From 817462d9557dbf5b1568faec58a6f2f52a7647ee Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Tue, 16 Jan 2024 10:57:52 -0800 Subject: [PATCH 01/46] code update by @bosup -- new branch made by @lee1043 for clean up PR --- .../monsoon_sperber/driver_monsoon_sperber.py | 287 ++++++++++++------ .../monsoon_sperber/lib/argparse_functions.py | 2 +- .../monsoon_sperber/lib/calc_metrics.py | 18 +- .../monsoon_sperber/lib/divide_chunks.py | 25 +- .../monsoon_sperber/lib/model_land_only.py | 55 +--- 5 files changed, 229 insertions(+), 158 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 60b16dcce..a64358994 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -2,7 +2,7 @@ """ Calculate monsoon metrics -Jiwoo Lee (lee1043@llnl.gov) +Bo Dong (dong12@llnl.gov) and Jiwoo Lee (lee1043@llnl.gov) Reference: Sperber, K. and H. Annamalai, 2014: @@ -34,28 +34,26 @@ for advertising or product endorsement purposes. """ -from __future__ import print_function - import copy import json import math import os +import re import sys -import time from argparse import RawTextHelpFormatter from collections import defaultdict from glob import glob from shutil import copyfile -import cdms2 -import cdtime -import cdutil import matplotlib.pyplot as plt -import MV2 import numpy as np +import pandas as pd +import xarray as xr +import xcdat as xc import pcmdi_metrics from pcmdi_metrics import resources +from pcmdi_metrics.io import load_regions_specs, region_subset from pcmdi_metrics.mean_climate.lib import pmp_parser from pcmdi_metrics.monsoon_sperber.lib import ( AddParserArgument, @@ -65,6 +63,7 @@ model_land_only, sperber_metrics, ) +from pcmdi_metrics.utils import fill_template def tree(): @@ -76,8 +75,8 @@ def tree(): # ------------------------------------------------- list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] -# How many elements each -# list should have + +# How many elements each list should have n = 5 # pentad # ================================================= @@ -130,6 +129,23 @@ def tree(): models = param.modnames print("models:", models) +# Include all models if conditioned +if ("all" in [m.lower() for m in models]) or (models == "all"): + model_index_path = re.split(". |_", modpath.split("/")[-1]).index("%(model)") + models = [ + re.split(". |_", p.split("/")[-1])[model_index_path] + for p in glob.glob( + fill_template( + modpath, mip=mip, exp=exp, model="*", realization="*", variable="pr" + ) + ) + ] + # remove duplicates + models = sorted(list(dict.fromkeys(models)), key=lambda s: s.lower()) + +print("models:", models) +print("number of models:", len(models)) + # Realizations realization = param.realization print("realization: ", realization) @@ -139,7 +155,8 @@ def tree(): # Create output directory for output_type in ["graphics", "diagnostic_results", "metrics_results"]: - os.makedirs(outdir(output_type=output_type), exist_ok=True) + if not os.path.exists(outdir(output_type=output_type)): + os.makedirs(outdir(output_type=output_type)) print(outdir(output_type=output_type)) # Debug @@ -258,16 +275,14 @@ def tree(): monsoon_stat_dic["RESULTS"][model] = {} # Read land fraction - print("lf_path: ", model_lf_path) - f_lf = cdms2.open(model_lf_path) - lf = f_lf("sftlf", latitude=(-90, 90)) - f_lf.close() + + ds_lf = xc.open_mfdataset(model_lf_path) + lf = ds_lf.sftlf.sel(lat=slice(-90, 90)) # land frac file must be global # ------------------------------------------------- # Loop start - Realization # ------------------------------------------------- for model_path in model_path_list: - timechk1 = time.time() try: if model == "obs": run = "obs" @@ -277,25 +292,21 @@ def tree(): run = model_path.split("/")[-1].split(".")[run_index] else: run = realization - # dict if run not in monsoon_stat_dic["RESULTS"][model]: monsoon_stat_dic["RESULTS"][model][run] = {} print(" --- ", run, " ---") - print(model_path) # Get time coordinate information - fc = cdms2.open(model_path) - # NOTE: square brackets does not bring data into memory - # only coordinates! - d = fc[var] - t = d.getTime() - c = t.asComponentTime() + + dc = xc.open_mfdataset(model_path) + dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) + c = xc.center_times(dc) # Get starting and ending year and month - startYear = c[0].year - startMonth = c[0].month - endYear = c[-1].year - endMonth = c[-1].month + startYear = c.time.values[0].year + startMonth = c.time.values[0].month + endYear = c.time.values[-1].year + endMonth = c.time.values[-1].month # Adjust years to consider only when they # have entire calendar months @@ -309,8 +320,6 @@ def tree(): endYear = min(eyear, endYear) # Check calendar (just checking..) - calendar = t.calendar - print("check: calendar: ", calendar) if debug: print("debug: startYear: ", type(startYear), startYear) @@ -323,22 +332,30 @@ def tree(): list_pentad_time_series = {} list_pentad_time_series_cumsum = {} # Cumulative time series for region in list_monsoon_regions: + print("region = ", region) list_pentad_time_series[region] = [] list_pentad_time_series_cumsum[region] = [] # Write individual year time series for each monsoon domain # in a netCDF file + output_filename = "{}_{}_{}_{}_{}_{}-{}".format( + mip, model, exp, run, "monsoon_sperber", startYear, endYear + ) if nc_out: output_filename = "{}_{}_{}_{}_{}_{}-{}".format( mip, model, exp, run, "monsoon_sperber", startYear, endYear ) - fout = cdms2.open( - os.path.join( - outdir(output_type="diagnostic_results"), - output_filename + ".nc", - ), - "w", + + file_path = os.path.join( + outdir(output_type="diagnostic_results"), + output_filename + ".nc", ) + try: + fout = xr.open_dataset( + file_path, mode="a" + ) # 'a' stands for append mode + except FileNotFoundError: + fout = xr.Dataset() # Plotting setup if plot: @@ -390,88 +407,137 @@ def tree(): # year loop, endYear+1 to include last year for year in range(startYear, endYear + 1): - d = fc( - var, - time=( - cdtime.comptime(year, 1, 1, 0, 0, 0), - cdtime.comptime(year, 12, 31, 23, 59, 59), + d = dc.pr.sel( + time=slice( + str(year) + "-01-01 00:00:00", str(year) + "-12-31 23:59:59" ), - latitude=(-90, 90), + lat=slice(-90, 90), ) + print("xxx d =, ", d) + print("type d type,", type(d)) # unit adjust if UnitsAdjust[0]: """Below two lines are identical to following: d = MV2.multiply(d, 86400.) d.units = 'mm/d' """ - d = getattr(MV2, UnitsAdjust[1])(d, UnitsAdjust[2]) - d.units = units + d.values = d.values * 86400.0 + d["units"] = units + # variable for over land only d_land = model_land_only(model, d, lf, debug=debug) - print("check: year, d.shape: ", year, d.shape) - # - - - - - - - - - - - - - - - - - - - - - - - - - # Loop start - Monsoon region # - - - - - - - - - - - - - - - - - - - - - - - - - + + regions_specs = load_regions_specs() + for region in list_monsoon_regions: # extract for monsoon region if region in ["GoG", "NAmo"]: # all grid point rainfall - d_sub = d(regions_specs[region]["domain"]) + d_sub_ds = region_subset(dc, regions_specs, region=region) + # must be entire calendar years + d_sub_pr = d_sub_ds.pr.sel( + time=slice( + str(year) + "-01-01 00:00:00", + str(year) + "-12-31 23:59:59", + ) + ) + else: # land-only rainfall - d_sub = d_land(regions_specs[region]["domain"]) + + d_sub_ds = region_subset(dc, regions_specs, region=region) + d_sub_pr = d_sub_ds.pr.sel( + time=slice( + str(year) + "-01-01 00:00:00", + str(year) + "-12-31 23:59:59", + ) + ) + lf_sub_ds = region_subset( + ds_lf, regions_specs, region=region + ) + lf_sub = lf_sub_ds.sftlf + d_sub_pr = model_land_only( + model, d_sub_pr, lf_sub, debug=debug + ) + # Area average - d_sub_aave = cdutil.averager( - d_sub, axis="xy", weights="weighted" - ) + + ds_sub_pr = d_sub_pr.to_dataset().compute() + ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("X") + ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("Y") + ds_sub_aave = ds_sub_pr.spatial.average( + "pr", axis=["X", "Y"], weights="generate" + ).compute() + d_sub_aave = ds_sub_aave.pr if debug: print("debug: region:", region) - print("debug: d_sub.shape:", d_sub.shape) + print("debug: d_sub_pr.shape:", d_sub_pr.shape) print("debug: d_sub_aave.shape:", d_sub_aave.shape) # Southern Hemisphere monsoon domain # set time series as 7/1~6/30 if region in ["AUS", "SAmo"]: if year == startYear: - start_t = cdtime.comptime(year, 7, 1) - end_t = cdtime.comptime(year, 12, 31, 23, 59, 59) - temporary[region] = d_sub_aave(time=(start_t, end_t)) + start_t = str(year) + "-07-01 00:00:00" + end_t = str(year) + "-12-31 23:59:59" + temporary[region] = d_sub_aave.sel( + time=slice(start_t, end_t) + ) + continue else: # n-1 year 7/1~12/31 part1 = copy.copy(temporary[region]) # n year 1/1~6/30 - part2 = d_sub_aave( - time=( - cdtime.comptime(year), - cdtime.comptime(year, 6, 30, 23, 59, 59), + part2 = d_sub_aave.sel( + time=slice( + str(year) + "-01-01 00:00:00", + str(year) + "-06-30 23:59:59", ) ) - start_t = cdtime.comptime(year, 7, 1) - end_t = cdtime.comptime(year, 12, 31, 23, 59, 59) - temporary[region] = d_sub_aave(time=(start_t, end_t)) - d_sub_aave = MV2.concatenate([part1, part2], axis=0) + start_t = str(year) + "-07-01 00:00:00" + end_t = str(year) + "-12-31 23:59:59" + temporary[region] = d_sub_aave.sel( + time=slice(start_t, end_t) + ) + + d_sub_aave = xr.concat([part1, part2], dim="time") + if debug: print( "debug: ", region, year, - d_sub_aave.getTime().asComponentTime(), + d_sub_aave.time, ) # get pentad time series list_d_sub_aave_chunks = list( divide_chunks_advanced(d_sub_aave, n, debug=debug) ) + pentad_time_series = [] + time_coords = np.array([], dtype="datetime64") + for d_sub_aave_chunk in list_d_sub_aave_chunks: # ignore when chunk length is shorter than defined if d_sub_aave_chunk.shape[0] >= n: - ave_chunk = MV2.average(d_sub_aave_chunk, axis=0) + aa = d_sub_aave_chunk.to_numpy() + aa_mean = np.mean(aa) + ave_chunk = d_sub_aave_chunk.mean( + axis=0, skipna=True + ).compute() pentad_time_series.append(float(ave_chunk)) + datetime_str = str(d_sub_aave_chunk["time"][0].values) + datetime = pd.to_datetime([datetime_str[:10]]) + time_coords = np.concatenate([time_coords, datetime]) + time_coords = pd.to_datetime(time_coords) + if debug: print( "debug: pentad_time_series length: ", @@ -485,17 +551,27 @@ def tree(): pentad_time_series, ref_length, debug=debug ) - pentad_time_series = MV2.array(pentad_time_series) - pentad_time_series.units = d.units pentad_time_series_cumsum = np.cumsum(pentad_time_series) + pentad_time_series = xr.DataArray( + pentad_time_series, + dims="time", + name=region + "_" + str(year), + ) + pentad_time_series.attrs["units"] = str(d.units.values) + pentad_time_series.coords["time"] = time_coords + + pentad_time_series_cumsum = xr.DataArray( + pentad_time_series_cumsum, + dims="time", + name=region + "_" + str(year) + "_cumsum", + ) + pentad_time_series_cumsum.attrs["units"] = str(d.units.values) + pentad_time_series_cumsum.coords["time"] = time_coords if nc_out: # Archive individual year time series in netCDF file - fout.write(pentad_time_series, id=region + "_" + str(year)) - fout.write( - pentad_time_series_cumsum, - id=region + "_" + str(year) + "_cumsum", - ) + pentad_time_series.to_netcdf(file_path, mode="a") + pentad_time_series_cumsum.to_netcdf(file_path, mode="a") """ if plot: @@ -517,7 +593,8 @@ def tree(): # --- Monsoon region loop end # --- Year loop end - fc.close() + # fc.close() + dc.close() # ------------------------------------------------- # Loop start: Monsoon region without year: Composite @@ -527,11 +604,10 @@ def tree(): for region in list_monsoon_regions: # Get composite for each region - composite_pentad_time_series = cdutil.averager( - MV2.array(list_pentad_time_series[region]), - axis=0, - weights="unweighted", - ) + + composite_pentad_time_series = np.array( + list_pentad_time_series[region] + ).mean(axis=0) # Get accumulation ts from the composite composite_pentad_time_series_cumsum = np.cumsum( @@ -539,13 +615,11 @@ def tree(): ) # Maintain axis information - axis0 = pentad_time_series.getAxis(0) - composite_pentad_time_series.setAxis(0, axis0) - composite_pentad_time_series_cumsum.setAxis(0, axis0) # - - - - - - - - - - - # Metrics for composite # - - - - - - - - - - - + metrics_result = sperber_metrics( composite_pentad_time_series_cumsum, region, debug=debug ) @@ -554,6 +628,33 @@ def tree(): composite_pentad_time_series_cumsum_normalized = metrics_result[ "frac_accum" ] + + composite_pentad_time_series = xr.DataArray( + composite_pentad_time_series, dims="time", name=region + "_comp" + ) + composite_pentad_time_series.attrs["units"] = str(d.units) + composite_pentad_time_series.coords["time"] = time_coords + + composite_pentad_time_series_cumsum = xr.DataArray( + composite_pentad_time_series_cumsum, + dims="time", + name=region + "_comp_cumsum", + ) + composite_pentad_time_series_cumsum.attrs["units"] = str(d.units) + composite_pentad_time_series_cumsum.coords["time"] = time_coords + + composite_pentad_time_series_cumsum_normalized = xr.DataArray( + composite_pentad_time_series_cumsum_normalized, + dims="time", + name=region + "_comp_cumsum_fraction", + ) + composite_pentad_time_series_cumsum_normalized.attrs["units"] = str( + d.units + ) + composite_pentad_time_series_cumsum_normalized.coords[ + "time" + ] = time_coords + if model == "obs": dict_obs_composite[reference_data_name][region] = {} dict_obs_composite[reference_data_name][ @@ -576,15 +677,14 @@ def tree(): # Archice in netCDF file if nc_out: - fout.write(composite_pentad_time_series, id=region + "_comp") - fout.write( - composite_pentad_time_series_cumsum, - id=region + "_comp_cumsum", + composite_pentad_time_series.to_netcdf(file_path, mode="a") + composite_pentad_time_series_cumsum.to_netcdf( + file_path, mode="a" ) - fout.write( - composite_pentad_time_series_cumsum_normalized, - id=region + "_comp_cumsum_fraction", + composite_pentad_time_series_cumsum_normalized.to_netcdf( + file_path, mode="a" ) + if region == list_monsoon_regions[-1]: fout.close() @@ -593,8 +693,6 @@ def tree(): if model != "obs": # model ax[region].plot( - # np.array(composite_pentad_time_series), - # np.array(composite_pentad_time_series_cumsum), np.array( composite_pentad_time_series_cumsum_normalized ), @@ -610,7 +708,7 @@ def tree(): ymin=0, ymax=composite_pentad_time_series_cumsum_normalized[ idx - ], + ].item(), c="red", ls="--", ) @@ -633,7 +731,7 @@ def tree(): ymin=0, ymax=dict_obs_composite[reference_data_name][region][ idx - ], + ].item(), c="blue", ls="--", ) @@ -685,12 +783,7 @@ def tree(): else: print("warning: faild for ", model, run, err) pass - - timechk2 = time.time() - timechk = timechk2 - timechk1 - print("timechk: ", model, run, timechk) # --- Realization loop end - except Exception as err: if debug: raise diff --git a/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py b/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py index 4b6d11efe..3615e5776 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py +++ b/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py @@ -53,7 +53,7 @@ def AddParserArgument(P): P.add_argument( "--meyear", dest="meyear", type=int, help="End year for model data set" ) - P.add_argument("--modnames", type=list, default=None, help="List of models") + P.add_argument("--modnames", type=str, default=None, help="List of models") P.add_argument( "-r", "--realization", diff --git a/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py b/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py index 87ebc5f65..cdf1745a4 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py +++ b/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py @@ -8,28 +8,36 @@ Drafted: Jiwoo Lee, 2018-07 Revised: Jiwoo Lee, 2019-05 +Revised: Bo Dong, 2023-12 Note: Code for picking onset/decay index inspired by https://stackoverflow.com/questions/2236906/first-python-list-index-greater-than-x """ -import MV2 - def sperber_metrics(d, region, debug=False): """d: input, 1d array of cumulative pentad time series""" # Convert accumulation to fractional accumulation; normalize by sum d_sum = d[-1] # Normalize - frac_accum = MV2.divide(d, d_sum) + + frac_accum = d / d_sum + # Stat 1: Onset - onset_index = next(i for i, v in enumerate(frac_accum) if v >= 0.2) + onset_index = (i for i, v in enumerate(frac_accum) if v >= 0.2) + onset_index = next(onset_index) + i = onset_index + v = frac_accum[i] + print("i = , ", i, " v = ", v) # Stat 2: Decay if region == "GoG": decay_threshold = 0.6 else: decay_threshold = 0.8 - decay_index = next(i for i, v in enumerate(frac_accum) if v >= decay_threshold) + + decay_index = (i for i, v in enumerate(frac_accum) if v >= decay_threshold) + decay_index = next(decay_index) + # Stat 3: Slope slope = (frac_accum[decay_index] - frac_accum[onset_index]) / float( decay_index - onset_index diff --git a/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py b/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py index cce4db361..b3e7d661c 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py +++ b/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py @@ -1,5 +1,3 @@ -from __future__ import print_function - import sys import numpy as np @@ -14,7 +12,7 @@ def divide_chunks(data, n): # looping till length data - for i in range(0, len(data), n): + for i in range(0, data.time.shape[0], n): yield data[i : i + n] @@ -24,10 +22,11 @@ def divide_chunks(data, n): def divide_chunks_advanced(data, n, debug=False): # Double check first date should be Jan 1 (except for SH monsoon) - tim = data.getTime() - calendar = tim.calendar - month = tim.asComponentTime()[0].month - day = tim.asComponentTime()[0].day + + tim = data.time.dt + month = tim.month[0] + day = tim.day[0] + calendar = "gregorian" if debug: print("debug: first day of year is " + str(month) + "/" + str(day)) if month not in [1, 7] or day != 1: @@ -36,31 +35,34 @@ def divide_chunks_advanced(data, n, debug=False): ) # Check number of days in given year - nday = len(data) + nday = data.time.shape[0] if nday in [365, 360]: # looping till length data for i in range(0, nday, n): yield data[i : i + n] + elif nday == 366: # until leap year day detected for i in range(0, nday, n): # Check if leap year date included leap_detect = False for ii in range(i, i + n): - date = data.getTime().asComponentTime()[ii] - month = date.month - day = date.day + date = data.time.dt + month = date.month[ii] + day = date.day[ii] if month == 2 and day > 28: if debug: print("debug: leap year detected:", month, "/", day) leap_detect = True + if leap_detect: yield data[i : i + n + 1] tmp = i + n + 1 break else: yield data[i : i + n] + # after leap year day passed if leap_detect: for i in range(tmp, nday, n): @@ -76,6 +78,7 @@ def divide_chunks_advanced(data, n, debug=False): # looping till length data for i in range(0, nday, n): yield data[i : i + n] + else: sys.exit("error: number of days in year is " + str(nday)) diff --git a/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py b/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py index 3ac9db1bc..960ae1067 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py +++ b/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py @@ -1,69 +1,36 @@ import cartopy.crs as ccrs -import genutil import matplotlib.pyplot as plt -import MV2 +import numpy as np def model_land_only(model, model_timeseries, lf, debug=False): # ------------------------------------------------- # Mask out over ocean grid # - - - - - - - - - - - - - - - - - - - - - - - - - + if debug: plot_map(model_timeseries[0], "_".join(["test", model, "beforeMask.png"])) print("debug: plot for beforeMask done") # Check land fraction variable to see if it meet criteria # (0 for ocean, 100 for land, no missing value) - lat_c = lf.getAxis(0) - lon_c = lf.getAxis(1) - lf_id = lf.id - - lf = MV2.array(lf.filled(0.0)) - - lf.setAxis(0, lat_c) - lf.setAxis(1, lon_c) - lf.id = lf_id - if float(MV2.max(lf)) == 1.0: - lf = MV2.multiply(lf, 100.0) - - # Matching dimension - if debug: - print("debug: match dimension in model_land_only") - model_timeseries, lf_timeConst = genutil.grower(model_timeseries, lf) - - # Conserve axes - time_c = model_timeseries.getAxis(0) - lat_c2 = model_timeseries.getAxis(1) - lon_c2 = model_timeseries.getAxis(2) + if np.max(lf) == 1.0: + lf = lf * 100.0 opt1 = False if opt1: # Masking out partial ocean grids as well # Mask out ocean even fractional (leave only pure ocean grid) - model_timeseries_masked = MV2.masked_where(lf_timeConst < 100, model_timeseries) + model_timeseries_masked = model_timeseries.where(lf > 0 & lf < 100) + else: # Mask out only full ocean grid & use weighting for partial ocean grid - model_timeseries_masked = MV2.masked_where( - lf_timeConst == 0, model_timeseries - ) # mask out pure ocean grids + model_timeseries_masked = model_timeseries.where(lf > 0) + if model == "EC-EARTH": # Mask out over 90% land grids for models those consider river as # part of land-sea fraction. So far only 'EC-EARTH' does.. - model_timeseries_masked = MV2.masked_where( - lf_timeConst < 90, model_timeseries - ) - lf2 = MV2.divide(lf, 100.0) - model_timeseries, lf2_timeConst = genutil.grower( - model_timeseries, lf2 - ) # Matching dimension - model_timeseries_masked = MV2.multiply( - model_timeseries_masked, lf2_timeConst - ) # consider land fraction like as weighting - - # Make sure to have consistent axes - model_timeseries_masked.setAxis(0, time_c) - model_timeseries_masked.setAxis(1, lat_c2) - model_timeseries_masked.setAxis(2, lon_c2) + model_timeseries_masked = model_timeseries.where(lf > 90) if debug: plot_map(model_timeseries_masked[0], "_".join(["test", model, "afterMask.png"])) @@ -73,8 +40,8 @@ def model_land_only(model, model_timeseries, lf, debug=False): def plot_map(data, filename): - lons = data.getLongitude() - lats = data.getLatitude() + lons = data["lon"] + lats = data["lat"] ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=180)) ax.contourf(lons, lats, data, transform=ccrs.PlateCarree(), cmap="viridis") ax.coastlines() From c1f950b4bd769b320bae2543459b79a5eca19ac8 Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Mon, 5 Feb 2024 22:03:15 -0800 Subject: [PATCH 02/46] modified: driver_monsoon_sperber.py new file: param/Bo_param.py modified: param/myParam.py Changes not staged for commit: (use "git add ..." to update what will be committed) (use "git checkout -- ..." to discard changes in working directory) modified: lib/argparse_functions.py modified: ../../share/DefArgsCIA.json Untracked files: (use "git add ..." to include in what will be committed) test_ACCESS1-0_afterMask.png test_ACCESS1-0_beforeMask.png test_obs_afterMask.png test_obs_beforeMask.png --- .../monsoon_sperber/driver_monsoon_sperber.py | 17 ++++- .../monsoon_sperber/param/Bo_param.py | 72 +++++++++++++++++++ .../monsoon_sperber/param/myParam.py | 6 +- 3 files changed, 91 insertions(+), 4 deletions(-) create mode 100644 pcmdi_metrics/monsoon_sperber/param/Bo_param.py diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index a64358994..8ca92ad70 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -73,7 +73,7 @@ def tree(): # ================================================= # Hard coded options... will be moved out later # ------------------------------------------------- -list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] +#list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] # How many elements each list should have @@ -129,6 +129,10 @@ def tree(): models = param.modnames print("models:", models) +# list of regions +list_monsoon_regions = param.list_monsoon_regions +print("regions:", list_monsoon_regions) + # Include all models if conditioned if ("all" in [m.lower() for m in models]) or (models == "all"): model_index_path = re.split(". |_", modpath.split("/")[-1]).index("%(model)") @@ -551,6 +555,9 @@ def tree(): pentad_time_series, ref_length, debug=debug ) + print('DDDDDDDDDDDDDDDD') + print('pentad_time_series = ',pentad_time_series) + pentad_time_series_cumsum = np.cumsum(pentad_time_series) pentad_time_series = xr.DataArray( pentad_time_series, @@ -568,6 +575,10 @@ def tree(): pentad_time_series_cumsum.attrs["units"] = str(d.units.values) pentad_time_series_cumsum.coords["time"] = time_coords + print('pentad_time_series = ',pentad_time_series) + print('pentad_time_series_cumsum = ', pentad_time_series_cumsum) + print('EEEEEEEEEEEEEEEEEE') + if nc_out: # Archive individual year time series in netCDF file pentad_time_series.to_netcdf(file_path, mode="a") @@ -614,6 +625,10 @@ def tree(): composite_pentad_time_series ) + print("UUUUUUUUUUU region = ",region) + print('composite_pentad_time_series =. ',composite_pentad_time_series) + print('composite_pentad_time_series_cumsum =. ',composite_pentad_time_series_cumsum) + # Maintain axis information # - - - - - - - - - - - diff --git a/pcmdi_metrics/monsoon_sperber/param/Bo_param.py b/pcmdi_metrics/monsoon_sperber/param/Bo_param.py new file mode 100644 index 000000000..3df9d9629 --- /dev/null +++ b/pcmdi_metrics/monsoon_sperber/param/Bo_param.py @@ -0,0 +1,72 @@ +import datetime +import os + +# ================================================= +# Background Information +# ------------------------------------------------- +mip = "cmip5" +exp = "historical" +frequency = "da" +realm = "atm" + +# ================================================= +# Miscellaneous +# ------------------------------------------------- +update_json = False +debug = True + +#list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] +list_monsoon_regions = ["AUS"] +# ================================================= +# Observation +# ------------------------------------------------- +reference_data_name = "GPCP-1-3" +reference_data_path = "/p/user_pub/PCMDIobs/obs4MIPs/NASA-GSFC/GPCP-1DD-CDR-v1-3/day/pr/1x1/latest/pr_day_GPCP-1DD-CDR-v1-3_PCMDIFROGS_1x1_19961001-20201231.nc" +reference_data_lf_path = ( + "/work/lee1043/DATA/LandSeaMask_1x1_NCL/NCL_LandSeaMask_rewritten.nc" # noqa +) + +varOBS = "pr" +ObsUnitsAdjust = (True, "multiply", 86400.0) # kg m-2 s-1 to mm day-1 + +osyear = 1998 +oeyear = 1999 + +includeOBS = True + +# ================================================= +# Models +# ------------------------------------------------- +modpath = "/work/lee1043/ESGF/xmls/cmip5/historical/day/pr/cmip5.