-
Notifications
You must be signed in to change notification settings - Fork 13.6k
/
PositionControl.cpp
263 lines (222 loc) · 10.1 KB
/
PositionControl.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/****************************************************************************
*
* Copyright (c) 2018 - 2019 PX4 Development Team. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
/**
* @file PositionControl.cpp
*/
#include "PositionControl.hpp"
#include "ControlMath.hpp"
#include <float.h>
#include <mathlib/mathlib.h>
#include <px4_platform_common/defines.h>
#include <geo/geo.h>
using namespace matrix;
const trajectory_setpoint_s PositionControl::empty_trajectory_setpoint = {0, {NAN, NAN, NAN}, {NAN, NAN, NAN}, {NAN, NAN, NAN}, {NAN, NAN, NAN}, NAN, NAN};
void PositionControl::setVelocityGains(const Vector3f &P, const Vector3f &I, const Vector3f &D)
{
_gain_vel_p = P;
_gain_vel_i = I;
_gain_vel_d = D;
}
void PositionControl::setVelocityLimits(const float vel_horizontal, const float vel_up, const float vel_down)
{
_lim_vel_horizontal = vel_horizontal;
_lim_vel_up = vel_up;
_lim_vel_down = vel_down;
}
void PositionControl::setThrustLimits(const float min, const float max)
{
// make sure there's always enough thrust vector length to infer the attitude
_lim_thr_min = math::max(min, 10e-4f);
_lim_thr_max = max;
}
void PositionControl::setHorizontalThrustMargin(const float margin)
{
_lim_thr_xy_margin = margin;
}
void PositionControl::updateHoverThrust(const float hover_thrust_new)
{
// Given that the equation for thrust is T = a_sp * Th / g - Th
// with a_sp = desired acceleration, Th = hover thrust and g = gravity constant,
// we want to find the acceleration that needs to be added to the integrator in order obtain
// the same thrust after replacing the current hover thrust by the new one.
// T' = T => a_sp' * Th' / g - Th' = a_sp * Th / g - Th
// so a_sp' = (a_sp - g) * Th / Th' + g
// we can then add a_sp' - a_sp to the current integrator to absorb the effect of changing Th by Th'
const float previous_hover_thrust = _hover_thrust;
setHoverThrust(hover_thrust_new);
_vel_int(2) += (_acc_sp(2) - CONSTANTS_ONE_G) * previous_hover_thrust / _hover_thrust
+ CONSTANTS_ONE_G - _acc_sp(2);
}
void PositionControl::setState(const PositionControlStates &states)
{
_pos = states.position;
_vel = states.velocity;
_yaw = states.yaw;
_vel_dot = states.acceleration;
}
void PositionControl::setInputSetpoint(const trajectory_setpoint_s &setpoint)
{
_pos_sp = Vector3f(setpoint.position);
_vel_sp = Vector3f(setpoint.velocity);
_acc_sp = Vector3f(setpoint.acceleration);
_yaw_sp = setpoint.yaw;
_yawspeed_sp = setpoint.yawspeed;
}
bool PositionControl::update(const float dt)
{
bool valid = _inputValid();
if (valid) {
_positionControl();
_velocityControl(dt);
_yawspeed_sp = PX4_ISFINITE(_yawspeed_sp) ? _yawspeed_sp : 0.f;
_yaw_sp = PX4_ISFINITE(_yaw_sp) ? _yaw_sp : _yaw; // TODO: better way to disable yaw control
}
// There has to be a valid output acceleration and thrust setpoint otherwise something went wrong
return valid && _acc_sp.isAllFinite() && _thr_sp.isAllFinite();
}
void PositionControl::_positionControl()
{
// P-position controller
Vector3f vel_sp_position = (_pos_sp - _pos).emult(_gain_pos_p);
// Position and feed-forward velocity setpoints or position states being NAN results in them not having an influence
ControlMath::addIfNotNanVector3f(_vel_sp, vel_sp_position);
// make sure there are no NAN elements for further reference while constraining
ControlMath::setZeroIfNanVector3f(vel_sp_position);
// Constrain horizontal velocity by prioritizing the velocity component along the
// the desired position setpoint over the feed-forward term.
_vel_sp.xy() = ControlMath::constrainXY(vel_sp_position.xy(), (_vel_sp - vel_sp_position).xy(), _lim_vel_horizontal);
// Constrain velocity in z-direction.
