-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
unsqueeze_op.cc
executable file
·393 lines (353 loc) · 16.8 KB
/
unsqueeze_op.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/unsqueeze_op.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
class UnsqueezeOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
platform::errors::InvalidArgument(
"Input(X) of "
"Unsqueeze operator should not be null."));
PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
platform::errors::InvalidArgument(
"Output(Out) of "
"Unsqueeze operator should not be null."));
const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
const auto &x_dims = ctx->GetInputDim("X");
// Validity Check: input tensor dims (<6).
PADDLE_ENFORCE_LE(x_dims.size(), 6,
platform::errors::InvalidArgument(
"Invalid "
"dimensions, the rank of Input(X) "
"should be in the range of [1, 6] (Eigen limit)"));
if (!axes.empty()) {
auto out_dims = GetOutputShape(axes, x_dims);
ctx->SetOutputDim("Out", out_dims);
if (x_dims[0] == out_dims[0]) {
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
ctx->ShareLoD("X", "Out");
}
} else if (ctx->HasInputs("AxesTensorList")) {
auto AxesTensorList = ctx->Inputs("AxesTensorList");
int output_size = x_dims.size() + static_cast<int>(AxesTensorList.size());
PADDLE_ENFORCE_LE(output_size, 6,
platform::errors::InvalidArgument(
"The output tensor's rank should be less than 6."));
std::vector<int> vec_out_dims(output_size, -1);
ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
} else if (ctx->HasInput("AxesTensor")) {
auto axes_dims = ctx->GetInputDim("AxesTensor");
PADDLE_ENFORCE_EQ(axes_dims.size(), 1,
platform::errors::InvalidArgument(
"Input(AxesTensor)'s dimension of "
"Op(unsqueeze) must be 1. "
"But received AxesTensor's shape = [%s], "
"AxesTensor's dimension = %d.",
axes_dims, axes_dims.size()));
PADDLE_ENFORCE_GE(
axes_dims[0], 0,
platform::errors::InvalidArgument(
"Input(AxesTensor)'s shape must be known. But received "
"AxesTensor's shape = [%s]",
axes_dims));
int output_size = x_dims.size() + static_cast<int>(axes_dims[0]);
PADDLE_ENFORCE_LE(output_size, 6,
platform::errors::InvalidArgument(
"The output tensor's rank should be less than 6."));
std::vector<int> vec_out_dims(output_size, -1);
ctx->SetOutputDim("Out", framework::make_ddim(vec_out_dims));
}
}
static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
const framework::DDim &in_dims) {
int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
int cur_output_size = in_dims.size();
std::vector<int64_t> output_shape(output_size, 0);
// Validity Check: rank range.
PADDLE_ENFORCE_LE(output_size, 6,
platform::errors::InvalidArgument(
"The output tensor's rank should be less than 6."));
for (int axis : unsqz_dims) {
int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
// Vaildity Check: the axis bound
PADDLE_ENFORCE_GE(cur, 0, platform::errors::InvalidArgument(
"The insert dimension value should "
"not be less than 0"));
PADDLE_ENFORCE_LE(cur, cur_output_size,
platform::errors::InvalidArgument(
"The insert dimension value shoud not be larger "
"than the dimension size of input tensor"));
// Move old axis, and insert new axis
for (int i = cur_output_size; i >= cur; --i) {
if (output_shape[i] == 1) {
// Move axis
output_shape[i + 1] = 1;
output_shape[i] = 0;
}
}
output_shape[cur] = 1;
// Add the output size.
cur_output_size++;
}
// Make output shape
for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
if (output_shape[out_idx] == 0) {
output_shape[out_idx] = in_dims[in_idx++];
}
}
return framework::make_ddim(output_shape);
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
ctx.device_context());
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const framework::Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "AxesTensor" || var_name == "AxesTensorList") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
class UnsqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor). The input tensor of unsqueeze operator.");
AddInput("AxesTensor",
"(Tensor<int32>, optional). The dimensions to be inserted. "
"If it exists, it will replace Attr(axes).")
.AsDispensable();
AddInput(
"AxesTensorList",
"(vector<Tensor<int32>>, optional). The dimensions to be inserted. "
"If it exists, it will replace Attr(axes)."
"The shape of the element in vector must be [1].")
.AsDuplicable()
.AsDispensable();
AddOutput("Out", "(Tensor). The output tensor of unsqueeze operator.");
AddAttr<std::vector<int>>("axes",
"(std::vector<int>). List of integers,"
" indicating the dimensions to be inserted")
.SetDefault({})
.AddCustomChecker([](const std::vector<int> &axes) {
// Validity Check: axes dims (<6).
PADDLE_ENFORCE_LT(static_cast<int>(axes.size()), 6,
platform::errors::InvalidArgument(
"Invalid "
"dimensions, dynamic dimensions should be "
"within [1, 6] dimensions (Eigen limit)."));
// Validity Check: the range of unsqueeze axis.
for (int axis : axes) {
PADDLE_ENFORCE_LT(axis, 6,
platform::errors::InvalidArgument(
"Invalid "
"dimensions, input axis should be"
"within [1, 6] dimensions (Eigen limit)."));
}
});
AddComment(R"DOC(
Unsqueeze Operator.