%(model).%(exp).%(realization).day.pr.xml" +modpath_lf = "/work/lee1043/ESGF/xmls/cmip5/historical/fx/sftlf/cmip5.%(model).historical.r0i0p0.fx.sftlf.xml" + +# modnames = ['ACCESS1-0', 'ACCESS1-3', 'BCC-CSM1-1', 'BCC-CSM1-1-M', 'BNU-ESM', 'CanCM4', 'CanESM2', 'CCSM4', 'CESM1-BGC', 'CESM1-CAM5', 'CESM1-FASTCHEM', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'EC-EARTH', 'FGOALS-g2', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'GISS-E2-H', 'GISS-E2-R', 'HadGEM2-AO', 'HadGEM2-CC', 'HadGEM2-ES', 'INMCM4', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR', 'IPSL-CM5B-LR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC4h', 'MIROC5', 'MPI-ESM-MR', 'MPI-ESM-P', 'MRI-CGCM3', 'MRI-ESM1', 'NorESM1-M'] # noqa + +modnames = ["ACCESS1-0"] + +realization = "r1i1p1" +# realization = '*' + +varModel = "pr" +ModUnitsAdjust = (True, "multiply", 86400.0) # kg m-2 s-1 to mm day-1 +units = "mm/d" + +msyear = 1998 +meyear = 1999 + +# ================================================= +# Output +# ------------------------------------------------- +pmprdir = "/p/user_pub/pmp/pmp_results/pmp_v1.1.2" +case_id = "{:v%Y%m%d}".format(datetime.datetime.now()) + +if debug: + pmprdir = "/p/user_pub/climate_work/dong12/PMP_result/" + case_id = "{:v%Y%m%d-%H%M}".format(datetime.datetime.now()) + +results_dir = os.path.join( + pmprdir, "%(output_type)", "monsoon", "monsoon_sperber", mip, exp, case_id +) + +nc_out = True # Write output in NetCDF +plot = True # Create map graphics diff --git a/pcmdi_metrics/monsoon_sperber/param/myParam.py b/pcmdi_metrics/monsoon_sperber/param/myParam.py index 47c9cfd58..23e8a578f 100644 --- a/pcmdi_metrics/monsoon_sperber/param/myParam.py +++ b/pcmdi_metrics/monsoon_sperber/param/myParam.py @@ -27,8 +27,8 @@ varOBS = "pr" ObsUnitsAdjust = (True, "multiply", 86400.0) # kg m-2 s-1 to mm day-1 -osyear = 1996 -oeyear = 2016 +osyear = 1998 +oeyear = 1999 includeOBS = True @@ -49,7 +49,7 @@ ModUnitsAdjust = (True, "multiply", 86400.0) # kg m-2 s-1 to mm day-1 units = "mm/d" -msyear = 1961 +msyear = 1998 meyear = 1999 # ================================================= From 97aecc36da602e8c516ddb8128b25a3c7cc8dfd6 Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Mon, 5 Feb 2024 22:04:34 -0800 Subject: [PATCH 03/46] modified: lib/argparse_functions.py --- pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py | 1 + 1 file changed, 1 insertion(+) diff --git a/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py b/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py index 3615e5776..6fa42d61a 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py +++ b/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py @@ -54,6 +54,7 @@ def AddParserArgument(P): "--meyear", dest="meyear", type=int, help="End year for model data set" ) P.add_argument("--modnames", type=str, default=None, help="List of models") + P.add_argument("--list_monsoon_regions", type=str, default=None, help="List of regions") P.add_argument( "-r", "--realization", From 09aaeaf735dd10d40879f8b12c4b69faa62c3d35 Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Mon, 5 Feb 2024 22:07:48 -0800 Subject: [PATCH 04/46] modified: ../../share/DefArgsCIA.json Untracked files: (use "git add ..." to include in what will be committed) test_ACCESS1-0_afterMask.png test_ACCESS1-0_beforeMask.png test_obs_afterMask.png test_obs_beforeMask.png --- share/DefArgsCIA.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/share/DefArgsCIA.json b/share/DefArgsCIA.json index 8507f33ba..cd33a055d 100644 --- a/share/DefArgsCIA.json +++ b/share/DefArgsCIA.json @@ -163,4 +163,4 @@ ], "help":"A list of variables to be processed" } -} +} \ No newline at end of file From 6692788424c46d8fd613e76888589a4d6de2fd3d Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Tue, 6 Feb 2024 09:35:33 -0800 Subject: [PATCH 05/46] modified: driver_monsoon_sperber.py modified: param/Bo_param.py --- .../monsoon_sperber/driver_monsoon_sperber.py | 30 +++++++++++++++++-- .../monsoon_sperber/param/Bo_param.py | 8 +++-- 2 files changed, 33 insertions(+), 5 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 8ca92ad70..67311644c 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -74,6 +74,7 @@ def tree(): # Hard coded options... will be moved out later # ------------------------------------------------- #list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] +list_monsoon_regions = ["AUS"] # How many elements each list should have @@ -130,8 +131,8 @@ def tree(): print("models:", models) # list of regions -list_monsoon_regions = param.list_monsoon_regions -print("regions:", list_monsoon_regions) +#list_monsoon_regions = param.list_monsoon_regions +#print("regions:", list_monsoon_regions) # Include all models if conditioned if ("all" in [m.lower() for m in models]) or (models == "all"): @@ -411,13 +412,17 @@ def tree(): # year loop, endYear+1 to include last year for year in range(startYear, endYear + 1): + print("\n") + print("XXXXXX year = ", year) + print("\n") d = dc.pr.sel( time=slice( str(year) + "-01-01 00:00:00", str(year) + "-12-31 23:59:59" ), lat=slice(-90, 90), ) - print("xxx d =, ", d) + #print("xxx d =, ", d.values) + print("xxx d =, ", d.values[0,0,0]) print("type d type,", type(d)) # unit adjust if UnitsAdjust[0]: @@ -428,6 +433,10 @@ def tree(): d.values = d.values * 86400.0 d["units"] = units + print("UnitAdjust[0] = ", UnitsAdjust[0]) + print("xxx d =, ", d[0,0,0]) + print("\n") + # variable for over land only d_land = model_land_only(model, d, lf, debug=debug) @@ -450,6 +459,9 @@ def tree(): ) ) + d_sub_pr.values = d_sub_pr.values * 86400.0 + d_sub_pr["units"] = units + else: # land-only rainfall @@ -468,6 +480,12 @@ def tree(): model, d_sub_pr, lf_sub, debug=debug ) + d_sub_pr.values = d_sub_pr.values * 86400.0 + d_sub_pr["units"] = units + + print("HHHHHHHH d_sub_pr = ", d_sub_pr.values[0,0,0]) + print("HHHHHHHH d_sub_pr.size = ", d_sub_pr.size) + # Area average ds_sub_pr = d_sub_pr.to_dataset().compute() @@ -478,6 +496,10 @@ def tree(): ).compute() d_sub_aave = ds_sub_aave.pr + + print("PPPPPPPPPP d_sub_aave = ", d_sub_aave.values[0:10]) + print("PPPPPPPPPP d_sub_aave.pr = ", ds_sub_aave.pr.values[0:10]) + if debug: print("debug: region:", region) print("debug: d_sub_pr.shape:", d_sub_pr.shape) @@ -519,6 +541,8 @@ def tree(): year, d_sub_aave.time, ) + print("XXXXXXXXX") + print("d_sub_aave", d_sub_aave) # get pentad time series list_d_sub_aave_chunks = list( diff --git a/pcmdi_metrics/monsoon_sperber/param/Bo_param.py b/pcmdi_metrics/monsoon_sperber/param/Bo_param.py index 3df9d9629..5ec7d9522 100644 --- a/pcmdi_metrics/monsoon_sperber/param/Bo_param.py +++ b/pcmdi_metrics/monsoon_sperber/param/Bo_param.py @@ -13,7 +13,8 @@ # Miscellaneous # ------------------------------------------------- update_json = False -debug = True +debug = False +#debug = True #list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] list_monsoon_regions = ["AUS"] @@ -40,6 +41,8 @@ modpath = "/work/lee1043/ESGF/xmls/cmip5/historical/day/pr/cmip5.%(model).%(exp).%(realization).day.pr.xml" modpath_lf = "/work/lee1043/ESGF/xmls/cmip5/historical/fx/sftlf/cmip5.%(model).historical.r0i0p0.fx.sftlf.xml" +#/p/css03/scratch/published-older/cmip5/output1/CSIRO-BOM/ACCESS1-0/historical/day/atmos/day/r1i1p1/v4/pr/pr_day_ACCESS1-0_historical_r1i1p1_19750101-19991231.nc + # modnames = ['ACCESS1-0', 'ACCESS1-3', 'BCC-CSM1-1', 'BCC-CSM1-1-M', 'BNU-ESM', 'CanCM4', 'CanESM2', 'CCSM4', 'CESM1-BGC', 'CESM1-CAM5', 'CESM1-FASTCHEM', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'EC-EARTH', 'FGOALS-g2', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'GISS-E2-H', 'GISS-E2-R', 'HadGEM2-AO', 'HadGEM2-CC', 'HadGEM2-ES', 'INMCM4', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR', 'IPSL-CM5B-LR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC4h', 'MIROC5', 'MPI-ESM-MR', 'MPI-ESM-P', 'MRI-CGCM3', 'MRI-ESM1', 'NorESM1-M'] # noqa modnames = ["ACCESS1-0"] @@ -57,7 +60,8 @@ # ================================================= # Output # ------------------------------------------------- -pmprdir = "/p/user_pub/pmp/pmp_results/pmp_v1.1.2" +#pmprdir = "/p/user_pub/pmp/pmp_results/pmp_v1.1.2" +pmprdir = "/p/user_pub/climate_work/dong12/PMP_result/" case_id = "{:v%Y%m%d}".format(datetime.datetime.now()) if debug: From 2f66f5bb2e7264754e1516e76c245ac944785efb Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Mon, 12 Feb 2024 18:35:23 -0800 Subject: [PATCH 06/46] modified: driver_monsoon_sperber.py --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 67311644c..0ea9f5f0d 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -74,7 +74,8 @@ def tree(): # Hard coded options... will be moved out later # ------------------------------------------------- #list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] -list_monsoon_regions = ["AUS"] +#list_monsoon_regions = ["AUS"] +list_monsoon_regions = ["Sahel"] # How many elements each list should have From 3d9dd7771ec63e05e492d97621395a6b1d5377cc Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Mon, 12 Feb 2024 21:30:57 -0800 Subject: [PATCH 07/46] modified: driver_monsoon_sperber.py --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 0ea9f5f0d..b4340a38b 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -473,6 +473,9 @@ def tree(): str(year) + "-12-31 23:59:59", ) ) + + #d_sub_pr.to_netcdf("test_region_xcdat.nc") + lf_sub_ds = region_subset( ds_lf, regions_specs, region=region ) @@ -481,6 +484,8 @@ def tree(): model, d_sub_pr, lf_sub, debug=debug ) + #d_sub_pr.to_netcdf("test_region_land_xcdat.nc") + d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units From 8eefb97e963c534b6622dd51662d758694d78c42 Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Mon, 12 Feb 2024 22:33:58 -0800 Subject: [PATCH 08/46] modified: driver_monsoon_sperber.py --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index b4340a38b..ba494c3e5 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -485,6 +485,8 @@ def tree(): ) #d_sub_pr.to_netcdf("test_region_land_xcdat.nc") + #print("\n") + #print("KKKKKKKKK save nc save nc save nc") d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units From e68a0a0624b5f79c28850f6bd3eff9b56fafe4d2 Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Wed, 21 Feb 2024 13:52:35 -0800 Subject: [PATCH 09/46] modified: driver_monsoon_sperber.py --- .../monsoon_sperber/driver_monsoon_sperber.py | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index ba494c3e5..6e00eb7b2 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -75,7 +75,8 @@ def tree(): # ------------------------------------------------- #list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] #list_monsoon_regions = ["AUS"] -list_monsoon_regions = ["Sahel"] +#list_monsoon_regions = ["Sahel"] +list_monsoon_regions = ["GoG"] # How many elements each list should have @@ -463,6 +464,11 @@ def tree(): d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units + d_sub_pr.to_netcdf("test_region_global_xcdat.nc") + print("\n") + print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + print("\n") + else: # land-only rainfall @@ -474,7 +480,10 @@ def tree(): ) ) - #d_sub_pr.to_netcdf("test_region_xcdat.nc") + d_sub_pr.to_netcdf("test_region_xcdat.nc") + print("\n") + print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + print("\n") lf_sub_ds = region_subset( ds_lf, regions_specs, region=region @@ -484,7 +493,10 @@ def tree(): model, d_sub_pr, lf_sub, debug=debug ) - #d_sub_pr.to_netcdf("test_region_land_xcdat.nc") + d_sub_pr.to_netcdf("test_region_land_xcdat.nc") + print("\n") + print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + print("\n") #print("\n") #print("KKKKKKKKK save nc save nc save nc") From 08170a1d3f9e00aa34bb453fc5283442a4dcf8b5 Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Mon, 4 Mar 2024 16:15:25 -0800 Subject: [PATCH 10/46] modified: driver_monsoon_sperber.py --- .../monsoon_sperber/driver_monsoon_sperber.py | 124 ++++++++++-------- 1 file changed, 72 insertions(+), 52 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 6e00eb7b2..a3489d137 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -73,10 +73,12 @@ def tree(): # ================================================= # Hard coded options... will be moved out later # ------------------------------------------------- -#list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] +list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] #list_monsoon_regions = ["AUS"] #list_monsoon_regions = ["Sahel"] -list_monsoon_regions = ["GoG"] +#list_monsoon_regions = ["GoG"] +#list_monsoon_regions = ["NHEX"] +#list_monsoon_regions = ["all"] # How many elements each list should have @@ -243,6 +245,9 @@ def tree(): for model in models: print(" ----- ", model, " ---------------------") + print("\n") + print("========== model = "+model+" ===============================================================================") + print("\n") try: # Conditions depending obs or model if model == "obs": @@ -281,6 +286,8 @@ def tree(): if model not in list(monsoon_stat_dic["RESULTS"].keys()): monsoon_stat_dic["RESULTS"][model] = {} + dict_obs_composite = {} + dict_obs_composite[reference_data_name] = {} # Read land fraction ds_lf = xc.open_mfdataset(model_lf_path) @@ -301,11 +308,13 @@ def tree(): run = realization if run not in monsoon_stat_dic["RESULTS"][model]: monsoon_stat_dic["RESULTS"][model][run] = {} + print("\n") print(" --- ", run, " ---") + #print("\n") # Get time coordinate information - dc = xc.open_mfdataset(model_path) + dc = xc.open_mfdataset(model_path, decode_times=True, add_bounds=['T','X','Y']) dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) c = xc.center_times(dc) @@ -339,7 +348,10 @@ def tree(): list_pentad_time_series = {} list_pentad_time_series_cumsum = {} # Cumulative time series for region in list_monsoon_regions: - print("region = ", region) +# print("\n") +# print("========== region = "+region+" ===============================================================================") +# print("\n") +# print("region = ", region) list_pentad_time_series[region] = [] list_pentad_time_series_cumsum[region] = [] @@ -411,7 +423,9 @@ def tree(): # Loop start - Year # ------------------------------------------------- temporary = {} - + print("\n") + print("========== model = "+model+" ===============================================================================") + print("\n") # year loop, endYear+1 to include last year for year in range(startYear, endYear + 1): print("\n") @@ -424,8 +438,8 @@ def tree(): lat=slice(-90, 90), ) #print("xxx d =, ", d.values) - print("xxx d =, ", d.values[0,0,0]) - print("type d type,", type(d)) +# print("xxx d =, ", d.values[0,0,0]) +# print("type d type,", type(d)) # unit adjust if UnitsAdjust[0]: """Below two lines are identical to following: @@ -435,9 +449,9 @@ def tree(): d.values = d.values * 86400.0 d["units"] = units - print("UnitAdjust[0] = ", UnitsAdjust[0]) - print("xxx d =, ", d[0,0,0]) - print("\n") +# print("UnitAdjust[0] = ", UnitsAdjust[0]) +# print("xxx d =, ", d[0,0,0]) +# print("\n") # variable for over land only d_land = model_land_only(model, d, lf, debug=debug) @@ -449,6 +463,10 @@ def tree(): regions_specs = load_regions_specs() for region in list_monsoon_regions: + print("\n") + print("=====================================================================================================") + print("XXXXXX region = ", region) + print("\n") # extract for monsoon region if region in ["GoG", "NAmo"]: # all grid point rainfall @@ -465,9 +483,9 @@ def tree(): d_sub_pr["units"] = units d_sub_pr.to_netcdf("test_region_global_xcdat.nc") - print("\n") +# print("\n") print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") - print("\n") +# print("\n") else: # land-only rainfall @@ -480,10 +498,10 @@ def tree(): ) ) - d_sub_pr.to_netcdf("test_region_xcdat.nc") - print("\n") + d_sub_pr.to_netcdf("test_region_"+region+"_xcdat.nc") +# print("\n") print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") - print("\n") +# print("\n") lf_sub_ds = region_subset( ds_lf, regions_specs, region=region @@ -493,18 +511,18 @@ def tree(): model, d_sub_pr, lf_sub, debug=debug ) - d_sub_pr.to_netcdf("test_region_land_xcdat.nc") - print("\n") + d_sub_pr.to_netcdf("test_region_land_"+region+"_xcdat.nc") +# print("\n") print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") - print("\n") +# print("\n") #print("\n") #print("KKKKKKKKK save nc save nc save nc") d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units - print("HHHHHHHH d_sub_pr = ", d_sub_pr.values[0,0,0]) - print("HHHHHHHH d_sub_pr.size = ", d_sub_pr.size) +# print("HHHHHHHH d_sub_pr = ", d_sub_pr.values[0,0,0]) +# print("HHHHHHHH d_sub_pr.size = ", d_sub_pr.size) # Area average @@ -517,8 +535,8 @@ def tree(): d_sub_aave = ds_sub_aave.pr - print("PPPPPPPPPP d_sub_aave = ", d_sub_aave.values[0:10]) - print("PPPPPPPPPP d_sub_aave.pr = ", ds_sub_aave.pr.values[0:10]) +# print("PPPPPPPPPP d_sub_aave = ", d_sub_aave.values[0:10]) +# print("PPPPPPPPPP d_sub_aave.pr = ", ds_sub_aave.pr.values[0:10]) if debug: print("debug: region:", region) @@ -561,8 +579,8 @@ def tree(): year, d_sub_aave.time, ) - print("XXXXXXXXX") - print("d_sub_aave", d_sub_aave) +# print("XXXXXXXXX") +# print("d_sub_aave", d_sub_aave) # get pentad time series list_d_sub_aave_chunks = list( @@ -599,8 +617,8 @@ def tree(): pentad_time_series, ref_length, debug=debug ) - print('DDDDDDDDDDDDDDDD') - print('pentad_time_series = ',pentad_time_series) +# print('DDDDDDDDDDDDDDDD') +# print('pentad_time_series = ',pentad_time_series) pentad_time_series_cumsum = np.cumsum(pentad_time_series) pentad_time_series = xr.DataArray( @@ -619,9 +637,9 @@ def tree(): pentad_time_series_cumsum.attrs["units"] = str(d.units.values) pentad_time_series_cumsum.coords["time"] = time_coords - print('pentad_time_series = ',pentad_time_series) - print('pentad_time_series_cumsum = ', pentad_time_series_cumsum) - print('EEEEEEEEEEEEEEEEEE') +# print('pentad_time_series = ',pentad_time_series) +# print('pentad_time_series_cumsum = ', pentad_time_series_cumsum) +# print('EEEEEEEEEEEEEEEEEE') if nc_out: # Archive individual year time series in netCDF file @@ -669,9 +687,9 @@ def tree(): composite_pentad_time_series ) - print("UUUUUUUUUUU region = ",region) - print('composite_pentad_time_series =. ',composite_pentad_time_series) - print('composite_pentad_time_series_cumsum =. ',composite_pentad_time_series_cumsum) +# print("UUUUUUUUUUU region = ",region) +# print('composite_pentad_time_series =. ',composite_pentad_time_series) +# print('composite_pentad_time_series_cumsum =. ',composite_pentad_time_series_cumsum) # Maintain axis information @@ -771,29 +789,31 @@ def tree(): c="red", ls="--", ) + # obs - ax[region].plot( - np.array(dict_obs_composite[reference_data_name][region]), - c="blue", - label=reference_data_name, - ) - for idx in [ - monsoon_stat_dic["REF"][reference_data_name][region][ - "onset_index" - ], - monsoon_stat_dic["REF"][reference_data_name][region][ - "decay_index" - ], - ]: - ax[region].axvline( - x=idx, - ymin=0, - ymax=dict_obs_composite[reference_data_name][region][ - idx - ].item(), + if model == "obs": + ax[region].plot( + np.array(dict_obs_composite[reference_data_name][region]), c="blue", - ls="--", + label=reference_data_name, ) + for idx in [ + monsoon_stat_dic["REF"][reference_data_name][region][ + "onset_index" + ], + monsoon_stat_dic["REF"][reference_data_name][region][ + "decay_index" + ], + ]: + ax[region].axvline( + x=idx, + ymin=0, + ymax=dict_obs_composite[reference_data_name][region][ + idx + ].item(), + c="blue", + ls="--", + ) # title ax[region].set_title(region) if region == list_monsoon_regions[0]: From aa2f7c538e310b3c9aa9339092273605b40a6b5a Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Mon, 4 Mar 2024 16:17:50 -0800 Subject: [PATCH 11/46] modified: lib/model_land_only.py --- pcmdi_metrics/monsoon_sperber/lib/model_land_only.