auto* y = context.Input<LoDTensor>("Y"); | ||
PADDLE_ENFORCE_EQ(x_dims[0], y->lod().back().size() - 1, | ||
"The size of last lod level in Input(Y)" | ||
"must be equal to dims[0] of Input(X)."); | ||
out->set_lod(y->lod()); | ||
auto place = context.GetEigenDevice<Place>(); | ||
size_t element_len = framework::product(x_dims) / x_dims[0]; | ||
T* out_data = out->mutable_data<T>(context.GetPlace()); | ||
auto out_starts = out->lod().back(); | ||
|
||
for (size_t i = 0; i < out_starts.size() - 1; i++) { | ||
int scale = out_starts[i + 1] - out_starts[i]; | ||
Eigen::TensorMap< | ||
Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>> | ||
x_t(x_data, 1, element_len); | ||
Eigen::TensorMap<Eigen::Tensor<T, 2, Eigen::RowMajor, Eigen::DenseIndex>> | ||
out_t(out_data, scale, element_len); | ||
Eigen::array<int, 2> cast({scale, 1}); | ||
out_t.device(place) = x_t.broadcast(cast); | ||
x_data += element_len; | ||
out_data += element_len * scale; | ||
} | ||
} | ||
}; | ||
|
||
/* | ||
*Given Grad(Out) | ||
* | ||
* Grad(Out).lod = [[0, 2], | ||
* [0, 3, 6]] | ||
* Grad(Out).data = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6] | ||
* Then | ||
* Grad(X).data = [(0.1 + 0.2 + 0.3), (0.4 + 0.5 + 0.6)] | ||
* = [0.6, 1.5] | ||
* Grad(X).lod = Input(X).lod | ||
* | ||
* */ | ||
template <typename Place, typename T> | ||
class SeqExpandGradKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
auto* d_out = context.Input<LoDTensor>(framework::GradVarName("Out")); | ||
auto* x = context.Input<LoDTensor>("X"); | ||
auto* out = context.Input<LoDTensor>("Out"); | ||
auto* d_x = context.Output<LoDTensor>(framework::GradVarName("X")); | ||
auto out_last_level = out->lod().back(); | ||
d_x->set_lod(x->lod()); | ||
const T* d_out_data = d_out->data<T>(); | ||
T* d_x_data = d_x->mutable_data<T>(context.GetPlace()); | ||
size_t element_len = d_out->numel() / d_out->dims()[0]; | ||
for (size_t i = 0; i < out_last_level.size() - 1; ++i) { | ||
size_t repeat = out_last_level[i + 1] - out_last_level[i]; | ||
Eigen::TensorMap< | ||
Eigen::Tensor<const T, 2, Eigen::RowMajor, Eigen::DenseIndex>> | ||
d_out_t(d_out_data, static_cast<int>(repeat), element_len); | ||
Eigen::TensorMap<Eigen::Tensor<T, 1, Eigen::RowMajor, Eigen::DenseIndex>> | ||
d_x_t(d_x_data, static_cast<int>(element_len)); | ||
auto place = context.GetEigenDevice<Place>(); | ||
d_x_t.device(place) = d_out_t.sum(Eigen::array<int, 1>({{0}})); | ||
d_out_data += (repeat * element_len); | ||
d_x_data += element_len; | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
import unittest | ||
import numpy as np | ||
from op_test import OpTest | ||
|
||
|
||
class TestSeqExpand(OpTest): | ||
def set_data(self): | ||
x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32') | ||
y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32') | ||
y_lod = [[0, 1, 4, 8]] | ||
self.inputs = {'X': x_data, 'Y': (y_data, y_lod)} | ||
|
||
def compute(self): | ||
x = self.inputs['X'] | ||
x_data, x_lod = x if type(x) == tuple else (x, None) | ||
n = 1 + x_data.shape[0] if not x_lod else len(x_lod[0]) | ||
y_data, y_lod = self.inputs['Y'] | ||
repeats = [((y_lod[-1][i + 1] - y_lod[-1][i])) | ||
for i in range(len(y_lod[-1]) - 1)] | ||
out = x_data.repeat(repeats, axis=0) | ||
self.outputs = {'Out': out} | ||
|
||
def setUp(self): | ||
self.op_type = 'seq_expand' | ||
self.set_data() | ||
self.compute() | ||
|
||
def test_check_output(self): | ||
self.check_output() | ||
|
||
def test_check_grad(self): | ||
self.check_grad(["X"], "Out") | ||
|
||
|
||
class TestSeqExpandCase1(TestSeqExpand): | ||
def set_data(self): | ||
x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32') | ||
x_lod = [[0, 2, 5]] | ||
y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32') | ||
y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]] | ||
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} | ||
|
||
|
||
class TestSeqExpandCase2(TestSeqExpand): | ||
def set_data(self): | ||
x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32') | ||
x_lod = [[0, 1]] | ||
y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32') | ||
y_lod = [[0, 2]] | ||
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} | ||
|
||
|
||
class TestSeqExpandCase3(TestSeqExpand): | ||
def set_data(self): | ||
x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32') | ||
x_lod = [[0, 1, 2, 3, 4]] | ||
y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32') | ||
y_lod = [[0, 2, 4, 4, 6]] | ||
self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Make sure this op support empty sequence, if it supports, add a case because this scenario is special.
for example, Y's LoD is
1 2 2 2
, that means there are 2 empty sequences.Some instance in X should be dropped when a corresponding LoD element is empty.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Fixed by adding unitest case and comments.