Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Align fastdeploy prediction precision with yolov5 #11

Merged
merged 4 commits into from
Jul 8, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added fastdeploy/libs/__init__.py
Empty file.
7 changes: 0 additions & 7 deletions fastdeploy/version.py

This file was deleted.

29 changes: 2 additions & 27 deletions fastdeploy/vision/common/result.cc
Original file line number Diff line number Diff line change
Expand Up @@ -59,31 +59,6 @@ void DetectionResult::Resize(int size) {
label_ids.resize(size);
}

void DetectionResult::Sort() {
for (size_t i = 0; i < scores.size(); ++i) {
float max_score = scores[i];
float index = i;
for (size_t j = i + 1; j < scores.size(); ++j) {
if (max_score < scores[j]) {
max_score = scores[j];
index = j;
}
}
if (i == index) {
continue;
}
float tmp_score = scores[i];
scores[i] = scores[index];
scores[index] = tmp_score;
int32_t tmp_label_id = label_ids[i];
label_ids[i] = label_ids[index];
label_ids[index] = tmp_label_id;
std::array<float, 4> tmp_box = boxes[i];
boxes[i] = boxes[index];
boxes[index] = tmp_box;
}
}

std::string DetectionResult::Str() {
std::string out;
out = "DetectionResult: [xmin, ymin, xmax, ymax, score, label_id]\n";
Expand All @@ -97,5 +72,5 @@ std::string DetectionResult::Str() {
return out;
}

} // namespace vision
} // namespace fastdeploy
} // namespace vision
} // namespace fastdeploy
2 changes: 0 additions & 2 deletions fastdeploy/vision/common/result.h
Original file line number Diff line number Diff line change
Expand Up @@ -53,8 +53,6 @@ struct FASTDEPLOY_DECL DetectionResult : public BaseResult {

void Resize(int size);

void Sort();

std::string Str();
};

Expand Down
31 changes: 25 additions & 6 deletions fastdeploy/vision/ultralytics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,10 @@ def padding_value(self):
def is_no_pad(self):
return self.model.is_no_pad

@property
def is_mini_pad(self):
return self.model.is_mini_pad

@property
def is_scale_up(self):
return self.model.is_scale_up
Expand All @@ -59,14 +63,16 @@ def is_scale_up(self):
def stride(self):
return self.model.stride

@property
def max_wh(self):
return self.model.max_wh

@size.setter
def size(self, wh):
assert isinstance(wh, [
list, tuple
]), "The value to set `size` must be type of tuple or list."
assert len(
wh
) == 2, "The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
assert isinstance(wh, [list, tuple]),\
"The value to set `size` must be type of tuple or list."
assert len(wh) == 2,\
"The value to set `size` must contatins 2 elements means [width, height], but now it contains {} elements.".format(
len(wh))
self.model.size = wh

Expand All @@ -83,6 +89,13 @@ def is_no_pad(self, value):
value, bool), "The value to set `is_no_pad` must be type of bool."
self.model.is_no_pad = value

@is_mini_pad.setter
def is_mini_pad(self, value):
assert isinstance(
value,
bool), "The value to set `is_mini_pad` must be type of bool."
self.model.is_mini_pad = value

@is_scale_up.setter
def is_scale_up(self, value):
assert isinstance(
Expand All @@ -95,3 +108,9 @@ def stride(self, value):
assert isinstance(
value, int), "The value to set `stride` must be type of int."
self.model.stride = value

@max_wh.setter
def max_wh(self, value):
assert isinstance(
value, float), "The value to set `max_wh` must be type of float."
self.model.max_wh = value
4 changes: 3 additions & 1 deletion fastdeploy/vision/ultralytics/ultralytics_pybind.cc
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,8 @@ void BindUltralytics(pybind11::module& m) {
&vision::ultralytics::YOLOv5::padding_value)
.def_readwrite("is_mini_pad", &vision::ultralytics::YOLOv5::is_mini_pad)
.def_readwrite("is_no_pad", &vision::ultralytics::YOLOv5::is_no_pad)
.def_readwrite("is_scale_up", &vision::ultralytics::YOLOv5::stride);
.def_readwrite("is_scale_up", &vision::ultralytics::YOLOv5::is_scale_up)
.def_readwrite("stride", &vision::ultralytics::YOLOv5::stride)
.def_readwrite("max_wh", &vision::ultralytics::YOLOv5::max_wh);
}
} // namespace fastdeploy
32 changes: 25 additions & 7 deletions fastdeploy/vision/ultralytics/yolov5.cc
Original file line number Diff line number Diff line change
Expand Up @@ -64,8 +64,9 @@ bool YOLOv5::Initialize() {
padding_value = {114.0, 114.0, 114.0};
is_mini_pad = false;
is_no_pad = false;
is_scale_up = true;
is_scale_up = false;
stride = 32;
max_wh = 7680.0;