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py b/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py index 960ae1067..2dd47cac2 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py +++ b/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py @@ -9,7 +9,7 @@ def model_land_only(model, model_timeseries, lf, debug=False): # - - - - - - - - - - - - - - - - - - - - - - - - - if debug: - plot_map(model_timeseries[0], "_".join(["test", model, "beforeMask.png"])) + #plot_map(model_timeseries[0], "_".join(["test", model, "beforeMask.png"])) print("debug: plot for beforeMask done") # Check land fraction variable to see if it meet criteria @@ -33,7 +33,7 @@ def model_land_only(model, model_timeseries, lf, debug=False): model_timeseries_masked = model_timeseries.where(lf > 90) if debug: - plot_map(model_timeseries_masked[0], "_".join(["test", model, "afterMask.png"])) + #plot_map(model_timeseries_masked[0], "_".join(["test", model, "afterMask.png"])) print("debug: plot for afterMask done") return model_timeseries_masked From 23ee2e80abe49fafb28ad187f35937ea1c78ca0a Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Mon, 4 Mar 2024 18:03:15 -0800 Subject: [PATCH 12/46] modified: driver_monsoon_sperber.py --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index a3489d137..fcce4f854 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -73,11 +73,12 @@ def tree(): # ================================================= # Hard coded options... will be moved out later # ------------------------------------------------- -list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] +#list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] #list_monsoon_regions = ["AUS"] #list_monsoon_regions = ["Sahel"] #list_monsoon_regions = ["GoG"] #list_monsoon_regions = ["NHEX"] +list_monsoon_regions = ["AIR"] #list_monsoon_regions = ["all"] @@ -511,6 +512,7 @@ def tree(): model, d_sub_pr, lf_sub, debug=debug ) + lf_sub.to_netcdf("lf_"+region+"_xcdat.nc") d_sub_pr.to_netcdf("test_region_land_"+region+"_xcdat.nc") # print("\n") print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") From 3d44dc4afe732c9287d2f05dbde63db8ba95c92f Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Tue, 5 Mar 2024 01:28:45 -0800 Subject: [PATCH 13/46] modified: driver_monsoon_sperber.py --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index fcce4f854..5f7aee8a2 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -64,6 +64,7 @@ sperber_metrics, ) from pcmdi_metrics.utils import fill_template +from pcmdi_metrics.utils import create_land_sea_mask def tree(): @@ -292,6 +293,11 @@ def tree(): # Read land fraction ds_lf = xc.open_mfdataset(model_lf_path) + # use pcmdi mask + #lf_array = create_land_sea_mask(ds_lf, method="pcmdi") + #ds_lf = lf_array.to_dataset().compute() + #ds_lf = ds_lf.rename_vars({'lsmask': 'sftlf'}) + # ^^^^ block above ^^^^^ lf = ds_lf.sftlf.sel(lat=slice(-90, 90)) # land frac file must be global # ------------------------------------------------- @@ -512,6 +518,7 @@ def tree(): model, d_sub_pr, lf_sub, debug=debug ) + #lf_sub.to_netcdf("lf_"+region+"_xcdat_pcmdi.nc") lf_sub.to_netcdf("lf_"+region+"_xcdat.nc") d_sub_pr.to_netcdf("test_region_land_"+region+"_xcdat.nc") # print("\n") From 68a5fcbcc99057ba783e4d13b7decec64edc769e Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Wed, 6 Mar 2024 16:43:29 -0800 Subject: [PATCH 14/46] modified: driver_monsoon_sperber.py --- .../monsoon_sperber/driver_monsoon_sperber.py | 39 ++++++++++++++----- 1 file changed, 29 insertions(+), 10 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 5f7aee8a2..e1b11d68d 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -70,16 +70,29 @@ def tree(): return defaultdict(tree) +def pick_year_last_day(ds): + eday = 31 + try: + time_key = xc.axis.get_dim_keys(ds, axis="T") + if "calendar" in ds[time_key].attrs.keys(): + if "360" in ds[time_key]["calendar"]: + eday = 30 + else: + if "360" in ds[time_key][0].values.item().calendar: + eday = 30 + except Exception: + pass + return eday # ================================================= # Hard coded options... will be moved out later # ------------------------------------------------- -#list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] +list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] #list_monsoon_regions = ["AUS"] #list_monsoon_regions = ["Sahel"] #list_monsoon_regions = ["GoG"] #list_monsoon_regions = ["NHEX"] -list_monsoon_regions = ["AIR"] +#list_monsoon_regions = ["AIR"] #list_monsoon_regions = ["all"] @@ -294,9 +307,9 @@ def tree(): ds_lf = xc.open_mfdataset(model_lf_path) # use pcmdi mask - #lf_array = create_land_sea_mask(ds_lf, method="pcmdi") - #ds_lf = lf_array.to_dataset().compute() - #ds_lf = ds_lf.rename_vars({'lsmask': 'sftlf'}) + lf_array = create_land_sea_mask(ds_lf, method="pcmdi") + ds_lf = lf_array.to_dataset().compute() + ds_lf = ds_lf.rename_vars({'lsmask': 'sftlf'}) # ^^^^ block above ^^^^^ lf = ds_lf.sftlf.sel(lat=slice(-90, 90)) # land frac file must be global @@ -324,6 +337,7 @@ def tree(): dc = xc.open_mfdataset(model_path, decode_times=True, add_bounds=['T','X','Y']) dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) c = xc.center_times(dc) + eday = pick_year_last_day(dc) # Get starting and ending year and month startYear = c.time.values[0].year @@ -440,7 +454,8 @@ def tree(): print("\n") d = dc.pr.sel( time=slice( - str(year) + "-01-01 00:00:00", str(year) + "-12-31 23:59:59" + #str(year) + "-01-01 00:00:00", str(year) + "-12-31 23:59:59" + str(year) + "-01-01 00:00:00", str(year) + f"-12-{eday} 23:59:59" ), lat=slice(-90, 90), ) @@ -482,7 +497,8 @@ def tree(): d_sub_pr = d_sub_ds.pr.sel( time=slice( str(year) + "-01-01 00:00:00", - str(year) + "-12-31 23:59:59", + #str(year) + "-12-31 23:59:59", + str(year) + f"-12-{eday} 23:59:59", ) ) @@ -501,7 +517,8 @@ def tree(): d_sub_pr = d_sub_ds.pr.sel( time=slice( str(year) + "-01-01 00:00:00", - str(year) + "-12-31 23:59:59", + #str(year) + "-12-31 23:59:59", + str(year) + f"-12-{eday} 23:59:59", ) ) @@ -557,7 +574,8 @@ def tree(): if region in ["AUS", "SAmo"]: if year == startYear: start_t = str(year) + "-07-01 00:00:00" - end_t = str(year) + "-12-31 23:59:59" + #end_t = str(year) + "-12-31 23:59:59" + end_t = str(year) + f"-12-{eday} 23:59:59" temporary[region] = d_sub_aave.sel( time=slice(start_t, end_t) ) @@ -574,7 +592,8 @@ def tree(): ) ) start_t = str(year) + "-07-01 00:00:00" - end_t = str(year) + "-12-31 23:59:59" + #end_t = str(year) + "-12-31 23:59:59" + end_t = str(year) + f"-12-{eday} 23:59:59" temporary[region] = d_sub_aave.sel( time=slice(start_t, end_t) ) From 2f1f4421fad7f9a33e1450a0791aec1afd584bf6 Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Fri, 5 Apr 2024 16:33:53 -0700 Subject: [PATCH 15/46] modified: driver_monsoon_sperber.py --- .../monsoon_sperber/driver_monsoon_sperber.py | 64 +++++++++++++++---- 1 file changed, 52 insertions(+), 12 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index e1b11d68d..412b973a0 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -87,9 +87,9 @@ def pick_year_last_day(ds): # ================================================= # Hard coded options... will be moved out later # ------------------------------------------------- -list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] +#list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] #list_monsoon_regions = ["AUS"] -#list_monsoon_regions = ["Sahel"] +list_monsoon_regions = ["Sahel"] #list_monsoon_regions = ["GoG"] #list_monsoon_regions = ["NHEX"] #list_monsoon_regions = ["AIR"] @@ -333,9 +333,19 @@ def pick_year_last_day(ds): #print("\n") # Get time coordinate information - + print("model_path = " , model_path) + #dc = xc.open_mfdataset(model_path, decode_times=False) + #dc = xc.open_mfdataset(model_path, decode_times=True) + #dc = xc.open_mfdataset(model_path, decode_times=True, preprocess=lambda dc: dc.isel(time=slice(0, -1))) + #print(dc.lat) + #print(dc.lat.values) + #dc = xc.open_mfdataset(model_path, decode_times=True) + #print(dc.lat) + #print(dc.lat.values) dc = xc.open_mfdataset(model_path, decode_times=True, add_bounds=['T','X','Y']) dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) + print("dc.time = ", dc.time) + print("dc.time = ", dc.time.values) c = xc.center_times(dc) eday = pick_year_last_day(dc) @@ -450,7 +460,7 @@ def pick_year_last_day(ds): # year loop, endYear+1 to include last year for year in range(startYear, endYear + 1): print("\n") - print("XXXXXX year = ", year) + print(" year = ", year) print("\n") d = dc.pr.sel( time=slice( @@ -487,7 +497,7 @@ def pick_year_last_day(ds): for region in list_monsoon_regions: print("\n") print("=====================================================================================================") - print("XXXXXX region = ", region) + print(" region = ", region) print("\n") # extract for monsoon region if region in ["GoG", "NAmo"]: @@ -505,9 +515,9 @@ def pick_year_last_day(ds): d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units - d_sub_pr.to_netcdf("test_region_global_xcdat.nc") +# d_sub_pr.to_netcdf("test_region_global_xcdat.nc") # print("\n") - print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") +# print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") # print("\n") else: @@ -522,9 +532,9 @@ def pick_year_last_day(ds): ) ) - d_sub_pr.to_netcdf("test_region_"+region+"_xcdat.nc") +# d_sub_pr.to_netcdf("test_region_"+region+"_xcdat.nc") # print("\n") - print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") +# print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") # print("\n") lf_sub_ds = region_subset( @@ -536,10 +546,10 @@ def pick_year_last_day(ds): ) #lf_sub.to_netcdf("lf_"+region+"_xcdat_pcmdi.nc") - lf_sub.to_netcdf("lf_"+region+"_xcdat.nc") - d_sub_pr.to_netcdf("test_region_land_"+region+"_xcdat.nc") +# lf_sub.to_netcdf("lf_"+region+"_xcdat.nc") +# d_sub_pr.to_netcdf("test_region_land_"+region+"_xcdat.nc") # print("\n") - print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") +# print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") # print("\n") #print("\n") #print("KKKKKKKKK save nc save nc save nc") @@ -553,8 +563,38 @@ def pick_year_last_day(ds): # Area average ds_sub_pr = d_sub_pr.to_dataset().compute() +# print("\n") +# print("#############################################") +# print("ds_sub_pr.shape = ", ds_sub_pr.dims) +# print("ds_sub_pr.variables.keys() = ", list(ds_sub_pr.variables.keys())) +# print("ds_sub_pr.variable = ", ds_sub_pr.variables) +# print("ds_sub_pr.keys() = ", list(ds_sub_pr.keys())) +# print("ds_sub_pr.lat = ", ds_sub_pr['lat']) +# print("ds_sub_pr.lat.attrs.lat_bounds = ", ds_sub_pr['lat'].attrs.get('bounds')) +# print("ds_sub_pr.units = ", ds_sub_pr['units']) + #print("ds_sub_pr.lat.attrs.lat_bnds.balues = ", ds_sub_pr['lon_bnds']) +# print("\n") + dc = dc.bounds.add_missing_bounds("X") +# print("dc lat bnds = ", dc['lat'].attrs['bounds']) +# #print("dc lat bnds values = ", dc['lat'].attrs['bounds'].values) +# print("dc lat bnds values = ", dc['lat_bnds']) +# print("dc lat bnds values = ", dc['lat_bnds'].values) +# print("dc.lat = ", dc['lat'].sel(lat=ds_sub_pr['lat'])) +# print("dc.lat_bnds = ", dc['lat_bnds'].sel(lat=ds_sub_pr['lat'])) +# print("dc.lat_bnds.values = ", dc['lat_bnds'].sel(lat=ds_sub_pr['lat'].values)) +# print("\n") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("X") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("Y") + # print("d_sub_pr = , ", d_sub_pr) + #lat_bnds = dc['lat_bnds'].sel(lat=ds_sub_pr['lat']) + #ds_sub_pr['lat'].attrs['bounds'] = 'lat_bnds' + #ds_sub_pr['lat'].attrs['bounds'] = lat_bnds + #ds_sub_pr['lat_bnds'] = lat_bnds + if 'lat_bnds' not in ds_sub_pr.variables: + lat_bnds = dc['lat_bnds'].sel(lat=ds_sub_pr['lat']) + ds_sub_pr['lat_bnds'] = lat_bnds + +# print("d_sub_pr = , ", d_sub_pr) ds_sub_aave = ds_sub_pr.spatial.average( "pr", axis=["X", "Y"], weights="generate" ).compute() From 93d8ff2b28f11125ee9f76f912d0ab260316ba95 Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Fri, 5 Apr 2024 16:44:20 -0700 Subject: [PATCH 16/46] modified: driver_monsoon_sperber.py --- .../monsoon_sperber/driver_monsoon_sperber.py | 227 ++++++++++-------- 1 file changed, 121 insertions(+), 106 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 412b973a0..523651d1e 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -63,13 +63,13 @@ model_land_only, sperber_metrics, ) -from pcmdi_metrics.utils import fill_template -from pcmdi_metrics.utils import create_land_sea_mask +from pcmdi_metrics.utils import create_land_sea_mask, fill_template def tree(): return defaultdict(tree) + def pick_year_last_day(ds): eday = 31 try: @@ -84,16 +84,17 @@ def pick_year_last_day(ds): pass return eday + # ================================================= # Hard coded options... will be moved out later # ------------------------------------------------- -#list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] -#list_monsoon_regions = ["AUS"] +# list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] +# list_monsoon_regions = ["AUS"] list_monsoon_regions = ["Sahel"] -#list_monsoon_regions = ["GoG"] -#list_monsoon_regions = ["NHEX"] -#list_monsoon_regions = ["AIR"] -#list_monsoon_regions = ["all"] +# list_monsoon_regions = ["GoG"] +# list_monsoon_regions = ["NHEX"] +# list_monsoon_regions = ["AIR"] +# list_monsoon_regions = ["all"] # How many elements each list should have @@ -150,8 +151,8 @@ def pick_year_last_day(ds): print("models:", models) # list of regions -#list_monsoon_regions = param.list_monsoon_regions -#print("regions:", list_monsoon_regions) +# list_monsoon_regions = param.list_monsoon_regions +# print("regions:", list_monsoon_regions) # Include all models if conditioned if ("all" in [m.lower() for m in models]) or (models == "all"): @@ -261,7 +262,11 @@ def pick_year_last_day(ds): for model in models: print(" ----- ", model, " ---------------------") print("\n") - print("========== model = "+model+" ===============================================================================") + print( + "========== model = " + + model + + " ===============================================================================" + ) print("\n") try: # Conditions depending obs or model @@ -309,8 +314,8 @@ def pick_year_last_day(ds): # use pcmdi mask lf_array = create_land_sea_mask(ds_lf, method="pcmdi") ds_lf = lf_array.to_dataset().compute() - ds_lf = ds_lf.rename_vars({'lsmask': 'sftlf'}) - # ^^^^ block above ^^^^^ + ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) + # ^^^^ block above ^^^^^ lf = ds_lf.sftlf.sel(lat=slice(-90, 90)) # land frac file must be global # ------------------------------------------------- @@ -330,19 +335,21 @@ def pick_year_last_day(ds): monsoon_stat_dic["RESULTS"][model][run] = {} print("\n") print(" --- ", run, " ---") - #print("\n") + # print("\n") # Get time coordinate information - print("model_path = " , model_path) - #dc = xc.open_mfdataset(model_path, decode_times=False) - #dc = xc.open_mfdataset(model_path, decode_times=True) - #dc = xc.open_mfdataset(model_path, decode_times=True, preprocess=lambda dc: dc.isel(time=slice(0, -1))) - #print(dc.lat) - #print(dc.lat.values) - #dc = xc.open_mfdataset(model_path, decode_times=True) - #print(dc.lat) - #print(dc.lat.values) - dc = xc.open_mfdataset(model_path, decode_times=True, add_bounds=['T','X','Y']) + print("model_path = ", model_path) + # dc = xc.open_mfdataset(model_path, decode_times=False) + # dc = xc.open_mfdataset(model_path, decode_times=True) + # dc = xc.open_mfdataset(model_path, decode_times=True, preprocess=lambda dc: dc.isel(time=slice(0, -1))) + # print(dc.lat) + # print(dc.lat.values) + # dc = xc.open_mfdataset(model_path, decode_times=True) + # print(dc.lat) + # print(dc.lat.values) + dc = xc.open_mfdataset( + model_path, decode_times=True, add_bounds=["T", "X", "Y"] + ) dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) print("dc.time = ", dc.time) print("dc.time = ", dc.time.values) @@ -379,10 +386,10 @@ def pick_year_last_day(ds): list_pentad_time_series = {} list_pentad_time_series_cumsum = {} # Cumulative time series for region in list_monsoon_regions: -# print("\n") -# print("========== region = "+region+" ===============================================================================") -# print("\n") -# print("region = ", region) + # print("\n") + # print("========== region = "+region+" ===============================================================================") + # print("\n") + # print("region = ", region) list_pentad_time_series[region] = [] list_pentad_time_series_cumsum[region] = [] @@ -455,7 +462,11 @@ def pick_year_last_day(ds): # ------------------------------------------------- temporary = {} print("\n") - print("========== model = "+model+" ===============================================================================") + print( + "========== model = " + + model + + " ===============================================================================" + ) print("\n") # year loop, endYear+1 to include last year for year in range(startYear, endYear + 1): @@ -464,14 +475,15 @@ def pick_year_last_day(ds): print("\n") d = dc.pr.sel( time=slice( - #str(year) + "-01-01 00:00:00", str(year) + "-12-31 23:59:59" - str(year) + "-01-01 00:00:00", str(year) + f"-12-{eday} 23:59:59" + # str(year) + "-01-01 00:00:00", str(year) + "-12-31 23:59:59" + str(year) + "-01-01 00:00:00", + str(year) + f"-12-{eday} 23:59:59", ), lat=slice(-90, 90), ) - #print("xxx d =, ", d.values) -# print("xxx d =, ", d.values[0,0,0]) -# print("type d type,", type(d)) + # print("xxx d =, ", d.values) + # print("xxx d =, ", d.values[0,0,0]) + # print("type d type,", type(d)) # unit adjust if UnitsAdjust[0]: """Below two lines are identical to following: @@ -481,9 +493,9 @@ def pick_year_last_day(ds): d.values = d.values * 86400.0 d["units"] = units -# print("UnitAdjust[0] = ", UnitsAdjust[0]) -# print("xxx d =, ", d[0,0,0]) -# print("\n") + # print("UnitAdjust[0] = ", UnitsAdjust[0]) + # print("xxx d =, ", d[0,0,0]) + # print("\n") # variable for over land only d_land = model_land_only(model, d, lf, debug=debug) @@ -496,7 +508,9 @@ def pick_year_last_day(ds): for region in list_monsoon_regions: print("\n") - print("=====================================================================================================") + print( + "=====================================================================================================" + ) print(" region = ", region) print("\n") # extract for monsoon region @@ -507,7 +521,7 @@ def pick_year_last_day(ds): d_sub_pr = d_sub_ds.pr.sel( time=slice( str(year) + "-01-01 00:00:00", - #str(year) + "-12-31 23:59:59", + # str(year) + "-12-31 23:59:59", str(year) + f"-12-{eday} 23:59:59", ) ) @@ -515,10 +529,10 @@ def pick_year_last_day(ds): d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units -# d_sub_pr.to_netcdf("test_region_global_xcdat.nc") -# print("\n") -# print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") -# print("\n") + # d_sub_pr.to_netcdf("test_region_global_xcdat.nc") + # print("\n") + # print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + # print("\n") else: # land-only rainfall @@ -527,15 +541,15 @@ def pick_year_last_day(ds): d_sub_pr = d_sub_ds.pr.sel( time=slice( str(year) + "-01-01 00:00:00", - #str(year) + "-12-31 23:59:59", + # str(year) + "-12-31 23:59:59", str(year) + f"-12-{eday} 23:59:59", ) ) -# d_sub_pr.to_netcdf("test_region_"+region+"_xcdat.nc") -# print("\n") -# print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") -# print("\n") + # d_sub_pr.to_netcdf("test_region_"+region+"_xcdat.nc") + # print("\n") + # print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + # print("\n") lf_sub_ds = region_subset( ds_lf, regions_specs, region=region @@ -545,64 +559,63 @@ def pick_year_last_day(ds): model, d_sub_pr, lf_sub, debug=debug ) - #lf_sub.to_netcdf("lf_"+region+"_xcdat_pcmdi.nc") -# lf_sub.to_netcdf("lf_"+region+"_xcdat.nc") -# d_sub_pr.to_netcdf("test_region_land_"+region+"_xcdat.nc") -# print("\n") -# print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") -# print("\n") - #print("\n") - #print("KKKKKKKKK save nc save nc save nc") + # lf_sub.to_netcdf("lf_"+region+"_xcdat_pcmdi.nc") + # lf_sub.to_netcdf("lf_"+region+"_xcdat.nc") + # d_sub_pr.to_netcdf("test_region_land_"+region+"_xcdat.nc") + # print("\n") + # print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") + # print("\n") + # print("\n") + # print("KKKKKKKKK save nc save nc save nc") d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units -# print("HHHHHHHH d_sub_pr = ", d_sub_pr.values[0,0,0]) -# print("HHHHHHHH d_sub_pr.size = ", d_sub_pr.size) + # print("HHHHHHHH d_sub_pr = ", d_sub_pr.values[0,0,0]) + # print("HHHHHHHH d_sub_pr.size = ", d_sub_pr.size) # Area average ds_sub_pr = d_sub_pr.to_dataset().compute() -# print("\n") -# print("#############################################") -# print("ds_sub_pr.shape = ", ds_sub_pr.dims) -# print("ds_sub_pr.variables.keys() = ", list(ds_sub_pr.variables.keys())) -# print("ds_sub_pr.variable = ", ds_sub_pr.variables) -# print("ds_sub_pr.keys() = ", list(ds_sub_pr.keys())) -# print("ds_sub_pr.lat = ", ds_sub_pr['lat']) -# print("ds_sub_pr.lat.attrs.lat_bounds = ", ds_sub_pr['lat'].attrs.get('bounds')) -# print("ds_sub_pr.units = ", ds_sub_pr['units']) - #print("ds_sub_pr.lat.attrs.lat_bnds.balues = ", ds_sub_pr['lon_bnds']) -# print("\n") + # print("\n") + # print("#############################################") + # print("ds_sub_pr.shape = ", ds_sub_pr.dims) + # print("ds_sub_pr.variables.keys() = ", list(ds_sub_pr.variables.keys())) + # print("ds_sub_pr.variable = ", ds_sub_pr.variables) + # print("ds_sub_pr.keys() = ", list(ds_sub_pr.keys())) + # print("ds_sub_pr.lat = ", ds_sub_pr['lat']) + # print("ds_sub_pr.lat.attrs.lat_bounds = ", ds_sub_pr['lat'].attrs.get('bounds')) + # print("ds_sub_pr.units = ", ds_sub_pr['units']) + # print("ds_sub_pr.lat.attrs.lat_bnds.balues = ", ds_sub_pr['lon_bnds']) + # print("\n") dc = dc.bounds.add_missing_bounds("X") -# print("dc lat bnds = ", dc['lat'].attrs['bounds']) -# #print("dc lat bnds values = ", dc['lat'].attrs['bounds'].values) -# print("dc lat bnds values = ", dc['lat_bnds']) -# print("dc lat bnds values = ", dc['lat_bnds'].values) -# print("dc.lat = ", dc['lat'].sel(lat=ds_sub_pr['lat'])) -# print("dc.lat_bnds = ", dc['lat_bnds'].sel(lat=ds_sub_pr['lat'])) -# print("dc.lat_bnds.values = ", dc['lat_bnds'].sel(lat=ds_sub_pr['lat'].values)) -# print("\n") + # print("dc lat bnds = ", dc['lat'].attrs['bounds']) + # #print("dc lat bnds values = ", dc['lat'].attrs['bounds'].values) + # print("dc lat bnds values = ", dc['lat_bnds']) + # print("dc lat bnds values = ", dc['lat_bnds'].values) + # print("dc.lat = ", dc['lat'].sel(lat=ds_sub_pr['lat'])) + # print("dc.lat_bnds = ", dc['lat_bnds'].sel(lat=ds_sub_pr['lat'])) + # print("dc.lat_bnds.values = ", dc['lat_bnds'].sel(lat=ds_sub_pr['lat'].values)) + # print("\n") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("X") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("Y") - # print("d_sub_pr = , ", d_sub_pr) - #lat_bnds = dc['lat_bnds'].sel(lat=ds_sub_pr['lat']) - #ds_sub_pr['lat'].attrs['bounds'] = 'lat_bnds' - #ds_sub_pr['lat'].attrs['bounds'] = lat_bnds - #ds_sub_pr['lat_bnds'] = lat_bnds - if 'lat_bnds' not in ds_sub_pr.variables: - lat_bnds = dc['lat_bnds'].sel(lat=ds_sub_pr['lat']) - ds_sub_pr['lat_bnds'] = lat_bnds - -# print("d_sub_pr = , ", d_sub_pr) + # print("d_sub_pr = , ", d_sub_pr) + # lat_bnds = dc['lat_bnds'].sel(lat=ds_sub_pr['lat']) + # ds_sub_pr['lat'].attrs['bounds'] = 'lat_bnds' + # ds_sub_pr['lat'].attrs['bounds'] = lat_bnds + # ds_sub_pr['lat_bnds'] = lat_bnds + if "lat_bnds" not in ds_sub_pr.variables: + lat_bnds = dc["lat_bnds"].sel(lat=ds_sub_pr["lat"]) + ds_sub_pr["lat_bnds"] = lat_bnds + + # print("d_sub_pr = , ", d_sub_pr) ds_sub_aave = ds_sub_pr.spatial.average( "pr", axis=["X", "Y"], weights="generate" ).compute() d_sub_aave = ds_sub_aave.pr - -# print("PPPPPPPPPP d_sub_aave = ", d_sub_aave.values[0:10]) -# print("PPPPPPPPPP d_sub_aave.pr = ", ds_sub_aave.pr.values[0:10]) + # print("PPPPPPPPPP d_sub_aave = ", d_sub_aave.values[0:10]) + # print("PPPPPPPPPP d_sub_aave.pr = ", ds_sub_aave.pr.values[0:10]) if debug: print("debug: region:", region) @@ -614,7 +627,7 @@ def pick_year_last_day(ds): if region in ["AUS", "SAmo"]: if year == startYear: start_t = str(year) + "-07-01 00:00:00" - #end_t = str(year) + "-12-31 23:59:59" + # end_t = str(year) + "-12-31 23:59:59" end_t = str(year) + f"-12-{eday} 23:59:59" temporary[region] = d_sub_aave.sel( time=slice(start_t, end_t) @@ -632,7 +645,7 @@ def pick_year_last_day(ds): ) ) start_t = str(year) + "-07-01 00:00:00" - #end_t = str(year) + "-12-31 23:59:59" + # end_t = str(year) + "-12-31 23:59:59" end_t = str(year) + f"-12-{eday} 23:59:59" temporary[region] = d_sub_aave.sel( time=slice(start_t, end_t) @@ -647,8 +660,8 @@ def pick_year_last_day(ds): year, d_sub_aave.time, ) -# print("XXXXXXXXX") -# print("d_sub_aave", d_sub_aave) + # print("XXXXXXXXX") + # print("d_sub_aave", d_sub_aave) # get pentad time series list_d_sub_aave_chunks = list( @@ -685,8 +698,8 @@ def pick_year_last_day(ds): pentad_time_series, ref_length, debug=debug ) -# print('DDDDDDDDDDDDDDDD') -# print('pentad_time_series = ',pentad_time_series) + # print('DDDDDDDDDDDDDDDD') + # print('pentad_time_series = ',pentad_time_series) pentad_time_series_cumsum = np.cumsum(pentad_time_series) pentad_time_series = xr.DataArray( @@ -705,9 +718,9 @@ def pick_year_last_day(ds): pentad_time_series_cumsum.attrs["units"] = str(d.units.values) pentad_time_series_cumsum.coords["time"] = time_coords -# print('pentad_time_series = ',pentad_time_series) -# print('pentad_time_series_cumsum = ', pentad_time_series_cumsum) -# print('EEEEEEEEEEEEEEEEEE') + # print('pentad_time_series = ',pentad_time_series) + # print('pentad_time_series_cumsum = ', pentad_time_series_cumsum) + # print('EEEEEEEEEEEEEEEEEE') if nc_out: # Archive individual year time series in netCDF file @@ -755,9 +768,9 @@ def pick_year_last_day(ds): composite_pentad_time_series ) -# print("UUUUUUUUUUU region = ",region) -# print('composite_pentad_time_series =. ',composite_pentad_time_series) -# print('composite_pentad_time_series_cumsum =. ',composite_pentad_time_series_cumsum) + # print("UUUUUUUUUUU region = ",region) + # print('composite_pentad_time_series =. ',composite_pentad_time_series) + # print('composite_pentad_time_series_cumsum =. ',composite_pentad_time_series_cumsum) # Maintain axis information @@ -861,7 +874,9 @@ def pick_year_last_day(ds): # obs if model == "obs": ax[region].plot( - np.array(dict_obs_composite[reference_data_name][region]), + np.array( + dict_obs_composite[reference_data_name][region] + ), c="blue", label=reference_data_name, ) @@ -876,9 +891,9 @@ def pick_year_last_day(ds): ax[region].axvline( x=idx, ymin=0, - ymax=dict_obs_composite[reference_data_name][region][ - idx - ].item(), + ymax=dict_obs_composite[reference_data_name][ + region + ][idx].item(), c="blue", ls="--", ) From f07ec2c01c8b02126f1fc4a0e439c78f8baf2c9a Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Wed, 10 Apr 2024 15:36:05 -0700 Subject: [PATCH 17/46] modified: driver_monsoon_sperber.py --- .../monsoon_sperber/driver_monsoon_sperber.py | 82 +------------------ 1 file changed, 2 insertions(+), 80 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 523651d1e..ec804ae5f 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -335,24 +335,14 @@ def pick_year_last_day(ds): monsoon_stat_dic["RESULTS"][model][run] = {} print("\n") print(" --- ", run, " ---") - # print("\n") # Get time coordinate information print("model_path = ", model_path) - # dc = xc.open_mfdataset(model_path, decode_times=False) - # dc = xc.open_mfdataset(model_path, decode_times=True) - # dc = xc.open_mfdataset(model_path, decode_times=True, preprocess=lambda dc: dc.isel(time=slice(0, -1))) - # print(dc.lat) - # print(dc.lat.values) - # dc = xc.open_mfdataset(model_path, decode_times=True) - # print(dc.lat) - # print(dc.lat.values) + dc = xc.open_mfdataset( model_path, decode_times=True, add_bounds=["T", "X", "Y"] ) dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) - print("dc.time = ", dc.time) - print("dc.time = ", dc.time.values) c = xc.center_times(dc) eday = pick_year_last_day(dc) @@ -386,10 +376,6 @@ def pick_year_last_day(ds): list_pentad_time_series = {} list_pentad_time_series_cumsum = {} # Cumulative time series for region in list_monsoon_regions: - # print("\n") - # print("========== region = "+region+" ===============================================================================") - # print("\n") - # print("region = ", region) list_pentad_time_series[region] = [] list_pentad_time_series_cumsum[region] = [] @@ -481,9 +467,6 @@ def pick_year_last_day(ds): ), lat=slice(-90, 90), ) - # print("xxx d =, ", d.values) - # print("xxx d =, ", d.values[0,0,0]) - # print("type d type,", type(d)) # unit adjust if UnitsAdjust[0]: """Below two lines are identical to following: @@ -493,9 +476,6 @@ def pick_year_last_day(ds): d.values = d.values * 86400.0 d["units"] = units - # print("UnitAdjust[0] = ", UnitsAdjust[0]) - # print("xxx d =, ", d[0,0,0]) - # print("\n") # variable for over land only d_land = model_land_only(model, d, lf, debug=debug) @@ -508,9 +488,6 @@ def pick_year_last_day(ds): for region in list_monsoon_regions: print("\n") - print( - "=====================================================================================================" - ) print(" region = ", region) print("\n") # extract for monsoon region @@ -529,10 +506,6 @@ def pick_year_last_day(ds): d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units - # d_sub_pr.to_netcdf("test_region_global_xcdat.nc") - # print("\n") - # print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") - # print("\n") else: # land-only rainfall @@ -546,10 +519,6 @@ def pick_year_last_day(ds): ) ) - # d_sub_pr.to_netcdf("test_region_"+region+"_xcdat.nc") - # print("\n") - # print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") - # print("\n") lf_sub_ds = region_subset( ds_lf, regions_specs, region=region @@ -559,63 +528,27 @@ def pick_year_last_day(ds): model, d_sub_pr, lf_sub, debug=debug ) - # lf_sub.to_netcdf("lf_"+region+"_xcdat_pcmdi.nc") - # lf_sub.to_netcdf("lf_"+region+"_xcdat.nc") - # d_sub_pr.to_netcdf("test_region_land_"+region+"_xcdat.nc") - # print("\n") - # print("NetCDF file saved $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") - # print("\n") - # print("\n") - # print("KKKKKKKKK save nc save nc save nc") d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units - # print("HHHHHHHH d_sub_pr = ", d_sub_pr.values[0,0,0]) - # print("HHHHHHHH d_sub_pr.size = ", d_sub_pr.size) # Area average ds_sub_pr = d_sub_pr.to_dataset().compute() - # print("\n") - # print("#############################################") - # print("ds_sub_pr.shape = ", ds_sub_pr.dims) - # print("ds_sub_pr.variables.keys() = ", list(ds_sub_pr.variables.keys())) - # print("ds_sub_pr.variable = ", ds_sub_pr.variables) - # print("ds_sub_pr.keys() = ", list(ds_sub_pr.keys())) - # print("ds_sub_pr.lat = ", ds_sub_pr['lat']) - # print("ds_sub_pr.lat.attrs.lat_bounds = ", ds_sub_pr['lat'].attrs.get('bounds')) - # print("ds_sub_pr.units = ", ds_sub_pr['units']) - # print("ds_sub_pr.lat.attrs.lat_bnds.balues = ", ds_sub_pr['lon_bnds']) - # print("\n") dc = dc.bounds.add_missing_bounds("X") - # print("dc lat bnds = ", dc['lat'].attrs['bounds']) - # #print("dc lat bnds values = ", dc['lat'].attrs['bounds'].values) - # print("dc lat bnds values = ", dc['lat_bnds']) - # print("dc lat bnds values = ", dc['lat_bnds'].values) - # print("dc.lat = ", dc['lat'].sel(lat=ds_sub_pr['lat'])) - # print("dc.lat_bnds = ", dc['lat_bnds'].sel(lat=ds_sub_pr['lat'])) - # print("dc.lat_bnds.values = ", dc['lat_bnds'].sel(lat=ds_sub_pr['lat'].values)) - # print("\n") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("X") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("Y") - # print("d_sub_pr = , ", d_sub_pr) - # lat_bnds = dc['lat_bnds'].sel(lat=ds_sub_pr['lat']) - # ds_sub_pr['lat'].attrs['bounds'] = 'lat_bnds' - # ds_sub_pr['lat'].attrs['bounds'] = lat_bnds - # ds_sub_pr['lat_bnds'] = lat_bnds + if "lat_bnds" not in ds_sub_pr.variables: lat_bnds = dc["lat_bnds"].sel(lat=ds_sub_pr["lat"]) ds_sub_pr["lat_bnds"] = lat_bnds - # print("d_sub_pr = , ", d_sub_pr) ds_sub_aave = ds_sub_pr.spatial.average( "pr", axis=["X", "Y"], weights="generate" ).compute() d_sub_aave = ds_sub_aave.pr - # print("PPPPPPPPPP d_sub_aave = ", d_sub_aave.values[0:10]) - # print("PPPPPPPPPP d_sub_aave.pr = ", ds_sub_aave.pr.values[0:10]) if debug: print("debug: region:", region) @@ -660,8 +593,6 @@ def pick_year_last_day(ds): year, d_sub_aave.time, ) - # print("XXXXXXXXX") - # print("d_sub_aave", d_sub_aave) # get pentad time series list_d_sub_aave_chunks = list( @@ -698,8 +629,6 @@ def pick_year_last_day(ds): pentad_time_series, ref_length, debug=debug ) - # print('DDDDDDDDDDDDDDDD') - # print('pentad_time_series = ',pentad_time_series) pentad_time_series_cumsum = np.cumsum(pentad_time_series) pentad_time_series = xr.DataArray( @@ -718,9 +647,6 @@ def pick_year_last_day(ds): pentad_time_series_cumsum.attrs["units"] = str(d.units.values) pentad_time_series_cumsum.coords["time"] = time_coords - # print('pentad_time_series = ',pentad_time_series) - # print('pentad_time_series_cumsum = ', pentad_time_series_cumsum) - # print('EEEEEEEEEEEEEEEEEE') if nc_out: # Archive individual year time series in netCDF file @@ -768,10 +694,6 @@ def pick_year_last_day(ds): composite_pentad_time_series ) - # print("UUUUUUUUUUU region = ",region) - # print('composite_pentad_time_series =. ',composite_pentad_time_series) - # print('composite_pentad_time_series_cumsum =. ',composite_pentad_time_series_cumsum) - # Maintain axis information # - - - - - - - - - - - From bb0d2d4ab992e6dc6a9915d20a60e006f212f17f Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Wed, 24 Apr 2024 10:03:47 -0700 Subject: [PATCH 18/46] modified: driver_monsoon_sperber.py modified: lib/divide_chunks.py --- .../monsoon_sperber/driver_monsoon_sperber.py | 137 +++++++++++++++--- .../monsoon_sperber/lib/divide_chunks.py | 3 + 2 files changed, 121 insertions(+), 19 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index ec804ae5f..e43ef6fd1 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -45,7 +45,10 @@ from glob import glob from shutil import copyfile -import matplotlib.pyplot as plt +import matplotlib +matplotlib.use('Agg') +#import matplotlib.pyplot as plt +from matplotlib import pyplot as plt import numpy as np import pandas as pd import xarray as xr @@ -64,6 +67,7 @@ sperber_metrics, ) from pcmdi_metrics.utils import create_land_sea_mask, fill_template +from pcmdi_metrics.io import xcdat_open def tree(): @@ -88,9 +92,9 @@ def pick_year_last_day(ds): # ================================================= # Hard coded options... will be moved out later # ------------------------------------------------- -# list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] +list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] # list_monsoon_regions = ["AUS"] -list_monsoon_regions = ["Sahel"] +# list_monsoon_regions = ["Sahel"] # list_monsoon_regions = ["GoG"] # list_monsoon_regions = ["NHEX"] # list_monsoon_regions = ["AIR"] @@ -145,6 +149,8 @@ def pick_year_last_day(ds): # Path to model data as string template modpath = param.process_templated_argument("modpath") modpath_lf = param.process_templated_argument("modpath_lf") +print("modpath = ", modpath) +print("modpath_lf = ", modpath_lf) # Check given model option models = param.modnames @@ -168,7 +174,7 @@ def pick_year_last_day(ds): # remove duplicates models = sorted(list(dict.fromkeys(models)), key=lambda s: s.lower()) -print("models:", models) +#print("models:", models) print("number of models:", len(models)) # Realizations @@ -295,9 +301,11 @@ def pick_year_last_day(ds): modpath(model=model, exp=exp, realization=realization, variable=var) ) if debug: + print("model: ", model, " exp: ", exp, " realization: ", realization, " variable: ", var) print("debug: model_path_list: ", model_path_list) # land fraction model_lf_path = modpath_lf(model=model) + print("model_lf_path = ", model_lf_path) if os.path.isfile(model_lf_path): pass else: @@ -310,12 +318,27 @@ def pick_year_last_day(ds): dict_obs_composite[reference_data_name] = {} # Read land fraction - ds_lf = xc.open_mfdataset(model_lf_path) + #ds_lf = xc.open_mfdataset(model_lf_path) + if model_lf_path is not None: + if os.path.isfile(model_lf_path): + try: + ds_lf = xcdat_open(model_lf_path) + except Exception: + ds_lf = None + + if not ds_lf: + lf_array = create_land_sea_mask(ds_lf, method="pcmdi") + ds_lf = lf_array.to_dataset().compute() + ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) + +# ds_lf = xcdat_open(model_lf_path) # use pcmdi mask - lf_array = create_land_sea_mask(ds_lf, method="pcmdi") - ds_lf = lf_array.to_dataset().compute() - ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) +# lf_array = create_land_sea_mask(ds_lf, method="pcmdi") +# ds_lf = lf_array.to_dataset().compute() +# ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) # ^^^^ block above ^^^^^ + if model in [ "EC-EARTH" ]: #, "BNU-ESM" ]: + ds_lf = ds_lf.isel(lat=slice(None, None, -1)) lf = ds_lf.sftlf.sel(lat=slice(-90, 90)) # land frac file must be global # ------------------------------------------------- @@ -339,13 +362,40 @@ def pick_year_last_day(ds): # Get time coordinate information print("model_path = ", model_path) - dc = xc.open_mfdataset( - model_path, decode_times=True, add_bounds=["T", "X", "Y"] - ) +# dc = xc.open_mfdataset( +# model_path, add_bounds=["T", "X", "Y"] +# ) + +# print("XXXXXXXX check point AAAAAAAAAAAA") + dc = xcdat_open(model_path, decode_times=True) +# dc = xcdat_open(glob("/p/user_pub/climate_work/dong12/pr/cmip5.CSIRO-Mk3-6-0.historical.r1i1p1.day.pr/*.nc"), decode_times=True) +# print("dc.shape = ", dc.pr.shape) + dc['time'].attrs['axis'] = 'T' + dc['time'].attrs['standard_name'] = 'time' +# print("XXXXXXXX check point BBBBBBBBBBBBBB") + dc = xr.decode_cf(dc, decode_times=True) + dc = dc.bounds.add_missing_bounds("X") + dc = dc.bounds.add_missing_bounds("Y") + dc = dc.bounds.add_missing_bounds("T") +# print("XXXXXXXX check point DDDDDDDDDDDDDDD") + +# try: +# dc = xc.open_mfdataset( +# model_path, decode_times=True, add_bounds=["T", "X", "Y"] +# ).loads() +# except: +# # QC loading datafiles +# break + +# print("dc = , ", dc) +# print("lf = , ", lf) dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) +# print("XXXXXXXX check point CCCCCCCCCCCCCC") c = xc.center_times(dc) eday = pick_year_last_day(dc) + #print("dc.time = ", dc.time) + # Get starting and ending year and month startYear = c.time.values[0].year startMonth = c.time.values[0].month @@ -519,14 +569,19 @@ def pick_year_last_day(ds): ) ) - +# print("regions_specs = ", regions_specs) lf_sub_ds = region_subset( ds_lf, regions_specs, region=region ) lf_sub = lf_sub_ds.sftlf +# print("ds_lf.lat = ", ds_lf.lat) +# print("lf_sub.lat = ", lf_sub.lat) +# print("d_sub_pr.shape = ", d_sub_pr.shape) +# print("lf_sub.shape = ", lf_sub.shape) d_sub_pr = model_land_only( model, d_sub_pr, lf_sub, debug=debug ) +# print("d_sub_pr.shape = ", d_sub_pr.shape) d_sub_pr.values = d_sub_pr.values * 86400.0 @@ -539,6 +594,10 @@ def pick_year_last_day(ds): dc = dc.bounds.add_missing_bounds("X") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("X") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("Y") + ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("T") + +# print('d_sub_pr.time = ', d_sub_pr.time) +# print('ds_sub_pr.time = ', ds_sub_pr.time) if "lat_bnds" not in ds_sub_pr.variables: lat_bnds = dc["lat_bnds"].sel(lat=ds_sub_pr["lat"]) @@ -549,11 +608,15 @@ def pick_year_last_day(ds): ).compute() d_sub_aave = ds_sub_aave.pr +# print('ds_sub_aave.time = ', ds_sub_aave.time) +# print('d_sub_aave.time = ', d_sub_aave.time) + +# print("XXXXX checkpoint GGGGGGGGGGGGGGGG ") if debug: print("debug: region:", region) - print("debug: d_sub_pr.shape:", d_sub_pr.shape) - print("debug: d_sub_aave.shape:", d_sub_aave.shape) +# print("debug: d_sub_pr.shape:", d_sub_pr.shape) +# print("debug: d_sub_aave.shape:", d_sub_aave.shape) # Southern Hemisphere monsoon domain # set time series as 7/1~6/30 @@ -586,18 +649,21 @@ def pick_year_last_day(ds): d_sub_aave = xr.concat([part1, part2], dim="time") +# print('after concat d_sub_aave.time = ', d_sub_aave.time) + if debug: print( "debug: ", region, year, - d_sub_aave.time, +# d_sub_aave.time, ) - +# print("XXXXX checkpoint EEEEEEEEEEEEEEEE ") # get pentad time series list_d_sub_aave_chunks = list( divide_chunks_advanced(d_sub_aave, n, debug=debug) ) +# print("XXXXX checkpoint FFFFFFFFFFFFFFFF ") pentad_time_series = [] time_coords = np.array([], dtype="datetime64") @@ -615,6 +681,23 @@ def pick_year_last_day(ds): datetime = pd.to_datetime([datetime_str[:10]]) time_coords = np.concatenate([time_coords, datetime]) time_coords = pd.to_datetime(time_coords) +# print("pentad_time_series = ", pentad_time_series) +# pentad_time_series = xr.DataArray( +# pentad_time_series, +# dims="time", +# ) +# print("pentad_time_series = ", pentad_time_series) +# pentad_time_series.coords["time"] = time_coords + + pentad_time_series = xr.DataArray( + pentad_time_series, + dims="time", + coords={"time": time_coords}, + ) +# print("pentad_time_series = ", pentad_time_series) +# pentad_time_series.coords["time"] = time_coords +# print("pentad_time_series = ", pentad_time_series) + if debug: print( @@ -624,11 +707,27 @@ def pick_year_last_day(ds): # Keep pentad time series length in consistent ref_length = int(365 / n) +# if model == "obs": +# time_coords_ref = time_coords if len(pentad_time_series) < ref_length: - pentad_time_series = interp1d( - pentad_time_series, ref_length, debug=debug +# pentad_time_series = interp1d( +# pentad_time_series, ref_length, debug=debug +# ) +# pentad_time_series = xr.DataArray( +# pentad_time_series, +# dims="time", +# ) + + pentad_time_series = pentad_time_series.interp( + time=pd.date_range(time_coords[0], time_coords[-1], periods=ref_length) ) +# print("time_coords_ref = , ", time_coords_ref) +# print("time_coords = , ", time_coords) +# pentad_time_series.coords["time"] = time_coords_ref + time_coords = pentad_time_series.coords["time"] +# print("time_coords = , ", time_coords) + pentad_time_series_cumsum = np.cumsum(pentad_time_series) pentad_time_series = xr.DataArray( @@ -637,7 +736,7 @@ def pick_year_last_day(ds): name=region + "_" + str(year), ) pentad_time_series.attrs["units"] = str(d.units.values) - pentad_time_series.coords["time"] = time_coords +# pentad_time_series.coords["time"] = time_coords pentad_time_series_cumsum = xr.DataArray( pentad_time_series_cumsum, diff --git a/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py b/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py index b3e7d661c..efd031175 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py +++ b/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py @@ -26,8 +26,11 @@ def divide_chunks_advanced(data, n, debug=False): tim = data.time.dt month = tim.month[0] day = tim.day[0] + month = month.values + day = day.values calendar = "gregorian" if debug: + #print("month = ", month, "day = ", day) print("debug: first day of year is " + str(month) + "/" + str(day)) if month not in [1, 7] or day != 1: sys.exit( From 639313f9ed6946e9df8dabe68e8bbf64bb25961a Mon Sep 17 00:00:00 2001 From: Bo Dong postdoc Date: Mon, 13 May 2024 13:19:19 -0700 Subject: [PATCH 19/46] modified: driver_monsoon_sperber.py --- .../monsoon_sperber/driver_monsoon_sperber.py | 87 ++----------------- 1 file changed, 6 insertions(+), 81 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index e43ef6fd1..17b3d6655 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -93,11 +93,6 @@ def pick_year_last_day(ds): # Hard coded options... will be moved out later # ------------------------------------------------- list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] -# list_monsoon_regions = ["AUS"] -# list_monsoon_regions = ["Sahel"] -# list_monsoon_regions = ["GoG"] -# list_monsoon_regions = ["NHEX"] -# list_monsoon_regions = ["AIR"] # list_monsoon_regions = ["all"] @@ -158,7 +153,6 @@ def pick_year_last_day(ds): # list of regions # list_monsoon_regions = param.list_monsoon_regions -# print("regions:", list_monsoon_regions) # Include all models if conditioned if ("all" in [m.lower() for m in models]) or (models == "all"): @@ -174,7 +168,6 @@ def pick_year_last_day(ds): # remove duplicates models = sorted(list(dict.fromkeys(models)), key=lambda s: s.lower()) -#print("models:", models) print("number of models:", len(models)) # Realizations @@ -266,8 +259,6 @@ def pick_year_last_day(ds): models.insert(0, "obs") for model in models: - print(" ----- ", model, " ---------------------") - print("\n") print( "========== model = " + model @@ -318,7 +309,6 @@ def pick_year_last_day(ds): dict_obs_composite[reference_data_name] = {} # Read land fraction - #ds_lf = xc.open_mfdataset(model_lf_path) if model_lf_path is not None: if os.path.isfile(model_lf_path): try: @@ -331,12 +321,11 @@ def pick_year_last_day(ds): ds_lf = lf_array.to_dataset().compute() ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) -# ds_lf = xcdat_open(model_lf_path) - # use pcmdi mask -# lf_array = create_land_sea_mask(ds_lf, method="pcmdi") -# ds_lf = lf_array.to_dataset().compute() -# ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) - # ^^^^ block above ^^^^^ + # use pcmdi mask + # lf_array = create_land_sea_mask(ds_lf, method="pcmdi") + # ds_lf = lf_array.to_dataset().compute() + # ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) + if model in [ "EC-EARTH" ]: #, "BNU-ESM" ]: ds_lf = ds_lf.isel(lat=slice(None, None, -1)) lf = ds_lf.sftlf.sel(lat=slice(-90, 90)) # land frac file must be global @@ -362,39 +351,19 @@ def pick_year_last_day(ds): # Get time coordinate information print("model_path = ", model_path) -# dc = xc.open_mfdataset( -# model_path, add_bounds=["T", "X", "Y"] -# ) -# print("XXXXXXXX check point AAAAAAAAAAAA") dc = xcdat_open(model_path, decode_times=True) -# dc = xcdat_open(glob("/p/user_pub/climate_work/dong12/pr/cmip5.CSIRO-Mk3-6-0.historical.r1i1p1.day.pr/*.nc"), decode_times=True) -# print("dc.shape = ", dc.pr.shape) dc['time'].attrs['axis'] = 'T' dc['time'].attrs['standard_name'] = 'time' -# print("XXXXXXXX check point BBBBBBBBBBBBBB") dc = xr.decode_cf(dc, decode_times=True) dc = dc.bounds.add_missing_bounds("X") dc = dc.bounds.add_missing_bounds("Y") dc = dc.bounds.add_missing_bounds("T") -# print("XXXXXXXX check point DDDDDDDDDDDDDDD") - -# try: -# dc = xc.open_mfdataset( -# model_path, decode_times=True, add_bounds=["T", "X", "Y"] -# ).loads() -# except: -# # QC loading datafiles -# break - -# print("dc = , ", dc) -# print("lf = , ", lf) + dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) -# print("XXXXXXXX check point CCCCCCCCCCCCCC") c = xc.center_times(dc) eday = pick_year_last_day(dc) - #print("dc.time = ", dc.time) # Get starting and ending year and month startYear = c.time.values[0].year @@ -497,8 +466,6 @@ def pick_year_last_day(ds): # Loop start - Year # ------------------------------------------------- temporary = {} - print("\n") - print( "========== model = " + model + " ===============================================================================" @@ -569,19 +536,13 @@ def pick_year_last_day(ds): ) ) -# print("regions_specs = ", regions_specs) lf_sub_ds = region_subset( ds_lf, regions_specs, region=region ) lf_sub = lf_sub_ds.sftlf -# print("ds_lf.lat = ", ds_lf.lat) -# print("lf_sub.lat = ", lf_sub.lat) -# print("d_sub_pr.shape = ", d_sub_pr.shape) -# print("lf_sub.shape = ", lf_sub.shape) d_sub_pr = model_land_only( model, d_sub_pr, lf_sub, debug=debug ) -# print("d_sub_pr.shape = ", d_sub_pr.shape) d_sub_pr.values = d_sub_pr.values * 86400.0 @@ -596,8 +557,6 @@ def pick_year_last_day(ds): ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("Y") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("T") -# print('d_sub_pr.time = ', d_sub_pr.time) -# print('ds_sub_pr.time = ', ds_sub_pr.time) if "lat_bnds" not in ds_sub_pr.variables: lat_bnds = dc["lat_bnds"].sel(lat=ds_sub_pr["lat"]) @@ -608,15 +567,10 @@ def pick_year_last_day(ds): ).compute() d_sub_aave = ds_sub_aave.pr -# print('ds_sub_aave.time = ', ds_sub_aave.time) -# print('d_sub_aave.time = ', d_sub_aave.time) -# print("XXXXX checkpoint GGGGGGGGGGGGGGGG ") if debug: print("debug: region:", region) -# print("debug: d_sub_pr.shape:", d_sub_pr.shape) -# print("debug: d_sub_aave.shape:", d_sub_aave.shape) # Southern Hemisphere monsoon domain # set time series as 7/1~6/30 @@ -649,21 +603,17 @@ def pick_year_last_day(ds): d_sub_aave = xr.concat([part1, part2], dim="time") -# print('after concat d_sub_aave.time = ', d_sub_aave.time) if debug: print( "debug: ", region, year, -# d_sub_aave.time, ) -# print("XXXXX checkpoint EEEEEEEEEEEEEEEE ") # get pentad time series list_d_sub_aave_chunks = list( divide_chunks_advanced(d_sub_aave, n, debug=debug) ) -# print("XXXXX checkpoint FFFFFFFFFFFFFFFF ") pentad_time_series = [] time_coords = np.array([], dtype="datetime64") @@ -681,22 +631,12 @@ def pick_year_last_day(ds): datetime = pd.to_datetime([datetime_str[:10]]) time_coords = np.concatenate([time_coords, datetime]) time_coords = pd.to_datetime(time_coords) -# print("pentad_time_series = ", pentad_time_series) -# pentad_time_series = xr.DataArray( -# pentad_time_series, -# dims="time", -# ) -# print("pentad_time_series = ", pentad_time_series) -# pentad_time_series.coords["time"] = time_coords pentad_time_series = xr.DataArray( pentad_time_series, dims="time", coords={"time": time_coords}, ) -# print("pentad_time_series = ", pentad_time_series) -# pentad_time_series.coords["time"] = time_coords -# print("pentad_time_series = ", pentad_time_series) if debug: @@ -707,26 +647,13 @@ def pick_year_last_day(ds): # Keep pentad time series length in consistent ref_length = int(365 / n) -# if model == "obs": -# time_coords_ref = time_coords if len(pentad_time_series) < ref_length: -# pentad_time_series = interp1d( -# pentad_time_series, ref_length, debug=debug -# ) -# pentad_time_series = xr.DataArray( -# pentad_time_series, -# dims="time", -# ) pentad_time_series = pentad_time_series.interp( time=pd.date_range(time_coords[0], time_coords[-1], periods=ref_length) ) -# print("time_coords_ref = , ", time_coords_ref) -# print("time_coords = , ", time_coords) -# pentad_time_series.coords["time"] = time_coords_ref time_coords = pentad_time_series.coords["time"] -# print("time_coords = , ", time_coords) pentad_time_series_cumsum = np.cumsum(pentad_time_series) @@ -736,7 +663,6 @@ def pick_year_last_day(ds): name=region + "_" + str(year), ) pentad_time_series.attrs["units"] = str(d.units.values) -# pentad_time_series.coords["time"] = time_coords pentad_time_series_cumsum = xr.DataArray( pentad_time_series_cumsum, @@ -772,7 +698,6 @@ def pick_year_last_day(ds): # --- Monsoon region loop end # --- Year loop end - # fc.close() dc.close() # ------------------------------------------------- From 67e382ce3befe6279918f2bd2d542ad196961bd9 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Tue, 14 May 2024 22:48:18 -0700 Subject: [PATCH 20/46] clean up the driver file --- .../monsoon_sperber/driver_monsoon_sperber.py | 89 +++++++------------ 1 file changed, 30 insertions(+), 59 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 17b3d6655..9018614d2 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -2,7 +2,9 @@ """ Calculate monsoon metrics -Bo Dong (dong12@llnl.gov) and Jiwoo Lee (lee1043@llnl.gov) +Code History: +- First implemented by Jiwoo Lee (lee1043@llnl.gov), 2018. 9. +- Updated using xarray/xcdat by Bo Dong (dong12@llnl.gov) and Jiwoo Lee, 2024. 4. Reference: Sperber, K. and H. Annamalai, 2014: @@ -46,28 +48,26 @@ from shutil import copyfile import matplotlib -matplotlib.use('Agg') -#import matplotlib.pyplot as plt -from matplotlib import pyplot as plt import numpy as np import pandas as pd import xarray as xr import xcdat as xc +from matplotlib import pyplot as plt import pcmdi_metrics from pcmdi_metrics import resources -from pcmdi_metrics.io import load_regions_specs, region_subset +from pcmdi_metrics.io import load_regions_specs, region_subset, xcdat_open from pcmdi_metrics.mean_climate.lib import pmp_parser from pcmdi_metrics.monsoon_sperber.lib import ( AddParserArgument, YearCheck, divide_chunks_advanced, - interp1d, model_land_only, sperber_metrics, ) from pcmdi_metrics.utils import create_land_sea_mask, fill_template -from pcmdi_metrics.io import xcdat_open + +matplotlib.use("Agg") def tree(): @@ -89,13 +89,6 @@ def pick_year_last_day(ds): return eday -# ================================================= -# Hard coded options... will be moved out later -# ------------------------------------------------- -list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] -# list_monsoon_regions = ["all"] - - # How many elements each list should have n = 5 # pentad @@ -152,7 +145,7 @@ def pick_year_last_day(ds): print("models:", models) # list of regions -# list_monsoon_regions = param.list_monsoon_regions +list_monsoon_regions = param.list_monsoon_regions # Include all models if conditioned if ("all" in [m.lower() for m in models]) or (models == "all"): @@ -259,12 +252,7 @@ def pick_year_last_day(ds): models.insert(0, "obs") for model in models: - print( - "========== model = " - + model - + " ===============================================================================" - ) - print("\n") + print(f"==== model: {model} ======================================") try: # Conditions depending obs or model if model == "obs": @@ -292,7 +280,16 @@ def pick_year_last_day(ds): modpath(model=model, exp=exp, realization=realization, variable=var) ) if debug: - print("model: ", model, " exp: ", exp, " realization: ", realization, " variable: ", var) + print( + "model: ", + model, + " exp: ", + exp, + " realization: ", + realization, + " variable: ", + var, + ) print("debug: model_path_list: ", model_path_list) # land fraction model_lf_path = modpath_lf(model=model) @@ -307,26 +304,21 @@ def pick_year_last_day(ds): dict_obs_composite = {} dict_obs_composite[reference_data_name] = {} - # Read land fraction + # Read land fraction if model_lf_path is not None: if os.path.isfile(model_lf_path): try: ds_lf = xcdat_open(model_lf_path) except Exception: ds_lf = None - - if not ds_lf: + + if not ds_lf: lf_array = create_land_sea_mask(ds_lf, method="pcmdi") ds_lf = lf_array.to_dataset().compute() ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) - # use pcmdi mask - # lf_array = create_land_sea_mask(ds_lf, method="pcmdi") - # ds_lf = lf_array.to_dataset().compute() - # ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) - - if model in [ "EC-EARTH" ]: #, "BNU-ESM" ]: + if model in ["EC-EARTH"]: # , "BNU-ESM" ]: ds_lf = ds_lf.isel(lat=slice(None, None, -1)) lf = ds_lf.sftlf.sel(lat=slice(-90, 90)) # land frac file must be global @@ -345,16 +337,15 @@ def pick_year_last_day(ds): run = realization if run not in monsoon_stat_dic["RESULTS"][model]: monsoon_stat_dic["RESULTS"][model][run] = {} - print("\n") - print(" --- ", run, " ---") + + print(f" --- {run} ---") # Get time coordinate information print("model_path = ", model_path) - dc = xcdat_open(model_path, decode_times=True) - dc['time'].attrs['axis'] = 'T' - dc['time'].attrs['standard_name'] = 'time' + dc["time"].attrs["axis"] = "T" + dc["time"].attrs["standard_name"] = "time" dc = xr.decode_cf(dc, decode_times=True) dc = dc.bounds.add_missing_bounds("X") dc = dc.bounds.add_missing_bounds("Y") @@ -364,7 +355,6 @@ def pick_year_last_day(ds): c = xc.center_times(dc) eday = pick_year_last_day(dc) - # Get starting and ending year and month startYear = c.time.values[0].year startMonth = c.time.values[0].month @@ -466,10 +456,6 @@ def pick_year_last_day(ds): # Loop start - Year # ------------------------------------------------- temporary = {} - "========== model = " - + model - + " ===============================================================================" - ) print("\n") # year loop, endYear+1 to include last year for year in range(startYear, endYear + 1): @@ -478,7 +464,6 @@ def pick_year_last_day(ds): print("\n") d = dc.pr.sel( time=slice( - # str(year) + "-01-01 00:00:00", str(year) + "-12-31 23:59:59" str(year) + "-01-01 00:00:00", str(year) + f"-12-{eday} 23:59:59", ), @@ -493,14 +478,12 @@ def pick_year_last_day(ds): d.values = d.values * 86400.0 d["units"] = units - # variable for over land only d_land = model_land_only(model, d, lf, debug=debug) # - - - - - - - - - - - - - - - - - - - - - - - - - # Loop start - Monsoon region # - - - - - - - - - - - - - - - - - - - - - - - - - - regions_specs = load_regions_specs() for region in list_monsoon_regions: @@ -515,7 +498,6 @@ def pick_year_last_day(ds): d_sub_pr = d_sub_ds.pr.sel( time=slice( str(year) + "-01-01 00:00:00", - # str(year) + "-12-31 23:59:59", str(year) + f"-12-{eday} 23:59:59", ) ) @@ -523,7 +505,6 @@ def pick_year_last_day(ds): d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units - else: # land-only rainfall @@ -544,11 +525,9 @@ def pick_year_last_day(ds): model, d_sub_pr, lf_sub, debug=debug ) - d_sub_pr.values = d_sub_pr.values * 86400.0 d_sub_pr["units"] = units - # Area average ds_sub_pr = d_sub_pr.to_dataset().compute() @@ -557,7 +536,6 @@ def pick_year_last_day(ds): ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("Y") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("T") - if "lat_bnds" not in ds_sub_pr.variables: lat_bnds = dc["lat_bnds"].sel(lat=ds_sub_pr["lat"]) ds_sub_pr["lat_bnds"] = lat_bnds @@ -567,8 +545,6 @@ def pick_year_last_day(ds): ).compute() d_sub_aave = ds_sub_aave.pr - - if debug: print("debug: region:", region) @@ -577,7 +553,6 @@ def pick_year_last_day(ds): if region in ["AUS", "SAmo"]: if year == startYear: start_t = str(year) + "-07-01 00:00:00" - # end_t = str(year) + "-12-31 23:59:59" end_t = str(year) + f"-12-{eday} 23:59:59" temporary[region] = d_sub_aave.sel( time=slice(start_t, end_t) @@ -595,7 +570,6 @@ def pick_year_last_day(ds): ) ) start_t = str(year) + "-07-01 00:00:00" - # end_t = str(year) + "-12-31 23:59:59" end_t = str(year) + f"-12-{eday} 23:59:59" temporary[region] = d_sub_aave.sel( time=slice(start_t, end_t) @@ -603,7 +577,6 @@ def pick_year_last_day(ds): d_sub_aave = xr.concat([part1, part2], dim="time") - if debug: print( "debug: ", @@ -638,7 +611,6 @@ def pick_year_last_day(ds): coords={"time": time_coords}, ) - if debug: print( "debug: pentad_time_series length: ", @@ -648,14 +620,14 @@ def pick_year_last_day(ds): # Keep pentad time series length in consistent ref_length = int(365 / n) if len(pentad_time_series) < ref_length: - pentad_time_series = pentad_time_series.interp( - time=pd.date_range(time_coords[0], time_coords[-1], periods=ref_length) + time=pd.date_range( + time_coords[0], time_coords[-1], periods=ref_length + ) ) time_coords = pentad_time_series.coords["time"] - pentad_time_series_cumsum = np.cumsum(pentad_time_series) pentad_time_series = xr.DataArray( pentad_time_series, @@ -672,7 +644,6 @@ def pick_year_last_day(ds): pentad_time_series_cumsum.attrs["units"] = str(d.units.values) pentad_time_series_cumsum.coords["time"] = time_coords - if nc_out: # Archive individual year time series in netCDF file pentad_time_series.to_netcdf(file_path, mode="a") From 48148711d623d2f0e3a6699301b76c0e7f2f52dd Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Tue, 14 May 2024 22:48:47 -0700 Subject: [PATCH 21/46] pre-commit clean up --- pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py | 4 +++- pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py | 2 +- pcmdi_metrics/monsoon_sperber/lib/model_land_only.py | 4 ++-- 3 files changed, 6 insertions(+), 4 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py b/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py index 6fa42d61a..a51cc81a3 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py +++ b/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py @@ -54,7 +54,9 @@ def AddParserArgument(P): "--meyear", dest="meyear", type=int, help="End year for model data set" ) P.add_argument("--modnames", type=str, default=None, help="List of models") - P.add_argument("--list_monsoon_regions", type=str, default=None, help="List of regions") + P.add_argument( + "--list_monsoon_regions", type=str, default=None, help="List of regions" + ) P.add_argument( "-r", "--realization", diff --git a/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py b/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py index efd031175..8a215f4f8 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py +++ b/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py @@ -30,7 +30,7 @@ def divide_chunks_advanced(data, n, debug=False): day = day.values calendar = "gregorian" if debug: - #print("month = ", month, "day = ", day) + # print("month = ", month, "day = ", day) print("debug: first day of year is " + str(month) + "/" + str(day)) if month not in [1, 7] or day != 1: sys.exit( diff --git a/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py b/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py index 2dd47cac2..b1319fb65 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py +++ b/pcmdi_metrics/monsoon_sperber/lib/model_land_only.py @@ -9,7 +9,7 @@ def model_land_only(model, model_timeseries, lf, debug=False): # - - - - - - - - - - - - - - - - - - - - - - - - - if debug: - #plot_map(model_timeseries[0], "_".join(["test", model, "beforeMask.png"])) + # plot_map(model_timeseries[0], "_".join(["test", model, "beforeMask.png"])) print("debug: plot for beforeMask done") # Check land fraction variable to see if it meet criteria @@ -33,7 +33,7 @@ def model_land_only(model, model_timeseries, lf, debug=False): model_timeseries_masked = model_timeseries.where(lf > 90) if debug: - #plot_map(model_timeseries_masked[0], "_".join(["test", model, "afterMask.png"])) + # plot_map(model_timeseries_masked[0], "_".join(["test", model, "afterMask.png"])) print("debug: plot for afterMask done") return model_timeseries_masked From 21cc657e610d42d0cd2106910ec6eebdccd92244 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Tue, 14 May 2024 22:49:19 -0700 Subject: [PATCH 22/46] pre-commit clean up --- pcmdi_metrics/monsoon_sperber/param/Bo_param.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/param/Bo_param.py b/pcmdi_metrics/monsoon_sperber/param/Bo_param.py index 5ec7d9522..ca0d9bd6e 100644 --- a/pcmdi_metrics/monsoon_sperber/param/Bo_param.py +++ b/pcmdi_metrics/monsoon_sperber/param/Bo_param.py @@ -14,9 +14,9 @@ # ------------------------------------------------- update_json = False debug = False -#debug = True +# debug = True -#list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] +# list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] list_monsoon_regions = ["AUS"] # ================================================= # Observation @@ -41,7 +41,7 @@ modpath = "/work/lee1043/ESGF/xmls/cmip5/historical/day/pr/cmip5.%(model).%(exp).%(realization).day.pr.xml" modpath_lf = "/work/lee1043/ESGF/xmls/cmip5/historical/fx/sftlf/cmip5.%(model).historical.r0i0p0.fx.sftlf.xml" -#/p/css03/scratch/published-older/cmip5/output1/CSIRO-BOM/ACCESS1-0/historical/day/atmos/day/r1i1p1/v4/pr/pr_day_ACCESS1-0_historical_r1i1p1_19750101-19991231.nc +# /p/css03/scratch/published-older/cmip5/output1/CSIRO-BOM/ACCESS1-0/historical/day/atmos/day/r1i1p1/v4/pr/pr_day_ACCESS1-0_historical_r1i1p1_19750101-19991231.nc # modnames = ['ACCESS1-0', 'ACCESS1-3', 'BCC-CSM1-1', 'BCC-CSM1-1-M', 'BNU-ESM', 'CanCM4', 'CanESM2', 'CCSM4', 'CESM1-BGC', 'CESM1-CAM5', 'CESM1-FASTCHEM', 'CMCC-CESM', 'CMCC-CM', 'CMCC-CMS', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'EC-EARTH', 'FGOALS-g2', 'GFDL-CM3', 'GFDL-ESM2G', 'GFDL-ESM2M', 'GISS-E2-H', 'GISS-E2-R', 'HadGEM2-AO', 'HadGEM2-CC', 'HadGEM2-ES', 'INMCM4', 'IPSL-CM5A-LR', 'IPSL-CM5A-MR', 'IPSL-CM5B-LR', 'MIROC-ESM', 'MIROC-ESM-CHEM', 'MIROC4h', 'MIROC5', 'MPI-ESM-MR', 'MPI-ESM-P', 'MRI-CGCM3', 'MRI-ESM1', 'NorESM1-M'] # noqa @@ -60,7 +60,7 @@ # ================================================= # Output # ------------------------------------------------- -#pmprdir = "/p/user_pub/pmp/pmp_results/pmp_v1.1.2" +# pmprdir = "/p/user_pub/pmp/pmp_results/pmp_v1.1.2" pmprdir = "/p/user_pub/climate_work/dong12/PMP_result/" case_id = "{:v%Y%m%d}".format(datetime.datetime.now()) From d6c3b808263848a9882c17d40b4b2a811083d65f Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Tue, 14 May 2024 22:55:37 -0700 Subject: [PATCH 23/46] pre-commit clean up --- share/DefArgsCIA.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/share/DefArgsCIA.json b/share/DefArgsCIA.json index cd33a055d..8507f33ba 100644 --- a/share/DefArgsCIA.json +++ b/share/DefArgsCIA.json @@ -163,4 +163,4 @@ ], "help":"A list of variables to be processed" } -} \ No newline at end of file +} From 8a07210dde71937a49219d72c961d1506acc19e7 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Tue, 14 May 2024 23:24:26 -0700 Subject: [PATCH 24/46] bug fix and clean up --- .../monsoon_sperber/driver_monsoon_sperber.py | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 9018614d2..18c68300d 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -37,6 +37,7 @@ """ import copy +import glob import json import math import os @@ -44,7 +45,6 @@ import sys from argparse import RawTextHelpFormatter from collections import defaultdict -from glob import glob from shutil import copyfile import matplotlib @@ -54,9 +54,9 @@ import xcdat as xc from matplotlib import pyplot as plt -import pcmdi_metrics from pcmdi_metrics import resources from pcmdi_metrics.io import load_regions_specs, region_subset, xcdat_open +from pcmdi_metrics.io.base import Base from pcmdi_metrics.mean_climate.lib import pmp_parser from pcmdi_metrics.monsoon_sperber.lib import ( AddParserArgument, @@ -147,6 +147,11 @@ def pick_year_last_day(ds): # list of regions list_monsoon_regions = param.list_monsoon_regions +if list_monsoon_regions is None: + list_monsoon_regions = ["AIR", "AUS", "Sahel", "GoG", "NAmo", "SAmo"] + +print("list_monsoon_regions:", list_monsoon_regions) + # Include all models if conditioned if ("all" in [m.lower() for m in models]) or (models == "all"): model_index_path = re.split(". |_", modpath.split("/")[-1]).index("%(model)") @@ -843,9 +848,7 @@ def pick_year_last_day(ds): # Write dictionary to json file # (let the json keep overwritten in model loop) # ------------------------------------------------- - JSON = pcmdi_metrics.io.base.Base( - outdir(output_type="metrics_results"), json_filename - ) + JSON = Base(outdir(output_type="metrics_results"), json_filename) JSON.write( monsoon_stat_dic, json_structure=["model", "realization", "monsoon_region", "metric"], From 956f7bd319360d32d3c05846d5df569ca64a23dc Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Wed, 15 May 2024 00:00:41 -0700 Subject: [PATCH 25/46] bug fix, clean up --- .../monsoon_sperber/driver_monsoon_sperber.py | 27 +++++++------------ 1 file changed, 9 insertions(+), 18 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 18c68300d..ac5646aae 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -54,7 +54,6 @@ import xcdat as xc from matplotlib import pyplot as plt -from pcmdi_metrics import resources from pcmdi_metrics.io import load_regions_specs, region_subset, xcdat_open from pcmdi_metrics.io.base import Base from pcmdi_metrics.mean_climate.lib import pmp_parser @@ -238,17 +237,9 @@ def pick_year_last_day(ds): monsoon_stat_dic["RESULTS"] = {} # ================================================= -# Loop start for given models +# Load region information # ------------------------------------------------- -regions_specs = {} -egg_pth = resources.resource_path() -exec( - compile( - open(os.path.join(egg_pth, "default_regions.py")).read(), - os.path.join(egg_pth, "default_regions.py"), - "exec", - ) -) +regions_specs = load_regions_specs() # ================================================= # Loop start for given models @@ -489,12 +480,8 @@ def pick_year_last_day(ds): # - - - - - - - - - - - - - - - - - - - - - - - - - # Loop start - Monsoon region # - - - - - - - - - - - - - - - - - - - - - - - - - - regions_specs = load_regions_specs() - for region in list_monsoon_regions: - print("\n") print(" region = ", region) - print("\n") # extract for monsoon region if region in ["GoG", "NAmo"]: # all grid point rainfall @@ -513,17 +500,21 @@ def pick_year_last_day(ds): else: # land-only rainfall - d_sub_ds = region_subset(dc, regions_specs, region=region) + d_sub_ds = region_subset( + dc, region, data_var="pr", regions_specs=regions_specs + ) d_sub_pr = d_sub_ds.pr.sel( time=slice( str(year) + "-01-01 00:00:00", - # str(year) + "-12-31 23:59:59", str(year) + f"-12-{eday} 23:59:59", ) ) lf_sub_ds = region_subset( - ds_lf, regions_specs, region=region + ds_lf, + region, + data_var="sftlf", + regions_specs=regions_specs, ) lf_sub = lf_sub_ds.sftlf d_sub_pr = model_land_only( From f19f00f7b7b2e09bf3505d5465c10de7c8c8cac9 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Wed, 15 May 2024 00:07:14 -0700 Subject: [PATCH 26/46] clean up --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index ac5646aae..5df5ce394 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -272,7 +272,7 @@ def pick_year_last_day(ds): syear = msyear eyear = meyear # variable data - model_path_list = glob( + model_path_list = glob.glob( modpath(model=model, exp=exp, realization=realization, variable=var) ) if debug: @@ -485,7 +485,9 @@ def pick_year_last_day(ds): # extract for monsoon region if region in ["GoG", "NAmo"]: # all grid point rainfall - d_sub_ds = region_subset(dc, regions_specs, region=region) + d_sub_ds = region_subset( + dc, region, data_var="pr", regions_specs=regions_specs + ) # must be entire calendar years d_sub_pr = d_sub_ds.pr.sel( time=slice( @@ -499,7 +501,6 @@ def pick_year_last_day(ds): else: # land-only rainfall - d_sub_ds = region_subset( dc, region, data_var="pr", regions_specs=regions_specs ) @@ -525,7 +526,6 @@ def pick_year_last_day(ds): d_sub_pr["units"] = units # Area average - ds_sub_pr = d_sub_pr.to_dataset().compute() dc = dc.bounds.add_missing_bounds("X") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("X") From 8d6f2fe8fee183f358e4bba4245196508ac9ebaf Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Wed, 15 May 2024 00:19:56 -0700 Subject: [PATCH 