-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: tiancaishaonvjituizi <[email protected]>
- Loading branch information
1 parent
e96dae8
commit a755e2f
Showing
4 changed files
with
248 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
200 changes: 200 additions & 0 deletions
200
python/paddle/fluid/tests/unittests/test_nan_to_num_op.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,200 @@ | ||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import unittest | ||
from typing import Optional | ||
import numpy as np | ||
import paddle | ||
import paddle.fluid.core as core | ||
from op_test import OpTest | ||
|
||
|
||
def np_nan_to_num(x: np.ndarray, | ||
nan: float = 0.0, | ||
posinf: Optional[float] = None, | ||
neginf: Optional[float] = None) -> np.ndarray: | ||
return np.nan_to_num(x, True, nan=nan, posinf=posinf, neginf=neginf) | ||
|
||
|
||
def np_nan_to_num_op(x: np.ndarray, nan: float, replace_posinf_with_max: bool, | ||
posinf: float, replace_neginf_with_min: bool, | ||
neginf: float) -> np.ndarray: | ||
if replace_posinf_with_max: | ||
posinf = None | ||
if replace_neginf_with_min: | ||
neginf = None | ||
return np.nan_to_num(x, True, nan=nan, posinf=posinf, neginf=neginf) | ||
|
||
|
||
def np_nan_to_num_grad(x: np.ndarray, dout: np.ndarray) -> np.ndarray: | ||
dx = np.copy(dout) | ||
dx[np.isnan(x) | (x == np.inf) | (x == -np.inf)] = 0 | ||
return dx | ||
|
||
|
||
class TestNanToNum(unittest.TestCase): | ||
|
||
def setUp(self): | ||
self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \ | ||
else paddle.CPUPlace() | ||
|
||
# def test_static(self): | ||
# x_np = np.array([[1, np.nan, -2], [np.inf, 0, | ||
# -np.inf]]).astype(np.float32) | ||
# out1_np = np_nan_to_num(x_np) | ||
# out2_np = np_nan_to_num(x_np, 1.) | ||
# out3_np = np_nan_to_num(x_np, 1., 9.) | ||
# out4_np = np_nan_to_num(x_np, 1., 9., -12.) | ||
# paddle.enable_static() | ||
# with paddle.static.program_guard(paddle.static.Program()): | ||
# x = paddle.fluid.data('X', x_np.shape) | ||
# out1 = paddle.nan_to_num(x) | ||
# out2 = paddle.nan_to_num(x, 1.) | ||
# out3 = paddle.nan_to_num(x, 1., 9.) | ||
# out4 = paddle.nan_to_num(x, 1., 9., -12.) | ||
# exe = paddle.static.Executor(self.place) | ||
# res = exe.run(feed={'X': x_np}, fetch_list=[out1, out2, out3, out4]) | ||
# | ||
# self.assertTrue(np.allclose(out1_np, res[0])) | ||
# self.assertTrue(np.allclose(out2_np, res[1])) | ||
# self.assertTrue(np.allclose(out3_np, res[2])) | ||
# self.assertTrue(np.allclose(out4_np, res[3])) | ||
# | ||
# def test_errors(self): | ||
# paddle.enable_static() | ||
# with paddle.static.program_guard(paddle.static.Program()): | ||
# | ||
# def test_dtype(): | ||
# x = paddle.fluid.data('X2', [10, 12], 'bool') | ||
# paddle.nan_to_num(x) | ||
# | ||
# self.assertRaises(TypeError, test_dtype) | ||
|
||
def test_dygraph(self): | ||
|
||
paddle.disable_static(place=self.place) | ||
|
||
with paddle.fluid.dygraph.guard(): | ||
x_np = np.array([[1, np.nan, -2], [np.inf, 0, | ||
-np.inf]]).astype(np.float64) | ||
# -np.inf]]).astype(np.float32) | ||
x_tensor = paddle.to_tensor(x_np, stop_gradient=False) | ||
