The Thermo Presence Dataset consists of thermal images with resolution 24x32 px and corresponding annotations in the form of X and Y coordinates. Recorded data are in hdfs directory. Raw data are available in the cloud shared folder.
Collected frames are divided into sequences which then are split into training, validation, and test sets as follows:
training_dirs: [
"006__11_44_59", "007__11_48_59", "008__11_52_59",
"009__11_57_00", "000__14_15_19", "001__14_19_19",
"002__14_23_19", "003__14_27_20", "004__14_31_20",
"012__15_03_21", "013__15_07_21", "014__15_11_21",
"015__15_15_21", "016__15_19_21", "011__13_38_20",
"012__13_42_20", "013__13_46_21", "007__13_22_20"
]
validation_dirs: [
"004__13_10_20", "014__13_50_21", "005__14_35_20",
"006__14_39_20", "007__14_43_20", "008__14_47_20"
]
test_dirs: [
"008__13_26_20", "009__14_51_20", "010__14_55_20",
"011__14_59_20", "015__13_54_21"
]
The table below shows the summary of training, validation, and test datasets considering the number of people in the frame.
0 | 1 | 2 | 3 | 4 | 5 | Total | |
---|---|---|---|---|---|---|---|
Training | 99 | 105 | 2984 | 3217 | 1953 | 114 | 8472 |
Validation | 0 | 139 | 631 | 1691 | 225 | 139 | 2825 |
Test | 162 | 83 | 211 | 341 | 1235 | 315 | 2347 |
import pandas as pd
df = pd.read_hdf('./dataset/hdfs/007__13_22_20.h5')
df.head()
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_hdf('./dataset/hdfs/007__13_22_20.h5')
idx = 100
x = np.array(df.iloc[idx]['points'])[:, 0]
y = np.array(df.iloc[idx]['points'])[:, 1]
frame = df.iloc[idx]['data']
plt.imshow(frame)
plt.scatter(x=x, y=y, s=200, c='red', marker='x')
plt.show()