27/46] clean up --- .../monsoon_sperber/driver_monsoon_sperber.py | 70 ++++++++----------- 1 file changed, 28 insertions(+), 42 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 5df5ce394..e81218057 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -527,10 +527,12 @@ def pick_year_last_day(ds): # Area average ds_sub_pr = d_sub_pr.to_dataset().compute() - dc = dc.bounds.add_missing_bounds("X") - ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("X") - ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("Y") - ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("T") + # dc = dc.bounds.add_missing_bounds("X") + dc = dc.bounds.add_missing_bounds() + # ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("X") + # ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("Y") + # ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("T") + ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds() if "lat_bnds" not in ds_sub_pr.variables: lat_bnds = dc["lat_bnds"].sel(lat=ds_sub_pr["lat"]) @@ -676,61 +678,51 @@ def pick_year_last_day(ds): for region in list_monsoon_regions: # Get composite for each region - composite_pentad_time_series = np.array( + composite_pentad_ts = np.array( list_pentad_time_series[region] ).mean(axis=0) # Get accumulation ts from the composite - composite_pentad_time_series_cumsum = np.cumsum( - composite_pentad_time_series - ) - - # Maintain axis information + composite_pentad_ts_cumsum = np.cumsum(composite_pentad_ts) # - - - - - - - - - - - # Metrics for composite # - - - - - - - - - - - metrics_result = sperber_metrics( - composite_pentad_time_series_cumsum, region, debug=debug + composite_pentad_ts_cumsum, region, debug=debug ) # Normalized cummulative pentad time series - composite_pentad_time_series_cumsum_normalized = metrics_result[ - "frac_accum" - ] + composite_pentad_ts_cumsum_normalized = metrics_result["frac_accum"] - composite_pentad_time_series = xr.DataArray( - composite_pentad_time_series, dims="time", name=region + "_comp" + composite_pentad_ts = xr.DataArray( + composite_pentad_ts, dims="time", name=region + "_comp" ) - composite_pentad_time_series.attrs["units"] = str(d.units) - composite_pentad_time_series.coords["time"] = time_coords + composite_pentad_ts.attrs["units"] = str(d.units) + composite_pentad_ts.coords["time"] = time_coords - composite_pentad_time_series_cumsum = xr.DataArray( - composite_pentad_time_series_cumsum, + composite_pentad_ts_cumsum = xr.DataArray( + composite_pentad_ts_cumsum, dims="time", name=region + "_comp_cumsum", ) - composite_pentad_time_series_cumsum.attrs["units"] = str(d.units) - composite_pentad_time_series_cumsum.coords["time"] = time_coords + composite_pentad_ts_cumsum.attrs["units"] = str(d.units) + composite_pentad_ts_cumsum.coords["time"] = time_coords - composite_pentad_time_series_cumsum_normalized = xr.DataArray( - composite_pentad_time_series_cumsum_normalized, + composite_pentad_ts_cumsum_normalized = xr.DataArray( + composite_pentad_ts_cumsum_normalized, dims="time", name=region + "_comp_cumsum_fraction", ) - composite_pentad_time_series_cumsum_normalized.attrs["units"] = str( - d.units - ) - composite_pentad_time_series_cumsum_normalized.coords[ - "time" - ] = time_coords + composite_pentad_ts_cumsum_normalized.attrs["units"] = str(d.units) + composite_pentad_ts_cumsum_normalized.coords["time"] = time_coords if model == "obs": dict_obs_composite[reference_data_name][region] = {} dict_obs_composite[reference_data_name][ region - ] = composite_pentad_time_series_cumsum_normalized + ] = composite_pentad_ts_cumsum_normalized # Archive as dict for JSON if model == "obs": @@ -748,11 +740,9 @@ def pick_year_last_day(ds): # Archice in netCDF file if nc_out: - composite_pentad_time_series.to_netcdf(file_path, mode="a") - composite_pentad_time_series_cumsum.to_netcdf( - file_path, mode="a" - ) - composite_pentad_time_series_cumsum_normalized.to_netcdf( + composite_pentad_ts.to_netcdf(file_path, mode="a") + composite_pentad_ts_cumsum.to_netcdf(file_path, mode="a") + composite_pentad_ts_cumsum_normalized.to_netcdf( file_path, mode="a" ) @@ -764,9 +754,7 @@ def pick_year_last_day(ds): if model != "obs": # model ax[region].plot( - np.array( - composite_pentad_time_series_cumsum_normalized - ), + np.array(composite_pentad_ts_cumsum_normalized), c="red", label=model, ) @@ -777,7 +765,7 @@ def pick_year_last_day(ds): ax[region].axvline( x=idx, ymin=0, - ymax=composite_pentad_time_series_cumsum_normalized[ + ymax=composite_pentad_ts_cumsum_normalized[ idx ].item(), c="red", @@ -855,14 +843,12 @@ def pick_year_last_day(ds): raise else: print("warning: faild for ", model, run, err) - pass # --- Realization loop end except Exception as err: if debug: raise else: print("warning: faild for ", model, err) - pass # --- Model loop end if not debug: From ceefe71d6911e31e865d77425b244c9904dfda11 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Wed, 15 May 2024 00:28:20 -0700 Subject: [PATCH 28/46] clean up, variable name shortened for simplify the code --- .../monsoon_sperber/driver_monsoon_sperber.py | 62 ++++++++----------- 1 file changed, 27 insertions(+), 35 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index e81218057..c4147f187 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -378,11 +378,11 @@ def pick_year_last_day(ds): endYear = startYear + 1 # Prepare archiving individual year pentad time series for composite - list_pentad_time_series = {} - list_pentad_time_series_cumsum = {} # Cumulative time series + list_pentad_ts = {} + list_pentad_ts_cumsum = {} # Cumulative time series for region in list_monsoon_regions: - list_pentad_time_series[region] = [] - list_pentad_time_series_cumsum[region] = [] + list_pentad_ts[region] = [] + list_pentad_ts_cumsum[region] = [] # Write individual year time series for each monsoon domain # in a netCDF file @@ -527,11 +527,7 @@ def pick_year_last_day(ds): # Area average ds_sub_pr = d_sub_pr.to_dataset().compute() - # dc = dc.bounds.add_missing_bounds("X") dc = dc.bounds.add_missing_bounds() - # ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("X") - # ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("Y") - # ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds("T") ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds() if "lat_bnds" not in ds_sub_pr.variables: @@ -586,7 +582,7 @@ def pick_year_last_day(ds): divide_chunks_advanced(d_sub_aave, n, debug=debug) ) - pentad_time_series = [] + pentad_ts = [] time_coords = np.array([], dtype="datetime64") for d_sub_aave_chunk in list_d_sub_aave_chunks: @@ -597,55 +593,55 @@ def pick_year_last_day(ds): ave_chunk = d_sub_aave_chunk.mean( axis=0, skipna=True ).compute() - pentad_time_series.append(float(ave_chunk)) + pentad_ts.append(float(ave_chunk)) datetime_str = str(d_sub_aave_chunk["time"][0].values) datetime = pd.to_datetime([datetime_str[:10]]) time_coords = np.concatenate([time_coords, datetime]) time_coords = pd.to_datetime(time_coords) - pentad_time_series = xr.DataArray( - pentad_time_series, + pentad_ts = xr.DataArray( + pentad_ts, dims="time", coords={"time": time_coords}, ) if debug: print( - "debug: pentad_time_series length: ", - len(pentad_time_series), + "debug: pentad_ts length: ", + len(pentad_ts), ) # Keep pentad time series length in consistent ref_length = int(365 / n) - if len(pentad_time_series) < ref_length: - pentad_time_series = pentad_time_series.interp( + if len(pentad_ts) < ref_length: + pentad_ts = pentad_ts.interp( time=pd.date_range( time_coords[0], time_coords[-1], periods=ref_length ) ) - time_coords = pentad_time_series.coords["time"] + time_coords = pentad_ts.coords["time"] - pentad_time_series_cumsum = np.cumsum(pentad_time_series) - pentad_time_series = xr.DataArray( - pentad_time_series, + pentad_ts_cumsum = np.cumsum(pentad_ts) + pentad_ts = xr.DataArray( + pentad_ts, dims="time", name=region + "_" + str(year), ) - pentad_time_series.attrs["units"] = str(d.units.values) + pentad_ts.attrs["units"] = str(d.units.values) - pentad_time_series_cumsum = xr.DataArray( - pentad_time_series_cumsum, + pentad_ts_cumsum = xr.DataArray( + pentad_ts_cumsum, dims="time", name=region + "_" + str(year) + "_cumsum", ) - pentad_time_series_cumsum.attrs["units"] = str(d.units.values) - pentad_time_series_cumsum.coords["time"] = time_coords + pentad_ts_cumsum.attrs["units"] = str(d.units.values) + pentad_ts_cumsum.coords["time"] = time_coords if nc_out: # Archive individual year time series in netCDF file - pentad_time_series.to_netcdf(file_path, mode="a") - pentad_time_series_cumsum.to_netcdf(file_path, mode="a") + pentad_ts.to_netcdf(file_path, mode="a") + pentad_ts_cumsum.to_netcdf(file_path, mode="a") """ if plot: @@ -655,15 +651,13 @@ def pick_year_last_day(ds): else: label = '' ax[region].plot( - np.array(pentad_time_series_cumsum), + np.array(pentad_ts_cumsum), c='grey', label=label) """ # Append individual year: save for following composite - list_pentad_time_series[region].append(pentad_time_series) - list_pentad_time_series_cumsum[region].append( - pentad_time_series_cumsum - ) + list_pentad_ts[region].append(pentad_ts) + list_pentad_ts_cumsum[region].append(pentad_ts_cumsum) # --- Monsoon region loop end # --- Year loop end @@ -678,9 +672,7 @@ def pick_year_last_day(ds): for region in list_monsoon_regions: # Get composite for each region - composite_pentad_ts = np.array( - list_pentad_time_series[region] - ).mean(axis=0) + composite_pentad_ts = np.array(list_pentad_ts[region]).mean(axis=0) # Get accumulation ts from the composite composite_pentad_ts_cumsum = np.cumsum(composite_pentad_ts) From a2186b9be8e156d47d6129709b8093e8800aa2ad Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Wed, 15 May 2024 17:34:20 -0700 Subject: [PATCH 29/46] adjust units just one time immediately after load data, instead of doing it multiple times --- .../monsoon_sperber/driver_monsoon_sperber.py | 44 ++++++++----------- 1 file changed, 19 insertions(+), 25 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index c4147f187..b3f69a2a7 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -343,14 +343,20 @@ def pick_year_last_day(ds): dc["time"].attrs["axis"] = "T" dc["time"].attrs["standard_name"] = "time" dc = xr.decode_cf(dc, decode_times=True) - dc = dc.bounds.add_missing_bounds("X") - dc = dc.bounds.add_missing_bounds("Y") - dc = dc.bounds.add_missing_bounds("T") + # dc = dc.bounds.add_missing_bounds("X") + # dc = dc.bounds.add_missing_bounds("Y") + # dc = dc.bounds.add_missing_bounds("T") + dc = dc.bounds.add_missing_bounds() dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) c = xc.center_times(dc) eday = pick_year_last_day(dc) + # Adjust Units + if UnitsAdjust[0]: + dc[var].values = dc[var].values * 86400.0 + dc[var].attrs["units"] = units # 'mm/d' + # Get starting and ending year and month startYear = c.time.values[0].year startMonth = c.time.values[0].month @@ -465,14 +471,6 @@ def pick_year_last_day(ds): ), lat=slice(-90, 90), ) - # unit adjust - if UnitsAdjust[0]: - """Below two lines are identical to following: - d = MV2.multiply(d, 86400.) - d.units = 'mm/d' - """ - d.values = d.values * 86400.0 - d["units"] = units # variable for over land only d_land = model_land_only(model, d, lf, debug=debug) @@ -496,9 +494,6 @@ def pick_year_last_day(ds): ) ) - d_sub_pr.values = d_sub_pr.values * 86400.0 - d_sub_pr["units"] = units - else: # land-only rainfall d_sub_ds = region_subset( @@ -522,9 +517,6 @@ def pick_year_last_day(ds): model, d_sub_pr, lf_sub, debug=debug ) - d_sub_pr.values = d_sub_pr.values * 86400.0 - d_sub_pr["units"] = units - # Area average ds_sub_pr = d_sub_pr.to_dataset().compute() dc = dc.bounds.add_missing_bounds() @@ -628,14 +620,16 @@ def pick_year_last_day(ds): dims="time", name=region + "_" + str(year), ) - pentad_ts.attrs["units"] = str(d.units.values) + # pentad_ts.attrs["units"] = str(d.units.values) + pentad_ts.attrs["units"] = str(d.units) pentad_ts_cumsum = xr.DataArray( pentad_ts_cumsum, dims="time", name=region + "_" + str(year) + "_cumsum", ) - pentad_ts_cumsum.attrs["units"] = str(d.units.values) + # pentad_ts_cumsum.attrs["units"] = str(d.units.values) + pentad_ts_cumsum.attrs["units"] = str(d.units) pentad_ts_cumsum.coords["time"] = time_coords if nc_out: @@ -643,17 +637,17 @@ def pick_year_last_day(ds): pentad_ts.to_netcdf(file_path, mode="a") pentad_ts_cumsum.to_netcdf(file_path, mode="a") - """ if plot: # Add grey line for individual year in plot if year == startYear: - label = 'Individual yr' + label = "Individual yr" else: - label = '' + label = "" ax[region].plot( - np.array(pentad_ts_cumsum), - c='grey', label=label) - """ + np.array(pentad_ts_cumsum / pentad_ts_cumsum[-1]), + c="grey", + label=label, + ) # Append individual year: save for following composite list_pentad_ts[region].append(pentad_ts) From acf80b1bda085446f6398d2d68620a3fe1acbf1b Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Wed, 15 May 2024 17:35:24 -0700 Subject: [PATCH 30/46] clean up --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index b3f69a2a7..289bcf4a9 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -343,9 +343,6 @@ def pick_year_last_day(ds): dc["time"].attrs["axis"] = "T" dc["time"].attrs["standard_name"] = "time" dc = xr.decode_cf(dc, decode_times=True) - # dc = dc.bounds.add_missing_bounds("X") - # dc = dc.bounds.add_missing_bounds("Y") - # dc = dc.bounds.add_missing_bounds("T") dc = dc.bounds.add_missing_bounds() dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) From be5ed29422864ae035e5db92058d09ff0ec5168d Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Thu, 16 May 2024 15:38:52 -0700 Subject: [PATCH 31/46] debug, clean up, simplify --- .../monsoon_sperber/driver_monsoon_sperber.py | 139 +++++++++--------- .../monsoon_sperber/lib/calc_metrics.py | 2 +- 2 files changed, 74 insertions(+), 67 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 289bcf4a9..52c06fb26 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -47,7 +47,7 @@ from collections import defaultdict from shutil import copyfile -import matplotlib +# import matplotlib import numpy as np import pandas as pd import xarray as xr @@ -66,7 +66,7 @@ ) from pcmdi_metrics.utils import create_land_sea_mask, fill_template -matplotlib.use("Agg") +# matplotlib.use("Agg") def tree(): @@ -178,7 +178,7 @@ def pick_year_last_day(ds): for output_type in ["graphics", "diagnostic_results", "metrics_results"]: if not os.path.exists(outdir(output_type=output_type)): os.makedirs(outdir(output_type=output_type)) - print(outdir(output_type=output_type)) + print(f"output dir for {output_type}: {outdir(output_type=output_type)}") # Debug debug = param.debug @@ -247,6 +247,9 @@ def pick_year_last_day(ds): if includeOBS: models.insert(0, "obs") +if debug: + print("models:", models) + for model in models: print(f"==== model: {model} ======================================") try: @@ -266,6 +269,8 @@ def pick_year_last_day(ds): # dict for plottng dict_obs_composite = {} dict_obs_composite[reference_data_name] = {} + # plot + plot_line_color = "black" else: # for rest of models var = varModel UnitsAdjust = ModUnitsAdjust @@ -277,14 +282,7 @@ def pick_year_last_day(ds): ) if debug: print( - "model: ", - model, - " exp: ", - exp, - " realization: ", - realization, - " variable: ", - var, + f"model: {model}, exp: {exp}, realization: {realization}, variable: {var}" ) print("debug: model_path_list: ", model_path_list) # land fraction @@ -297,9 +295,8 @@ def pick_year_last_day(ds): # dict for output JSON if model not in list(monsoon_stat_dic["RESULTS"].keys()): monsoon_stat_dic["RESULTS"][model] = {} - - dict_obs_composite = {} - dict_obs_composite[reference_data_name] = {} + # plot + plot_line_color = "red" # Read land fraction if model_lf_path is not None: @@ -387,16 +384,11 @@ def pick_year_last_day(ds): list_pentad_ts[region] = [] list_pentad_ts_cumsum[region] = [] - # Write individual year time series for each monsoon domain - # in a netCDF file - output_filename = "{}_{}_{}_{}_{}_{}-{}".format( - mip, model, exp, run, "monsoon_sperber", startYear, endYear + # Write individual year time series for each monsoon domain in a netCDF file + output_filename = ( + f"{mip}_{model}_{exp}_{run}_monsoon_sperber_{startYear}-{endYear}" ) if nc_out: - output_filename = "{}_{}_{}_{}_{}_{}-{}".format( - mip, model, exp, run, "monsoon_sperber", startYear, endYear - ) - file_path = os.path.join( outdir(output_type="diagnostic_results"), output_filename + ".nc", @@ -424,18 +416,9 @@ def pick_year_last_day(ds): for i, region in enumerate(list_monsoon_regions): ax[region] = plt.subplot(nrows, ncols, i + 1) ax[region].set_ylim(0, 1) - # ax[region].set_yticks([0, 0.2, 0.4, 0.6, 0.8, 1]) - # ax[region].set_xticks([0, 10, 20, 30, 40, 50, 60, 70]) ax[region].margins(x=0) print( - "plot: region", - region, - "nrows", - nrows, - "ncols", - ncols, - "index", - i + 1, + f"plot:: region: {region}, nrows: {nrows}, ncols: {ncols}, index: {i + 1}" ) if nrows > 1 and math.ceil((i + 1) / float(ncols)) < nrows: ax[region].set_xticklabels([]) @@ -617,7 +600,6 @@ def pick_year_last_day(ds): dims="time", name=region + "_" + str(year), ) - # pentad_ts.attrs["units"] = str(d.units.values) pentad_ts.attrs["units"] = str(d.units) pentad_ts_cumsum = xr.DataArray( @@ -625,7 +607,6 @@ def pick_year_last_day(ds): dims="time", name=region + "_" + str(year) + "_cumsum", ) - # pentad_ts_cumsum.attrs["units"] = str(d.units.values) pentad_ts_cumsum.attrs["units"] = str(d.units) pentad_ts_cumsum.coords["time"] = time_coords @@ -635,14 +616,21 @@ def pick_year_last_day(ds): pentad_ts_cumsum.to_netcdf(file_path, mode="a") if plot: - # Add grey line for individual year in plot + if debug: + print( + f"debug: plot individual year for {model}, {year}" + ) + # Set label for line if year == startYear: label = "Individual yr" else: label = "" + # Add thin line for individual year in plot ax[region].plot( np.array(pentad_ts_cumsum / pentad_ts_cumsum[-1]), - c="grey", + c=plot_line_color, + alpha=0.5, + lw=0.5, label=label, ) @@ -662,7 +650,6 @@ def pick_year_last_day(ds): for region in list_monsoon_regions: # Get composite for each region - composite_pentad_ts = np.array(list_pentad_ts[region]).mean(axis=0) # Get accumulation ts from the composite @@ -671,7 +658,6 @@ def pick_year_last_day(ds): # - - - - - - - - - - - # Metrics for composite # - - - - - - - - - - - - metrics_result = sperber_metrics( composite_pentad_ts_cumsum, region, debug=debug ) @@ -734,13 +720,14 @@ def pick_year_last_day(ds): # Add line in plot if plot: + # line for model if model != "obs": - # model ax[region].plot( np.array(composite_pentad_ts_cumsum_normalized), c="red", label=model, ) + # vertical line for onset and decay for idx in [ metrics_result["onset_index"], metrics_result["decay_index"], @@ -755,36 +742,56 @@ def pick_year_last_day(ds): ls="--", ) - # obs - if model == "obs": - ax[region].plot( - np.array( - dict_obs_composite[reference_data_name][region] - ), - c="blue", - label=reference_data_name, + # superimpose line for obs + ax[region].plot( + np.array(dict_obs_composite[reference_data_name][region]), + c="black", + label=reference_data_name, + ) + # vertical line for onset and decay + for idx in [ + monsoon_stat_dic["REF"][reference_data_name][region][ + "onset_index" + ], + monsoon_stat_dic["REF"][reference_data_name][region][ + "decay_index" + ], + ]: + ax[region].axvline( + x=idx, + ymin=0, + ymax=dict_obs_composite[reference_data_name][region][ + idx + ].item(), + c="black", + ls="--", ) - for idx in [ - monsoon_stat_dic["REF"][reference_data_name][region][ - "onset_index" - ], - monsoon_stat_dic["REF"][reference_data_name][region][ - "decay_index" - ], - ]: - ax[region].axvline( - x=idx, - ymin=0, - ymax=dict_obs_composite[reference_data_name][ - region - ][idx].item(), - c="blue", - ls="--", - ) + + # Re-order legend + handles, labels = ax[ + list_monsoon_regions[0] + ].get_legend_handles_labels() + handles.reverse() + labels.reverse() + ax[list_monsoon_regions[0]].legend(handles, labels) + """ + if debug: + print("debug: handles", handles) + print("debug: labels", labels) + + if model == "obs": + order = [1, 0] + else: + order = [2, 1, 0] + + # Add revised legend + ax[list_monsoon_regions[0]].legend( + [handles[idx] for idx in order], + [labels[idx] for idx in order], + ) + """ # title ax[region].set_title(region) - if region == list_monsoon_regions[0]: - ax[region].legend(loc=2) if region == list_monsoon_regions[-1]: if model == "obs": data_name = "OBS: " + reference_data_name diff --git a/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py b/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py index cdf1745a4..2ee849faf 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py +++ b/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py @@ -19,8 +19,8 @@ def sperber_metrics(d, region, debug=False): """d: input, 1d array of cumulative pentad time series""" # Convert accumulation to fractional accumulation; normalize by sum d_sum = d[-1] - # Normalize + # Normalize frac_accum = d / d_sum # Stat 1: Onset From 8c96248903526545cd0c066b6ca9f534b407e626 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Thu, 16 May 2024 15:40:56 -0700 Subject: [PATCH 32/46] clean up --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 52c06fb26..5e3846b5f 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -323,7 +323,7 @@ def pick_year_last_day(ds): if model == "obs": run = "obs" else: - if realization in ["all", "All", "ALL", "*"]: + if realization.lower() in ["all", "*"]: run_index = modpath.split(".").index("%(realization)") run = model_path.split("/")[-1].split(".")