if (!InitRuntime()) {
FDERROR << "Failed to initialize fastdeploy backend." << std::endl;
Expand All @@ -76,6 +77,18 @@ bool YOLOv5::Initialize() {

bool YOLOv5::Preprocess(Mat* mat, FDTensor* output,
std::map<std::string, std::array<float, 2>>* im_info) {
// process after image load
double ratio = (size[0] * 1.0) / std::max(static_cast<float>(mat->Height()),
static_cast<float>(mat->Width()));
if (ratio != 1.0) {
int interp = cv::INTER_AREA;
if (ratio > 1.0) {
interp = cv::INTER_LINEAR;
}
int resize_h = int(mat->Height() * ratio);
int resize_w = int(mat->Width() * ratio);
Resize::Run(mat, resize_w, resize_h, -1, -1, interp);
}
// yolov5's preprocess steps
// 1. letterbox
// 2. BGR->RGB
Expand Down Expand Up @@ -119,11 +132,14 @@ bool YOLOv5::Postprocess(
if (confidence <= conf_threshold) {
continue;
}
int32_t label_id = std::distance(data + s + 5, max_class_score);
// convert from [x, y, w, h] to [x1, y1, x2, y2]
result->boxes.emplace_back(std::array<float, 4>{
data[s] - data[s + 2] / 2, data[s + 1] - data[s + 3] / 2,
data[s + 0] + data[s + 2] / 2, data[s + 1] + data[s + 3] / 2});
result->label_ids.push_back(std::distance(data + s + 5, max_class_score));
data[s] - data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] - data[s + 3] / 2.0f + label_id * max_wh,
data[s + 0] + data[s + 2] / 2.0f + label_id * max_wh,
data[s + 1] + data[s + 3] / 2.0f + label_id * max_wh});
result->label_ids.push_back(label_id);
result->scores.push_back(confidence);
}
utils::NMS(result, nms_iou_threshold);
Expand All @@ -141,8 +157,12 @@ bool YOLOv5::Postprocess(
for (size_t i = 0; i < result->boxes.size(); ++i) {
float pad_h = (out_h - ipt_h * scale) / 2;
float pad_w = (out_w - ipt_w * scale) / 2;

int32_t label_id = (result->label_ids)[i];
// clip box
result->boxes[i][0] = result->boxes[i][0] - max_wh * label_id;
result->boxes[i][1] = result->boxes[i][1] - max_wh * label_id;
result->boxes[i][2] = result->boxes[i][2] - max_wh * label_id;
result->boxes[i][3] = result->boxes[i][3] - max_wh * label_id;
result->boxes[i][0] = std::max((result->boxes[i][0] - pad_w) / scale, 0.0f);
result->boxes[i][1] = std::max((result->boxes[i][1] - pad_h) / scale, 0.0f);
result->boxes[i][2] = std::max((result->boxes[i][2] - pad_w) / scale, 0.0f);
Expand Down Expand Up @@ -183,13 +203,11 @@ bool YOLOv5::Predict(cv::Mat* im, DetectionResult* result, float conf_threshold,
#endif

input_tensors[0].name = InputInfoOfRuntime(0).name;

std::vector<FDTensor> output_tensors;
if (!Infer(input_tensors, &output_tensors)) {
FDERROR << "Failed to inference." << std::endl;
return false;
}

#ifdef FASTDEPLOY_DEBUG
TIMERECORD_END(1, "Inference")
TIMERECORD_START(2)
Expand Down
2 changes: 2 additions & 0 deletions fastdeploy/vision/ultralytics/yolov5.h
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,8 @@ class FASTDEPLOY_DECL YOLOv5 : public FastDeployModel {
bool is_scale_up;
// padding stride, for is_mini_pad
int stride;
// for offseting the boxes by classes when using NMS
float max_wh;
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

