Skip to content

Latest commit

 

History

History

dataset

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 

Thermo Presence Dataset

The Thermo Presence Dataset consists of thermal images with resolution 24x32 px and corresponding annotations in the form of X and Y coordinates. Recorded data are in hdfs directory. Raw data are available in the cloud shared folder.

Collected frames are divided into sequences which then are split into training, validation, and test sets as follows:

training_dirs: [
    "006__11_44_59", "007__11_48_59", "008__11_52_59", 
    "009__11_57_00", "000__14_15_19", "001__14_19_19", 
    "002__14_23_19", "003__14_27_20", "004__14_31_20", 
    "012__15_03_21", "013__15_07_21", "014__15_11_21", 
    "015__15_15_21", "016__15_19_21", "011__13_38_20", 
    "012__13_42_20", "013__13_46_21", "007__13_22_20"
]

validation_dirs: [
    "004__13_10_20", "014__13_50_21", "005__14_35_20", 
    "006__14_39_20", "007__14_43_20", "008__14_47_20"
]

test_dirs: [
    "008__13_26_20", "009__14_51_20", "010__14_55_20", 
    "011__14_59_20", "015__13_54_21"
]

The table below shows the summary of training, validation, and test datasets considering the number of people in the frame.

0 1 2 3 4 5 Total
Training 99 105 2984 3217 1953 114 8472
Validation 0 139 631 1691 225 139 2825
Test 162 83 211 341 1235 315 2347

Python examples

Load dataset file

import pandas as pd


df = pd.read_hdf('./dataset/hdfs/007__13_22_20.h5')
df.head()

Visualize an example thermal image with corresponding annotations

import pandas as pd
import matplotlib.pyplot as plt


df = pd.read_hdf('./dataset/hdfs/007__13_22_20.h5')

idx = 100

x = np.array(df.iloc[idx]['points'])[:, 0]
y = np.array(df.iloc[idx]['points'])[:, 1]
frame = df.iloc[idx]['data']

plt.imshow(frame)
plt.scatter(x=x, y=y, s=200, c='red', marker='x')
plt.show()