-
Notifications
You must be signed in to change notification settings - Fork 5.6k
/
executor.py
185 lines (159 loc) · 5.6 KB
/
executor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import numpy as np
import contextlib
from framework import Program, default_main_program
from . import core
__all__ = ['Executor', 'global_scope', 'scope_guard', 'switch_scope']
g_scope = core.Scope()
def global_scope():
return g_scope
def switch_scope(scope):
global g_scope
ex = g_scope
g_scope = scope
return ex
@contextlib.contextmanager
def scope_guard(scope):
ex = switch_scope(scope)
yield
switch_scope(ex)
def as_numpy(tensor):
if isinstance(tensor, list):
return [as_numpy(t) for t in tensor]
assert isinstance(tensor, core.LoDTensor)
lod = tensor.lod()
tensor_data = np.array(tensor)
if len(lod) == 0:
ans = tensor_data
else:
raise RuntimeError("LoD Calculate lacks unit tests and buggy")
# elif len(lod) == 1:
# ans = []
# idx = 0
# while idx < len(lod) - 1:
# ans.append(tensor_data[lod[idx]:lod[idx + 1]])
# idx += 1
# else:
# for l in reversed(lod):
# ans = []
# idx = 0
# while idx < len(l) - 1:
# ans.append(tensor_data[l[idx]:l[idx + 1]])
# idx += 1
# tensor_data = ans
# ans = tensor_data
return ans
class Executor(object):
def __init__(self, places):
if not isinstance(places, list) and not isinstance(places, tuple):
places = [places]
act_places = []
for each in places:
p = core.Place()
p.set_place(each)
act_places.append(p)
# TODO(dzhwinter) : only use the first place
self.executor = core.Executor(act_places[0])
self.places = places
def aslodtensor(self, data):
def accumulate(data):
if not isinstance(data, list):
return 1
return sum([accumulate(sub) for sub in data])
def parselod(data):
seq_lens = [accumulate(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
return lod
assert len(self.places) != 0
if not isinstance(data, list):
# pure tensor case
tensor = core.LoDTensor()
tensor.set(data, self.places[0])
return tensor
else:
raise RuntimeError("Current implementation lacks unittests")
# lodtensor case
lod = []
if not isinstance(data[0], list):
lod.append(parselod(data))
flattened_data = np.concatenate(data, axis=0).astype("int64")
else:
while isinstance(data[0], list):
lod.append(parselod(seq))
flattened_data = [item for seq in data for item in seq]
data = flattened_data
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
tensor = core.LoDTensor()
tensor.set(flattened_data, self.places[0])
tensor.set_lod(lod)
return tensor
def run(self,
program=None,
feed=None,
fetch_list=None,
feed_var_name='feed',
fetch_var_name='fetch',
scope=None,
return_numpy=True):
if feed is None:
feed = {}
if fetch_list is None:
fetch_list = []
if program is None:
program = default_main_program()
if not isinstance(program, Program):
raise TypeError()
if scope is None:
scope = global_scope()
program = program.clone()
global_block = program.global_block()
feed_var = global_block.create_var(
name=feed_var_name,
type=core.VarDesc.VarType.FEED_MINIBATCH,
persistable=True)
for i, name in enumerate(feed):
out = global_block.var(name)
global_block.prepend_op(
'feed',
inputs={'X': [feed_var]},
outputs={'Out': [out]},
attrs={'col': i})
cur_feed = feed[name]
if not isinstance(cur_feed, core.LoDTensor):
cur_feed = self.aslodtensor(cur_feed)
core.set_feed_variable(scope, cur_feed, feed_var.name, i)
fetch_var = global_block.create_var(
name=fetch_var_name,
type=core.VarDesc.VarType.FETCH_LIST,
persistable=True)
for i, var in enumerate(fetch_list):
global_block.append_op(
type='fetch',
inputs={'X': [var]},
outputs={'Out': [fetch_var]},
attrs={'col': i})
self.executor.run(program.desc, scope, 0, True, True)
outs = [
core.get_fetch_variable(scope, fetch_var_name, i)
for i in xrange(len(fetch_list))
]
if return_numpy:
outs = as_numpy(outs)
return outs