[run_index] else: From bf30d7be3dcda557d2e0b3e84fb33b4bf355f23b Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Thu, 16 May 2024 15:42:02 -0700 Subject: [PATCH 33/46] clarify --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 5e3846b5f..3bd1b8ee9 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -437,7 +437,7 @@ def pick_year_last_day(ds): # ------------------------------------------------- # Loop start - Year # ------------------------------------------------- - temporary = {} + temporary_dict = {} print("\n") # year loop, endYear+1 to include last year for year in range(startYear, endYear + 1): @@ -520,14 +520,14 @@ def pick_year_last_day(ds): if year == startYear: start_t = str(year) + "-07-01 00:00:00" end_t = str(year) + f"-12-{eday} 23:59:59" - temporary[region] = d_sub_aave.sel( + temporary_dict[region] = d_sub_aave.sel( time=slice(start_t, end_t) ) continue else: # n-1 year 7/1~12/31 - part1 = copy.copy(temporary[region]) + part1 = copy.copy(temporary_dict[region]) # n year 1/1~6/30 part2 = d_sub_aave.sel( time=slice( @@ -537,7 +537,7 @@ def pick_year_last_day(ds): ) start_t = str(year) + "-07-01 00:00:00" end_t = str(year) + f"-12-{eday} 23:59:59" - temporary[region] = d_sub_aave.sel( + temporary_dict[region] = d_sub_aave.sel( time=slice(start_t, end_t) ) From 1cc88d23ecdc5c88e84725988f6d24869dc632b6 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Thu, 16 May 2024 16:21:05 -0700 Subject: [PATCH 34/46] simplify logic and remove repeating lines --- .../monsoon_sperber/driver_monsoon_sperber.py | 35 +++++++------------ 1 file changed, 12 insertions(+), 23 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 3bd1b8ee9..7f59f97c5 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -460,32 +460,21 @@ def pick_year_last_day(ds): # - - - - - - - - - - - - - - - - - - - - - - - - - for region in list_monsoon_regions: print(" region = ", region) - # extract for monsoon region - if region in ["GoG", "NAmo"]: - # all grid point rainfall - d_sub_ds = region_subset( - dc, region, data_var="pr", regions_specs=regions_specs - ) - # must be entire calendar years - d_sub_pr = d_sub_ds.pr.sel( - time=slice( - str(year) + "-01-01 00:00:00", - str(year) + f"-12-{eday} 23:59:59", - ) - ) - else: - # land-only rainfall - d_sub_ds = region_subset( - dc, region, data_var="pr", regions_specs=regions_specs - ) - d_sub_pr = d_sub_ds.pr.sel( - time=slice( - str(year) + "-01-01 00:00:00", - str(year) + f"-12-{eday} 23:59:59", - ) + # all grid point rainfall + d_sub_ds = region_subset( + dc, region, data_var="pr", regions_specs=regions_specs + ) + # must be entire calendar years + d_sub_pr = d_sub_ds.pr.sel( + time=slice( + str(year) + "-01-01 00:00:00", + str(year) + f"-12-{eday} 23:59:59", ) + ) + # land-only rainfall + if region not in ["GoG", "NAmo"]: lf_sub_ds = region_subset( ds_lf, region, From 3df217260ddf49f40e7f8d1ef96ec8e207e94feb Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Thu, 16 May 2024 17:15:34 -0700 Subject: [PATCH 35/46] more info to netcdf for debug --- .../monsoon_sperber/driver_monsoon_sperber.py | 40 ++++++++++++------- 1 file changed, 25 insertions(+), 15 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 7f59f97c5..853102d5a 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -389,13 +389,13 @@ def pick_year_last_day(ds): f"{mip}_{model}_{exp}_{run}_monsoon_sperber_{startYear}-{endYear}" ) if nc_out: - file_path = os.path.join( + nc_file_path = os.path.join( outdir(output_type="diagnostic_results"), output_filename + ".nc", ) try: fout = xr.open_dataset( - file_path, mode="a" + nc_file_path, mode="a" ) # 'a' stands for append mode except FileNotFoundError: fout = xr.Dataset() @@ -473,19 +473,29 @@ def pick_year_last_day(ds): ) ) - # land-only rainfall + # get land fraction + lf_sub_ds = region_subset( + ds_lf, + region, + data_var="sftlf", + regions_specs=regions_specs, + ) + lf_sub = lf_sub_ds["sftlf"] + + # keep rainfall over land only if region not in ["GoG", "NAmo"]: - lf_sub_ds = region_subset( - ds_lf, - region, - data_var="sftlf", - regions_specs=regions_specs, - ) - lf_sub = lf_sub_ds.sftlf d_sub_pr = model_land_only( model, d_sub_pr, lf_sub, debug=debug ) + if debug: + if year == startYear: + nc_file_path_region = os.path.join( + outdir(output_type="diagnostic_results"), + f"monsoon_{model}_{region}.nc", + ) + lf_sub_ds.to_netcdf(nc_file_path_region) + # Area average ds_sub_pr = d_sub_pr.to_dataset().compute() dc = dc.bounds.add_missing_bounds() @@ -601,8 +611,8 @@ def pick_year_last_day(ds): if nc_out: # Archive individual year time series in netCDF file - pentad_ts.to_netcdf(file_path, mode="a") - pentad_ts_cumsum.to_netcdf(file_path, mode="a") + pentad_ts.to_netcdf(nc_file_path, mode="a") + pentad_ts_cumsum.to_netcdf(nc_file_path, mode="a") if plot: if debug: @@ -698,10 +708,10 @@ def pick_year_last_day(ds): # Archice in netCDF file if nc_out: - composite_pentad_ts.to_netcdf(file_path, mode="a") - composite_pentad_ts_cumsum.to_netcdf(file_path, mode="a") + composite_pentad_ts.to_netcdf(nc_file_path, mode="a") + composite_pentad_ts_cumsum.to_netcdf(nc_file_path, mode="a") composite_pentad_ts_cumsum_normalized.to_netcdf( - file_path, mode="a" + nc_file_path, mode="a" ) if region == list_monsoon_regions[-1]: From fc5f5c601f745d61c3c66771c70301f18ffe0e14 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Thu, 16 May 2024 23:08:26 -0700 Subject: [PATCH 36/46] clean up --- .../monsoon_sperber/driver_monsoon_sperber.py | 64 +++++++++---------- 1 file changed, 31 insertions(+), 33 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 853102d5a..ca76e3434 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -336,20 +336,20 @@ def pick_year_last_day(ds): # Get time coordinate information print("model_path = ", model_path) - dc = xcdat_open(model_path, decode_times=True) - dc["time"].attrs["axis"] = "T" - dc["time"].attrs["standard_name"] = "time" - dc = xr.decode_cf(dc, decode_times=True) - dc = dc.bounds.add_missing_bounds() + ds = xcdat_open(model_path, decode_times=True) + ds["time"].attrs["axis"] = "T" + ds["time"].attrs["standard_name"] = "time" + ds = xr.decode_cf(ds, decode_times=True) + ds = ds.bounds.add_missing_bounds() - dc = dc.assign_coords({"lon": lf.lon, "lat": lf.lat}) - c = xc.center_times(dc) - eday = pick_year_last_day(dc) + ds = ds.assign_coords({"lon": lf.lon, "lat": lf.lat}) + c = xc.center_times(ds) + eday = pick_year_last_day(ds) # Adjust Units if UnitsAdjust[0]: - dc[var].values = dc[var].values * 86400.0 - dc[var].attrs["units"] = units # 'mm/d' + ds[var].values = ds[var].values * 86400.0 + ds[var].attrs["units"] = units # 'mm/d' # Get starting and ending year and month startYear = c.time.values[0].year @@ -444,7 +444,7 @@ def pick_year_last_day(ds): print("\n") print(" year = ", year) print("\n") - d = dc.pr.sel( + d = ds["pr"].sel( time=slice( str(year) + "-01-01 00:00:00", str(year) + f"-12-{eday} 23:59:59", @@ -459,14 +459,14 @@ def pick_year_last_day(ds): # Loop start - Monsoon region # - - - - - - - - - - - - - - - - - - - - - - - - - for region in list_monsoon_regions: - print(" region = ", region) + print("region = ", region) # all grid point rainfall d_sub_ds = region_subset( - dc, region, data_var="pr", regions_specs=regions_specs + ds, region, data_var="pr", regions_specs=regions_specs ) # must be entire calendar years - d_sub_pr = d_sub_ds.pr.sel( + d_sub_pr = d_sub_ds["pr"].sel( time=slice( str(year) + "-01-01 00:00:00", str(year) + f"-12-{eday} 23:59:59", @@ -497,18 +497,16 @@ def pick_year_last_day(ds): lf_sub_ds.to_netcdf(nc_file_path_region) # Area average - ds_sub_pr = d_sub_pr.to_dataset().compute() - dc = dc.bounds.add_missing_bounds() - ds_sub_pr = ds_sub_pr.bounds.add_missing_bounds() + ds_sub_pr = d_sub_pr.to_dataset().bounds.add_missing_bounds() if "lat_bnds" not in ds_sub_pr.variables: - lat_bnds = dc["lat_bnds"].sel(lat=ds_sub_pr["lat"]) + lat_bnds = ds["lat_bnds"].sel(lat=ds_sub_pr["lat"]) ds_sub_pr["lat_bnds"] = lat_bnds ds_sub_aave = ds_sub_pr.spatial.average( "pr", axis=["X", "Y"], weights="generate" ).compute() - d_sub_aave = ds_sub_aave.pr + da_sub_aave = ds_sub_aave["pr"] if debug: print("debug: region:", region) @@ -519,16 +517,16 @@ def pick_year_last_day(ds): if year == startYear: start_t = str(year) + "-07-01 00:00:00" end_t = str(year) + f"-12-{eday} 23:59:59" - temporary_dict[region] = d_sub_aave.sel( + temporary_dict[region] = da_sub_aave.sel( time=slice(start_t, end_t) ) continue else: - # n-1 year 7/1~12/31 + # n-1 year's 7/1~12/31 part1 = copy.copy(temporary_dict[region]) - # n year 1/1~6/30 - part2 = d_sub_aave.sel( + # n year's 1/1~6/30 + part2 = da_sub_aave.sel( time=slice( str(year) + "-01-01 00:00:00", str(year) + "-06-30 23:59:59", @@ -536,11 +534,11 @@ def pick_year_last_day(ds): ) start_t = str(year) + "-07-01 00:00:00" end_t = str(year) + f"-12-{eday} 23:59:59" - temporary_dict[region] = d_sub_aave.sel( + temporary_dict[region] = da_sub_aave.sel( time=slice(start_t, end_t) ) - d_sub_aave = xr.concat([part1, part2], dim="time") + da_sub_aave = xr.concat([part1, part2], dim="time") if debug: print( @@ -549,23 +547,23 @@ def pick_year_last_day(ds): year, ) # get pentad time series - list_d_sub_aave_chunks = list( - divide_chunks_advanced(d_sub_aave, n, debug=debug) + list_da_sub_aave_chunks = list( + divide_chunks_advanced(da_sub_aave, n, debug=debug) ) pentad_ts = [] time_coords = np.array([], dtype="datetime64") - for d_sub_aave_chunk in list_d_sub_aave_chunks: + for da_sub_aave_chunk in list_da_sub_aave_chunks: # ignore when chunk length is shorter than defined - if d_sub_aave_chunk.shape[0] >= n: - aa = d_sub_aave_chunk.to_numpy() + if da_sub_aave_chunk.shape[0] >= n: + aa = da_sub_aave_chunk.to_numpy() aa_mean = np.mean(aa) - ave_chunk = d_sub_aave_chunk.mean( + ave_chunk = da_sub_aave_chunk.mean( axis=0, skipna=True ).compute() pentad_ts.append(float(ave_chunk)) - datetime_str = str(d_sub_aave_chunk["time"][0].values) + datetime_str = str(da_sub_aave_chunk["time"][0].values) datetime = pd.to_datetime([datetime_str[:10]]) time_coords = np.concatenate([time_coords, datetime]) time_coords = pd.to_datetime(time_coords) @@ -639,7 +637,7 @@ def pick_year_last_day(ds): # --- Monsoon region loop end # --- Year loop end - dc.close() + ds.close() # ------------------------------------------------- # Loop start: Monsoon region without year: Composite From aede34c65b1fed68cb6b815eb91a224cc11d0a85 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Sat, 18 May 2024 17:01:47 -0700 Subject: [PATCH 37/46] clean up --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 1 - 1 file changed, 1 deletion(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index ca76e3434..45182304d 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -520,7 +520,6 @@ def pick_year_last_day(ds): temporary_dict[region] = da_sub_aave.sel( time=slice(start_t, end_t) ) - continue else: # n-1 year's 7/1~12/31 From 4879f1533b29990a5c707a480bbf4408c7ec8f92 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Mon, 3 Jun 2024 11:26:36 -0700 Subject: [PATCH 38/46] clean up --- .../monsoon_sperber/driver_monsoon_sperber.py | 29 ++----------------- 1 file changed, 3 insertions(+), 26 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 45182304d..719b1b5ff 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -44,7 +44,6 @@ import re import sys from argparse import RawTextHelpFormatter -from collections import defaultdict from shutil import copyfile # import matplotlib @@ -62,32 +61,12 @@ YearCheck, divide_chunks_advanced, model_land_only, + pick_year_last_day, sperber_metrics, + tree, ) from pcmdi_metrics.utils import create_land_sea_mask, fill_template -# matplotlib.use("Agg") - - -def tree(): - return defaultdict(tree) - - -def pick_year_last_day(ds): - eday = 31 - try: - time_key = xc.axis.get_dim_keys(ds, axis="T") - if "calendar" in ds[time_key].attrs.keys(): - if "360" in ds[time_key]["calendar"]: - eday = 30 - else: - if "360" in ds[time_key][0].values.item().calendar: - eday = 30 - except Exception: - pass - return eday - - # How many elements each list should have n = 5 # pentad @@ -654,9 +633,7 @@ def pick_year_last_day(ds): # - - - - - - - - - - - # Metrics for composite # - - - - - - - - - - - - metrics_result = sperber_metrics( - composite_pentad_ts_cumsum, region, debug=debug - ) + metrics_result = sperber_metrics(composite_pentad_ts_cumsum, region) # Normalized cummulative pentad time series composite_pentad_ts_cumsum_normalized = metrics_result["frac_accum"] From 306507445a374327611a85ac0e799cc5f43dd68c Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Mon, 3 Jun 2024 11:58:42 -0700 Subject: [PATCH 39/46] clean up (inlcude move CMEC parsers to argparse lib --- .../monsoon_sperber/driver_monsoon_sperber.py | 15 ------------- pcmdi_metrics/monsoon_sperber/lib/__init__.py | 1 + .../monsoon_sperber/lib/argparse_functions.py | 17 ++++++++++++++ .../monsoon_sperber/lib/calc_metrics.py | 2 +- .../monsoon_sperber/lib/divide_chunks.py | 3 ++- .../lib/lib_monsoon_sperber.py | 22 +++++++++++++++++++ 6 files changed, 43 insertions(+), 17 deletions(-) create mode 100644 pcmdi_metrics/monsoon_sperber/lib/lib_monsoon_sperber.py diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 719b1b5ff..a78713891 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -78,21 +78,6 @@ formatter_class=RawTextHelpFormatter, ) P = AddParserArgument(P) -P.add_argument( - "--cmec", - dest="cmec", - default=False, - action="store_true", - help="Use to save CMEC format metrics JSON", -) -P.add_argument( - "--no_cmec", - dest="cmec", - default=False, - action="store_false", - help="Do not save CMEC format metrics JSON", -) -P.set_defaults(cmec=False) param = P.get_parameter() # Pre-defined options diff --git a/pcmdi_metrics/monsoon_sperber/lib/__init__.py b/pcmdi_metrics/monsoon_sperber/lib/__init__.py index 688f34958..9c232cc8d 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/__init__.py +++ b/pcmdi_metrics/monsoon_sperber/lib/__init__.py @@ -2,3 +2,4 @@ from .calc_metrics import sperber_metrics # noqa from .divide_chunks import divide_chunks, divide_chunks_advanced, interp1d # noqa from .model_land_only import model_land_only # noqa +from .lib_monsoon_sperber import pick_year_last_day, tree diff --git a/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py b/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py index a51cc81a3..95cbfe237 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py +++ b/pcmdi_metrics/monsoon_sperber/lib/argparse_functions.py @@ -98,6 +98,23 @@ def AddParserArgument(P): default=True, help="Option for update existing JSON file: True (i.e., update) (default) / False (i.e., overwrite)", ) + # CMEC + P.add_argument( + "--cmec", + dest="cmec", + default=False, + action="store_true", + help="Use to save CMEC format metrics JSON", + ) + P.add_argument( + "--no_cmec", + dest="cmec", + default=False, + action="store_false", + help="Do not save CMEC format metrics JSON", + ) + P.set_defaults(cmec=False) + return P diff --git a/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py b/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py index 2ee849faf..27c52fe93 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py +++ b/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py @@ -15,7 +15,7 @@ """ -def sperber_metrics(d, region, debug=False): +def sperber_metrics(d, region): """d: input, 1d array of cumulative pentad time series""" # Convert accumulation to fractional accumulation; normalize by sum d_sum = d[-1] diff --git a/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py b/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py index 8a215f4f8..586463f28 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py +++ b/pcmdi_metrics/monsoon_sperber/lib/divide_chunks.py @@ -29,9 +29,10 @@ def divide_chunks_advanced(data, n, debug=False): month = month.values day = day.values calendar = "gregorian" + if debug: - # print("month = ", month, "day = ", day) print("debug: first day of year is " + str(month) + "/" + str(day)) + if month not in [1, 7] or day != 1: sys.exit( "error: first day of year time series is " + str(month) + "/" + str(day) diff --git a/pcmdi_metrics/monsoon_sperber/lib/lib_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/lib/lib_monsoon_sperber.py new file mode 100644 index 000000000..58e1b26eb --- /dev/null +++ b/pcmdi_metrics/monsoon_sperber/lib/lib_monsoon_sperber.py @@ -0,0 +1,22 @@ +from collections import defaultdict + +import xcdat as xc + + +def tree(): + return defaultdict(tree) + + +def pick_year_last_day(ds): + eday = 31 + try: + time_key = xc.axis.get_dim_keys(ds, axis="T") + if "calendar" in ds[time_key].attrs.keys(): + if "360" in ds[time_key]["calendar"]: + eday = 30 + else: + if "360" in ds[time_key][0].values.item().calendar: + eday = 30 + except Exception: + pass + return eday From 9fbf0b0341a32e8a0eb2b41befb396cea52ed111 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Mon, 3 Jun 2024 12:56:53 -0700 Subject: [PATCH 40/46] clean up --- pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py | 4 +++- pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py | 9 +++++++-- 2 files changed, 10 insertions(+), 3 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index a78713891..8ef1c91ef 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -618,7 +618,9 @@ # - - - - - - - - - - - # Metrics for composite # - - - - - - - - - - - - metrics_result = sperber_metrics(composite_pentad_ts_cumsum, region) + metrics_result = sperber_metrics( + composite_pentad_ts_cumsum, region, debug=debug + ) # Normalized cummulative pentad time series composite_pentad_ts_cumsum_normalized = metrics_result["frac_accum"] diff --git a/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py b/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py index 27c52fe93..dc2477f19 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py +++ b/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py @@ -15,7 +15,7 @@ """ -def sperber_metrics(d, region): +def sperber_metrics(d, region, debug=False): """d: input, 1d array of cumulative pentad time series""" # Convert accumulation to fractional accumulation; normalize by sum d_sum = d[-1] @@ -28,7 +28,10 @@ def sperber_metrics(d, region): onset_index = next(onset_index) i = onset_index v = frac_accum[i] - print("i = , ", i, " v = ", v) + + if debug: + print("i = , ", i, " v = ", v) + # Stat 2: Decay if region == "GoG": decay_threshold = 0.6 @@ -42,8 +45,10 @@ def sperber_metrics(d, region): slope = (frac_accum[decay_index] - frac_accum[onset_index]) / float( decay_index - onset_index ) + # Stat 4: Duration duration = decay_index - onset_index + 1 + # Calc done, return result as dic return { "frac_accum": frac_accum, From 70c11b86f123d5aa0f526bdcb0fd173f576bade8 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Mon, 3 Jun 2024 13:00:57 -0700 Subject: [PATCH 41/46] update --- .../Demo/Demo_2b_monsoon_sperber.ipynb | 236 +++++------------- 1 file changed, 56 insertions(+), 180 deletions(-) diff --git a/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb b/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb index 078e890b6..8b9a079c9 100644 --- a/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb +++ b/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb @@ -54,6 +54,7 @@ " [--units UNITS] [--osyear OSYEAR]\n", " [--msyear MSYEAR] [--oeyear OEYEAR]\n", " [--meyear MEYEAR] [--modnames MODNAMES]\n", + " [--list_monsoon_regions LIST_MONSOON_REGIONS]\n", " [-r REALIZATION] [-d DEBUG] [--nc_out]\n", " [--plot] [--includeOBS]\n", " [--update_json UPDATE_JSON] [--cmec]\n", @@ -61,7 +62,7 @@ "\n", "Runs PCMDI Monsoon Sperber Computations\n", "\n", - "optional arguments:\n", + "options:\n", " -h, --help show this help message and exit\n", " --parameters PARAMETERS, -p PARAMETERS\n", " --diags OTHER_PARAMETERS [OTHER_PARAMETERS ...]\n", @@ -100,6 +101,8 @@ " --oeyear OEYEAR End year for reference data set\n", " --meyear MEYEAR End year for model data set\n", " --modnames MODNAMES List of models\n", + " --list_monsoon_regions LIST_MONSOON_REGIONS\n", + " List of regions\n", " -r REALIZATION, --realization REALIZATION\n", " Consider all accessible realizations as idividual\n", " - r1i1p1: default, consider only 'r1i1p1' member\n", @@ -129,13 +132,6 @@ "## Basic Example" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This metric uses daily precipitation data and computes monsoon scores over 6 preset regions, shown below." - ] - }, { "cell_type": "code", "execution_count": 3, @@ -143,7 +139,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAJYCAYAAABy5h8aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3wb9f3H8ddpWN4rnnHi2HH2HiQBEjaE0bBaZhllQ0uhLR2UtkAXHbSlLe2v7D3KKBQIq6xsQppJEsh2Ymd5b1u2pbv7/fF1HBvbGTRDSd7Px+MekiXd6aTY0el9n+/na7mu6yIiIiIiIiIiIhKhPAd7B0RERERERERERHZFAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDQFWCIiIiIiIiIiEtEUYImIiIiIiIiISERTgCUiIiIiIiIiIhFNAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDQFWCIiIiIiIiIiEtEUYImIiIiIiIiISERTgCUiIiIiIiIiIhFNAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDQFWCIiIiIiIiIiEtEUYImIiIiIiIiISERTgCUiIiIiIiIiIhFNAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDQFWCIiIiIiIiIiEtEUYImIiIiIiIiISERTgCUiIiIiIiIiIhFNAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDQFWCIiIiIiIiIiEtEUYImIiIiIiIiISERTgCUiIiIiIiIiIhFNAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDTfwd4BObxVVFTwn//8h7y8PGJiYg727oiIiIiIiMhhIhgMsmnTJk4//XTS0tIO9u7IfqYAS/ar//znP1x++eUHezdERERERETkMPXss89y2WWXHezdkP1MAZbsV3l5eebKN78Jkycf1H0RERERERGRw8i8efDAAzu/d8phTQGW7FftwwYnTwYl4iIiIiIiIrIvPfCA2tUcIdTEXUREREREREREIpoCLBERERERERERiWgKsEREREREREREJKIpwBIRERERERERkYimAEtERERERERERCKaAiwREREREREREYloCrBERERERERERCSiKcASEREREREREZGIpgBLREREREREREQimgIsERERERERERGJaAqwREREREREREQkoinAEhERERERERGRiOY72DsgIiIiB1llpbn0+TovHg9Y1sHdNxERERERFGCJiMjBYtvQ2AheL/j9ZlFY8uXU1MCiRbB+PWRnQ26uWVJTd/2etrZiXXMN7nPP9fgQy+fF8powywkG9/2+X3kl/OIXkJe377ctIiIiIocNBVgiIrJvuC7U1UFZWdelvBzKyvCUlOAtLcEtLydcVW3W6cjjwePzYfl94DWXls8Pvg4hl88Hfj9u28+u34/r8+NGReFGRbXfj8cD27dDUZFZ+veHDz6A+HgTnDU1mcsd17OzYdgwiIo6OO/f3tiwAQoLYerU3T/W58MaOhR32DAYOhTy8024lZWF59vfxjNrJn86YyR9E2MIO27b4lAZbOWDwnLeXV+GHW7Zf6/l6afN8u67MGUKBALm31BEREREpAMdIYqISM9cF0pL4bPPYMsWSEuDrCzIzISMDBP2OA7WUUfBypW4oVCn1T2WRXJCDOlx0WTF+MiO9ZORGCAjO5OMuFwSAj5cF0KOQ9hxCdkOobbLsOMSchxCtglUdt7eSshpMdebXUKNndeZvrak+9eyYYMJb3bB8vvxDh9GePxRMHYsjBtnLqOjv/z7t6sKqG3b4OWXO1dNZWWZ8K0ndXUwYMCe70M4jLtiBaxY0eWumJgopn/9aE7KT+90+9LtNYx7eOaePwcQ7feRFBtFcnQUKdE+UqK8xPu9xEX5iPN7ifP7iIvymuttt1352pKdGzjjjJ3XPR48gSg8UVFYgYD5PYuOhkAAOzER56GHYeTIvdo/ERERETm0KcASETmSNTRAcbGpUCouNuFIcjIsXAiPPLLb1X3JSVgZGYTWruty37eOyuf+M0fh9RzYYYFvrNnOuS8swGtZjM5KZHRmEkPTEkiK9reFJ15i/b5O12N8HoprgyzcVs2ba7fx4WOP7dzgGWfAO+/Apk2wdq0ZrtfNYlVX462uwqquhtpa7No6rMQE7JWfQXo6tLSY97vjsL5ly+C73+20/5bfhy87GycvHzsvb2ewlZsL/fpB377w2mvw2GMwffpevz9nDczkvqkjKK4NMjgtntyk2C6PGZwWz4+OHUjA52FcdhLxUb4OAZS5bArZLNxazdziSqqbTXBpWWBhdbgOruvSGLJpCtmUN4Hjuu2B46ScFBZtq8F2XXrFRFEVbMUFcBycYDNOsLnTfnmPOQanoAASE/f6dYuIiIjIoU0BlojI4a6pCe64A1avhq1bTdVPdXWXh3k8HmKjo2gMtuB+cWhfB2Ozkrjn5GGUNDRT0tBCaWMzJcNz2NrUyrxN5e2jAv+xaCPfntifoekJ++uVdVLS0Mw1ry/FY8F1Y/uRnRBNdnw02QkBEgN+orweAl4PwbDNlrogy+qa2VIXZEtdkI2NrWypa6ayrqn9tVupqbiZmdDSgjV1Ku7773d5Tp/Xw5CsFFKjvPQKeEmO9pOc6ie5dyqJgQx+Nnstjd/+NsTH4/3Xy9h19Xiio/H2zsbO7YeTmwsnnACzZgFwXG4vLhjWm611zRRXbaCwaBVFtUHKaxtxOvyb+FKSsfr2ZUe927RBmcT6fawsq+Pz8noAZn5jCifkpREM2VQGW6kKtlLZ1Er/lDj6JccyOK3nf5dYv4/fnza82/umr9nOOS8s+DL/RLtUGWzd9QOmTcPuGNjtGAKalNT9sM/WVvO+vvEGvjdexykvxxMXhxUXB/HxOAkJOAmJuAkJZlhpfDwkJMBFF5nKOxERERGJKAqwREQOF64Lq1aZXkKtrSYYOeooeOopuP/+HldLj42iujlE2HFoaDIVL+cNyeYXJw5hfVUjMzaW8/Ln2yhtNH2QfnLcIM4cmNlpG622Q5R357C35rBNfUuY9LjAF3bRpbC6iWeWF/P7eetoDjssuv5ExvdO/p9f/kcby3lnfeler2dNnYrbp48ZHjlgAPTpA6tX4952G8cneYnfUkWs30tlXhozNlV0WjdsO6zcambwe/b88Vw2qm+n+5tCNj996SX6pibwjdHZjMocwtb6IJtrg2wpX8fGwpUU1zVTblk4rsuc4kq+NSGfWycVdNpOyHbYWh+kuHbH0kRxbT2r8tJYsr2Wnx43mKP7pHb7+mL8Xvr4Y+iTGLPX7013nA7Z5uS+qeSnxBLl8eD3eojyevB7LHPZw89eC66bvqzbbQeifPRLTWBwUoABKXEs2FrNx5ur8EyejPP442Yo6zvv4HnrLdx5c3FDYQA8gQCexASsxETcpGSchHisJUuw6xvonRLPVwekUzB0AI2tNg2tYRpagzQ0N9BQt5mNNUEWb+sQ6GZnK8ASERERiUAKsEREDmUNDfDee/DOO/jeeZvw1m1E+X34vB6amlvxxMbgTp6C+/3vmwbZQ4fCvffC44+3b6K8qWvly2urt/Pa6u3dPuWFLy8EFna5/b6pI7huXD8SAn6ifV78Hg+rK+pZsr2GhVtr+MuCDd1u77GlRYzKTMTv3UXfp11YWVbHyAc+2uv1rNgY3N45eDcWEn7vvfbb/YMHEWqr6Pn3hRNIjela3dNqO7y/oYy/LNjAB4XlALy2ZnuXAOv2yYM4b0g2Q9MSsHbRCyvsOKaaraGFERldK6P8Xg95yXHkJcft9evc184dko1793lfen3XdfnrgkJWlNVx0fAczijIoCA1jgGpcWTHR2O1hXk//fBzPt5cBTk5OAMH4hs7pv33+6S8NL5yylD6JMZQ2xKitjlMbUuIupYwtc2V1FWUMmJ8H84ZnM3IzEQaW8PUt4apbwnT0GpT3xqiviXM2+tKmb6+DE8ggPONb8D3vgdDhuzDd0tERERE9hXL3dU4EZH/0ZIlSxg/fjw8+yxcdtnB3h2Rw0trK5x4Isyf3+nmR84ew1VjclmyvZYZG8v5sKiSOZuraG4J4Y2PwznueNyTT4aXXjK9rvax+CgfDa3hvVrnXxdO4GvDcvZqnapgK/fOW0dOQjS3vrsCv8ci1u+lxXZotZ1OlUKW328qrFwHt7wCbJuA38ekPqkMSo7h0aVF7Y+9ZWJ/NtY0EXbh9Ysndqosk/2vJWxz4SuLmb56W/tteemJnJOfxpkDMzmhXxq263LWc/OZU1z5Pz2XLyOd8K3fgRtvNL8fsu+EQjB7NgwaZKoavxjgOg4sWgQTJux6ogMREZFdee45uPxyFi9ezDhVUB/2VIElInKouegiM3NdD66fvozrxuUxMSeFiTkp3D7FDEFbtK2GGZvK+WjtEuZ++D4trWG8CfE4Y8fh5uVBVRXWrJng9eHuaFxeW9vzfsTFmR5EX/DF8CqvVwJDUmKxgKRoH+mxAdJio9qWAH0TYzimb/fD3zoqrm1iyN8/JBi2u70/5LjUtoTB48E3dBjO0UfDp5/C