Skip to content

Commit

Permalink
fix doc and remove useless code
Browse files Browse the repository at this point in the history
  • Loading branch information
chengduoZH committed Oct 24, 2017
1 parent 154dbb4 commit 4c6bccb
Show file tree
Hide file tree
Showing 4 changed files with 71 additions and 75 deletions.
4 changes: 2 additions & 2 deletions paddle/operators/math/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -7,15 +7,15 @@ if(WITH_GPU)
nv_library(cross_entropy SRCS cross_entropy.cc cross_entropy.cu DEPS operator)
nv_library(pooling SRCS pooling.cc pooling.cu DEPS device_context)
nv_library(vol2col SRCS vol2col.cc vol2col.cu DEPS device_context)
nv_library(sequence_project SRCS sequence_project.cc sequence_project.cu DEPS device_context math_function)
nv_library(sequence_project SRCS sequence_project.cc sequence_project.cu DEPS device_context)
else()
cc_library(math_function SRCS math_function.cc im2col.cc DEPS cblas device_context operator)
cc_library(selected_rows_functor SRCS selected_rows_functor.cc DEPS selected_rows math_function)
cc_library(softmax SRCS softmax.cc DEPS operator)
cc_library(cross_entropy SRCS cross_entropy.cc DEPS operator)
cc_library(pooling SRCS pooling.cc DEPS device_context)
cc_library(vol2col SRCS vol2col.cc DEPS device_context)
cc_library(sequence_project SRCS sequence_project.cc DEPS device_context math_function)
cc_library(sequence_project SRCS sequence_project.cc DEPS device_context)
endif()

cc_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
Expand Down
91 changes: 57 additions & 34 deletions paddle/operators/math/sequence_project.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@ limitations under the License. */
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {
Expand All @@ -32,37 +31,59 @@ template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
/*
* \brief Converts the feature data of four dimensions(CDHW) into a colData of
* seven dimensions in the Vol2ColFunctor calculation,
* And in the Col2VolFunctor calculation, it is reversed.
* \brief SequenceProject projects features of context_length time-steps of each
* instance.
*
* \param volData Vol data.
* \param volShape The shape of volData,
* [input_channels, input_depth, input_height, input_width].
* \param colData Column data.
* \param colShape The shape of colData.
* \param in Input data.
* \param inShape The shape of Input data,
* [minibatch, number_of_input_features].
* \param inShape A float LoDTensor.
*
* The shape of colData is:
* [input_channels, filter_depth, filter_height, filter_width, output_depth,
* output_height, output_width]
* So, it is easy to reshape into a convolution matrix for convolution
* calculation based on matrix multiplication.
* The shape of convolution matrix is [height, width], where the height is equal
* input_channels * filter_depth * filter_height * filter_width, and the width
* is equal output_depth * output_height * output_width.
* \param padding_data Padding data.
* \param inShape The shape of Padding data,
* [up_pad + down_pad, number_of_input_features].
* \param inShape A float LoDTensor.
*
* Reshape:
* shape of colData shape of convolution matrix
* [input_channels,
* filter_depth,
* filter_height,
* filter_width, ======> [height, width]
* output_depth,
* output_height,
* output_width]
* \param col Col data.
* \param inShape The shape of Col data,
* [minibatch, 1].
* \param inShape A float LoDTensor.
*
* For a mini-batch of 2 variable lengths sentences, containing 3, and 1
* time-steps:
*
* Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
* 4].
* Besides, for the sake of simplicity, we assume M=1 and N=2.
*
* X = [[a1, a2;
* b1, b2;
* c1, c2]
* [d1, d2]]
*
* This is to say that input (X) has 4 words and the dimension of each word
* representation is 2.
*
* - Case1:
* If context_start is -1 and padding_trainable is false, we use zero to pad
* instead of learned weight to pad,
* and the context_lenth is 3, the output (Out) is:
*
* Out =[[0, 0, a1, a2, b1, b2;
* a1, a2, b1, b2, c1, c2;
* b1, b2, c1, c2, 0, 0 ]
* [0, 0, d1, d2, 0, 0 ]]
*
* - Case2:
* If context_start is -1 and padding_trainable is true, we use learned weight
* to pad,
* and the context_lenth is 3, the output (Out) is:
*
* Out = [[w1, w2, a1, a2, b1, b2;
* a1, a2, b1, b2, c1, c2;
* b1, b2, c1, c2, w3, w4]
* [w1, w2, d1, d2, w3, w4]]
*
* \note The caller needs to ensure that volShape.inputChannels is equal to
* colShape.inputChannels.
*/

