-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
loss.py
2663 lines (2126 loc) · 109 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, Callable
import paddle
from paddle import base, in_dynamic_mode
from paddle.base.framework import in_dynamic_or_pir_mode
from .. import functional as F
from .layers import Layer
if TYPE_CHECKING:
from collections.abc import Sequence
from paddle import Tensor
from paddle._typing import ParamAttrLike
from ..functional.loss import _ReduceMode
__all__ = []
class BCEWithLogitsLoss(Layer):
r"""
Combine the sigmoid layer and the :ref:`api_paddle_nn_BCELoss` layer.
This measures the element-wise probability error in classification tasks
in which each class is independent.
This can be thought of as predicting labels for a data-point, where labels
are not mutually exclusive. For example, a news article can be about
politics, technology or sports at the same time or none of these.
Firstly, calculate loss function as follows:
.. math::
Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
.. math::
Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
we reformulate the loss as follows:
.. math::
Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
Then, if ``weight`` or ``pos_weight`` is not None, then multiply the
weight tensor on the loss `Out`. The ``weight`` tensor will attach different
weight on every items in the batch. The ``pos_weight`` will attach different
weight on the positive label of each class.
Finally, apply reduce operation on the loss.
If :attr:`reduction` set to ``'none'``, will return the original loss `Out`.
If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.
Note that the target labels ``label`` should be numbers between 0 and 1.
Args:
weight (Tensor|None, optional): A manual rescaling weight given to the loss of each
batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
The data type is float32, float64. Default is ``'None'``.
reduction (str, optional): Indicate how to average the loss by batch_size,
the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`reduction` is ``'sum'``, the summed loss is returned.
Default is ``'mean'``.
pos_weight (Tensor|None, optional): A weight of positive examples. Must be a vector
with length equal to the number of classes. The data type is float32, float64.
Default is ``'None'``.
name (str|None, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shapes:
- logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, `*`], N is batch_size, `*` means number of additional dimensions. The ``logit`` is usually the output of Linear layer. Available dtype is float32, float64.
- label (Tensor): The target labels tensor. 2-D tensor with the same shape as ``logit``. The target labels which values should be numbers between 0 and 1. Available dtype is float32, float64.
- output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``logit`` , else the shape of output is scalar.
Returns:
A callable object of BCEWithLogitsLoss.
Examples:
.. code-block:: python
>>> import paddle
>>> logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32")
>>> label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
>>> bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
>>> output = bce_logit_loss(logit, label)
>>> print(output)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
0.45618808)
"""
weight: Tensor | None
reduction: _ReduceMode
pos_weight: Tensor | None
name: str | None
def __init__(
self,
weight: Tensor | None = None,
reduction: _ReduceMode = 'mean',
pos_weight: Tensor | None = None,
name: str | None = None,
) -> None:
if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
"The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but "
f"received {reduction}, which is not allowed."
)
super().__init__()
self.weight = weight
self.reduction = reduction
self.pos_weight = pos_weight
self.name = name
def forward(self, logit: Tensor, label: Tensor) -> Tensor:
out = paddle.nn.functional.binary_cross_entropy_with_logits(
logit,
label,
self.weight,
self.reduction,
self.pos_weight,
self.name,
)
return out
class CrossEntropyLoss(Layer):
r"""
By default, the cross entropy loss function is implemented using softmax. This function
combines the calculation of the softmax operation and the cross entropy loss function
to provide a more numerically stable computing.
Calculate the cross entropy loss function without softmax when use_softmax=False.
By default, calculate the mean of the result, and you can also affect
the default behavior by using the reduction parameter. Please refer to the part of
parameters for details.
Can be used to calculate the softmax cross entropy loss with soft and hard labels.
Where, the hard labels mean the actual label value, 0, 1, 2, etc. And the soft labels
mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
The calculation includes the following two steps.
- **I.softmax cross entropy**
1. Hard label (each sample can only be assigned into one category)
1.1. when use_softmax=True
.. math::
\\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
where, N is the number of samples and C is the number of categories.
1.2. when use_softmax=False
.. math::
\\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N
where, N is the number of samples and C is the number of categories, P is input(the output of softmax).
