diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index fb47fd0c6f0c3..18f0b1b4e497e 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -1715,7 +1715,6 @@ def init(cls, name, inputs, device=None, coeff=1.): g_cost_map[cost_type] = cls define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy') -define_cost('ClassificationErrorLayer', 'classification_error') define_cost('RankingCost', 'rank-cost') define_cost('AucValidation', 'auc-validation') define_cost('PnpairValidation', 'pnpair-validation') diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 745e61b2eb0bc..686704cb7c9b0 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -2799,7 +2799,7 @@ def __cost_input__(input, label, weight=None): @wrap_name_default() -def regression_cost(input, label, weight=None, cost='square_error', name=None): +def regression_cost(input, label, weight=None, name=None): """ Regression Layer. @@ -2814,21 +2814,18 @@ def regression_cost(input, label, weight=None, cost='square_error', name=None): :param weight: The weight affects the cost, namely the scale of cost. It is an optional argument. :type weight: LayerOutput - :param cost: Cost method. - :type cost: basestring :return: LayerOutput object. :rtype: LayerOutput """ ipts, parents = __cost_input__(input, label, weight) - Layer(inputs=ipts, type=cost, name=name) + Layer(inputs=ipts, type="square_error", name=name) return LayerOutput(name, LayerType.COST, parents=parents) @wrap_name_default("cost") @layer_support() def classification_cost(input, label, weight=None, name=None, - cost="multi-class-cross-entropy", evaluator=classification_error_evaluator, layer_attr=None): """ @@ -2843,8 +2840,6 @@ def classification_cost(input, label, weight=None, name=None, :param weight: The weight affects the cost, namely the scale of cost. It is an optional argument. :type weight: LayerOutput - :param cost: cost method. - :type cost: basestring :param evaluator: Evaluator method. :param layer_attr: layer's extra attribute. :type layer_attr: ExtraLayerAttribute @@ -2857,7 +2852,7 @@ def classification_cost(input, label, weight=None, name=None, ipts, parents = __cost_input__(input, label, weight) - Layer(name=name, type=cost, inputs=ipts, + Layer(name=name, type="multi-class-cross-entropy", inputs=ipts, **ExtraLayerAttribute.to_kwargs(layer_attr)) def __add_evaluator__(e): @@ -3819,8 +3814,8 @@ def multi_binary_label_cross_entropy(input, label, name=None, coeff=1.0): if input.activation is None or \ not isinstance(input.activation, SigmoidActivation): logger.log(logging.WARN, - "%s is not recommend for batch normalization's activation, " - "maybe the relu is better" % repr(input.activation)) + "%s is not recommend for multi_binary_label_cross_entropy's activation, " + "maybe the sigmoid is better" % repr(input.activation)) Layer(name=name, type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,