|
||
out_tensor = paddle.nan_to_num(x_tensor) | ||
out_np = np_nan_to_num(x_np) | ||
self.assertTrue(np.allclose(out_tensor.numpy(), out_np)) | ||
|
||
out_tensor = paddle.nan_to_num(x_tensor, 1., None, None) | ||
out_np = np_nan_to_num(x_np, 1, None, None) | ||
self.assertTrue(np.allclose(out_tensor.numpy(), out_np)) | ||
|
||
out_tensor = paddle.nan_to_num(x_tensor, 1., 2., None) | ||
out_np = np_nan_to_num(x_np, 1, 2, None) | ||
self.assertTrue(np.allclose(out_tensor.numpy(), out_np)) | ||
|
||
out_tensor = paddle.nan_to_num(x_tensor, 1., None, -10.) | ||
out_np = np_nan_to_num(x_np, 1, None, -10) | ||
self.assertTrue(np.allclose(out_tensor.numpy(), out_np)) | ||
|
||
out_tensor = paddle.nan_to_num(x_tensor, 1., 100., -10.) | ||
out_np = np_nan_to_num(x_np, 1, 100, -10) | ||
self.assertTrue(np.allclose(out_tensor.numpy(), out_np)) | ||
|
||
paddle.enable_static() | ||
|
||
# def test_check_grad(self): | ||
# paddle.disable_static(place=self.place) | ||
# x_np = np.array([[1, np.nan, -2], [np.inf, 0, | ||
# -np.inf]]).astype(np.float32) | ||
# x_tensor = paddle.to_tensor(x_np, stop_gradient=False) | ||
# | ||
# y = paddle.nan_to_num(x_tensor) | ||
# dx = paddle.grad(y, x_tensor)[0].numpy() | ||
# | ||
# np_grad = np_nan_to_num_grad(x_np, np.ones_like(x_np)) | ||
# self.assertTrue(np.allclose(np_grad, dx)) | ||
# | ||
# paddle.enable_static() | ||
|
||
|
||
# class BaseTestCases: | ||
# | ||
# class BaseOpTest(OpTest): | ||
# | ||
# def setUp(self): | ||
# self.op_type = "nan_to_num" | ||
# input = np.arange(100, dtype=np.float64) | ||
# input[5] = np.nan | ||
# input[29] = np.inf | ||
# input[97] = -np.inf | ||
# self.inputs = {'X': input} | ||
# self.attrs = self._attrs() | ||
# self.outputs = { | ||
# 'Out': np_nan_to_num_op(self.inputs['X'], **self.attrs) | ||
# } | ||
# paddle.enable_static() | ||
# | ||
# def test_check_output(self): | ||
# self.check_output() | ||
# | ||
# def test_check_grad(self): | ||
# input = self.inputs['X'] | ||
# dout = np.ones_like(input) / input.size | ||
# self.check_grad( | ||
# ['X'], | ||
# 'Out', | ||
# user_defined_grads=[np_nan_to_num_grad(self.inputs['X'], dout)]) | ||
# | ||
# def _attrs(self): | ||
# raise NotImplementedError() | ||
# | ||
# | ||
# class TestNanToNumOp1(BaseTestCases.BaseOpTest): | ||
# | ||
# def _attrs(self): | ||
# return { | ||
# 'nan': 0.0, | ||
# 'replace_posinf_with_max': True, | ||
# 'posinf': -1, | ||
# 'replace_neginf_with_min': True, | ||
# 'neginf': -10 | ||
# } | ||
# | ||
# | ||
# class TestNanToNumOp2(BaseTestCases.BaseOpTest): | ||
# | ||
# def _attrs(self): | ||
# return { | ||
# 'nan': 2.0, | ||
# 'replace_posinf_with_max': False, | ||
# 'posinf': -1, | ||
# 'replace_neginf_with_min': True, | ||
# 'neginf': -10 | ||
# } | ||
# | ||
# | ||
# class TestNanToNumOp3(BaseTestCases.BaseOpTest): | ||
# | ||
# def _attrs(self): | ||
# return { | ||
# 'nan': 0.0, | ||
# 'replace_posinf_with_max': False, | ||
# 'posinf': -1, | ||
# 'replace_neginf_with_min': False, | ||
# 'neginf': -10 | ||
# } | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters