-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
503 lines (421 loc) · 21 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<!-- Meta tags for social media banners, these should be filled in appropriatly as they are your "business card" -->
<!-- Replace the content tag with appropriate information -->
<meta name="description" content="DESCRIPTION META TAG">
<meta property="og:title" content="SOCIAL MEDIA TITLE TAG"/>
<meta property="og:description" content="SOCIAL MEDIA DESCRIPTION TAG TAG"/>
<meta property="og:url" content="URL OF THE WEBSITE"/>
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X630-->
<meta property="og:image" content="static/image/your_banner_image.png" />
<meta property="og:image:width" content="1200"/>
<meta property="og:image:height" content="630"/>
<meta name="twitter:title" content="TWITTER BANNER TITLE META TAG">
<meta name="twitter:description" content="TWITTER BANNER DESCRIPTION META TAG">
<!-- Path to banner image, should be in the path listed below. Optimal dimenssions are 1200X600-->
<meta name="twitter:image" content="static/images/your_twitter_banner_image.png">
<meta name="twitter:card" content="summary_large_image">
<!-- Keywords for your paper to be indexed by-->
<meta name="keywords" content="KEYWORDS SHOULD BE PLACED HERE">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>D3RoMa</title>
<!-- <link rel="icon" type="image/x-icon" href="static/images/icon.png"> -->
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet"
href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script src="https://documentcloud.adobe.com/view-sdk/main.js"></script>
<script defer src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
</head>
<body>
<style>
.video-container {
width: 30%; /* 每个容器宽度为页面宽度的32%,根据实际情况调整 */
display: inline-block; /* 使容器并列排列 */
margin: 1%; /* 添加外边距 */
vertical-align: top;
}
video {
width: 100%; /* 视频宽度填满容器 */
display: block; /* 确保视频占满整个容器宽度 */
}
.description {
text-align: center; /* 文字居中对齐 */
}
.text-image-container {
display: flex; /* 使用弹性盒模型布局 */
align-items: flex-start; /* 上端对齐 */
justify-content: center;
}
ul {
text-align: left; /* 确保文本左对齐 */
list-style-position: inside; /* 列表标记与文本对齐 */
font-size: 16px;
list-style-type: circle; /* 使用圆形作为项目符号 */
}
</style>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title">D<sup>3</sup>RoMa: Disparity Diffusion-based Depth Sensing for Material-Agnostic Robotic Manipulation</h1>
<div class="is-size-5 publication-authors">
<!-- Paper authors -->
<!-- <span class="author-block"><a href="FIRST AUTHOR PERSONAL LINK" target="_blank">Jiazhao Zhang</a><sup>1,2,*</sup>,</span> -->
<span class="author-block">
<a href="https://songlin.github.io/">Songlin Wei</a><sup>1,4,</sup>
<a href="https://geng-haoran.github.io/">Haoran Geng</a><sup>2,3</sup>
<a href="https://jychen18.github.io/">Jiayi Chen</a><sup>1,4</sup>
<a href="https://cs.stanford.edu/~congyue/">Congyue Deng</a><sup>3</sup>
Wenbo Cui<sup>5,6</sup>
<a href="https://chengyzhao.github.io/">Chengyang Zhao</a><sup>1,4</sup>
Xiaomeng Fang<sup>6</sup>,
<a href="https://geometry.stanford.edu/member/guibas/">Leonidas Guibas</a><sup>3</sup>
<a href="https://hughw19.github.io/">He Wang</a><sup>1,4,6</sup>
</span>
</div>
<div class="is-size-5 publication-authors">
<!-- <span class="author-block">Institution Name<br>Conferance name and year</span> -->
<span class="author-block"><sup>1</sup>
Peking University
<sup>2</sup>University of California, Berkeley
<sup>3</sup>Stanford University
</span>
<span class="author-block" style="display: block;">
<sup>4</sup>Galbot
<sup>5</sup>Univsersity of Chinese Academy of Sciences
<sup>6</sup>Beijing Academy of Artificial Intelligence
</span>
</div>
<div class="column has-text-centered">
<div class="publication-links">
<!-- Arxiv PDF link -->
<span class="link-block">
<a href="https://openreview.net/forum?id=7E3JAys1xO¬eId=2Q0npNhzsj" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-pdf"></i>
</span>
<span>Open Review</span>
</a>
</span>
<!-- Arxiv PDF link -->
<span class="link-block">
<a href="https://arxiv.org/abs/2409.14365" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>Arxiv</span>
</a>
</span>
<!-- Supplementary PDF link -->
<span class="link-block">
<a href="https://youtu.be/ZMPeBjiEdEo" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fas fa-file-video"></i>
</span>
<span>Video</span>
</a>
</span>
<!--Github link -->
<span class="link-block">
<a href="https://github.com/songlin/d3roma" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-github"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- <span class="link-block"></span>
<a href="#" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="fab fa-file-download"></i>
</span>
<span>Dataset</span>
</a>
</span> -->
<!-- ArXiv abstract Link -->
<!-- <span class="link-block">
<a href="https://arxiv.org/abs/2402.15852" target="_blank"
class="external-link button is-normal is-rounded is-dark">
<span class="icon">
<i class="ai ai-arxiv"></i>
</span>
<span>Paper</span>
</a>
</span> -->
</div>
</div>
<div class="text">
8th Conference on Robot Learning (CoRL 2024), Munich, Germany.
