-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #7688 from reyoung/feature/python_overload_math_op…
…erators Add math operator patches
- Loading branch information
Showing
4 changed files
with
338 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from ..framework import Variable, unique_name | ||
from ..registry import OpProtoHolder | ||
|
||
__all__ = ['monkey_patch_variable'] | ||
|
||
|
||
def monkey_patch_variable(): | ||
def unique_tmp_name(): | ||
return unique_name("tmp") | ||
|
||
def safe_get_dtype(var): | ||
try: | ||
dtype = var.dtype | ||
except: | ||
raise ValueError("Cannot get data type from %s", var.name) | ||
return dtype | ||
|
||
def create_tensor(block, value, dtype, shape): | ||
value = float(value) | ||
tmp_name = unique_tmp_name() | ||
var = block.create_var(name=tmp_name, shape=shape, dtype=dtype) | ||
block.append_op( | ||
type="fill_constant", | ||
outputs={'Out': [var]}, | ||
attrs={'dtype': var.dtype, | ||
'shape': shape, | ||
'value': value}) | ||
return var | ||
|
||
def create_scalar(block, value, dtype): | ||
return create_tensor(block, value, dtype, shape=[1]) | ||
|
||
def create_tensor_with_batchsize(ref_var, value, dtype): | ||
assert isinstance(ref_var, Variable) | ||
value = float(value) | ||
tmp_name = unique_tmp_name() | ||
var = ref_var.block.create_var(name=tmp_name, dtype=dtype) | ||
ref_var.block.append_op( | ||
type='fill_constant_batch_size_like', | ||
outputs={'Out': [var]}, | ||
inputs={'Input': [ref_var]}, | ||
attrs={'shape': ref_var.shape, | ||
'value': value}) | ||
return var | ||
|
||
def astype(self, dtype): | ||
""" | ||
Cast a variable to a specified data type. | ||
NOTE: The variable must be a Tensor | ||
Args: | ||
self(Variable): The source variable | ||
dtype: The target dtype | ||
Returns: | ||
Variable with new dtype | ||
""" | ||
tmp_name = unique_tmp_name() | ||
out = self.block.create_var(name=tmp_name, dtype=dtype) | ||
self.block.append_op( | ||
type="cast", | ||
inputs={"X": [self]}, | ||
outputs={"Out": [out]}, | ||
attrs={"in_dtype": self.dtype, | ||
"out_dtype": out.dtype}) | ||
return out | ||
|
||
def _elemwise_method_creator_(method_name, op_type, reverse=False): | ||
def __impl__(self, other_var): | ||
lhs_dtype = safe_get_dtype(self) | ||
|
||
if not isinstance(other_var, Variable): | ||
if reverse: | ||
has_batch_size = False | ||
for elem in self.shape: | ||
if elem < 0: | ||
has_batch_size = True | ||
break | ||
if not has_batch_size: | ||
other_var = create_tensor( | ||
self.block, | ||
other_var, | ||
dtype=lhs_dtype, | ||
shape=self.shape) | ||
else: | ||
other_var = create_tensor_with_batchsize( | ||
self, other_var, lhs_dtype) | ||
else: | ||
# add fill_op to self.block | ||
other_var = create_scalar( | ||
self.block, value=other_var, dtype=lhs_dtype) | ||
|
||
rhs_dtype = safe_get_dtype(other_var) | ||
if lhs_dtype != rhs_dtype: | ||
other_var = astype(other_var, lhs_dtype) | ||
if reverse: | ||
tmp = self | ||
self = other_var | ||
other_var = tmp | ||
|
||
tmp_name = unique_tmp_name() | ||
out = self.block.create_var(name=tmp_name, dtype=lhs_dtype) | ||
self.block.append_op( | ||
type=op_type, | ||
inputs={'X': [self], | ||
'Y': [other_var]}, | ||
outputs={'Out': out}) | ||
return out | ||
|
||
comment = OpProtoHolder.instance().get_op_proto(op_type).comment | ||
|
||
__impl__.__doc__ = """ | ||
{0} | ||
Args: | ||
self(Variable): left hand variable | ||
other_var(Variable|float|int): right hand variable | ||
Returns: | ||
Variable | ||
""".format(comment) | ||
__impl__.__name__ = method_name | ||
return __impl__ | ||
|
||
# inject methods | ||
for method_name, op_type, reverse in ( | ||
("__add__", "elementwise_add", False), | ||
# a+b == b+a. Do not need to reverse explicitly | ||
("__radd__", "elementwise_add", False), | ||
("__sub__", "elementwise_sub", False), | ||
("__rsub__", "elementwise_sub", True), | ||
("__mul__", "elementwise_mul", False), | ||
# a*b == b*a. Do not need to reverse explicitly | ||
("__rmul__", "elementwise_mul", False), | ||
("__div__", "elementwise_div", False), | ||
("__rdiv__", "elementwise_div", True)): | ||
setattr(Variable, method_name, | ||