2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).
2.1. when use_softmax=True
.. math::
\\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N
where, N is the number of samples and C is the number of categories.
2.2. when use_softmax=False
.. math::
\\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N
where, N is the number of samples and C is the number of categories, P is input(the output of softmax).
- **II.Weight and reduction processing**
1. Weight
If the ``weight`` parameter is ``None`` , go to the next step directly.
If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
according to soft_label = False or True as follows.
1.1. Hard labels (soft_label = False)
.. math::
\\loss_j=loss_j*weight[label_j]
1.2. Soft labels (soft_label = True)
.. math::
\\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)
2. reduction
2.1 if the ``reduction`` parameter is ``none``
Return the previous result directly
2.2 if the ``reduction`` parameter is ``sum``
Return the sum of the previous results
.. math::
\\loss=\sum_{j}loss_j
2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
the ``weight`` parameter as follows.
2.3.1. If the ``weight`` parameter is ``None``
Return the average value of the previous results
.. math::
\\loss=\sum_{j}loss_j/N
where, N is the number of samples and C is the number of categories.
2.3.2. If the ``weight`` parameter is ``None`` , the weighted average value of the previous result will be returned
1. Hard labels (soft_label = False)
.. math::
\\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
2. Soft labels (soft_label = True)
.. math::
\\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
Parameters:
weight (Tensor, optional): a manual rescaling weight given to each class.
If given, has to be a Tensor of size C and the data type is float32, float64.
Default is ``'None'`` .
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the loss. A negative value means that no label
value needs to be ignored. Only valid when soft_label = False.
Default is ``-100`` .
reduction (str, optional): Indicate how to average the loss by batch_size,
the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
Default is ``'mean'``.
soft_label (bool, optional): Indicate whether label is soft.
If soft_label=False, the label is hard. If soft_label=True, the label is soft.
Default is ``False``.
label_smoothing (float, optional): A float in [0.0, 1.0].
Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing.
The targets become a mixture of the original ground truth and a uniform distribution as
described in paper 'Rethinking the Inception Architecture for Computer Vision'.
Default is ``0.0``.
axis (int, optional): The index of dimension to perform softmax calculations.
It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the number
of dimensions of input :attr:`input`.
Default is ``-1`` .
use_softmax (bool, optional): Indicate whether compute softmax before cross_entropy.
Default is ``True``.
name (str|None, optional): The name of the operator. Default is ``None`` .
For more information, please refer to :ref:`api_guide_Name` .
Shape:
- **input** (Tensor), the data type is float32, float64. Shape is :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes, ``k >= 1`` .
Note:
1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
output of softmax operator, which will produce incorrect results.
2. when use_softmax=False, it expects the output of softmax operator.
- **label** (Tensor)
1. If soft_label=False, the shape is
:math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
the data type is int32, int64, float32, float64, where each value is [0, C-1].
2. If soft_label=True and no label_smoothing, the shape and data type
should be same with ``input`` , and the sum of the labels for each sample should be 1.
3. If has label_smoothing, (i.e. label_smoothing > 0.0), no matter what ``soft_label`` is,
the shape and data type of ``label`` could be either the situation 1 or situation 2.
In other words, if label_smoothing > 0.0, the format of label could be one-hot label or integer label.
- **output** (Tensor), Return the softmax cross_entropy loss of ``input`` and ``label``.
The data type is the same as input.
If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
If :attr:`reduction` is ``'none'``:
