diff --git a/python/paddle/distribution/__init__.py b/python/paddle/distribution/__init__.py index 282b53f5ac4355..7b487aa5559fe8 100644 --- a/python/paddle/distribution/__init__.py +++ b/python/paddle/distribution/__init__.py @@ -1,11 +1,11 @@ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -# +# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at -# +# # http://www.apache.org/licenses/LICENSE-2.0 -# +# # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -13,8 +13,16 @@ # limitations under the License. from .categorical import Categorical +from .dirichlet import Dirichlet from .distribution import Distribution +from .exponential_family import ExponentialFamily from .normal import Normal from .uniform import Uniform -__all__ = ['Categorical', 'Distribution', 'Normal', 'Uniform'] +__all__ = [ #noqa + 'Categorical', + 'Distribution', + 'Normal', 'Uniform', + 'ExponentialFamily', + 'Dirichlet' +] diff --git a/python/paddle/distribution/dirichlet.py b/python/paddle/distribution/dirichlet.py new file mode 100644 index 00000000000000..435c3a77d372b7 --- /dev/null +++ b/python/paddle/distribution/dirichlet.py @@ -0,0 +1,162 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle + +from ..fluid.data_feeder import check_variable_and_dtype +from ..fluid.framework import in_dygraph_mode +from ..fluid.layer_helper import LayerHelper +from .exponential_family import ExponentialFamily + + +class Dirichlet(ExponentialFamily): + r""" + Dirichlet distribution with parameter concentration + + The Dirichlet distribution is defined over the `(k-1)-simplex` using a + positive, lenght-k vector concentration(`k > 1`). + The Dirichlet is identically the Beta distribution when `k = 2`. + + The probability density function (pdf) is + + .. math:: + + f(x_1,...,x_k; \alpha_1,...,\alpha_k) = \frac{1}{B(\alpha)} \prod_{i=1}^{k}x_i^{\alpha_i-1} + + The normalizing constant is the multivariate beta function. + + Args: + concentration (Tensor): concentration parameter of dirichlet + distribution + + Examples: + + .. code-block:: python + + import paddle + + dirichlet = paddle.distribution.Dirichlet(paddle.to_tensor([1., 2., 3.])) + + print(dirichlet.entropy()) + # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True, + # [-1.24434423]) + print(dirichlet.prob(paddle.to_tensor([.3, .5, .6]))) + # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True, + # [10.80000114]) + + """ + + def __init__(self, concentration): + if concentration.dim() < 1: + raise ValueError( + "`concentration` parameter must be at least one dimensional") + + self.concentration = concentration + super(Dirichlet, self).__init__(concentration.shape[:-1], + concentration.shape[-1:]) + + @property + def mean(self): + """mean of Dirichelt distribution. + + Returns: + mean value of distribution. + """ + return self.concentration / self.concentration.sum(-1, keepdim=True) + + @property + def variance(self): + """variance of Dirichlet distribution. + + Returns: + variance value of distribution. + """ + concentration0 = self.concentration.sum(-1, keepdim=True) + return (self.concentration * (concentration0 - self.concentration)) / ( + concentration0.pow(2) * (concentration0 + 1)) + + def sample(self, shape=()): + """sample from dirichlet distribution. + + Args: + shape (Tensor, optional): sample shape. Defaults to empty tuple. + """ + shape = shape if isinstance(shape, tuple) else tuple(shape) + return _dirichlet(self.concentration.expand(self._extend_shape(shape))) + + def prob(self, value): + """Probability density function(pdf) evaluated at value. + + Args: + value (Tensor): value to be evaluated. + + Returns: + pdf evaluated at value. + """ + return paddle.exp(self.log_prob(value)) + + def log_prob(self, value): + """log of probability densitiy function. + + Args: + value (Tensor): value to be evaluated. + """ + return ((paddle.log(value) * (self.concentration - 1.0) + ).sum(-1) + paddle.lgamma(self.concentration.sum(-1)) - + paddle.lgamma(self.concentration).sum(-1)) + + def entropy(self): + """entropy