-
Notifications
You must be signed in to change notification settings - Fork 6
/
learner.py
531 lines (471 loc) · 27.3 KB
/
learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import os
import time
import sys
import gym
import numpy as np
import torch
import utils.config_utils as config_utl
from algorithms.dqn import DQN
from algorithms.sac import SAC
from environments.make_env import make_env
from utils import helpers as utl, offline_utils as off_utl
from torchkit import pytorch_utils as ptu
from torchkit.networks import FlattenMlp
from data_management.storage_policy import MultiTaskPolicyStorage
from utils.tb_logger import TBLogger
from models.policy import TanhGaussianPolicy
class Learner:
"""
Learner class.
"""
def __init__(self, args):
"""
Seeds everything.
Initialises: logger, environments, policy (+storage +optimiser).
"""
self.args = args
# make sure everything has the same seed
utl.seed(self.args.seed)
# initialise environment
self.env = make_env(self.args.env_name,
self.args.max_rollouts_per_task,
seed=self.args.seed,
n_tasks=1,
modify_init_state_dist=self.args.modify_init_state_dist
if 'modify_init_state_dist' in self.args else False,
on_circle_init_state=self.args.on_circle_init_state
if 'on_circle_init_state' in self.args else True)
# saving buffer with task in name folder
if hasattr(self.args, 'save_buffer') and self.args.save_buffer:
env_dir = os.path.join(self.args.main_save_dir,
'{}'.format(self.args.env_name))
goal = self.env.unwrapped._goal
self.output_dir = os.path.join(env_dir, self.args.save_dir, 'seed_{}_'.format(self.args.seed) +
off_utl.create_goal_path_ext_from_goal(goal))
if self.args.save_models or self.args.save_buffer:
os.makedirs(self.output_dir, exist_ok=True)
config_utl.save_config_file(args, self.output_dir)
# initialize tensorboard logger
if self.args.log_tensorboard:
self.tb_logger = TBLogger(self.args)
print('tensorboard logging...')
#print(self.tb_logger.full_output_folder)
#sys.exit(0)
# if not self.args.log_tensorboard:
# self.save_config_json_file()
# unwrapped env to get some info about the environment
unwrapped_env = self.env.unwrapped
# calculate what the maximum length of the trajectories is
args.max_trajectory_len = unwrapped_env._max_episode_steps
args.max_trajectory_len *= self.args.max_rollouts_per_task
self.args.max_trajectory_len = args.max_trajectory_len
# get action / observation dimensions
if isinstance(self.env.action_space, gym.spaces.discrete.Discrete):
self.args.action_dim = 1
else:
self.args.action_dim = self.env.action_space.shape[0]
self.args.obs_dim = self.env.observation_space.shape[0]
self.args.num_states = unwrapped_env.num_states if hasattr(unwrapped_env, 'num_states') else None
self.args.act_space = self.env.action_space
#print(self.env.action_space)
# simulate env step to get reward types
_, _, _, info = unwrapped_env.step(unwrapped_env.action_space.sample())
reward_types = [reward_type for reward_type in list(info.keys()) if reward_type.startswith('reward')]
# support dense rewards training (if exists)
self.args.dense_train_sparse_test = self.args.dense_train_sparse_test \
if 'dense_train_sparse_test' in self.args else False
# initialize policy
self.initialize_policy()
# initialize buffer for RL updates
self.policy_storage = MultiTaskPolicyStorage(
max_replay_buffer_size=int(self.args.policy_buffer_size),
obs_dim=self.args.obs_dim,
action_space=self.env.action_space,
tasks=[0],
trajectory_len=args.max_trajectory_len,
num_reward_arrays=len(reward_types) if reward_types and self.args.dense_train_sparse_test else 1,
reward_types=reward_types,
)
self.args.belief_reward = False # initialize arg to not use belief rewards
def initialize_policy(self):
if self.args.policy == 'dqn':
assert self.args.act_space.__class__.__name__ == "Discrete", (
"Can't train DQN with continuous action space!")