1. If soft_label = False, the dimension of return value is the same with ``label`` .
2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
Examples:
.. code-block:: python
:name: code-example1
>>> # hard labels
>>> import paddle
>>> paddle.seed(2023)
>>> N=100
>>> C=200
>>> reduction='mean'
>>> input = paddle.rand([N, C], dtype='float64')
>>> label = paddle.randint(0, C, shape=[N], dtype='int64')
>>> weight = paddle.rand([C], dtype='float64')
>>> cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
... weight=weight, reduction=reduction)
>>> dy_ret = cross_entropy_loss(input, label)
>>> print(dy_ret)
Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
5.33697682)
.. code-block:: python
:name: code-example2
>>> # soft labels
>>> import paddle
>>> from typing import Optional
>>> paddle.seed(2023)
>>> axis = -1
>>> N = 4
>>> C = 3
>>> shape = [N, C]
>>> reduction='mean'
>>> weight: Optional[paddle.Tensor] = None
>>> logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
>>> # case1: soft labels without label_smoothing
>>> labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
>>> labels /= paddle.sum(labels, axis=axis, keepdim=True)
>>> cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
... weight=weight, reduction=reduction, soft_label=True, label_smoothing=0.0)
>>> dy_ret = cross_entropy_loss(logits, labels)
>>> print(dy_ret)
Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
1.14554912)
>>> # case2: soft labels with label_smoothing
>>> import paddle
>>> from typing import Optional
>>> paddle.seed(2023)
>>> axis = -1
>>> N = 4
>>> C = 3
>>> shape = [N, C]
>>> label_smoothing = 0.4
>>> reduction='mean'
>>> weight: Optional[paddle.Tensor] = None
>>> logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
>>> integer_labels = paddle.randint(low=0, high=C, shape=[N], dtype='int64')
>>> one_hot_labels = paddle.nn.functional.one_hot(integer_labels, C).astype('float32')
>>> cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
... weight=weight, reduction=reduction, label_smoothing=label_smoothing)
>>> # integer labels
>>> integer_label_dy_ret = cross_entropy_loss(logits, integer_labels)
>>> print(integer_label_dy_ret)
Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
1.10520368)
>>> # one_hot labels
>>> one_hot_label_dy_ret = cross_entropy_loss(logits, one_hot_labels)
>>> print(one_hot_label_dy_ret)
Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True,
1.10520368)
"""
weight: Tensor | None
ignore_index: int
reduction: _ReduceMode
soft_label: bool
axis: int
use_softmax: bool
label_smoothing: float
name: str | None
def __init__(
self,
weight: Tensor | None = None,
ignore_index: int = -100,
reduction: _ReduceMode = 'mean',
soft_label: bool = False,
axis: int = -1,
use_softmax: bool = True,
label_smoothing: float = 0.0,
name: str | None = None,
) -> None:
super().__init__()
self.weight = weight
self.reduction = reduction
self.ignore_index = ignore_index
self.soft_label = soft_label
self.axis = axis
self.use_softmax = use_softmax
self.label_smoothing = label_smoothing
self.name = name
def forward(self, input: Tensor, label: Tensor) -> Tensor:
ret = paddle.nn.functional.cross_entropy(
input,
label,
weight=self.weight,
ignore_index=self.ignore_index,
reduction=self.reduction,
soft_label=self.soft_label,
axis=self.axis,
use_softmax=self.use_softmax,
label_smoothing=self.label_smoothing,
name=self.name,
)
return ret
class HSigmoidLoss(Layer):
"""
Hierarchical Sigmoid Layer.
The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
and speed up the model training, especially the training of language model.
Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
the path, and sum them to get a total cost.
Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
represents the number of classes or the size of word dict.
The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):
1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
to the same batch of inputs.
Parameters:
feature_size (int): The number of features.
num_classes (int): The number of classes or the size of word dict, must be greater than 2.
If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
:attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
classes using by the binary classifier.
weight_attr (ParamAttr|None, optional): The parameter attribute for the learnable weights
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
initialized with Xavier. Default is None.
bias_attr (ParamAttr|bool|None, optional): The parameter attribute for the bias of hsigmoid. If it
is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
set, the bias is initialized zero. Default is None.
is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and
`path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
should not be passed to its forward method. Default is False.
is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True,
the gradient of weight and input will be sparse. Default is False.
name (str|None, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
input (Tensor): The input tensor. The shapes is [N, D], where N is batch size and D is feature size. It's data type should be float32, float64.
label (Tensor): It's shapes is [N, 1]. It's data type should be int64.