_elemwise_method_creator_(method_name, op_type, reverse)) | ||
|
||
Variable.astype = astype |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
import decorators | ||
import paddle.v2.fluid as fluid | ||
import numpy | ||
|
||
|
||
class TestMathOpPatches(unittest.TestCase): | ||
@decorators.prog_scope() | ||
def test_add_scalar(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = a + 10 | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np}, | ||
fetch_list=[b]) | ||
self.assertTrue(numpy.allclose(a_np + 10, b_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_radd_scalar(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = 10 + a | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np}, | ||
fetch_list=[b]) | ||
self.assertTrue(numpy.allclose(a_np + 10, b_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_sub_scalar(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = a - 10 | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np}, | ||
fetch_list=[b]) | ||
self.assertTrue(numpy.allclose(a_np - 10, b_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_radd_scalar(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = 10 - a | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np}, | ||
fetch_list=[b]) | ||
self.assertTrue(numpy.allclose(10 - a_np, b_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_mul_scalar(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = a * 10 | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np}, | ||
fetch_list=[b]) | ||
self.assertTrue(numpy.allclose(a_np * 10, b_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_rmul_scalar(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = 10 * a | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np}, | ||
fetch_list=[b]) | ||
self.assertTrue(numpy.allclose(10 * a_np, b_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_div_scalar(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = a / 10 | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np}, | ||
fetch_list=[b]) | ||
self.assertTrue(numpy.allclose(a_np / 10, b_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_rdiv_scalar(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = 10 / a | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2 | ||
|
||
b_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np}, | ||
fetch_list=[b]) | ||
self.assertTrue(numpy.allclose(10 / a_np, b_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_div_two_tensor(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = fluid.layers.data(name="b", shape=[1]) | ||
c = a / b | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2 | ||
c_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np, | ||
'b': b_np}, | ||
fetch_list=[c]) | ||
self.assertTrue(numpy.allclose(a_np / b_np, c_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_mul_two_tensor(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = fluid.layers.data(name="b", shape=[1]) | ||
c = a * b | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
c_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np, | ||
'b': b_np}, | ||
fetch_list=[c]) | ||
self.assertTrue(numpy.allclose(a_np * b_np, c_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_add_two_tensor(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = fluid.layers.data(name="b", shape=[1]) | ||
c = a + b | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
c_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np, | ||
'b': b_np}, | ||
fetch_list=[c]) | ||
self.assertTrue(numpy.allclose(a_np + b_np, c_np)) | ||
|
||
@decorators.prog_scope() | ||
def test_sub_two_tensor(self): | ||
a = fluid.layers.data(name="a", shape=[1]) | ||
b = fluid.layers.data(name="b", shape=[1]) | ||
c = a - b | ||
place = fluid.CPUPlace() | ||
exe = fluid.Executor(place) | ||
a_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
b_np = numpy.random.random(size=[10, 1]).astype('float32') | ||
c_np = exe.run(fluid.default_main_program(), | ||
feed={"a": a_np, | ||
'b': b_np}, | ||
fetch_list=[c]) | ||
self.assertTrue(numpy.allclose(a_np - b_np, c_np)) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |