forked from quackle/quackle
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bogowinplayer.cpp
229 lines (184 loc) · 7.13 KB
/
bogowinplayer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
* Quackle -- Crossword game artificial intelligence and analysis tool
* Copyright (C) 2005-2019 Jason Katz-Brown, John O'Laughlin, and John Fultz.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include "bogowinplayer.h"
#include "datamanager.h"
#include "endgameplayer.h"
#include "clock.h"
#include "strategyparameters.h"
#include "gameparameters.h"
//#include "enumerator.h"
//#define DEBUG_COMPUTERPLAYER
using namespace Quackle;
SmartBogowin::SmartBogowin()
{
m_name = MARK_UV("Smart Bogowin");
m_id = 110;
m_minIterationsPerSecond = 2;
m_maxIterationsPerSecond = 5;
m_nestedMinIterationsPerSecond = 1;
m_nestedMaxIterationsPerSecond = 1;
m_parameters.secondsPerTurn = 20;
m_additionalInitialCandidates = 13;
m_inferring = false;
}
SmartBogowin::~SmartBogowin()
{
}
double SmartBogowin::bogopoints(Move &move)
{
if (move.win == 1) return move.equity + 1000;
if (move.win == 0) return move.equity - 1000;
int spread = m_simulator.currentPosition().spread(m_simulator.currentPosition().currentPlayer().id());
int tiles = m_simulator.currentPosition().bag().size() + 7;
if (move.win <= QUACKLE_STRATEGY_PARAMETERS->bogowin(-300, tiles, 0))
return move.equity - 1000;
if (move.win >= QUACKLE_STRATEGY_PARAMETERS->bogowin(300, tiles, 0))
return move.equity + 1000;
for (int x = -300; x <= 299; x++)
{
double lower = QUACKLE_STRATEGY_PARAMETERS->bogowin(x, tiles, 0);
double upper = QUACKLE_STRATEGY_PARAMETERS->bogowin(x + 1, tiles, 0);
if ((move.win >= lower) && (move.win <= upper))
{
double fraction = (move.win - lower) / (upper - lower);
return (double)x + fraction - spread;
}
}
return 0;
}
Move SmartBogowin::move()
{
return moves(1).back();
}
MoveList SmartBogowin::moves(int nmoves)
{
Stopwatch stopwatch;
if (currentPosition().bag().empty())
{
signalFractionDone(0);
EndgamePlayer endgame;
endgame.setPosition(currentPosition());
return endgame.moves(nmoves);
}
// TODO
// Move this all to an Inferrer class
//
// Generate all moves for all racks opp could have had.
// This can be done efficiently by making a big "rack" out of the bag (with the computer
// player's own rack removed) and generating moves from that big "rack" with some smarts
// added to the move generator to not create moves that have so many tiles not in the
// opp's play that they wouldn't have been possible from any of the racks we're looking
// for. Make a ProbableRackList of racks from which the opp's play is best or nearly
// (really what we're looking for is least bad). Most heavily weight the leaves for which
// the play is as close to optimal as possible (an x-point static mistake), and let the
// weights taper off to zero as the mistakes approach say x+7.
//
// Make the Simulator able to select racks randomly from the ProbableRackList
if (m_parameters.inferring) {
int numPlayers = (int)currentPosition().players().size();
UVcout << "numPlayers: " << numPlayers << endl;
if (numPlayers == 2) {
bool hasPreviousPosition;
GamePosition previous = m_simulator.history().previousPosition(&hasPreviousPosition);
if (hasPreviousPosition) {
UVcout << "previous position:" << endl;
UVcout << previous << endl;
} else {
UVcout << "no previous position" << endl;
}
}
}
UVcout << "SmartBogowin generating move from position:" << endl;
UVcout << currentPosition() << endl;
const int zerothPrune = 33;
int plies = 2;
if (currentPosition().bag().size() <= QUACKLE_PARAMETERS->rackSize() * 2)
plies = -1;
const int initialCandidates = m_additionalInitialCandidates + nmoves;
currentPosition().kibitz(initialCandidates);
m_simulator.setIncludedMoves(m_simulator.currentPosition().moves());
m_simulator.pruneTo(zerothPrune, initialCandidates);
m_simulator.makeSureConsideredMovesAreIncluded();
m_simulator.setIgnoreOppos(false);
MoveList staticMoves = m_simulator.moves(/* prune */ true, /* sort by equity */ false);
m_simulator.moveConsideredMovesToBeginning(staticMoves);
//UVcout << "Bogo static moves: " << staticMoves << endl;
//UVcout << "Bogo considered moves: " << m_simulator.consideredMoves() << endl;
MoveList firstMove;
MoveList simmedMoves;
MoveList::const_iterator it = staticMoves.begin();
firstMove.push_back(*it);
signalFractionDone(0);
m_simulator.setIncludedMoves(firstMove);
m_simulator.simulate(plies, minIterations());
Move best = *m_simulator.moves(/* prune */ true, /* sort by win */ true).begin();
simmedMoves.push_back(best);
double bestbp = bogopoints(best);
//UVcout << "firstMove: " << best << endl;
for (++it; it != staticMoves.end(); ++it)
{
signalFractionDone(max(static_cast<float>(simmedMoves.size()) / static_cast<float>(staticMoves.size()), static_cast<float>(stopwatch.elapsed()) / static_cast<float>(m_parameters.secondsPerTurn)));
if (shouldAbort())
goto sort_and_return;
//UVcout << "best move: " << best << " with " << bestbp << " bogopoints." << endl;
MoveList lookFurther;
lookFurther.push_back(*it);
m_simulator.setIncludedMoves(lookFurther);
m_simulator.simulate(plies, minIterations());
Move move = *m_simulator.moves(/* prune */ true, /* sort by win */ true).begin();
double movebp = bogopoints(move);
//UVcout << "we just simmed " << move << "; bogopoints: " << movebp << endl;
if (movebp + 1.96 * 35.0 / sqrt((double)minIterations()) > bestbp)
{
m_simulator.simulate(plies, maxIterations() - minIterations());
Move move2 = *m_simulator.moves(true, true).begin();
movebp = bogopoints(move2);
//UVcout << "sim it some more: " << move2 << " bogopoints: " << movebp << endl;
simmedMoves.push_back(move2);
if (move2.win > best.win)
{
best = move2;
bestbp = movebp;
}
}
else
{
simmedMoves.push_back(move);
}
if (stopwatch.exceeded(m_parameters.secondsPerTurn))
{
//UVcout << "Bogowinplayer stopwatch exceeded its limit " << m_parameters.secondsPerTurn << ". Returning early." << endl;
goto sort_and_return;
}
}
//UVcout << "We had extra time! whoopee!" << endl;
sort_and_return:
MoveList::sort(simmedMoves, MoveList::Win);
MoveList ret;
MoveList::const_iterator simmedEnd = simmedMoves.end();
int i = 0;
for (MoveList::const_iterator simmedIt = simmedMoves.begin();
(simmedIt != simmedEnd); ++i, ++simmedIt)
{
if (i < nmoves || m_simulator.isConsideredMove(*simmedIt))
ret.push_back(*simmedIt);
}
//UVcout << "bogo returning moves:\n" << ret << endl;
return ret;
}