新增属性添加到ultralytics/ultralytics_pybind.ccultralytics/__init__.py

};
} // namespace ultralytics
} // namespace vision
Expand Down
19 changes: 9 additions & 10 deletions fastdeploy/vision/utils/nms.cc
Original file line number Diff line number Diff line change
Expand Up @@ -22,13 +22,13 @@ namespace utils {
// The implementation refers to
// https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/cpp/src/utils.cc
void NMS(DetectionResult* result, float iou_threshold) {
result->Sort();
utils::SortDetectionResult(result);

std::vector<float> area_of_boxes(result->boxes.size());
std::vector<int> suppressed(result->boxes.size(), 0);
for (size_t i = 0; i < result->boxes.size(); ++i) {
area_of_boxes[i] = (result->boxes[i][2] - result->boxes[i][0] + 1) *
(result->boxes[i][3] - result->boxes[i][1] + 1);
area_of_boxes[i] = (result->boxes[i][2] - result->boxes[i][0]) *
(result->boxes[i][3] - result->boxes[i][1]);
}

for (size_t i = 0; i < result->boxes.size(); ++i) {
Expand All @@ -43,12 +43,11 @@ void NMS(DetectionResult* result, float iou_threshold) {
float ymin = std::max(result->boxes[i][1], result->boxes[j][1]);
float xmax = std::min(result->boxes[i][2], result->boxes[j][2]);
float ymax = std::min(result->boxes[i][3], result->boxes[j][3]);
float overlap_w = std::max(0.0f, xmax - xmin + 1);
float overlap_h = std::max(0.0f, ymax - ymin + 1);
float overlap_w = std::max(0.0f, xmax - xmin);
float overlap_h = std::max(0.0f, ymax - ymin);
float overlap_area = overlap_w * overlap_h;
float overlap_ratio =
overlap_area /
(area_of_boxes[i] + area_of_boxes[j] - overlap_area + 1e-06);
overlap_area / (area_of_boxes[i] + area_of_boxes[j] - overlap_area);
if (overlap_ratio > iou_threshold) {
suppressed[j] = 1;
}
Expand All @@ -67,6 +66,6 @@ void NMS(DetectionResult* result, float iou_threshold) {
}
}

} // namespace utils
} // namespace vision
} // namespace fastdeploy
} // namespace utils
} // namespace vision
} // namespace fastdeploy
77 changes: 77 additions & 0 deletions fastdeploy/vision/utils/sort_det_res.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/vision/utils/utils.h"

namespace fastdeploy {
namespace vision {
namespace utils {

void Merge(DetectionResult* result, size_t low, size_t mid, size_t high) {
std::vector<std::array<float, 4>>& boxes = result->boxes;
std::vector<float>& scores = result->scores;
std::vector<int32_t>& label_ids = result->label_ids;
std::vector<std::array<float, 4>> temp_boxes(boxes);
std::vector<float> temp_scores(scores);
std::vector<int32_t> temp_label_ids(label_ids);
size_t i = low;
size_t j = mid + 1;
size_t k = i;
for (; i <= mid && j <= high; k++) {
if (temp_scores[i] >= temp_scores[j]) {
scores[k] = temp_scores[i];
label_ids[k] = temp_label_ids[i];
boxes[k] = temp_boxes[i];
i++;
} else {
scores[k] = temp_scores[j];
label_ids[k] = temp_label_ids[j];
boxes[k] = temp_boxes[j];
j++;
}
}
while (i <= mid) {
scores[k] = temp_scores[i];
label_ids[k] = temp_label_ids[i];
boxes[k] = temp_boxes[i];
k++;
i++;
}
while (j <= high) {
scores[k] = temp_scores[j];
label_ids[k] = temp_label_ids[j];
boxes[k] = temp_boxes[j];
k++;
j++;
}
}

void MergeSort(DetectionResult* result, size_t low, size_t high) {
if (low < high) {
size_t mid = (high - low) / 2 + low;
MergeSort(result, low, mid);
MergeSort(result, mid + 1, high);
Merge(result, low, mid, high);
}
}

void SortDetectionResult(DetectionResult* result) {
size_t low = 0;
size_t high = result->scores.size() - 1;
MergeSort(result, low, high);
}

} // namespace utils
} // namespace vision
} // namespace fastdeploy
13 changes: 8 additions & 5 deletions fastdeploy/vision/utils/utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,11 @@

#pragma once

#include <set>
#include <vector>
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/utils/utils.h"
#include "fastdeploy/vision/common/result.h"
#include <set>
#include <vector>

namespace fastdeploy {
namespace vision {
Expand Down Expand Up @@ -53,6 +53,9 @@ std::vector<int32_t> TopKIndices(const T* array, int array_size, int topk) {

void NMS(DetectionResult* output, float iou_threshold = 0.5);

} // namespace utils
} // namespace vision
} // namespace fastdeploy
// MergeSort
void SortDetectionResult(DetectionResult* output);

} // namespace utils
} // namespace vision
} // namespace fastdeploy