of Dirichlet distribution. + + Returns: + entropy of distribution. + """ + concentration0 = self.concentration.sum(-1) + k = self.concentration.shape[-1] + return (paddle.lgamma(self.concentration).sum(-1) - + paddle.lgamma(concentration0) - + (k - concentration0) * paddle.digamma(concentration0) - ( + (self.concentration - 1.0 + ) * paddle.digamma(self.concentration)).sum(-1)) + + @property + def _natural_parameters(self): + return (self.concentration, ) + + def _log_normalizer(self, x): + return x.lgamma().sum(-1) - paddle.lgamma(x.sum(-1)) + + +def _dirichlet(concentration, name=None): + raise NotImplementedError + + +# op_type = 'dirichlet' + +# check_variable_and_dtype(concentration, 'concentration', +# ['float32', 'float64'], op_type) + +# if in_dygraph_mode(): +# return paddle._C_ops.dirichlet(concentration) + +# else: +# helper = LayerHelper(op_type, **locals()) +# out = helper.create_variable_for_type_inference( +# dtype=concentration.dtype) +# helper.append_op( +# type=op_type, +# inputs={"Alpha": concentration}, +# outputs={'Out': out}, +# attrs={}) +# return out diff --git a/python/paddle/distribution/distribution.py b/python/paddle/distribution/distribution.py index 6cdbedf4194815..834c125b5f46f0 100644 --- a/python/paddle/distribution/distribution.py +++ b/python/paddle/distribution/distribution.py @@ -42,10 +42,34 @@ class Distribution(object): implemented in specific distributions. """ - def __init__(self): + def __init__(self, batch_shape=(), event_shape=()): + + self._batch_shape = batch_shape if isinstance( + batch_shape, tuple) else tuple(batch_shape) + self._event_shape = event_shape if isinstance( + event_shape, tuple) else tuple(event_shape) + super(Distribution, self).__init__() - def sample(self): + @property + def batch_shape(self): + """Returns batch shape of distribution + + Returns: + Tensor: batch shape + """ + return self._batch_shape + + @property + def event_shape(self): + """Returns event shape of distribution + + Returns: + Tensor: event shape + """ + return self._event_shape + + def sample(self, shape=()): """Sampling from the distribution.""" raise NotImplementedError @@ -57,6 +81,14 @@ def kl_divergence(self, other): """The KL-divergence between self distributions and other.""" raise NotImplementedError + def prob(self, value): + """Probability density/mass function evaluated at value. + + Args: + value (Tensor): value which will be evaluated + """ + raise NotImplementedError + def log_prob(self, value): """Log probability density/mass function.""" raise NotImplementedError @@ -65,6 +97,17 @@ def probs(self, value): """Probability density/mass function.""" raise NotImplementedError + def _extend_shape(self, sample_shape): + """compute shape of the sample + + Args: + sample_shape (Tensor): sample shape + + Returns: + Tensor: generated sample data shape + """ + return sample_shape + self._batch_shape + self._event_shape + def _validate_args(self, *args): """ Argument validation for distribution args diff --git a/python/paddle/distribution/exponential_family.py b/python/paddle/distribution/exponential_family.py new file mode 100644 index 00000000000000..4c250d2861ee17 --- /dev/null +++ b/python/paddle/distribution/exponential_family.py @@ -0,0 +1,60 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle + +from ..fluid.framework import in_dygraph_mode +from .distribution import Distribution + + +class ExponentialFamily(Distribution): + """ Base class for exponential family distribution. + """ + + @property + def _natural_parameters(self): + raise NotImplementedError + + def _log_normalizer(self): + raise NotImplementedError + + @property + def _mean_carrier_measure(self): + raise NotImplementedError + + def entropy(self): + """caculate entropy use `bregman divergence` + https://www.lix.polytechnique.fr/~nielsen/EntropyEF-ICIP2010.pdf + """ + entropy_value = -self._mean_carrier_measure + + natural_parameters = [] + for parameter in self._natural_parameters: + parameter = parameter.detach() + parameter.stop_gradient = False + natural_parameters.append(parameter) + + log_norm = self._log_normalizer(*natural_parameters) + + if in_dygraph_mode(): + grads = paddle.grad( + log_norm.sum(), natural_parameters, create_graph=True) + else: + grads = paddle.static.gradients(log_norm.sum(), natural_parameters) + + entropy_value += log_norm + for p, g in zip(natural_parameters, grads): + entropy_value -= p * g + + return entropy_value diff --git a/python/paddle/fluid/tests/unittests/distribution/config.py b/python/paddle/fluid/tests/unittests/distribution/config.py new file mode 100644 index 00000000000000..809dfb2b56d663 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/distribution/config.py @@ -0,0 +1,99 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import contextlib +import sys + +import numpy as np +import paddle + +DEVICES = [paddle.CPUPlace()] +if paddle.is_compiled_with_cuda(): + DEVICES.append(paddle.CUDAPlace(0)) + +DEFAULT_DTYPE = 'float64' + +TEST_CASE_NAME = 'suffix' +# All test case will use float64 for compare percision, refs: +# https://github.com/PaddlePaddle/Paddle/wiki/Upgrade-OP-Precision-to-Float64 +RTOL = { + 'float32': 1e-03, + 'complex64': 1e-3, + 'float64': 1e-5, + 'complex128': 1e-5 +} +ATOL = {'float32': 0.0, 'complex64': 0, 'float64': 0.0, 'complex128': 0} + + +def xrand(shape=(10, 10, 10), dtype=DEFAULT_DTYPE, min=1.0, max=10.0): + return ((np.random.rand(*shape).astype(dtype)) * (max - min) + min) + + +def place(devices, key='place'): + def decorate(cls): + module = sys.modules[cls.__module__].__dict__ + raw_classes = { + k: v + for k, v in module.items() if k.startswith(cls.__name__) + } + + for raw_name, raw_cls in raw_classes.items(): + for d in devices: + test_cls = dict(raw_cls.__dict__) + test_cls.update({key: d}) + new_name = raw_name + '.' + d.__class__.__name__ + module[new_name] = type(new_name, (raw_cls, ), test_cls) + del module[raw_name] + return cls + + return decorate + + +def parameterize(fields, values=None): + + fields = [fields] if isinstance(fields, str) else fields + params = [dict(zip(fields, vals)) for vals in values] + + def decorate(cls): + test_cls_module = sys.modules[cls.__module__].__dict__ + for k, v in enumerate(params): + test_cls = dict(cls.__dict__) + test_cls.update(v) + name = cls.__name__ + str(k) + name = name + '.' + v.get('suffix') if v.get('suffix') else name + + test_cls_module[name] = type(name, (cls, ), test_cls) + + for m in list(cls.__dict__): + if m.startswith("test"): + delattr(cls, m) + return cls + + return decorate + + +@contextlib.contextmanager +def stgraph(func, *args): + """static graph exec context""" + paddle.enable_static() + mp, sp = paddle.static.Program(), paddle.static.Program() + with paddle.static.program_guard(mp, sp): + input = paddle.static.data('input', x.shape, dtype=x.dtype) + output = func(input, n, axes, norm) + + exe = paddle.static.Executor(place) + exe.run(sp) + [output] = exe.run(mp, feed={'input': x}, fetch_list=[output]) + yield output + paddle.disable_static() diff --git a/python/paddle/fluid/tests/unittests/distribution/mock_data.py b/python/paddle/fluid/tests/unittests/distribution/mock_data.py new file mode 100644 index 00000000000000..06800690fb6a9e --- /dev/null +++ b/python/paddle/fluid/tests/unittests/distribution/mock_data.py @@ -0,0 +1,65 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import paddle + + +class Exponential(paddle.distribution.ExponentialFamily): + """mock exponential distribution, which support computing entropy and + kl use bregman divergence + """ + _mean_carrier_measure = 0 + + def __init__(self, rate): + self._rate = rate + super(Exponential, self).