q_network = FlattenMlp(input_size=self.args.obs_dim,
output_size=self.args.act_space.n,
hidden_sizes=self.args.dqn_layers)
self.agent = DQN(
q_network,
# optimiser_vae=self.optimizer_vae,
lr=self.args.policy_lr,
gamma=self.args.gamma,
eps_init=self.args.dqn_epsilon_init,
eps_final=self.args.dqn_epsilon_final,
exploration_iters=self.args.dqn_exploration_iters,
tau=self.args.soft_target_tau,
).to(ptu.device)
# elif self.args.policy == 'ddqn':
# assert self.args.act_space.__class__.__name__ == "Discrete", (
# "Can't train DDQN with continuous action space!")
# q_network = FlattenMlp(input_size=self.args.obs_dim,
# output_size=self.args.act_space.n,
# hidden_sizes=self.args.dqn_layers)
# self.agent = DoubleDQN(
# q_network,
# # optimiser_vae=self.optimizer_vae,
# lr=self.args.policy_lr,
# eps_optim=self.args.dqn_eps,
# alpha_optim=self.args.dqn_alpha,
# gamma=self.args.gamma,
# eps_init=self.args.dqn_epsilon_init,
# eps_final=self.args.dqn_epsilon_final,
# exploration_iters=self.args.dqn_exploration_iters,
# tau=self.args.soft_target_tau,
# ).to(ptu.device)
elif self.args.policy == 'sac':
assert self.args.act_space.__class__.__name__ == "Box", (
"Can't train SAC with discrete action space!")
q1_network = FlattenMlp(input_size=self.args.obs_dim + self.args.action_dim,
output_size=1,
hidden_sizes=self.args.dqn_layers)
q2_network = FlattenMlp(input_size=self.args.obs_dim + self.args.action_dim,
output_size=1,
hidden_sizes=self.args.dqn_layers)
policy = TanhGaussianPolicy(obs_dim=self.args.obs_dim,
action_dim=self.args.action_dim,
hidden_sizes=self.args.policy_layers)
self.agent = SAC(
policy,
q1_network,
q2_network,
actor_lr=self.args.actor_lr,
critic_lr=self.args.critic_lr,
gamma=self.args.gamma,
tau=self.args.soft_target_tau,
entropy_alpha=self.args.entropy_alpha,
automatic_entropy_tuning=self.args.automatic_entropy_tuning,
alpha_lr=self.args.alpha_lr
).to(ptu.device)
else:
raise NotImplementedError
def train(self):
"""
meta-training loop
"""
self._start_training()
self.task_idx = 0
for iter_ in range(self.args.num_iters):
self.training_mode(True)
if iter_ == 0:
print('Collecting initial pool of data..')
self.env.reset_task(idx=self.task_idx)
self.collect_rollouts(num_rollouts=self.args.num_init_rollouts_pool, random_actions=True)
print('Done!')
# collect data from subset of train tasks
self.env.reset_task(idx=self.task_idx)
self.collect_rollouts(num_rollouts=self.args.num_rollouts_per_iter)
# update
train_stats = self.update([self.task_idx])
self.training_mode(False)
if self.args.policy == 'dqn':
self.agent.set_exploration_parameter(iter_ + 1)
# evaluate and log
if (iter_ + 1) % self.args.log_interval == 0:
self.log(iter_ + 1, train_stats)
def update(self, tasks):
'''
RL updates
:param tasks: list/array of task indices. perform update based on the tasks
:return:
'''
# --- RL TRAINING ---
rl_losses_agg = {}
for update in range(self.args.rl_updates_per_iter):
# sample random RL batch
obs, actions, rewards, next_obs, terms = self.sample_rl_batch(tasks, self.args.batch_size)
# flatten out task dimension
t, b, _ = obs.size()
obs = obs.view(t * b, -1)
actions = actions.view(t * b, -1)
rewards = rewards.view(t * b, -1)
next_obs = next_obs.view(t * b, -1)
terms = terms.view(t * b, -1)
# RL update
rl_losses = self.agent.update(obs, actions, rewards, next_obs, terms)
for k, v in rl_losses.items():
if update == 0: # first iterate - create list
rl_losses_agg[k] = [v]
else: # append values
rl_losses_agg[k].append(v)
# take mean
for k in rl_losses_agg:
rl_losses_agg[k] = np.mean(rl_losses_agg[k])
self._n_rl_update_steps_total += self.args.rl_updates_per_iter
return rl_losses_agg
def evaluate(self, tasks):
num_episodes = self.args.max_rollouts_per_task
num_steps_per_episode = self.env.unwrapped._max_episode_steps
returns_per_episode = np.zeros((len(tasks), num_episodes))
success_rate = np.zeros(len(tasks))
if self.args.policy == 'dqn':
values = np.zeros((len(tasks), self.args.max_trajectory_len))
else:
obs_size = self.env.unwrapped.observation_space.shape[0]
observations = np.zeros((len(tasks), self.args.max_trajectory_len + 1, obs_size))
log_probs = np.zeros((len(tasks), self.args.max_trajectory_len))
for task_idx, task in enumerate(tasks):
obs = ptu.from_numpy(self.env.reset(task))
obs = obs.reshape(-1, obs.shape[-1])
step = 0
if self.args.policy == 'sac':
observations[task_idx, step, :] = ptu.get_numpy(obs[0, :obs_size])
for episode_idx in range(num_episodes):
running_reward = 0.
for step_idx in range(num_steps_per_episode):
# add distribution parameters to observation - policy is conditioned on posterior
if self.args.policy == 'dqn':
action, value = self.agent.act(obs=obs, deterministic=True)
else:
action, _, _, log_prob = self.agent.act(obs=obs,
deterministic=self.args.eval_deterministic,
return_log_prob=True)
# observe reward and next obs
next_obs, reward, done, info = utl.env_step(self.env, action.squeeze(dim=0))
running_reward += reward.item()
if self.args.policy == 'dqn':
values[task_idx, step] = value.item()
else:
observations[task_idx, step + 1, :] = ptu.get_numpy(next_obs[0, :obs_size])
log_probs[task_idx, step] = ptu.get_numpy(log_prob[0])
if "is_goal_state" in dir(self.env.unwrapped) and self.env.unwrapped.is_goal_state():
success_rate[task_idx] = 1.
# set: obs <- next_obs
obs = next_obs.clone()
step += 1
returns_per_episode[task_idx, episode_idx] = running_reward
if self.args.policy == 'dqn':
return returns_per_episode, success_rate, values
else:
return returns_per_episode, success_rate, log_probs, observations
def log(self, iteration, train_stats):
# --- save models ---
if iteration % self.args.save_interval == 0:
if self.args.save_models:
if self.args.log_tensorboard:
save_path = os.path.join(self.tb_logger.full_output_folder, 'models')
else:
save_path = os.path.join(self.output_dir, 'models')
if not os.path.exists(save_path):
os.mkdir(save_path)
torch.save(self.agent.state_dict(), os.path.join(save_path, "agent{0}.pt".format(iteration)))
if hasattr(self.args, 'save_buffer') and self.args.save_buffer:
self.save_buffer()
# evaluate to get more stats
if self.args.policy == 'dqn':
# get stats on train tasks
returns_train, success_rate_train, values = self.evaluate([0])
else:
# get stats on train tasks
returns_train, success_rate_train, log_probs, observations = self.evaluate([0])
if self.args.log_tensorboard:
if self.args.policy != 'dqn':
# self.env.reset(0)
# self.tb_logger.writer.add_figure('policy_vis_train/task_0',
# utl_eval.plot_rollouts(observations[0, :], self.env),
# self._n_env_steps_total)
# obs, _, _, _, _ = self.sample_rl_batch(tasks=[0],
# batch_size=self.policy_storage.task_buffers[0].size())
# self.tb_logger.writer.add_figure('state_space_coverage/task_0',
# utl_eval.plot_visited_states(ptu.get_numpy(obs[0][:, :2]), self.env),
# self._n_env_steps_total)
pass
# some metrics
self.tb_logger.writer.add_scalar('metrics/successes_in_buffer',
self._successes_in_buffer / self._n_env_steps_total,
self._n_env_steps_total)
if self.args.max_rollouts_per_task > 1:
for episode_idx in range(self.args.max_rollouts_per_task):
self.tb_logger.writer.add_scalar('returns_multi_episode/episode_{}'.