Insert single-dimensional entries to the shape of a tensor.
Takes one required argument axes, a list of dimensions that will be inserted.
Dimension indices in axes are as seen in the output tensor.
For example:
Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueeze(tensor, axes=[0, 4]) has shape [1, 3, 4, 5, 1]
)DOC");
}
};
class UnsqueezeGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
ctx->ShareLoD("X", framework::GradVarName("X"));
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};
template <typename T>
class UnsqueezeGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("unsqueeze_grad");
grad_op->SetInput("X", this->Input("X"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
grad_op->SetAttrMap(this->Attrs());
}
};
template <typename T>
class UnsqueezeDoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("unsqueeze");
grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
grad_op->SetAttrMap(this->Attrs());
}
};
// FIXME(zcd): unsqueeze2 adds an intermediate output(XShape) based on
// unsqueeze, the XShape is used to carry the shape and lod of X which
// will be used in unsqueeze_grad, in this way, the framework can reuse
// the memory of X immediately the unsqueeze2_op is finished.
// Considering compatibility issues, we could not fix unsqueeze2_op
class Unsqueeze2Op : public UnsqueezeOp {
public:
using UnsqueezeOp::UnsqueezeOp;
void InferShape(framework::InferShapeContext *ctx) const override {
UnsqueezeOp::InferShape(ctx);
const auto &x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(
ctx->HasOutput("XShape"), true,
platform::errors::InvalidArgument("Output(XShape) of Unsqueeze "
"operator should not be null."));
std::vector<int64_t> xshape_dims(x_dims.size() + 1);
xshape_dims[0] = 0;
for (int i = 0; i < x_dims.size(); ++i) {
xshape_dims[i + 1] = x_dims[i];
}
ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
ctx->ShareLoD("X", /*->*/ "XShape");
}
};
class Unsqueeze2OpMaker : public UnsqueezeOpMaker {
public:
void Make() override {
UnsqueezeOpMaker::Make();
AddOutput("XShape",
"XShape is just used to store the shape and lod of X, which will "
"be used in UnsqueezeGradOp.")
.AsIntermediate();
}
};
template <typename T>
class Unsqueeze2GradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("unsqueeze2_grad");
grad_op->SetInput("XShape", this->Output("XShape"));
grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
grad_op->SetAttrMap(this->Attrs());
}
};
class Unsqueeze2GradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE_EQ(
context->HasInput("XShape"), true,
platform::errors::InvalidArgument("Input(XShape) shouldn't be null."));
PADDLE_ENFORCE_EQ(context->HasInput(framework::GradVarName("Out")), true,
platform::errors::InvalidArgument(
"Input(Out@GRAD) shouldn't be null."));
auto xshape_dims = context->GetInputDim("XShape");
auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
context->SetOutputDim(framework::GradVarName("X"), x_dims);
context->ShareLoD("XShape", framework::GradVarName("X"));
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
}
};
template <typename T>
class Unsqueeze2DoubleGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("unsqueeze2");
grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
grad_op->SetOutput("XShape", this->Input("XShape"));
grad_op->SetAttrMap(this->Attrs());
}
};
DECLARE_INPLACE_OP_INFERER(UnsqueezeInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(UnsqueezeGradInplaceInferer,
{framework::GradVarName("Out"),
framework::GradVarName("X")});
DECLARE_NO_NEED_BUFFER_VARS_INFERER(UnsqueezeGradOpNoNeedBufferVarInferer, "X");
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(unsqueeze, ops::UnsqueezeOp, ops::UnsqueezeOpMaker,
ops::UnsqueezeGradOpMaker<paddle::framework::OpDesc>,
ops::UnsqueezeGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(unsqueeze_grad, ops::UnsqueezeGradOp,
ops::UnsqueezeDoubleGradOpMaker<paddle::framework::OpDesc>,
ops::UnsqueezeDoubleGradOpMaker<paddle::imperative::OpBase>,
ops::UnsqueezeGradOpNoNeedBufferVarInferer);
REGISTER_OPERATOR(unsqueeze2, ops::Unsqueeze2Op, ops::Unsqueeze2OpMaker,
ops::Unsqueeze2GradOpMaker<paddle::framework::OpDesc>,
ops::Unsqueeze2GradOpMaker<paddle::imperative::OpBase>,
ops::UnsqueezeInplaceInferer);
REGISTER_OPERATOR(unsqueeze2_grad, ops::Unsqueeze2GradOp,
ops::Unsqueeze2DoubleGradOpMaker<paddle::framework::OpDesc>,
ops::Unsqueeze2DoubleGradOpMaker<paddle::imperative::OpBase>,
ops::UnsqueezeGradInplaceInferer);
REGISTER_OP_CPU_KERNEL(
unsqueeze, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
unsqueeze_grad,
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, bool>,
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
ops::UnsqueezeGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
unsqueeze2, ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, float>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, double>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, bool>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, uint8_t>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int8_t>,
ops::UnsqueezeKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
unsqueeze2_grad,
ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, float>,
ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, double>,
ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, bool>,
ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int>,
ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
ops::Unsqueeze2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);