__init__(batch_shape=rate.shape) + + @property + def rate(self): + return self._rate + + def entropy(self): + return 1.0 - paddle.log(self._rate) + + @property + def _natural_parameters(self): + return (-self._rate, ) + + def _log_normalizer(self, x): + return -paddle.log(-x) + + +# @paddle.distribution.register_kl(Exponential, Exponential) +# def _kl_exponential_exponential(p, q): +# rate_ratio = q.rate / p.rate +# t1 = -rate_ratio.log() +# return t1 + rate_ratio - 1 + + +class DummyExpFamily(paddle.distribution.ExponentialFamily): + """dummy class extend from exponential family + """ + + def __init__(self, *args): + pass + + def entropy(self): + return 1.0 + + @property + def _natural_parameters(self): + return (1.0, ) + + def _log_normalizer(self, x): + return -paddle.log(-x) diff --git a/python/paddle/fluid/tests/unittests/distribution/test_distribution.py b/python/paddle/fluid/tests/unittests/distribution/test_distribution.py index e208727311c717..8284e6e5814bab 100644 --- a/python/paddle/fluid/tests/unittests/distribution/test_distribution.py +++ b/python/paddle/fluid/tests/unittests/distribution/test_distribution.py @@ -21,6 +21,8 @@ from paddle.distribution import * from paddle.fluid import layers +import config + paddle.enable_static() @@ -128,3 +130,41 @@ def test_categorical_name(self): lp = categorical1.log_prob(value_tensor) self.assertEqual(self.get_prefix(lp.name), name + '_log_prob') + + +@config.place(config.DEVICES) +@config.parameterize((config.TEST_CASE_NAME, 'batch_shape', 'event_shape'), + [('test-tuple', (10, 20), + (10, 20)), ('test-list', [100, 100], [100, 200, 300]), + ('test-null-eventshape', (100, 100), ())]) +class TestDistributionShape(unittest.TestCase): + def setUp(self): + paddle.disable_static() + self.dist = paddle.distribution.Distribution( + batch_shape=self.batch_shape, event_shape=self.event_shape) + + def tearDown(self): + paddle.enable_static() + + def test_batch_shape(self): + self.assertTrue(isinstance(self.dist.batch_shape, tuple)) + self.assertTrue(self.dist.batch_shape == tuple(self.batch_shape)) + + def test_event_shape(self): + self.assertTrue(isinstance(self.dist.event_shape, tuple)) + self.assertTrue(self.dist.event_shape == tuple(self.event_shape)) + + def test_prob(self): + with self.assertRaises(NotImplementedError): + self.dist.prob(paddle.to_tensor(config.xrand())) + + def test_extend_shape(self): + shapes = [(34, 20), (56, ), ()] + for shape in shapes: + self.assertTrue( + self.dist._extend_shape(shape), + shape + self.dist.batch_shape + self.dist.event_shape) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/distribution/test_distribution_dirichlet.py b/python/paddle/fluid/tests/unittests/distribution/test_distribution_dirichlet.py new file mode 100644 index 00000000000000..835f9641e4fbe9 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/distribution/test_distribution_dirichlet.py @@ -0,0 +1,113 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest + +import numpy as np +import paddle +import scipy.stats + +import config +from config import (ATOL, DEVICES, RTOL, TEST_CASE_NAME, parameterize, place, + xrand) + + +@place(DEVICES) +@parameterize( + (TEST_CASE_NAME, 'concentration'), + [ + ('test-one-dim', config.xrand((89, ))), + # ('test-multi-dim', config.xrand((10, 20, 30))) + ]) +class TestDirichlet(unittest.TestCase): + def setUp(self): + self._paddle_diric = paddle.distribution.Dirichlet( + paddle.to_tensor(self.concentration)) + + def test_mean(self): + with paddle.fluid.dygraph.guard(self.place): + np.testing.assert_allclose( + self._paddle_diric.mean, + scipy.stats.dirichlet.mean(self.concentration), + rtol=RTOL.get(str(self.concentration.dtype)), + atol=ATOL.get(str(self.concentration.dtype))) + + def test_variance(self): + with paddle.fluid.dygraph.guard(self.place): + np.testing.assert_allclose( + self._paddle_diric.variance, + scipy.stats.dirichlet.var(self.concentration), + rtol=RTOL.get(str(self.concentration.dtype)), + atol=ATOL.get(str(self.concentration.dtype))) + + def test_prob(self): + value = [np.random.rand(*self.concentration.shape)] + value = [v / v.sum() for v in value] + + for v in value: + with paddle.fluid.dygraph.guard(self.place): + np.testing.assert_allclose( + self._paddle_diric.prob(paddle.to_tensor(v)), + scipy.stats.dirichlet.pdf(v, self.concentration), + rtol=RTOL.get(str(self.concentration.dtype)), + atol=ATOL.get(str(self.concentration.dtype))) + + def