output (Tensor): The HSigmoid Loss of ``input`` and ``label``. Shape is [N, 1]
Examples:
.. code-block:: python
>>> import paddle
>>> paddle.set_device('cpu')
>>> paddle.seed(2023)
>>> input = paddle.uniform([4, 3])
>>> print(input)
Tensor(shape=[4, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
[[ 0.73167229, 0.04029441, -0.48078126],
[ 0.81050646, -0.15199822, -0.18717426],
[ 0.94041789, 0.48874724, 0.03570259],
[ 0.46585739, 0.95573163, -0.91368192]])
>>> label = paddle.to_tensor([0, 1, 4, 5])
>>> m = paddle.nn.HSigmoidLoss(3, 6)
>>> out = m(input, label)
>>> print(out)
Tensor(shape=[4, 1], dtype=float32, place=Place(cpu), stop_gradient=False,
[[1.94512916],
[2.26129627],
[2.36135936],
[2.97453213]])
"""
weight: Tensor
bias: Tensor
def __init__(
self,
feature_size: int,
num_classes: int,
weight_attr: ParamAttrLike | None = None,
bias_attr: ParamAttrLike | None = None,
is_custom: bool = False,
is_sparse: bool = False,
name: str | None = None,
) -> None:
super().__init__()
if (num_classes < 2) and (not is_custom):
raise ValueError(
"num_classes must not be less than 2 with default tree"
)
if (not is_custom) and (is_sparse):
print("Sparse mode should not be used without custom tree")
is_sparse = False
self._feature_size = feature_size
self._num_classes = num_classes
self._is_custom = is_custom
self._is_sparse = is_sparse
self._weight_attr = weight_attr
self._bias_attr = bias_attr
self._name = name
self._dtype = paddle.get_default_dtype()
remote_prefetch = is_sparse
print(
"With sparse mode, if your models has only"
" small parameter prefetch may cause speed down"
)
C = self._num_classes if is_custom else self._num_classes - 1
self.weight = self.create_parameter(
[C, self._feature_size],
attr=self._weight_attr,
is_bias=False,
dtype=self._dtype,
)
self.bias = self.create_parameter(
[C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype
)
def forward(
self,
input: Tensor,
label: Tensor,
path_table: Tensor = None,
path_code: Tensor = None,
) -> Tensor:
out = F.hsigmoid_loss(
input,
label,
self._num_classes,
self.weight,
self.bias,
path_table=path_table,
path_code=path_code,
is_sparse=self._is_sparse,
name=self._name,
)
return out
class MSELoss(Layer):
r"""
**Mean Square Error Loss**
Computes the mean square error (squared L2 norm) of given input and label.
If :attr:`reduction` is set to ``'none'``, loss is calculated as:
.. math::
Out = (input - label)^2
If :attr:`reduction` is set to ``'mean'``, loss is calculated as:
.. math::
Out = \operatorname{mean}((input - label)^2)
If :attr:`reduction` is set to ``'sum'``, loss is calculated as:
.. math::
Out = \operatorname{sum}((input - label)^2)
where `input` and `label` are `float32` tensors of same shape.
Parameters:
reduction (str, optional): The reduction method for the output,
could be 'none' | 'mean' | 'sum'.
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
Default is ``'mean'``.
Shape:
input (Tensor): Input tensor, the data type is float32 or float64
label (Tensor): Label tensor, the data type is float32 or float64
output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.
Examples:
.. code-block:: python
>>> import paddle
>>> mse_loss = paddle.nn.loss.MSELoss()
>>> input = paddle.to_tensor([1.5])
>>> label = paddle.to_tensor([1.7])
>>> output = mse_loss(input, label)
>>> print(output)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
0.04000002)
"""
reduction: _ReduceMode
def __init__(self, reduction: _ReduceMode = 'mean'):
super().__init__()
if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
"'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
f"but received {reduction}."
)
self.reduction = reduction
def forward(self, input: Tensor, label: Tensor) -> Tensor:
if not in_dynamic_mode():
base.data_feeder.check_variable_and_dtype(
input, 'input', ['float32', 'float64'], 'MSELoss'
)
base.data_feeder.check_variable_and_dtype(
label, 'label', ['float32', 'float64'], 'MSELoss'
)
if in_dynamic_or_pir_mode():
square_out = paddle._C_ops.square(paddle.subtract(input, label))
else:
square_out = paddle.square(paddle.subtract(input, label))
if self.reduction == 'none':
return square_out
reduce_op = 'reduce_mean'
if self.reduction == 'sum':
square_out = paddle.sum(square_out)
return square_out
return paddle.mean(square_out)
class L1Loss(Layer):
r"""
Construct a callable object of the ``L1Loss`` class.