</div>
</div>
</div>
</div>
</div>
</section>
<!--<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop has-text-centered">
<h2>
<h2 class=""> <img src="static/images/highlight_logo.png" width="50"> Highlights</h2>
<div class="text-image-container title is-3">
<div>
<img src="static/images/highlight_logo.png" alt="示例图片" width="50">
</div>
<div class="text">
<p>Highlights</p>
</div>
</div>
</h2>
<p> <b>Real-world demos by following simple instructions, such as walking to a single landmark.</b></p>
<ul>
<li><b>NaVid is the first video-based Vision-Language Model (VLM) for the task of vision-and-language navigation (VLN).</b></li>
<li><b>NaVid navigates in a human-like manner, requiring solely an on-the-fly video stream from a monocular camera as input, without the need for maps, odometers, or depth inputs.</b></li>
<li><b>NaVid incorporates 510K VLN video sequences from simulation environments and 763K real-world caption samples to achieve cross-scene generalization.</b></li>
<li><b>NaVid is co-trained with real-world caption data (763k) and simulated VLN data (510k). The VLN capability is obtained by leveraging simulation environments, while real-world understanding is gained through real-world caption data.</b></li>
<li><b>NaVid achieves state-of-the-art (SOTA) performance in both simulated and real-world environments, and exhibits strong generalizability on unseen scenarios.</b></li>
</ul>
</div>
</div>
</section> -->
<!-- Teaser video 1 -->
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop has-text-centered">
<h2 class="title is-5">Depth Estimation: For transparent and reflective objects</h2>
<p> <b>In these demos, we compare the depth predicted by D3RoMa with raw sensor depths captured by RealSense D415/D435.</b></p>
<div id="results-carousel-teaser1" class="carousel results-carousel">
<div class="item item-video">
<video poster="" id="video1" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/depth_restore/1.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video">
<video poster="" id="video1" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/depth_restore/2.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video">
<video poster="" id="video2" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/depth_restore/3.mp4"
type="video/mp4">
</video>
</div>
<!-- <div class="item item-video"></div>
<video poster="" id="video3" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/depth_restore/4.mp4"
type="video/mp4">
</video>
</div>
<div class="item item-video"></div>
<video poster="" id="video4" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/depth_restore/5.mp4"
type="video/mp4">
</video>
</div> -->
</div>
</div>
</div>
</section>
<!-- End teaser video 1 -->
<!-- Paper abstract -->
<section class="section hero is-light">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Abstract</h2>
<div class="content has-text-justified">
<p>
Depth sensing is an important problem for 3D vision-based robotics.
Yet, a real-world active stereo or ToF depth camera often produces noisy and in-
complete depth which bottlenecks robot performances. In this work, we propose
D3RoMa, a learning-based depth estimation framework on stereo image pairs that
predicts clean and accurate depth in diverse indoor scenes, even in the most challenging scenarios
with translucent or specular surfaces where classical depth sensing completely fails.
Key to our method is that we unify depth estimation and restoration into an image-to-image translation problem by predicting the disparity map with a denoising diffusion probabilistic model. At inference time, we
further incorporated a left-right consistency constraint as classifier guidance to
the diffusion process. Our framework combines recently advanced learning-based
approaches and geometric constraints from traditional stereo vision. For model
training, we create a large scene-level synthetic dataset with diverse transparent
and specular objects to compensate for existing tabletop datasets. The trained
model can be directly applied to real-world in-the-wild scenes and achieve state-of-the-art performance in multiple public depth estimation benchmarks.
Further experiments in real environments show that accurate depth prediction significantly
improves robotic manipulation in various scenarios.