format(episode_idx + 1),
np.mean(returns_train[:, episode_idx]),
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('returns_multi_episode/sum',
np.mean(np.sum(returns_train, axis=-1)),
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('returns_multi_episode/success_rate',
np.mean(success_rate_train),
self._n_env_steps_total)
else:
self.tb_logger.writer.add_scalar('returns/returns_mean_train', np.mean(returns_train),
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('returns/returns_std_train', np.std(returns_train),
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('returns/success_rate_train', np.mean(success_rate_train),
self._n_env_steps_total)
# policy
if self.args.policy == 'dqn':
self.tb_logger.writer.add_scalar('policy/value_init', np.mean(values[:, 0]), self._n_env_steps_total)
self.tb_logger.writer.add_scalar('policy/value_halfway', np.mean(values[:, int(values.shape[-1]/2)]), self._n_env_steps_total)
self.tb_logger.writer.add_scalar('policy/value_final', np.mean(values[:, -1]), self._n_env_steps_total)
self.tb_logger.writer.add_scalar('policy/exploration_epsilon', self.agent.eps, self._n_env_steps_total)
# RL losses
self.tb_logger.writer.add_scalar('rl_losses/qf_loss_vs_n_updates', train_stats['qf_loss'],
self._n_rl_update_steps_total)
self.tb_logger.writer.add_scalar('rl_losses/qf_loss_vs_n_env_steps', train_stats['qf_loss'],
self._n_env_steps_total)
else:
self.tb_logger.writer.add_scalar('policy/log_prob', np.mean(log_probs), self._n_env_steps_total)
self.tb_logger.writer.add_scalar('rl_losses/qf1_loss', train_stats['qf1_loss'],
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('rl_losses/qf2_loss', train_stats['qf2_loss'],
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('rl_losses/policy_loss', train_stats['policy_loss'],
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('rl_losses/alpha_entropy_loss', train_stats['alpha_entropy_loss'],
self._n_env_steps_total)
# weights and gradients
if self.args.policy == 'dqn':
self.tb_logger.writer.add_scalar('weights/q_network',
list(self.agent.qf.parameters())[0].mean(),
self._n_env_steps_total)
if list(self.agent.qf.parameters())[0].grad is not None:
param_list = list(self.agent.qf.parameters())
self.tb_logger.writer.add_scalar('gradients/q_network',
sum([param_list[i].grad.mean() for i in range(len(param_list))]),
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('weights/q_target',
list(self.agent.target_qf.parameters())[0].mean(),
self._n_env_steps_total)
if list(self.agent.target_qf.parameters())[0].grad is not None:
param_list = list(self.agent.target_qf.parameters())
self.tb_logger.writer.add_scalar('gradients/q_target',
sum([param_list[i].grad.mean() for i in range(len(param_list))]),
self._n_env_steps_total)
else:
self.tb_logger.writer.add_scalar('weights/q1_network',
list(self.agent.qf1.parameters())[0].mean(),
self._n_env_steps_total)
if list(self.agent.qf1.parameters())[0].grad is not None:
param_list = list(self.agent.qf1.parameters())
self.tb_logger.writer.add_scalar('gradients/q1_network',
sum([param_list[i].grad.mean() for i in range(len(param_list))]),
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('weights/q1_target',
list(self.agent.qf1_target.parameters())[0].mean(),
self._n_env_steps_total)
if list(self.agent.qf1_target.parameters())[0].grad is not None:
param_list = list(self.agent.qf1_target.parameters())
self.tb_logger.writer.add_scalar('gradients/q1_target',
sum([param_list[i].grad.mean() for i in range(len(param_list))]),
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('weights/q2_network',
list(self.agent.qf2.parameters())[0].mean(),
self._n_env_steps_total)
if list(self.agent.qf2.parameters())[0].grad is not None:
param_list = list(self.agent.qf2.parameters())
self.tb_logger.writer.add_scalar('gradients/q2_network',
sum([param_list[i].grad.mean() for i in range(len(param_list))]),
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('weights/q2_target',
list(self.agent.qf2_target.parameters())[0].mean(),
self._n_env_steps_total)
if list(self.agent.qf2_target.parameters())[0].grad is not None:
param_list = list(self.agent.qf2_target.parameters())
self.tb_logger.writer.add_scalar('gradients/q2_target',
sum([param_list[i].grad.mean() for i in range(len(param_list))]),
self._n_env_steps_total)
self.tb_logger.writer.add_scalar('weights/policy',
list(self.agent.policy.parameters())[0].mean(),
self._n_env_steps_total)
if list(self.agent.policy.parameters())[0].grad is not None:
param_list = list(self.agent.policy.parameters())
self.tb_logger.writer.add_scalar('gradients/policy',
sum([param_list[i].grad.mean() for i in range(len(param_list))]),
self._n_env_steps_total)
print("Iteration -- {}, Success rate -- {:.3f}, Avg. return -- {:.3f}, Elapsed time {:5d}[s]"
.format(iteration, np.mean(success_rate_train), np.mean(np.sum(returns_train, axis=-1)),
int(time.time() - self._start_time)))