The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
If `reduction` set to ``'none'``, the loss is:
.. math::
Out = \lvert input - label\rvert
If `reduction` set to ``'mean'``, the loss is:
.. math::
Out = MEAN(\lvert input - label\rvert)
If `reduction` set to ``'sum'``, the loss is:
.. math::
Out = SUM(\lvert input - label\rvert)
Parameters:
reduction (str, optional): Indicate the reduction to apply to the loss,
the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
If `reduction` is ``'none'``, the unreduced loss is returned;
If `reduction` is ``'mean'``, the reduced mean loss is returned.
If `reduction` is ``'sum'``, the reduced sum loss is returned.
Default is ``'mean'``.
name (str|None, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input (Tensor): The input tensor. The shapes is ``[N, *]``, where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
- label (Tensor): label. The shapes is ``[N, *]``, same shape as ``input`` . It's data type should be float32, float64, int32, int64.
- output (Tensor): The L1 Loss of ``input`` and ``label``.
If `reduction` is ``'none'``, the shape of output loss is ``[N, *]``, the same as ``input`` .
If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [].
Examples:
.. code-block:: python
>>> import paddle
>>> input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
>>> label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
>>> l1_loss = paddle.nn.L1Loss()
>>> output = l1_loss(input, label)
>>> print(output)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
0.34999999)
>>> l1_loss = paddle.nn.L1Loss(reduction='sum')
>>> output = l1_loss(input, label)
>>> print(output)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
1.39999998)
>>> l1_loss = paddle.nn.L1Loss(reduction='none')
>>> output = l1_loss(input, label)
>>> print(output)
Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
[[0.20000005, 0.19999999],
[0.20000000, 0.79999995]])
"""
reduction: _ReduceMode
name: str | None
def __init__(
self, reduction: _ReduceMode = 'mean', name: str | None = None
) -> None:
if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
"The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
f"received {reduction}, which is not allowed."
)
super().__init__()
self.reduction = reduction
self.name = name
def forward(self, input: Tensor, label: Tensor) -> Tensor:
return paddle.nn.functional.l1_loss(
input, label, self.reduction, name=self.name
)
class BCELoss(Layer):
"""
This interface is used to construct a callable object of the ``BCELoss`` class.
The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
and target labels ``label`` . The binary_cross_entropy loss can be described as:
If :attr:`weight` is set, the loss is:
.. math::
Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
If :attr:`weight` is None, the loss is:
.. math::
Out = -1 * (label * log(input) + (1 - label) * log(1 - input))
If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
.. math::
Out = MEAN(Out)
If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
.. math::
Out = SUM(Out)
Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
should be numbers between 0 and 1.
Parameters:
weight (Tensor, optional): A manual rescaling weight given to the loss of each
batch element. If given, has to be a Tensor of size nbatch and the data type
is float32, float64. Default is ``'None'``.
reduction (str, optional): Indicate how to average the loss by batch_size,
the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
If :attr:`reduction` is ``'sum'``, the summed loss is returned.
Default is ``'mean'``.
name (str|None, optional): Name for the operation (optional, default is None).
For more information, please refer to :ref:`api_guide_Name`.
Shape:
- input (Tensor): 2-D tensor with shape: ``[N, *]``, N is batch_size, `*` means number of additional dimensions. The input ``input`` should always be the output of sigmod. Available dtype is float16, float32, float64.
- label (Tensor): 2-D tensor with the same shape as ``input``. The target labels which values should be numbers between 0 and 1. Available dtype is float16, float32, float64.
- output (Tensor): If ``reduction`` is ``'none'``, the shape of output is same as ``input`` , else the shape of output is scalar.
Returns:
A callable object of BCELoss.