</p>
</div>
</div>
</div>
</div>
</section>
<!-- End paper abstract -->
<!-- YouTube Video-->
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="content">
<h2 class="title is-3">Supplementary Video</h2>
<div class="publication-video">
<!---TODO Dhruv: put video link here-->
<!-- <iframe src="https://youtu.be/ZMPeBjiEdEo?si=o-PdPk1kQLTyuoLL" frameborder="0"
allow="autoplay; encrypted-media" allowfullscreen></iframe> -->
<!-- <iframesrc="https://www.youtube.com/embed/ZMPeBjiEdEo?si=Jttt7J_tVZnz5HnB" title="YouTube video player"
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin" allowfullscreen>
</iframe> -->
<iframe width="560" height="315" src="https://www.youtube.com/embed/ZMPeBjiEdEo?si=Jttt7J_tVZnz5HnB&start=31" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!-- Method Overview -->
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="content">
<h2 class="title is-3">Method Overview</h2>
<img src="static/images/method.png" alt="NaVid" class="center-image blend-img-background">
<div class="level-set has-text-justified">
<p class="has-text-justified">
<b>Disparity diffusion with stereo-geometry guidance.</b>Our disparity diffusion-based depth
sensing framework takes the raw disparity map ˜D and the left-right stereo image pair Il, Ir as input.
With the geometry prior from the stereo matching between Il and Ir as guidance for the reverse
sampling, our diffusion model can gradually perform the denoising process conditioned on ˜D to
predict the restored disparity map x<sub>0</sub>.
</p>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero is-small">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="content">
<h2 class="title is-3">In the Wild Depth Predictions</h2>
<img src="static/images/in-the-wild-new.png" alt="In the wild" class="center-image blend-img-background">
<div class="level-set has-text-justified">
<p class="has-text-justified">
<b>Generalizability of D3RoMa in the real world. </b>Our method robustly predicts transparent
(bottles) and specular (basin and cups) object depths in tabletop environments and beyond.
RGB image, pseudo colorized raw disparity map, our prediction, and point cloud are displayed for each case of a total of 6 frames captured by camera RealSense D415 and D435.
* RGB and depth images are not aligned for the D435 camera for better visualization.
</p>
<p class="has-text-justified">
<!-- <b>We initialize the encoders and Vicuna-7B using pre-trained weights, and our model requires only one epoch for the training process.</b> -->
</p>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero is-small"></section>
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="content">
<h2 class="title is-3">Generalization comparisons with State-of-the-art monocular depth estimation methods.</h2>
<img src="static/images/mde.png" alt="In the wild" class="center-image blend-img-background">
<div class="level-set has-text-justified">
<p class="has-text-justified">
<b>Generalization comparisons with State-of-the-art monocular depth estimation methods.
</b> All the results except ours are taken from their official web demo. Different methods used different
color maps. We found that most monocular methods produce inferior quality depth even without
considering the absolute scale.
</p>
<p class="has-text-justified">
<!-- <b>We initialize the encoders and Vicuna-7B using pre-trained weights, and our model requires only one epoch for the training process.</b> -->
</p>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<section class="hero is-small"></section>
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<div class="content">
<h2 class="title is-3"></h2>
<div class="item item-video">
<video poster="" id="video2" autoplay playsinline controls muted loop height="100%">
<source src="static/videos/depth_restore/depth_anything_2.mp4"
type="video/mp4">
</video>
</div>
</div>
</div>
</div>
</div>
</div>
</section>
<!--BibTex citation -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title">BibTeX</h2>
<pre><code>@inproceedings{
wei2024droma,
title={D3RoMa: Disparity Diffusion-based Depth Sensing for Material-Agnostic Robotic Manipulation},
author={Songlin Wei and Haoran Geng and Jiayi Chen and Congyue Deng and Cui Wenbo and Chengyang Zhao and Xiaomeng Fang and Leonidas Guibas and He Wang},
booktitle={8th Annual Conference on Robot Learning},
year={2024},
url={https://openreview.net/forum?id=7E3JAys1xO}
}</code></pre>
</div>
</section>
<!--End BibTex citation -->
<footer class="footer">
<div class="container">
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This page was built using the <a href="https://github.com/eliahuhorwitz/Academic-project-page-template" target="_blank">Academic Project Page Template</a> which was adopted from the <a href="https://nerfies.github.io" target="_blank">Nerfies</a> project page.
You are free to borrow the of this website, we just ask that you link back to this page in the footer. <br> This website is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/" target="_blank">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
</div>
</footer>
<!-- Statcounter tracking code -->
<!-- You can add a tracker to track page visits by creating an account at statcounter.com -->
<!-- End of Statcounter Code -->
</body>
</html>