-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
expand_as_kernel_impl.h
executable file
·170 lines (158 loc) · 5.63 KB
/
expand_as_kernel_impl.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <vector>
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#define MAX_RANK_SUPPORTED 8
namespace phi {
template <typename Context, typename T, int Rank>
void ExpandAs(const Context& context,
const DenseTensor& x,
const std::vector<int>& target_shape,
DenseTensor* out) {
auto in_dims = x.dims();
auto vec_in_dims = common::vectorize<int>(in_dims);
auto diff = target_shape.size() - vec_in_dims.size();
vec_in_dims.insert(vec_in_dims.begin(), diff, 1);
std::vector<int> repeat_times(vec_in_dims.size());
if (Rank == 0) {
phi::Copy<Context>(context, x, context.GetPlace(), false, out);
return;
}
for (size_t i = 0; i < vec_in_dims.size(); ++i) {
PADDLE_ENFORCE_NE(
target_shape[i],
0,
errors::InvalidArgument("The value of target shape cannot be zero."));
if (i < diff) {
PADDLE_ENFORCE_GT(
target_shape[i],
0,
errors::InvalidArgument(
"The expanded size (%d) for non-existing dimensions must be "
"positive for expand_as_v2 op.",
target_shape[i]));
repeat_times[i] = target_shape[i];
} else if (target_shape[i] > 0) {
if (vec_in_dims[i] != 1) {
PADDLE_ENFORCE_EQ(
vec_in_dims[i],
target_shape[i],
errors::InvalidArgument(
"The value (%d) of the non-singleton dimension does not match"
" the corresponding value (%d) in shape for expand_as_v2 op.",
vec_in_dims[i],
target_shape[i]));
repeat_times[i] = 1;
} else {
repeat_times[i] = target_shape[i];
}
} else {
PADDLE_ENFORCE_EQ(
target_shape[i],
-1,
errors::InvalidArgument(
"When the value in shape is negative for expand_as_v2 op, "
"only -1 is supported, but the value received is %d.",
target_shape[i]));
repeat_times[i] = 1;
}
}
Eigen::DSizes<Eigen::DenseIndex, Rank> bcast_dims;
for (size_t i = 0; i < repeat_times.size(); ++i) {
bcast_dims[i] = repeat_times[i];
}
phi::DDim new_in_dims = common::make_ddim(vec_in_dims);
phi::DDim out_dims = common::make_ddim(target_shape);
out->Resize(out_dims);
context.template Alloc<T>(out);
auto x0 = EigenTensor<T, Rank>::From(x, new_in_dims);
auto y = EigenTensor<T, Rank>::From(*out, out_dims);
auto& place = *context.eigen_device();
funcs::EigenBroadcast<std::decay_t<decltype(place)>, T, Rank>::Eval(
place, y, x0, bcast_dims);
}
template <typename T, typename Context>
void ExpandAsKernel(const Context& ctx,
const DenseTensor& x,
const paddle::optional<DenseTensor>& y,
const std::vector<int>& target_shape,
DenseTensor* out) {
auto rank = x.dims().size();
auto target_rank = target_shape.size();
PADDLE_ENFORCE_GE(target_rank,
rank,
errors::InvalidArgument(
"The rank (%d) of the input 'target_tensor' for "
"expand_as_v2 op must be greater than or equal to "
"the rank (%d) of the input 'x'.",
target_rank,
rank));
PADDLE_ENFORCE_GE(
rank,
0,
errors::InvalidArgument("The rank (%d) of the input 'x' for "
"expand_as_v2 op must be positive.",
rank));
PADDLE_ENFORCE_LE(target_rank,
MAX_RANK_SUPPORTED,
errors::InvalidArgument(
"The rank (%d) of the input 'target_tensor' for "
"expand_as_v2 op must be less than or equal to %d.",
target_rank,
MAX_RANK_SUPPORTED));
std::vector<int> real_target_shape = target_shape;
for (size_t i = 0; i < target_shape.size(); ++i) {
if (target_shape[i] == -1) {
if (y) {
if (y->IsInitialized()) {
real_target_shape = common::vectorize<int>(y->dims());
}
}
break;
}
}
switch (target_rank) {
case 0:
ExpandAs<Context, T, 0>(ctx, x, real_target_shape, out);
break;
case 1:
ExpandAs<Context, T, 1>(ctx, x, real_target_shape, out);
break;
case 2:
ExpandAs<Context, T, 2>(ctx, x, real_target_shape, out);
break;
case 3:
ExpandAs<Context, T, 3>(ctx, x, real_target_shape, out);
break;
case 4:
ExpandAs<Context, T, 4>(ctx, x, real_target_shape, out);
break;
case 5:
ExpandAs<Context, T, 5>(ctx, x, real_target_shape, out);
break;
case 6:
ExpandAs<Context, T, 6>(ctx, x, real_target_shape, out);
break;
case 7:
ExpandAs<Context, T, 7>(ctx, x, real_target_shape, out);
break;
case 8:
ExpandAs<Context, T, 8>(ctx, x, real_target_shape, out);
break;
}
}
} // namespace phi