Examples:
.. code-block:: python
>>> import paddle
>>> input = paddle.to_tensor([0.5, 0.6, 0.7])
>>> label = paddle.to_tensor([1.0, 0.0, 1.0])
>>> bce_loss = paddle.nn.BCELoss()
>>> output = bce_loss(input, label)
>>> print(output)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
0.65537095)
"""
weight: Tensor | None
reduction: _ReduceMode
name: str | None
def __init__(
self,
weight: Tensor | None = None,
reduction: _ReduceMode = 'mean',
name: str | None = None,
):
if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
"The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
f"received {reduction}, which is not allowed."
)
super().__init__()
self.weight = weight
self.reduction = reduction
self.name = name
def forward(self, input: Tensor, label: Tensor) -> Tensor:
out = paddle.nn.functional.binary_cross_entropy(
input, label, self.weight, self.reduction, self.name
)
return out
class NLLLoss(Layer):
r"""
This class accepts input and target label and returns negative log likelihood
cross error. It is useful to train a classification problem with C classes.
The input for the loss is expected to contain log-probabilities of
each classes. It has to be a Tensor of size either (batch_size, C) or
(batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
The label for the loss should be a class index in the range [0, C-1]
where C is the number of classes. If ignore_index is specified, the
specified target value does not contribute to the input gradient.
If the optional argument `weight` is provided, it should be a 1D Tensor
assigning weight to each of the classed. This is particularly useful
when you have an unbalanced training set.
The loss is calculated as follows.
The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:
.. math::
\ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_{y_n} x_{n,y_n}, \quad
w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore_index}\},
where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
(default ``'mean'``), then
.. math::
\ell(x, y) =
\left\{
\begin{array}{lcl}
\sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
\text{if reduction} = \text{'mean';}\\
\sum_{n=1}^N l_n, &
\text{if reduction} = \text{'sum'.}
\end{array}
\right.
Parameters:
weight (Tensor, optional): Weight tensor, a manual rescaling weight given
to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
it treated as if having all ones. the data type is
float32, float64, Default is ``'None'``.
ignore_index (int, optional): Specifies a target value that is ignored
and does not contribute to the input gradient.
reduction (str, optional): Indicate how to average the loss,
the candidates are ``'none'`` | ``'mean'`` | ``'sum'``. Default is ``'mean'``.
If `reduction` is ``'mean'``, the reduced mean loss is returned;
if `reduction` is ``'sum'``, the reduced sum loss is returned;
if `reduction` is ``'none'``, no reduction will be applied.
Default is ``'mean'``.
name (str|None, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default is ``'None'``.
Shape:
- input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
The data type is float32, float64.
- label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
The data type is int64.
- output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
If `reduction` is `'none'`, the shape is `[N, *]`.
If `reduction` is `'sum'` or `'mean'`, the shape is `[]`.
Examples:
.. code-block:: python
>>> import paddle
>>> nll_loss = paddle.nn.loss.NLLLoss()
>>> log_softmax = paddle.nn.LogSoftmax(axis=1)
>>> input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
... [0.53331435, 0.07999352, 0.8549948 ],
... [0.25879037, 0.39530203, 0.698465 ],
... [0.73427284, 0.63575995, 0.18827209],
... [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
>>> log_out = log_softmax(input)
>>> label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
>>> result = nll_loss(log_out, label)
>>> print(result)
Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
1.07202101)
"""
def __init__(
self,
weight: Tensor | None = None,
ignore_index: int = -100,
reduction: _ReduceMode = 'mean',
name: str | None = None,
) -> None:
if reduction not in ['sum', 'mean', 'none']:
raise ValueError(
"The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
f"'none', but received {reduction}, which is not allowed."
)
super().__init__()
self._weight = weight
self._ignore_index = ignore_index
self._reduction = reduction
self._name = name
def forward(self, input: Tensor, label: Tensor) -> Tensor:
return F.nll_loss(
input,
label,
weight=self._weight,
ignore_index=self._ignore_index,
reduction=self._reduction,
name=self._name,
)
class PoissonNLLLoss(Layer):
r"""Generate a callable object of 'PoissonNLLLoss' to calculate the
Poisson negative log likelihood loss between Input(input) and
Input(label). Notes that Input(input) is the expectation of underlying
Poisson distribution and Input(label) is the random samples from the
Poisson distribution
Poisson negative log likelihood loss is calculated as follows:
.. math::