_vel_sp(2) = math::constrain(_vel_sp(2), -_lim_vel_up, _lim_vel_down);
}
void PositionControl::_velocityControl(const float dt)
{
// Constrain vertical velocity integral
_vel_int(2) = math::constrain(_vel_int(2), -CONSTANTS_ONE_G, CONSTANTS_ONE_G);
// PID velocity control
Vector3f vel_error = _vel_sp - _vel;
Vector3f acc_sp_velocity = vel_error.emult(_gain_vel_p) + _vel_int - _vel_dot.emult(_gain_vel_d);
// No control input from setpoints or corresponding states which are NAN
ControlMath::addIfNotNanVector3f(_acc_sp, acc_sp_velocity);
_accelerationControl();
// Integrator anti-windup in vertical direction
if ((_thr_sp(2) >= -_lim_thr_min && vel_error(2) >= 0.f) ||
(_thr_sp(2) <= -_lim_thr_max && vel_error(2) <= 0.f)) {
vel_error(2) = 0.f;
}
// Prioritize vertical control while keeping a horizontal margin
const Vector2f thrust_sp_xy(_thr_sp);
const float thrust_sp_xy_norm = thrust_sp_xy.norm();
const float thrust_max_squared = math::sq(_lim_thr_max);
// Determine how much vertical thrust is left keeping horizontal margin
const float allocated_horizontal_thrust = math::min(thrust_sp_xy_norm, _lim_thr_xy_margin);
const float thrust_z_max_squared = thrust_max_squared - math::sq(allocated_horizontal_thrust);
// Saturate maximal vertical thrust
_thr_sp(2) = math::max(_thr_sp(2), -sqrtf(thrust_z_max_squared));
// Determine how much horizontal thrust is left after prioritizing vertical control
const float thrust_max_xy_squared = thrust_max_squared - math::sq(_thr_sp(2));
float thrust_max_xy = 0.f;
if (thrust_max_xy_squared > 0.f) {
thrust_max_xy = sqrtf(thrust_max_xy_squared);
}
// Saturate thrust in horizontal direction
if (thrust_sp_xy_norm > thrust_max_xy) {
_thr_sp.xy() = thrust_sp_xy / thrust_sp_xy_norm * thrust_max_xy;
}
// Use tracking Anti-Windup for horizontal direction: during saturation, the integrator is used to unsaturate the output
// see Anti-Reset Windup for PID controllers, L.Rundqwist, 1990
const Vector2f acc_sp_xy_produced = Vector2f(_thr_sp) * (CONSTANTS_ONE_G / _hover_thrust);
const float arw_gain = 2.f / _gain_vel_p(0);
// The produced acceleration can be greater or smaller than the desired acceleration due to the saturations and the actual vertical thrust (computed independently).
// The ARW loop needs to run if the signal is saturated only.
const Vector2f acc_sp_xy = _acc_sp.xy();
const Vector2f acc_limited_xy = (acc_sp_xy.norm_squared() > acc_sp_xy_produced.norm_squared())
? acc_sp_xy_produced
: acc_sp_xy;
vel_error.xy() = Vector2f(vel_error) - arw_gain * (acc_sp_xy - acc_limited_xy);
// Make sure integral doesn't get NAN
ControlMath::setZeroIfNanVector3f(vel_error);
// Update integral part of velocity control
_vel_int += vel_error.emult(_gain_vel_i) * dt;
}
void PositionControl::_accelerationControl()
{
// Assume standard acceleration due to gravity in vertical direction for attitude generation
Vector3f body_z = Vector3f(-_acc_sp(0), -_acc_sp(1), CONSTANTS_ONE_G).normalized();
ControlMath::limitTilt(body_z, Vector3f(0, 0, 1), _lim_tilt);
// Scale thrust assuming hover thrust produces standard gravity
float collective_thrust = _acc_sp(2) * (_hover_thrust / CONSTANTS_ONE_G) - _hover_thrust;
// Project thrust to planned body attitude
collective_thrust /= (Vector3f(0, 0, 1).dot(body_z));
collective_thrust = math::min(collective_thrust, -_lim_thr_min);
_thr_sp = body_z * collective_thrust;
}
bool PositionControl::_inputValid()
{
bool valid = true;
// Every axis x, y, z needs to have some setpoint
for (int i = 0; i <= 2; i++) {
valid = valid && (PX4_ISFINITE(_pos_sp(i)) || PX4_ISFINITE(_vel_sp(i)) || PX4_ISFINITE(_acc_sp(i)));
}
// x and y input setpoints always have to come in pairs
valid = valid && (PX4_ISFINITE(_pos_sp(0)) == PX4_ISFINITE(_pos_sp(1)));
valid = valid && (PX4_ISFINITE(_vel_sp(0)) == PX4_ISFINITE(_vel_sp(1)));
valid = valid && (PX4_ISFINITE(_acc_sp(0)) == PX4_ISFINITE(_acc_sp(1)));
// For each controlled state the estimate has to be valid
for (int i = 0; i <= 2; i++) {
if (PX4_ISFINITE(_pos_sp(i))) {
valid = valid && PX4_ISFINITE(_pos(i));
}
if (PX4_ISFINITE(_vel_sp(i))) {
valid = valid && PX4_ISFINITE(_vel(i)) && PX4_ISFINITE(_vel_dot(i));
}
}
return valid;
}
void PositionControl::getLocalPositionSetpoint(vehicle_local_position_setpoint_s &local_position_setpoint) const
{
local_position_setpoint.x = _pos_sp(0);
local_position_setpoint.y = _pos_sp(1);
local_position_setpoint.z = _pos_sp(2);
local_position_setpoint.yaw = _yaw_sp;
local_position_setpoint.yawspeed = _yawspeed_sp;
local_position_setpoint.vx = _vel_sp(0);
local_position_setpoint.vy = _vel_sp(1);
local_position_setpoint.vz = _vel_sp(2);
_acc_sp.copyTo(local_position_setpoint.acceleration);
_thr_sp.copyTo(local_position_setpoint.thrust);
}
void PositionControl::getAttitudeSetpoint(vehicle_attitude_setpoint_s &attitude_setpoint) const
{
ControlMath::thrustToAttitude(_thr_sp, _yaw_sp, attitude_setpoint);
attitude_setpoint.yaw_sp_move_rate = _yawspeed_sp;
}