test_log_prob(self): + value = [np.random.rand(*self.concentration.shape)] + value = [v / v.sum() for v in value] + + for v in value: + with paddle.fluid.dygraph.guard(self.place): + np.testing.assert_allclose( + self._paddle_diric.log_prob(paddle.to_tensor(v)), + scipy.stats.dirichlet.logpdf(v, self.concentration), + rtol=RTOL.get(str(self.concentration.dtype)), + atol=ATOL.get(str(self.concentration.dtype))) + + def test_entropy(self): + with paddle.fluid.dygraph.guard(self.place): + np.testing.assert_allclose( + self._paddle_diric.entropy(), + scipy.stats.dirichlet.entropy(self.concentration), + rtol=RTOL.get(str(self.concentration.dtype)), + atol=ATOL.get(str(self.concentration.dtype))) + + def test_natural_parameters(self): + self.assertTrue( + isinstance(self._paddle_diric._natural_parameters, tuple)) + + def test_log_normalizer(self): + self.assertTrue( + np.all( + self._paddle_diric._log_normalizer( + paddle.to_tensor(config.xrand((100, 100, 100)))).numpy() < + 0.0)) + + @place(DEVICES) + @parameterize((TEST_CASE_NAME, 'concentration'), + [('test-zero-dim', np.array(1.0))]) + class TestDirichletException(unittest.TestCase): + def TestInit(self): + with self.assertRaises(ValueError): + paddle.distribution.Dirichlet( + paddle.squeeze(self.concentration)) + + def TestSample(self): + with self.assertRaises(NotImplementedError): + paddle.distribution.Dirichlet( + paddle.to_tensor(self.concentration)).sample() + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/distribution/test_distribution_dirichlet_static.py b/python/paddle/fluid/tests/unittests/distribution/test_distribution_dirichlet_static.py new file mode 100644 index 00000000000000..c3ed79919f859e --- /dev/null +++ b/python/paddle/fluid/tests/unittests/distribution/test_distribution_dirichlet_static.py @@ -0,0 +1,110 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest + +import numpy as np +import paddle +import scipy.stats + +from config import (ATOL, DEVICES, RTOL, TEST_CASE_NAME, parameterize, place, + xrand) + +paddle.enable_static() + + +@place(DEVICES) +@parameterize((TEST_CASE_NAME, 'concentration'), + [('test-one-dim', np.random.rand(89) + 5.0)]) +class TestDirichlet(unittest.TestCase): + def setUp(self): + self.program = paddle.static.Program() + self.executor = paddle.static.Executor() + with paddle.static.program_guard(self.program): + conc = paddle.static.data('conc', self.concentration.shape, + self.concentration.dtype) + self._paddle_diric = paddle.distribution.Dirichlet(conc) + self.feeds = {'conc': self.concentration} + + def test_mean(self): + with paddle.static.program_guard(self.program): + [out] = self.executor.run(self.program, + feed=self.feeds, + fetch_list=[self._paddle_diric.mean]) + np.testing.assert_allclose( + out, + scipy.stats.dirichlet.mean(self.concentration), + rtol=RTOL.get(str(self.concentration.dtype)), + atol=ATOL.get(str(self.concentration.dtype))) + + def test_variance(self): + with paddle.static.program_guard(self.program): + [out] = self.executor.run(self.program, + feed=self.feeds, + fetch_list=[self._paddle_diric.variance]) + np.testing.assert_allclose( + out, + scipy.stats.dirichlet.var(self.concentration), + rtol=RTOL.get(str(self.concentration.dtype)), + atol=ATOL.get(str(self.concentration.dtype))) + + def test_prob(self): + with paddle.static.program_guard(self.program): + random_number = np.random.rand(*self.concentration.shape) + random_number = random_number / random_number.sum() + feeds = dict(self.feeds, value=random_number) + value = paddle.static.data('value', random_number.shape, + random_number.dtype) + out = self._paddle_diric.prob(value) + [out] = self.executor.run(self.program, + feed=feeds, + fetch_list=[out]) + np.testing.assert_allclose( + out, + scipy.stats.dirichlet.pdf(random_number, self.concentration), + rtol=RTOL.get(str(self.concentration.dtype)), + atol=ATOL.get(str(self.concentration.dtype))) + + def test_log_prob(self): + with paddle.static.program_guard(self.program): + random_number = np.random.rand(*self.concentration.shape) + random_number = random_number / random_number.sum() + feeds = dict(self.feeds, value=random_number) + value = paddle.static.data('value', random_number.shape, + random_number.dtype) + out = self._paddle_diric.log_prob(value) + [out] = self.executor.run(self.program, + feed=feeds, + fetch_list=[out]) + np.testing.assert_allclose( + out, + scipy.stats.dirichlet.logpdf(random_number, self.concentration), + rtol=RTOL.get(str(self.concentration.dtype)), + atol=ATOL.get(str(self.concentration.dtype))) + + def test_entropy(self): + with paddle.static.program_guard(self.program): + [out] = self.executor.run( + self.program, + feed=self.feeds, + fetch_list=[self._paddle_diric.entropy()]) + np.testing.assert_allclose( + out, + scipy.stats.dirichlet.entropy(self.concentration), + rtol=RTOL.get(str(self.concentration.dtype)), + atol=ATOL.get(str(self.concentration.dtype))) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/distribution/test_distribution_expfamily.py b/python/paddle/fluid/tests/unittests/distribution/test_distribution_expfamily.py new file mode 100644 index 00000000000000..82248ccaa2edf4 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/distribution/test_distribution_expfamily.py @@ -0,0 +1,53 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest + +import numpy as np +import paddle +import scipy.stats + +import config +import mock_data as mock + + +@config.place(config.DEVICES) +@config.parameterize( + (config.TEST_CASE_NAME, 'dist'), [('test-mock-exp', + mock.Exponential(rate=paddle.rand( + [100, 200, 99], + dtype=config.DEFAULT_DTYPE)))]) +class TestExponentialFamily(unittest.TestCase): + def test_entropy(self): + np.testing.assert_allclose( + self.dist.entropy(), + paddle.distribution.ExponentialFamily.entropy(self.dist), + rtol=config.RTOL.get(config.DEFAULT_DTYPE), + atol=config.ATOL.get(config.DEFAULT_DTYPE)) + + +@config.place(config.DEVICES) +@config.parameterize( + (config.TEST_CASE_NAME, 'dist'), + [('test-dummy-dist', mock.DummyExpFamily(0.5, 0.5)), + ('test-dirichlet-dist', + paddle.distribution.Dirichlet(paddle.to_tensor(config.xrand())))]) +class TestExponentialFamilyException(unittest.TestCase): + def test_entropy_expection(self): + with self.assertRaises(NotImplementedError): + paddle.distribution.ExponentialFamily.entropy(self.dist) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/fluid/tests/unittests/distribution/test_distribution_expfamily_static.py b/python/paddle/fluid/tests/unittests/distribution/test_distribution_expfamily_static.py new file mode 100644 index 00000000000000..885534d876fc33 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/distribution/test_distribution_expfamily_static.py @@ -0,0 +1,63 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import unittest + +import numpy as np +import paddle +import scipy.stats + +import config +import mock_data as mock + +paddle.enable_static() + + +@config.place(config.DEVICES) +class TestExponentialFamily(unittest.TestCase): + def setUp(self): + self.program = paddle.static.Program() + self.executor = paddle.static.Executor() + with paddle.static.program_guard(self.program): + rate_np = config.xrand((100, 200, 99)) + rate = paddle.static.data('rate', rate_np.shape, rate_np.dtype) + self.mock_dist = mock.Exponential(rate) + self.feeds = {'rate': rate_np} + + def test_entropy(self): + with paddle.static.program_guard(self.program): + [out1, out2] = self.executor.run( + self.program, + feed=self.feeds, + fetch_list=[ + self.mock_dist.entropy(), + paddle.distribution.ExponentialFamily.entropy( + self.mock_dist) + ]) + + np.testing.assert_allclose( + out1, + out2, + rtol=config.RTOL.get(config.DEFAULT_DTYPE), + atol=config.ATOL.get(config.DEFAULT_DTYPE)) + + def test_entropy_expection(self): + with paddle.static.program_guard(self.program): + with self.assertRaises(NotImplementedError): + paddle.distribution.ExponentialFamily.entropy( + mock.DummyExpFamily(0.5, 0.5)) + + +if __name__ == '__main__': + unittest.main()