# output to user
# print("Iteration -- {:3d}, Num. RL updates -- {:6d}, Elapsed time {:5d}[s]".
# format(iteration,
# self._n_rl_update_steps_total,
# int(time.time() - self._start_time)))
def training_mode(self, mode):
self.agent.train(mode)
def collect_rollouts(self, num_rollouts, random_actions=False):
'''
:param num_rollouts:
:param random_actions: whether to use policy to sample actions, or randomly sample action space
:return:
'''
for rollout in range(num_rollouts):
obs = ptu.from_numpy(self.env.reset(self.task_idx))
obs = obs.reshape(-1, obs.shape[-1])
done_rollout = False
while not done_rollout:
#self.env.render()
if random_actions:
if self.args.policy == 'dqn':
action = ptu.FloatTensor([[[self.env.action_space.sample()]]]).long() # Sample random action
else:
action = ptu.FloatTensor([self.env.action_space.sample()]) # Sample random action
else:
if self.args.policy == 'dqn':
action, _ = self.agent.act(obs=obs) # DQN
else:
action, _, _, _ = self.agent.act(obs=obs) # SAC
# observe reward and next obs
next_obs, reward, done, info = utl.env_step(self.env, action.squeeze(dim=0))
done_rollout = False if ptu.get_numpy(done[0][0]) == 0. else True
# add data to policy buffer - (s+, a, r, s'+, term)
term = self.env.unwrapped.is_goal_state() if "is_goal_state" in dir(self.env.unwrapped) else False
if self.args.dense_train_sparse_test:
rew_to_buffer = {rew_type: rew for rew_type, rew in info.items()
if rew_type.startswith('reward')}
else:
rew_to_buffer = ptu.get_numpy(reward.squeeze(dim=0))
self.policy_storage.add_sample(task=self.task_idx,
observation=ptu.get_numpy(obs.squeeze(dim=0)),
action=ptu.get_numpy(action.squeeze(dim=0)),
reward=rew_to_buffer,
terminal=np.array([term], dtype=float),
next_observation=ptu.get_numpy(next_obs.squeeze(dim=0)))
# set: obs <- next_obs
obs = next_obs.clone()
# update statistics
self._n_env_steps_total += 1
if "is_goal_state" in dir(self.env.unwrapped) and self.env.unwrapped.is_goal_state(): # count successes
self._successes_in_buffer += 1
self._n_rollouts_total += 1
def sample_rl_batch(self, tasks, batch_size):
''' sample batch of unordered rl training data from a list/array of tasks '''
# this batch consists of transitions sampled randomly from replay buffer
batches = [ptu.np_to_pytorch_batch(
self.policy_storage.random_batch(task, batch_size)) for task in tasks]
unpacked = [utl.unpack_batch(batch) for batch in batches]
# group elements together
unpacked = [[x[i] for x in unpacked] for i in range(len(unpacked[0]))]
unpacked = [torch.cat(x, dim=0) for x in unpacked]
return unpacked
def _start_training(self):
self._n_env_steps_total = 0
self._n_rl_update_steps_total = 0
self._n_vae_update_steps_total = 0
self._n_rollouts_total = 0
self._successes_in_buffer = 0
self._start_time = time.time()
def load_model(self, device='cpu', **kwargs):
if "agent_path" in kwargs:
self.agent.load_state_dict(torch.load(kwargs["agent_path"], map_location=device))
self.training_mode(False)
def save_buffer(self):
size = self.policy_storage.task_buffers[0].size()
np.save(os.path.join(self.output_dir, 'obs'), self.policy_storage.task_buffers[0]._observations[:size])
np.save(os.path.join(self.output_dir, 'actions'), self.policy_storage.task_buffers[0]._actions[:size])
if self.args.dense_train_sparse_test:
for reward_type, reward_arr in self.policy_storage.task_buffers[0]._rewards.items():
np.save(os.path.join(self.output_dir, reward_type), reward_arr[:size])
else:
np.save(os.path.join(self.output_dir, 'rewards'), self.policy_storage.task_buffers[0]._rewards[:size])
np.save(os.path.join(self.output_dir, 'next_obs'), self.policy_storage.task_buffers[0]._next_obs[:size])
np.save(os.path.join(self.output_dir, 'terminals'), self.policy_storage.task_buffers[0]._terminals[:size])