template <typename Place, typename T>
Expand Down Expand Up @@ -96,14 +117,16 @@ class SequenceProjectFunctor {

sequence_height = static_cast<int>(out_t.dims()[0]);

std::vector<int64_t> output_shape(
{sequence_height, 1, 1, context_length,
sequence_width}); // output_height, output_width,
// input_channels, filter_height, filter_width
out_t.Resize(framework::make_ddim(output_shape));

if (input_row_begin < input_row_end) {
framework::Tensor in_t = in->Slice(input_row_begin, input_row_end);

std::vector<int64_t> output_shape(
{sequence_height, 1, 1, context_length,
sequence_width}); // output_height, output_width,
// input_channels, filter_height, filter_width

out_t.Resize(framework::make_ddim(output_shape));

std::vector<int64_t> input_shape(
{1, input_row_end - input_row_begin,
sequence_width}); // input_channels, input_height, input_width
Expand Down
45 changes: 12 additions & 33 deletions paddle/operators/sequence_conv_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -135,39 +135,18 @@ class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
.GreaterThan(0);

AddComment(R"DOC(
SequenceConvOp projects features of context_length time-steps of each instance.
For a mini-batch of 2 variable lengths sentences, containing 3, and 1 time-steps:
Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3, 4].
Besides, for the sake of simplicity, we assume M=1 and N=2.
X = [[a1, a2;
b1, b2;
c1, c2]
[d1, d2]]
This is to say that input (X) has 4 words and the dimension of each word
representation is 2.
- Case1:
If context_start is -1 and padding_trainable is false, we use zero to pad instead of learned weight to pad,
and the context_lenth is 3, the output (Out) is:
Out =[[0, 0, a1, a2, b1, b2;
a1, a2, b1, b2, c1, c2;
b1, b2, c1, c2, 0, 0 ]
[0, 0, d1, d2, 0, 0 ]]
- Case2:
If context_start is -1 and padding_trainable is true, we use learned weight to pad,
and the context_lenth is 3, the output (Out) is:
Out = [[w1, w2, a1, a2, b1, b2;
a1, a2, b1, b2, c1, c2;
b1, b2, c1, c2, w3, w4]
[w1, w2, d1, d2, w3, w4]]
SequenceConvOp performs convolution operation on features of
context_length time-steps of each instance.
The convolution operation calculates the output based on the input, filter
and strides, paddings parameters. The size of each dimension of the
parameters is checked in the infer-shape.
Example:
Input:
X shape: (minibatch, number_of_input_features)
Filter shape: (context_length, number_of_input_features)
Output:
Out shape: (minibatch, 1)
)DOC");
}
};
Expand Down
6 changes: 0 additions & 6 deletions paddle/operators/sequence_conv_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -182,12 +182,6 @@ class SequenceConvGradKernel : public framework::OpKernel<T> {
functor(context.device_context(), padding_data_g, 0);

for (int i = 0; i < static_cast<int>(lod_g_level_0.size()) - 1; ++i) {
input_row_begin =
(context_start > 0)
? static_cast<int>(lod_g_level_0[i]) + context_start
: static_cast<int>(lod_g_level_0[i]);
input_row_end = static_cast<int>(lod_g_level_0[i + 1]);

Tensor col_t = col.Slice(static_cast<int>(lod_g_level_0[i]),
static_cast<int>(lod_g_level_0[i + 1]));

Expand Down

0 comments on commit 4c6bccb

Please sign in to comment.