4sVmdsTt28lJiGZcQTrjs5MZ1CuesOPQYjtcM7YfW+qCDEiNY2z2/z6cUb68jTVNfLKlijMHZfGVggzOGJBJQWrnyrMNVY1fPrx65BET/CYkEO7VC3w6FPpSKitNM32/3wxffuEF01svPt78vHQp/PWvAPjSemFPmIg7YYIZ1jxuHNx9t5mI4JZbzMyb69fjXbcOT+EG3OxswmPHwZgxMHo0jBqlxv1yeKitNROCbNoE27ebz/PoaDNLbv/+5nNVRER6pAos2a9UgSWyHwQCpvqqG/dNHcEtk/rj8+y6aqjVdvjv1mpToVVcxfzNVYTCNkPT4llV3YRb3wAffoj31luwCze2rzcltxfJ0T5abJflFY2U1nYNsMZnJ/N/Z41iUg89mfZEeWMLA/72PnUtYc4ZnEV+ciwba5p4Y01J9yuccAJcdZX5AjBunPkSDabK7OKLd/t8l47ow/NfO+pL768cHHd88Bm/m9d1BsxOrr0WvvENMxNkZiakpByYnTuUOA6UlZlJHrZsgblz4fXXYd06GDjQ9NabPt0ETUcfDYCnoD+eUIjwnXfBueea97YbZw/K6jRT5Q6WZXFa/3Te21BGYlw0A1LjGZwUTV5yLNvqg8zaUsOmyvqdKxQUwPr1++0tENknGhpMOLVx486gqrAQf+EG3KIiwrV1XVaxvF5c2waPB//AgYQmTYJvfQsmTTrQey9yaFIF1hFFpx1FRPaHlhb46CNITTVNobOyup8p7ct4/HF44gmsoiLczZvNc7VZWVbHxuomPJaFxzIjczyWhUXbpQWNrTZ9k2KYktuLKbm9uBPTdL2hNcymmiYmPDILX34eBIPYbRVWVnQ0hELM31LNeUOyuXViP07pn05lUyv/3VrN08s389JnWwFYvL2Gox+bzcn5aXx45ZQuu//yZ1t5dsVmEgM+EqP8JAZ8uEAwZNMcdgiGbbY3NFPXYiq5doRW/qxMvLEx2E1BALxjxmCfey7cfLMJJ7pz0UVw6qnmi29MjAn/Zs7Ec999OGvWMCQrmTuPLeCi4Xs3fFEiw41H5fH0Z9sIuZAeF6CkuoGqttkMvYkJ2DfeBHfeaWYXlK5Wr8Z75pk4Wzbj9lDZyLp1WOefhzv9TQA8J5+Mc/fdkNsP79zZ2DfeiPeXvyB8xRVY/3oZt7kFOpwbnb62a+g8MSeFq8fkcs7gLGJ8ZvbOotomPt5cxcebq1hc3khxVUPnla65Zp+9bJF9buVKrFNPxS3tPJFIv7QkBiZF0z8phrzxfchPiSUv2Sw//WgVFubvYUhaPOsqG1i8vZYnX3ieYCDQNcB6911zTDFx4oF7XSIiEUYVWLJfqQJLjlizZ5uqoA58KclY2dmEc3Jwe+eYYKt3b3O5Y+nd2wwn2BvDhpkKib0wNiuJJTee1Om211dvZ2RmIs+v2EJz2KauJczy0lqWl9Z1qZ7Ywe+xGJudTGF1IxVtzeAfmjaGN9eW8L2jCzgp3wRLruty4lNzmV20F8O++vQx1R8zZpjhSTsqqcJhaG7eWWUFUFoKCxaYnl6VlaZCraVl52VLC57mZjzbthJeu45xfXpx95QBTBuUhUf9dw5pYcfh1VXb+eOCQhZursTXP5/w924zFXkdf0ekq9paPJdegvPOuyQG/Pz59BE0h22Wbq9lSUUDK0tqaQ2FiYuJ4qlpo3GBO2evY3VpDcTEkOKFOVccwy9nr+WD4iq+PiSTxICPNwsrWb6tyjyH1wt2D+FYmyi/j9a2GSX9AwoITTkOJk82y+DBsJuKUpGDrqYG7r0Xz6KFeJYuJVxhPutio6MYnZnEuIx4hqYlEO0zM7L6PBY+j5mltf2611w/719LqP3Rj+Guu8y2y8qwbr4Z91//gmOPNVWlM2bgW7CA8Eknwa23wvDhB/HFixxkqsA6oijAkv1KAZYcsVwXLrgAXn21y12xfi/Ds1PY1thKWV0jodDOL3eeQADnN7+B7353z7+0bd1qKoy8XjjuuB4fNqF3Mlnx0SQGfFwwrDeVTa1cPqovAZ+XRxZv4oY3lxEd5ees/mm8X1RJfbD7YYq785/Lj2VqQUan28KOQ/Svp2PvzUfOY491X3URDMKSJSaw+uQT/J/MJ7R5CwC9EmPJio8m4PUQ7fUQ7bWI9kDA6yHg8xDn9/H1kX04KS9tl7MCSuSraW7l0SVF/HlREduqG/CecAL2978PX/mKAo+99e67eL9zK8669Vw3NpdfnzyMjLgAYcdh8bYalpfWsbSklrc2VVJR18T5g7N4boX5m/vFiUO4blw/eifEtG/OdV0Kq5t4fGkRjy8roqShrUrUsuCrX4Xf/Q4qKkzYXFFhemcVFMAxx6iZvhweSkpg2bL2xb9kMaENhWa47p546SVzDPHCC3hvvpmEUDMZAS9rKxuwLIuRvVOYkJHAGxvKKa9rwnPiiTjf+Y4ZzqvPNjnSKMA6oijAkv1KAZYc0UIheOop+NvfYPnyTnf1Tk0gPzGaAUnRpERHEe3zEO3zsrK8jn99vg3PccfhPP005OXt3XOGwybMevDB9gbKO1w0PIdpAzOJ8nr48ycbWLC1GoCbJ+Tz4JIi7KuvgdhYrGefxa2q6rTu5L6prK9uorShmX5JMXxjdC5rKht4sW3YIMCi609kfO/dN0B3XJfyxhY21wU58cm5NIZ6qM5Yv958qXVdczA/axa++R9jr1yJG7YJRPkYl53Csb2TmJSTwqQ+KfRNjFEwdZjbXNvEHz5ezyOfbqbFcXEv/Tp873um4bd8eaEQPPAA3rvuJLq1matH5LCwtJ4FxRV7tPqOv/9NNY2c9eIiVpVUt9/nTYjHk5dHqGCAGdJ7883761WIRDbHMZ/TO5ZQqOvPlgUxMVg33oD75lsMTUvgJ8cNYlV5PbOKKihIjSMYstnSFKKorpltVR16xb31Fpx11sF7fSIHgwKsI4p6YImI7C9+P1x3HdTVwfe/DxkZMG0apKezzeNh26ZNLFi/DjZsbB9usIMzZw7k58OLL5o+TnvK54MhQ+BPf4LkZBP8tA0vfOmzre19qjp64LMSOP54SEqCDRvawyt/v1zCw0fgJicz7/nn8fTOhobt/PrkYYzPTmbmpgre21DWPrxwbWUDY7KS8Hp6DpA+KCzjto/W0Oq4eKD78KpfP7PPMW0VHdu2meFgzc3smN9wfHYyV4zqy4ScZEZlJhEfpY+zI8UxT8xla21T+8/etWuw//Y38/eVn2+G13i9B3EPD1F+P9x6K/Zll9F41108+Mq/CJfuWXh1zZhchqbH82lJLaf9cwHVqenw4oMmgM7Px05JwVawLGKqQ6Oidt0Ts6IC0tPZUWGwqqKeK/69GABfUiL/jY3B7p2Dk5lp+vsNHGiG3OfkwJSufSdFRA4nqsCS/UoVWHJABYNmxp+6OjNV9Y5l/nzTDLVXL7OkpZmQxxdBoceOmYsKC83sRZ9+Ck88AW+/DWeeuW+ew7bN2d1QyPSGCoUgNtZ8cW1tNYFXB57oaDzDhhIeMtQEAoEAPPpot5s+uk8Ky8vqabEdMhLjyEuMJi8hQN/EGHKTYuibFEPA6+Frry6mafQ43IkTzZlo24YVK8ysZz/9Kfz6193ve22teU+WLoVly/AtXoy9ehVuKIxlWeSlJTIhI560mCjqW8MEwzbBkE1j2KHRdmkMO9S1hDktrxePTxu9b95POeCCIZvY30zf9YMuvRRuu81UZEXS3/ih6MMPTcXUbpT+4ExWltVxzssLaR4yDPudd3uclVBEdiMUgttvNw3bhw/f2SMzHDbD5+fPxzt3Ds6yZeYz0O/HV9Cf0PARMHSoWc46q8tnushhSxVYRxQFWLJfKcCSA2LVKjP05aknsevqu9zt93mJiQlQV7+zaoOf/Qx+9asDuJP70IIFJqSLijLhU8fLqChzRjYjY/fb+aLmZvj5z+H3v2+/aWJOCl6fjzVVjVR1fP+AWyb255tH5TM03czwNvzhWXy+vZrdevppU1UWCOz9Pu7wyiumKquhYbcP7chjWdh3nfvln1cOusXbauiXHMMDCzdy18zVPT/wD3+AH/zgwO3Y4WrAANiwocvNiQEftT+eBsALK7dwxWtLcU46CefVVzXr45HKcaCoyJwoSkw82HtzePjsM/jlL/HPm0doq6mg7tMrkeN7JzKkV3zP/wcef7xpIxAfb6qa/f4DuNMiB5gCrCOKTk2KyKGptRVefRXvP/6BPWcOKfEx3Di6D2cOHE2U18Nzyzfzn42VfH9SPjeMz2N2USVXv/kpGyvrTfDxrW+Ziq2YmN0+VbuqKnj5Zbz/fB571Gi47759V+Fh26bX0xe3N3s2bN68MwCuqzON2kPdzwrYbvFiGDfOvMbt280wvIULzfv2gx+YiqqtW+Ghh0wj5X/8o9Pq6QmxeBybHx07gHOHZOPzeKhpbmVucRXT15TwtWG9WVFay50zVvHKqm2kxUbxkymDWJIeR0OrTV3IoTZkU99qU9cSoqS6Q9B05ZWmx8fll3/59+vRR/c6vAJ4WNVXh6xfzFzNG2u3MzoziRbboSXsMG1QJs02NDsuzbZDbXOYkrom6ptbzd+OAqz/3fr1pgLytdfw/PN5+GgGTihEYnwM17+xlJQYP3/4eD3WZZfhPv74rodGyeEhHDbVwqtWweefw+ef41u5AmfNGpxgsxkqP303lZLS2Y56gi8MtfXceitZiz/h68N6c+zkiRzTN5WseDNT8brKhp4DrNmzYexYc33ECLj33s6V6R0r1WtqTAuB88+HM84wldkiIhFKFViyX6kCS/a5jRtN6NJWJdQ3OZZ7TxnG+UOyCTku//ffQn6/YCM1za24xxwLc+YwKD2RteV1eMePx05MhBkz2jfnOe44nLPOgqlTzZCj7mYvs22syy+DV17Bsh2O69eLucWVONOm4b740pevJCopMcMCOvDERONNSIDERFyfj/DqNeaO3/wG7rjDXP/0Uzw/vh3n3f+QFhfggiHZ1LWGqWhqpaKphSXba/fs+aOiTKC1G3ExAU7JTSXK6+G1NSWE7R6argNT8tK55ag8hqTFU1TTRFFtsO2yiQ31rawqq6N10CDshYv+twosMAf8FRWwZQv85z87358Olt90ElXBEMtLazkxL43+KXHEtfXLqmhqYUVpHctL61heWsvWhhbSY/1kxAbIjI8mIy6KjLgAWfHRjMxIxO/VzHYHi+u6RP36DcJOh0MWyzLVBYEANDWZioO8PPNzVJT5m96D4W+yl2pqYOZM+OgjfO+/R3jNWhMU/u53mv3xUNPSYoZl//e/UF5uTqTY9s7h3V9camvxr1xBeN163LaTKAmxAYamJ5AfHyDG7+X5lVtp/X7b78ORqLXVBHyuu3NxHHPp9XauTgyFTMXahg0mONrBsrB8XiyPF6elhUfOHsN14/J2+9S249IYCrOitI4pT8zp9jEeyyI2JorE6CiSAn6SA15So7wU1rWwqqQaT0w07lem4V54oRmGGB//P74hh7jSUnMCcMyYrrM7lpebz57cXM38eLCpAuuIogBL9isFWLLPVFb2OL36kKxkTshJ5sXVJdS2hHGvuQZ+8hNTNv/WW1i/+iXu1m0m6OhGdMBPc0sIX2oK4amnw+mnw2mnmYaoAOEw3lNPwZ41myn90nj87DGsqWzga/9aRPi443EefNAcwKxYgff886FfLva48XDSSeaMZk/C4R7L+r8zqT/BkMPpAzJYXlrLL2atMcMBbr1154NmzMD7ox9hL1qEJyYaT0ICVmIiofU7h/tcPSaXy0b25dRn5vW8H5MmweTJcOON8Mwz5oBtyBDTl+r662HJErzvvYdVU034mmtN5VR5ufkSW1FhKsJ++1vIzsazeDHOihXtm7b8Pnw5OV1tLA4AACAASURBVNh5+Tj5+SZguOYa03B2Xyovh5Ejzb63yU5JIDM+imWbOzfI75UYh4VLRZ0ZEumJijK9vvrl4a0ox1NSglNegV1X175OUlwMFw3O4KLhOZyYl4ZPX9QPONtxeerTYq59Y2nPD2pu/t+DUdk7ra2qujoUuK4JShYsgAUL8H48D2f5ctxQGL/fS1pCLB7LwmOB12PhtSx8ltV+PWw7VDcGifZ6iPZ5iPV7ifF5qXcsimqbqG0I7nyuuXPNZ8qRIhw2lWij96DCNz8fa0ABvnXrCG/egtvDCaG/nzkKx3Xxez1cPSaXgG/PJ6YIOw7Pr9hCfJSPrPgASQE/SdF+kgI+4qN8Pc7Uu66ygedXbOHns0xVlycQwD3lFNzrr4fzztvj5z/kVVXBq6/ief553FmzcB0HX58cwpdcChdfDOPHw2OP4bn1FpxgM974OKyhQwmPGm2q3YYPN5dZWQq2DhQFWEcUBViyXynAkn1m0yYzwxiYPk3jx5uZd1auhNdewzdrJuGvTDNVOLm5O9f7+ONdHkgvvP4Ettc3kxjw896GMt7eVMmnW6twXRff0CGETzkVUlLMmdPXXjMNxL1evjsxnzMHZnL2SwtpajZVTFaUn4HJsYzLiOfV1SWE/H7cuvquwwIfeghuumm3L9m92xwwuq7Lj97/jD/OX2+Gzl17becHhsNdn8Nx8Bx/PL1XfcrnN5xAQsDP1Gfm8X5heftDMpNiKa0LQkICvkAUbkEB9pChMGiQeW8HDjRfekpLuyxWyXZ827fjlpURrqwyZ5g78MREYw0Zgj3+KBg1Cq644sA0lA2Hzb/50qVQVmaWwg3wUVvV3eOPm98lxzGB16hRpsdPd0NBW1pMMFZcDNOn4/vn84SLikmJj+HiwZlcPCKH43LTdjnrouw7G6sbOeax2ZQ2tvT4GE9uX5yi4gO4VyIRqrraVFYtWID1ySd4P5lPuLoGgLz0JI7LTmRSTgqT+qQwKjMJC9hcF2RjdRMbaxrZWN3Eptom1tU2U1gTpLKusX3Tls9rTkzk98dpm2mSHScoBgz4cj0YI1UoZCpwtmzpsviKNmFt2UKotKzLZyDAn08f0T7c79JXFgGQ2yuBsenxDEyJoyA1jgGpcRSkxNEnMYb1VY3cN389x/frxRWjc7ts70D4tKSWMQ/N6HrHkXBywLbxXH457r9eBtvhhPwMLhueTX5yHK+s2sYLq0uobgjiTeuFXVHJdePyOG9wFnOLK/ndvHVdNudNSoIRw7FHjjLDar/ylYPwoo4QCrCOKAqwZL9SgCUH1V//Ct/9bo93xwX8NLaYYRB/Pn0EdS1hFmyt5u11pV0em54UR9hxaQmF2wOrX580lCivh88r6tlSF6S0oYXLRvbBsixu/+AzeOCB7oOqGTPg5JPNmbm+fc2ycaM5SG5zw7g8rh/fj5DtEnIcNtU0ccObn9KakIhbUbFnQ3U2bMAzaiQX9+/F0+ePw8KiOWy3D6ELhmz+NH8998xbx4SsJPolx/B5dTPrKuupb+oaEsTFBEiPjyY7NoresX6y4gNkxpnhduYyQHK0n8LqRlaW1fP8is18WtpWxfTKK/DVr+5+nyOZ65reYi++iO+FfxLespW0xFguGZzJRcNzmJzbC4/Otu4376wr5azn53d7X15yLGWNLTSfcBLO++8f4D0TiSB3343/+efaK3ETYqM5pncSx7aFVRNzUkiNMRVzjuvyYWE5/7d4E2+uLcG220IYy8KfnYWTn49dMMAEUx1Dqpycw3OGz+Ji+NOfoKgIX3ExbN1CuLxiZ38qICYQRe/kOPLio8hNCNAnMaZtiW6/nhLt71LlFLIdfB6rx+qnSPLPFVv4+quLdt7w+utwzjkHb4cOFNfFe/JJ2DNn8d1JBfzp9BGdPtPDjsPMTRW8ubaEE/PSOG9I7/b7cu57l231zQCckp/O0pIaqoIdepWefTa88cYBeylHHAVYRxQFWLJfKcCS/SIcNmc7dzdsZfZseOopPIWFeDcWEt62DTcUBsCXnWWGC27YYIY77MJlI/vg81gsrmhkdWkt4XDPPaB28Fx0Ic4LL+55+Xg4DH/5C97f/ha7qqr7bZ4+Fee3v9vZmHVPPPUUXHUVUX4fR+WkcGx2EhNzzJcY23X5oLCct9eX8klJPVP7pfCrE4eSmxRDZbCVdZWNeD0WmXEBMuJMf5MdmsM24x+bQ0KUj9P6pXJiXjrH9E0h1u+jvLGFFWV1nPJ0h2GLPt/uG88fSlzXDMV56SUTZm0vISMpjkuHmDDr6D6pCrP2sc21TeT+5b3u7xw/Dm9DI/bDD5teWCJHKOu663Afewy/18M/zhrFtWP7YVkWruu2hyeVTa08uayIvy/dzKaKOnzDhhK+7noz7Ck/35xUOdyrbXaorzeVuJZlJj555RWmDsgkNyG6UzDVN8mEU4mBw282v4qmFuYWVzK7qJKPNtewYlsVjuviS+uFfeppuI88cuT0wgqH4a678N53H3ZLC8N6p2K7Jux12i5t123/2W27bjsuFbU7qxQ9ffviXHABHHOMWfZ12wTpTAHWEUUBluxXCrDkS3ntNfjwQ9MsuLoab3UVnupqqKnBqavDbmzC8nnxjh1L+IQTzRfWKVPMUL8dmpthzRoz9G/4cHNwattmRr5gEAoKTABxwgldgpX+veKpD7uUtx2MeKKj8QwfRnjMWNPjYvRoM/wsKckEad0tCQlfrvdBQ4MZFunzmcXvN5dxcV/+AGjpUvN+LliAf8EnhDZ36AXm8eA9ajz2pKPxvfBPqK5mUIaZ5S3kuIRth1bbIWw7hGyHsG0Ttp2dZ+oLCvBVVRKursHn9ZIQG0V1fbDrPvzyl3DnnV9u/yOd48D8+fCzn5m+YMBN4/N4YNqYg7tfh6HvvLOc+/9biMfjwelmyA4Aw4fBys8O7I6JHGzvvgszZ2ItXQIzZuCGwhzbtxfvXnY0m+uCHPXobBJjo+mXGM3S7TXYWLgXXID7rW+ZYfZHauD+hV6UsVE+Gn78lUOiUurL2lIXZHZRBXOKKvlwSw3rSs3QUl/fPoRPPMn0tTz+eNNO4DB+H3aprAweecRUxnu9puq94/LF23b8bFlmdutvf1u9AQ8kBVhHlMOw/ldEDnmvvmqaiQMTeqcwJC2e5AQ/yelJpESnkRztJxi2mbe5hA8efYCyP/4RLMucRe5fgH/V54QKN7b3pPDl9iV83vlw7rnmwGzHweoxx0Bjoxk2UFhohvEVFlK4ZYtpAD96NIwahTNwII63hwaq+6qZdzBogiu/HxITzYHPF5fWVnN/xwPKmhq46y5zn89nDqJ2hF9fXCZOJHTssWbWnMpKc4B60knYSUkAhH/zG3jgAT4vKjLbqanZOdNbQoIJ7GJizL74/aap/rnnEnZd+PxzwjNnUl1RYc7ijxjRc2+pw43HA0880R5eAbywarsCrL00a1MF/1y5hXtPG05iwE/IdqgMtpIeG8DrsfhkSxX3/7cQBg7EWde130i7s9RnRI4ANTUwfTrMn4/19FO4jWZSih1npSf0Tua2o/uT+Lu32lcJfv0CSkMhcwLmmmsgPf0g7HgEcV1zYqu8HH74Q3jySQb1iqemOURKzOERPriuy/qqRmYXVTC7uJKPttSypbKuy+Os/v1xhgyGSy4xFWmPPGJ+R/r1O7A73NAQGdVeGRnw058e7L0QkW6oAkv2K1VgyZfiOPDkk3DDDWTFBdj63dN6HI7lui6bapqYXVTJ7KIKiuqbGd4rnhEZiQzPSKCh1eb11dt5ZX0ZpTWNeBMTsadNg+9/f+dQvIN5hrGuzvTceOklWL16z9a5+GJ44QVzff58OPZYCtKTCPh9hF0H2zG9GsKOKWtvv2471DeZHg1ER5vALivL/Oy65vk/+gg++ADvjBnYtbVdntqaMAH3+ee7NrTdvBnf5mKsigpCV12N9cADeIJNeBITISkJNzmZcHKKaeSelGSWfv3gyisj42D1fzV3rvl3vPZaU+V3ww2suvkUhqQl7H7dI9TaygY+LCznitF9iY/ycfwTc5hTXLn7FQGfx6J/WiJry9p+R2+7zfS769PnyK0YkCPL8OFm5rs9dfPNcP/9++6kSyR69FFYv96cmGpqMpeNjXgaGvA0NWI1NJjbgkGcpiacYHO3swD+/IQh3H3ikIPwAvadDVWN/HzWat7dVNk+464VH49bUACZmfBe1+HY4/v0YvGWSvM74jj4hgwmPP8T87m9bRvMmwdz5+KbOwerrg43KQknKQknKdmceNuxBIOwY/jcnlq/Hs93bsV5+x1zMvKcc03T86OPPjJOhMn/RhVYRxQFWLJfKcCSL6W2FuuKy+HNt7jnpKHccdyg/2lz2+qDvLGmhN/OXUdxrTmQY9AgfDXVuKNHY7/XoelzdzP69WTDBjOjYFkZVmkp3tIS7Jwc3K9+zTTsTEvb9foLF5rg6o9/7HRzVnyA7x09gDFZSbSEbV5ZtY1nlm/BcV2848dh3/fnnX1+SkogO5tXL5rI+UN7d/MkRnFtE7e8u5I3Vm/Dc+qpOA88YCqk1q6FX/wC34cfEC4tw+f1MrFvKlP79eKk/DRSY6KYtamC295bSatp+NBpuwmx0eQkxZAXF0XfxGhcFx5bVgyZGbglpZyYl8aojERqW0LUtoSparGpbrWpaQmxvboRNykJ+4474FvfgtjYPXvfI10wiKdXKvcc258fT/nffncPV/OKK5nyxJx9t8F33oEzzth32xOJVI5jgqiFC+H55/dsndtvh3vuMZW1hyvHwYqLI95y6J0cT7zfQ7zPQ6LPQ6zfS5zfS1yUr/16bJeffcRFeYnz+xiRkUDAd2i+V9XBVgb//QPKm1r3ar05Vx/H5L6pfLixnM/L6zmmTyqnPP8JDbn5+JoaCRVvBqBPr0ROzEkkIzZAXUuYulazVLc61LTarNneoYfnihUweHCnIZpdNDXBPffg+cMfyIoP8MOJeSwrqeWNDRVmxr+kJJwJE3B3VH93XOLi4JZboH//L/NWyeFEAdYRRZG2iESW1avxnXM2gc3FvHDJJKYNytrrTbiuy4qyOh5bUsRr60oprm7sdH90lJ9J4RrK3WbWbthgqplmz8Y3cwbh1WvwZ2ZgDx+OM2KkGUb47DPwkZlW2nvC8dgPPWwOyt56C/7wB0bnpJKfECA9NorPVm5l/ltvg8eDNWUKzt//bobTdeQ4pmLkr3/tdv9LGlrIig8wtSCDZ5dv5qlPzYGjFRuL3S/PDBuprzdnJzMz8cTGUFjdyKJt1dw1YzXH9k0l1u/F57HweSxKGlr4w4JCUwH14os4F15oqlRcF+/VV5P+2TKuHJ7DyacWMCW3V/sshQD3L9jA995bieN0PdfRLymGTd89vcvtl47sw4WvLqE6OsDMTRVE+XycWWDCvGDIoSrYyqqKelK8sLy0Cn74Q7y//x32m2/BpEl7/O8csWJicM85l5++/DLzt9Zw07h+TC3IwOtRZdAOt723ctcPePttOPNMcz0cNn3cZsyAJUugVy/IzTVL375mVjQ1yJXDneOYXoL//jcsXw6Yfk0eIDHKR4vjUNkxtBgyxIRcB6vC9ec/x/e3+7F29HH0+9uHn4f75uIOH26qyM46y1QE7TBzJmzaBFddtXfP5/HAKScz6rOFzP3G5H34QiJbUyjMU8s2899t1WTGBfj9vJ3Dq08vyGBgahw5bbMj5iREk9N22fFzvqNT+2dwav8MAN66aAK/mruO4dnxTJ40gcl9e5GdEL3L/fnjx+v44fttPQhHjsTy+/DExmLXN4Dj4MnIwMrpDfEJOLGxeFeuwCor48fHFPDjKQOJ9Zv9clyXhVureWtdKZ9v/ZxW26HZcWmxXVocl1bHpaimkdpnnsF+801TqXWgOI6ZVXnWLHNyPiOj65KebirXVBEsss+pAkv2K1VgyV55/XW8l19GQZyf6RcexaBee37gHXYc5hZX8u/V23ls2WYaW3Y2Zs9KiuXU3FROyEvj6D6pDE1LwOuxuO6NpTy2tAiA/hlJnJyTzLjsZLbWB7lnztoen8sTFYVz112mp9bIkbx+ySTOGZzdfn9pQzOvrynhno/Xs2Xc0Tjvv995A0VFkJ+Pz7I4pk8KU3J7AWZI1araZi4amMFdJwzGsiwaW8NMX1tCYXUjG6ub2FAbZF5xJXbBAOy2IYf+4cO4LraZjLgofjFrzc79jInGDdtgWbg33gi//rUp799h5kw46SSmX3p0t0FhSUMz2X96F045xTSB/4JZV03h+H7dV5kt3lbDUY/MBMBKTcWtqcHj9+O0tPT8vsbG4O3bl9BVV8OPf9zj4w4JixbBhAntP8YFfHxyzfGsr2rg7EHZR3yYVdcSIqlDb55unXwy3HuvCZE1hESOdJ9/bgKfDp46bxxXjs5l8bYaJj0+GzcqCueSS+HGG2HixIP35fmll+Dii7l+XD/6JsbQ2jYpSGvbpCCbaoMsKquntKbRBFVPPLFz3dNOgw8+gDffNCdpOgqHTdXw8uVmqPbYseb/2bg4c/8jj2DdeCPPnDeO0wdkkBZ7+M2kWN8S4u11pdw9czVrKhs63Tc2K4mlJbW8cckkzu5wTHIw1DS3sry0jpVldVQ2tXLXzK4tEmJ8Ho7qncKD08YwLH3vhtsP+8eHrCqvNz8kJkI3LQ/2mXAYXnwRli0zoXBCgvn9bNMrMY7qhmDPE4t054c/NKGbbZtArKAAxozRZ92XpQqsI4r+SkQkMvzyl3D33SRE+/nBhIH0Sdz1Wb4dPi+v49ez1/LWxgrqGpuxYmNxW0J8fUQfrhjdl2P7pvY47fVPjhvEWQMzmdw3lcz4nc+3trKhU4CVlhjLFcOy+fMnGzghL41JvVP44113Yf3zeZy4WF5bvb1TgJUZH80N4/OI83u5/N8fwGefdf7i0a8fLFlC+JFH+PjZZ5lTvJZj89K5YXRfnhrWu9OZ0bgoH6cXZBDweYj1+yiqaaLg7x9g33RT+2NCAwfxwOuvkxxnXoMnNgbn+z/A+eUvd/neeX/+c4b1TuErAzO7vT8zLkBqQgxVM2Z0ue/NS4/uMbyqDra2h1cA42JhcZXTY3j1rwsncMHLC3Gagjhr1sLvfw/33Weqa2bNOjR7ZH1hqE5jS5jXV2/nZzNW8cjZY7huXN7B2a+DrLi2iVvfWc5p/TPYetvpVAVD/PWTDTzaFiR38tFHcNRReONicSdPxhk9xvQYGzz4wO+4yMHS2gpvv431zDPtDdoz4qO5bkwuXx9pKg9t1/Q45P0PzIyCB9OqVXiuvoqLRvThoWljup3NLxiyOfHZ+VT4YrDvusvc6Lrw8cc7/++cNs0EVbZtejYGAmZo/memusfv8xIK21heL94RwwlPnmJmzUtN5fJ/L8ayLMbkpDKtfxqnF2QwqU8KvkOw/1dVsJWPNpbzmzlrWVrSNaTxeyzuOXkY35yQT3wPVVUHQ3J0FMf3S2s/TrjzhCG02g6PLy3iJx9+TnVziGDYYU5xJcP/YU6Q2Xed22O/0442VDXuDK/A9BLdtg1699BGYfFi09Lhyzakv/feLg3dbxyfR5/EGL57dAHxUT4c16U6GKK8qYWyxhb+sXAjL362tedt/uEPXW7yxsXijhuHk5IKv/lNl8BaRAxVYMl+pQos2SO2jZWfj7t1a/vMgakJMdxxdH9uOqrng7La5hBHPTGXjf447KuvMQ3Jv/1t4gJ++ibFUNvUyuuXTKJ/ShyNoTCNrTZ1LSFWVdRT1xLmpqPyifJ2f0C7uqKeVtvBAvolx3YJwZZur+HqN5fz6bYqkuKiqbhtapeD41bboe/fPqTsgktMc9nuBIPw73/jefRRnBkziI2O4vJhvbl2XD8m9E7GsiysX7wGwNQBmby3vhRfehrhjZvMWeemJjNr0JtvguviiY/H+dOf4Lrrdt2sd84cOP743fbOOv+FBby2ZnuX2+89dTg/nDyw23UeX1rEtW8sZUpuL1684Ch6J8SwsbqRUQ/OoKE13P64xICP68flsa6qgTfWlHS7Lc+4sThHH2N6uDz8sCnJP/10MywzUkvzbRvPpZfivPxy+00XDutNbavNe+tLSY4NUBtsaW8n5rUsqm4/q8eg9XDyj4WF3Pz28k63TclLZ0x6PIPTEnjxs61cPDyHG8bn4boui7bVMKuogp9+tKrzhtTzSo4U3/wmPPggveICnDswk7MGZhIX5SMrPsCYrGTAVDRm//k9WtMzCP/kp2b2uMABrj5yXVi6FO+ll1BQW87ia6Z0+9ntuC4XvbKIf2+oxJk1y/QveuYZfA8/RHj1GvqmJnDpkCyeW7WdrdUN3TwRDEtPYPlNJ/N5eR3zt1Qzf0sVc7bVsaGsZpe7WJASx38uP5aC1Lh98pL3h9UV9fzlkw08tHhTj4/xWLDh1tPIS47c17EnqoKtDPrbB1QGzdDX8J3n7lF18oaqRk775wI2VrTNpnjddaYf6RePeRob4XvfM5V5Ph/u9dfDHXeYKqft281SUmIuo6M7H1vYNrz88s6KqAsvBEyV2yfXndDjseMOYcfhkcVF2K7LQ4s3sbKs88yP719xLGOzkvF6wMLizhmr+Nt/C3c+4JRTTCWi7BlVYB1RFGDJfnXEBFiOYypFHnkE/7y5hCZOMsNfpk41H4o5OQd7Dw8thYXw299iPfkkSQEfP5yUz4l5aawqr+ez8npWlDeworKR0poGc1CycKEpva6shH/8w8xC9PTTu32at79+DGf2UH20J8KOw18/2cBzK7cy9+op7b0bOvrtnLX8bO56nC1bdj9l+caN8MQT+B57lPC27WQkxxGyXarr2xrPf/WrprfCtdeaoRPPPIPvJ3dAWTm3TMjjunH9+M3cdTy3fDPeY47BfvBBMx12d266CR56CI/HQ0JMFEnRflKivCT6vSQETGNb23EJhmw+3FhOqEMPrJMLMvnw8p5nFwrZDrUtoW6Hb7iuywOLNvJZWT1/O2sUHsuipKGZtZUN9E2M4dRn5lFY3dR5paQkrMYG4vw+QrZNS2sYX1Ym4QsvMjP/7apB7MHgunDVVfgXL8bZtBG7scPruekmePDB7le7+7wDtIMHz01vLtvlF7MdeqcmcNv4XL53zABCtkPGH9+hrmVn+En//mYSBTmyVFdDcbHp73SgA5qDZflyfOeda05afMH8a4/n6D6pgKlG/tXstbz42Va8WZmEf3wHXH89xMTsv32zbdOv7o038L05nXBJKb0SYph35bEM7mEG1vc3lDH12Y9NAP3732NNmojb3MLXhuVw47h+nNI/HY9l8WlJLWMeaqv+bZsVDyA/OZa/njGy2yFyVcFWFrQFWlvrgliWxea6IO9tKGt/zF9OH8l3ji7Y9+/FPtDd0Opon4dbJvbnrIGZ/Gr2Gj7aWAGAc9e53Va3HUrO+ecnTF9rTl59etNJjMpM2uXjC+5/j3MGZfPnM0YSdhz+uWILd81dz6aKOqxzzsb9xS/NsSDAsmV4L74I36aN/PnU4dS2hPjt/ELqdszE3EFKQixNLa3m2KJ3NuGzvmImlbn//m73Y8kNJzI2O3mPX+dv56zl/5YWc05BOndMGUjfpK4T1ry4cguXvLKo/WdPUiLO6WeYCXumTDHB2u4mYWhthfJyaG42J/uSkw/viRs6UoB1RFGAJfvVYRdglZbCK6/snKK5qQkaGvC98zbhjZvon57EWXmp/H3hxvZVLI8HzjrTzEznujvXKyw0vR6+9rWD+IIiXHEx/O53pjopFALLwp/Xj9DIUebDfNgw0/R7wIDO67377s4G0B30S4phREYiIzISGZedzOjMxPa+HBlxAXISovf5AWFVsJWcv7xPODOT8CmnmoOR444z/Q56ei7bNmfeZswwvR1SUuDUU2FgW8XTsmUmwAKm5PbiyXPHdTqjPHNTOTe8s5L1lQ24t9xihmcmfOHLRFkZ3H13j2HKrjz/1aO4dOTeNc0OOw7BkE3CbqqMVpbVMfKBj5iYk8ItE/tzxb8Xk5Ucx+2T8vnG6FzunbeO33VoUguYs6+LFpm+L0OGmN4vkTSjYWWlGcKwapU5uF6yxDTx78bhHGI1hcL8ef4GfjZj1a4fePvt5iD88cc5oX8Gz547lt4J0Ty3fDNXvrbEPEYVWIcf14V77sH/8MPQK5VQ7xwzJCwuDmbPhqeewjf5WMLbO1Rr3nyz+b/wuOPM/4+H+Bf6HtXXw4IF5r1ITISEBLznnkNO0XoenzYGv9fCY1lYwLqqBu6dt55VFfWmWvdHt5v3aX8EWU8+CVdfTV56Il8tSGfaoCym5PbCv4vqlJDt8Nu5a7ln3nrspCTsxCQoLGRibhoPnzmS0Vk7Q4znlm/myteXdDuJyNQBWbxy4VG7HDa3pqKeIf/X1r9x+nSs88/j/6aO4JsT8r/0S96fXNfl9TXbSYmOYkpur26rkVzXJey4u3yPDwXLSmoY+9BMAGpu/wpJ0bs+NiisbqTgftNPtOknZxPjN8FM2HF4bvkW7p67nqLKOqzzzsUdNx7Pr37FsLR4/p+98w6L4mr78L2N3jsoggIq9q6x18QSa2ISo+ndqMn7pvdm2pe8aaYXTYxJLImxxh57FxVsKAhIr0tdWHZ3Zr4/DlVAUEFR976uuZadOTN7dtlyzu88z+9ZNqUH7cvE1HyjmTVn0nGx1eLvbIe/kx0+jrboNGqMFokd53JYF5PBqvhs4jLzmd4lkHmjO6MvMaMvMZFTYiK72MTUDgGNWqWyyGTh3R2nq41t7u0ayKncEo6k5GKRJDQuzsj9B6D07i0EqqwsyMxEm5mJKisTWa8XRvnnoXF2Qu3qCu7uyB6eSB4eIpps2rRG63+zwCpg3VBYBSwrTco1LWDFxkJkJBw/DlFR6KIiMceKFX8nBzvsdRrsbbTYazX08XHkke5BDGzliaQo6N5ZBcD8Cd2xyArzDidyAsrO+QAAIABJREFULFWUFi73bajg/feFmOHtXenzUNft9WDuGBMjJiVz5ojomYY8p/R0sbVr17BBuMEAI4bD/gMX1TUbnZYAF3taOdnQwtme1m4OvDAw7LJTu/Ym6fnjeDJbk/M4kZaLoihofbyxDBkqBK3Bg4Ug11B/ji++gKeeAqCjryvHHx9Wo4lJkvls31ne2HEGi4cHls+/EIOWqhM8gwHVAw+gLFtG/0AP7urYgqHBXqQUGjmRWcDxrEJs1Go+urkjLrY6kgtK+PloIs8PCKsInzdaJAwmCU8Hmzq7uy4mg1mbTpCoL2Lu0PY82z+sQWkCsqKw81wONwV6YKNRV6RS1odKq0Ed1hbphx+uvh8MiEjM843862D3g4PoH+jZxB268qyMTuPhdcfILigWK8KDBokiAuW8+KJIhT17VgzM/f2F4PfSSzja6ghwsScms9L/RePijLT2H7EybeXaQZZFEYsWLURFunJMJlQPP4zy66882K0VJRaZP44nVztVHR6OV2oimfmVVWUDPZ1J1heJ71QvTyw9egqR+K23xO/m9cz+/aiHDkU21owoqcHHH8MzzzR+H8oELNOrEy5aUEnIM9Dx220U//dZuOUWNI89ihITy5q7+laLjC4oNZOUX0JyQQkphUaSC8TfpZLM12O71llNr7DUjEvVaKaEBAgO5sfx3XjoBvUgbE5YZJlNZ7MYHepT68KhoihMWLyPNWcyahxL+s8ttHSpPha0yDKLopJ4Y1csiTmF/KdfCO+P6HDJQlNSfjHejrbYNaJQVRVZUfghIoHH10bWOLZmWj/GlRXWKTZbOJiSx87EHHYk6TmcWYijrQ4fex1+dlp8HGzwdrTFy8EGbwdbvB1tsNNqyDOayS0xkWs0k1tiFrdGE4kFRvYk5sDMmfDpp9W/h69lrALWDYVVwLLSpFyTAlZqKqonZ6KsWAmAm5M9Xbydaetmz49HzvHW0Pa8PqT9BS9hkuRq+fGKolBikbDVaNCoVSTmFzN9eQQZRgtpRUaKiuuuzFYVlUaDykaH2tYWla2tELXKBC7Fzg7Fzh7Zzg7F3h5cXaFzZ1HBq1s3kXp2pdDrhQHzpk1oN23E0j5cpBmUm7RWnXT+9BPcc0/1NLAVK1B99x3K339f3iRk714hEEZFQWmpWLUqv23gV9+LA8J4f2TjGWnmGU3sSdKz41wOW5NyOVy2uqZ2dkL+dZGobFgbZnP11yg1FVVwMK/3b8ObQ8NrPcVgstD9h+3EZJeZnU6bBr//Xr2RosAnn6D95H9YUqt4XalU6MJCkdPS6ORiw397B+Og02Cn1WCv1WCnVWOv0zDq193oS8zVLtnT341hwV74Otni42jLfeVRM2WD1IFBXvw2qTsOOg2xekNFCkx9rIvJ4PP9Z9lQJR2kPlSTJ6HMngPDaop8V4yICFi0CO3GDVhOiugjJ1sdnnZaEvNLOP+duOuBQQxodX2JWG9uO8XCk+nEZ9VfKUqtUiHX8/lUjR6N8uabIgLTSvOmPKXFwwNefRU++wwAbceOWLp3hy5dUK9Zg3rPbhZO6M5dnVqgfntlxend/FyJzCggzMeVr2/uyMhfd1ccs9WqGRIk0suTCkoqH/PQIfHbFxsrFoiaW5pxY5GbKyI8ZVlsilL5d/l9RRELJBd6DRTl0qLX/vwTpk5F//xY3O0vbiJstEg4vLcG5ccfhWfXv//CiBFsvW8AQ4PrSbdvAKUWiTnrjvH94QTo2VNMcNu3Z+GkHtzTtdVlX99K06EoCu2+3EyMvlKsHhPqy0PdWzG+nf8F/afMkkxWcSkBzk2YOtsIfHkgjtnrKv0gPx/dmSd6tW7yyDpFUfg+IoFZ64+j9OmD9NdfYsGoKZFleOcdyM4W6f9t2kDr1mI7PzugKpIkfGLt7etPhbQKWDcUVgHLSpNyTQlYigI//ojm2WdwVSx8NiKcm0N8qlWnSys04utk26AqKReDvsSEvsSE0SJTapExWiRKpbJbiyz2S1K142Jf1Tbl54i26SUSxzPzMZYKcUHr443UvQdKt25C0OrWTaRcNDQ/XpZh3z5YvVpE8lT9gTAahTC1aZOYpB85Wl0gGjECnJ3R7tiORZ+LRqNGp1LhoNOgLzGhbRWI5ZVXRTntJUtQPXA/iiTDgQPCw+n4cThyBA4fRhNxCHVeHuaevUQfevQQKSTu7rV2WzVoEMquXeg0ajoFeOCqU+Nmo8HZRis227pvJVmhX0uPixpQWGS5zkpH8bkGvjwQR6iHE2GejqyPzWRJdDrJ5Ua1s2bBvHk1T/z5Z1SPPoKmXTss9z8Ad98Nv/4KL7xARz93+vg5V6RGdvR2JqAsFXL0H/vZcCZNDBbi4kRq1uOPg69vzUg2RYHoaFEiOjRUvO5OTsJHYvQtSBkNF43K0Tg5IhUZqu+cPRvt8r/QZWdTUiqMW18f3A5HGy2P9wpuULTbicwCOn3zL0/0as1Hozoy4+8IVkTXNJqvRlqaMPm/2qSlwZYtsHkzum1bxWcHABXmDLHS/HTfED4d3fnq9bGJkBWF4M83kpRfUm1/vyBvBga4clOgB/1auuPraEd2cSmphUYiM/L56mA8h1LLzJnValQzZqD88stVeAZWGszixbB8uTBBLkPr54slvTKaooe/KxqdjmMZ+TjotKyc2ouBrTwpMUt0+uZfbmrpzi+TeqJSlYkdVTwGk/KLafXZxtofe8YM6NUL1UsvopRUiU5aurTCiNlKGStWoHnvXZSoY2haB2NuHy4ipMu3sDDxe1HXmGfDBhg9mn/uvokWLnbYaNSEuDs26DfzZFYBHb/+V/iHDh4M06cTvHENcTOHNVoqv1mSeWr9MRYcS64YC3k52JBdbKpo42Sr49ObO3Jf11bXfFre9cKA+TvYkySyFsyvTbgmq0fWx/ObjvPRnljWTb+J0aGX7sV6qexL1jPxzwhybB2Qlv9dGa2ekiIWOo1GMQZsyKbXw4oVIrV/1ixheVGV999H9corhPq4kpRrwGiqXPTUenpAqyCQZVSGIiguRikuRi4xVlSu1jg6oPTthzxwIPTvD/36iUX6qlgFrBsKq4BlpUm5ZgSs2FjUDz2EvGMH93VrxSc3d8LjIlcTmyOyohCXa+Boej6R6fkcziggIrOIjDwhmKjt7FB36oilew8haHXtKoSLqisicXHw5ZdolyzGkpomfDaCg5DuvAvS01EnxMPefcilpbg72TM62BOdRsXCyKSKS+h0Gvq28GB4Kw8GB3nRr6V7Rdj/sYx85u6MYdnJFNTe3kiZmdzTNZBFUcmo/P1QMjNRLBJqlYoQH1f6+DjhaqvjUGYhUen5FT+EulaBmHv1Fiut5aKWry8UFqKaORNl0SK6tvCgk4cDoR6OhLg7EuLhSKiHE94ONpc8YFYUhaiMAv6OTmXZmUyiM/IY386fJ3sGV5jRlrMrMYdBC3bWvMjChah+/BHlsceEOFWVzz+Hp5/m7s4tMcsKK85kYJFkGDwIJaAFqFRoT55APhVdLZXERqNmUGsfjmYWkltYXDOiZcYMIYKtXi3KS/fpU7eYWVqKuk9v5KhjPN4zGIuskGc0sTk+izxjFWPtzp3B0xN27xZi5Pffi9WzrCzhH5eUJKr8mM3w4YfwwQcA6Hx9kfLyaOlkw+qpveo1cj2fu/86VCPdqAZ9+wpPsaY0NL4cytJC23o68fnozgxv7V1vlaNrGZMkk1ZoxN/ZrsbzzC4u5e9TafxxKo3t8VnIgHrIEOQ774TJk69sNKmVhhMXh+amfqicnLDExdc4fEfHlrwyKIzI9Hy+PhTPl2O60jPADVlRkBXloiepsqKw+Hgy7+2No4WjDSODvTiVXcifZzIwlJgIdLHnXP55BSHs7ODppyujlx0cxG9f377Xf8rh+WRkgJ8fGrWKVwa2JafERLTewKncEtJyRVomiIUIVViYiKQOCxMLHBoNDB0qIiq6dq122Vaezrw9MIzpXVpe8H+66nQaExfvh9RUsLND7efHtHY+3NWpJQaThSKTBYNZwsfRlj4t3Gnt5nDJv9NFJgt/nUxlbUw6URkFnM6pvbrh9exBeK0wcfG+iqrEpa9OuG5/B5/ZcIxP9p29qhHX6UVGbvszgr0pepRXXkV1LApWrsJGo8bJzoZik5kSo6n+CwFqtZoWLvakGCXkBQuEx6+neF7qLp3RRkczd0g7ZvdtQ77RTFxuMXG5BuJyDZzLL0GrVuGo0+BoI4oIlf9tr9VwLr+YXcm57ErOI99QIsa94eFYBg0Sglb//sIj0Cpg3TBYBSwrTUqFgPXww8IwuuXFGT83KunpsGCBCLkvLISiIigsRJ2fD3v3EuCoY/7YLowKuf4nRznFJiIzhKh1NCOfQ1kGTmfkIUmiyo8uOAhzuZfIvHmQlUXfFu7836iOeNrbMG7ZISQF/B1tCHTU0b+lB6NCfOjk44JapeKPY8ksjEpiYKAHQ4K96B3gVq8PwamsQj7YHUMrFzveHhbOS1tOoi8x0d3Pje7+rnTxdalR5U+SFc7kFHE4LY/DaXkczCjkSHo+RSVi1Ubr54vUsxdK167CW+f0aVQ5Oaj0emRDZWSQva0NvQM9mD+mc73ltRVFodBk4VhGAX9Hp7HsTCaJOQVonJyQBg0SESJ79qDk5hLs5cLEEC9Rza8sSu63Y7UILevXC2HnfL76CmbNoqO3Mxtm9CfA2Y48o5llJ1OZH5XM/sRsNM5OSHfcKVa9yozdQZi7b7tvIBq1CklWOJCSS//5O8RBPz+xWnbkiCjRDmg93LFMmCgEMxeXmn3Zvh3VqJHM6BDAwkk9Kl6Lv6PTSMgrJiItj9/Ln5uHh0hraSjLl1crZvDF6M7c0zUQN7uGiciSrLDsZArHMwt4d+eZuhsuWCCEtebIeROz5Xf0YXJ4wFXqzJWnXLRaciqNrfFZKIBq8GDku+6yilbXCKrJk/DZupmpbX1YHZvJuVzxHatWwe4HBzc4VfhyMUkyhaUWXO20fLgrhjyjmY/3xlYcD/RyodQiY7JIFJeaMZktqG1sUPXpgzR8OAwZIlb4m1MhiPMpKBDRtH/8Ie7/+KOoTlsXxcWwcyds3IgqLg7lvfeEEPXZZ/DCC7TxcmbV7b3o6CO++40WibN6A2dyiogpuz2VW8xpfTE5BVWiakeNEl6WZjNYLFBQgOqrL1FWrKS1lwtr7uhFB+9afk+AT/bG8szmk8IXs7yoTT2MDvNjTIg3s/u0uewoLUVRSC00cjqniBELRVqqVcC6ujy48jALjiYC1Y3ar0de33qKd3ac5uAjQ+gVUHsGQWOz41w2uSVmuvi60MLFHhuNGrMk89ym43y+P462vm481bMVM7oEVkTDy4qoRl1kslBkkjCYLRV/F5UJzVq1iptDfHDUabl1yQH+PSsibXXBQZhv6i+yAP7+G06epK23C9FPXFqUpaIoxOgN7E7MYU+Snu2p+cRkiOhsjZMTUlGRVcC6QbAKWFaalAoBqwxtxw6iPO3o0SJc9UqVwT5xAu3oW9BmZeLj4oCLjRZXnRoXnRoXGy3hXs482z+0TjPQGwGTJHMqq1BEa2XkE5FRyJGMAgqrlBz+994BBLraEzZvM0ceG0o3v4aXEb5SKIpCfF5xmaiVz6H0fKKyDZjKxDlFUVAAi0XCYDShbtECuV8/VOvX0cXVlqnt/MgzmoUBptFMTqmFnFKJ3FIzBSUmiopLK6KZNB7uSB07ib9PHEfS51bvTIdwdKWlwqPM3gHF3h65tBQlNVX4gNnbi0nSnDkiXeN8Zs6Eb76puGtvo8Pf0Ybufi60dLFnaXQ6afnFwgj/gQfghx8q2s7uG8IX56WhHU7LY9iivRjCOyI98yyqGTN4smcQ0zq3ZM2ZDD7eH4f53ffgueeq9+OVV+C99yruxsweSaiHU8X9Yxn5fBeRwFdVqm+SmytKONdHme9JOarx42HdP9iq1dzS2pMTeUYGBrjy3biu9a7Edv9uK0fTa/FYatdORBWuWSOi8q4mxcWwapWYeK5aVWuTZ28K5cNRHRs9VbmpKE/p/HpsVx7vFVxtYJqUX0xWsYnuZZXFMgylnMkpqthO5xg4mVdCXFZBpWh1550wZYpVtGruVKmGWs7XY7tWVHgrH142dmXXS2HKkv0cyywg+smR1QpISLLCscx8tifksK3MlzDfUIJKp0XdqzfSsGFC0OrfX6TK1Me331YsCvDwwyKytWNHsZ2f8tIQ9HpRTKZ88/YW3yFffVW93a+/igqFa9aI+yqV2NRq1DExKLt2oZjN+Lo5YqtWkWKmRsWy+7u1YsHE+id+WYZSRv26m8iMAoDKRZT77xfjurQ01COGozl7lu339OemwNqFy+0J2UxZHkFusQll+nS47z4ICIDwSk9HL1dH7NSqijR71c2jUDZu4v0RHXhxYC2/mZdIeYEQy2sTG1RgxErj8+zG4/yvTGgufOnWC1aXvB4oMUv8EpnIYz2Dm/w78t/4rAqRti7S/jsaXyfbRhGG43KL2Z+i50BKLrtTC4hMz8VslvBzc2ROjyBeGtR4n93cEhP7knNZH5vBFwfirALWDYJVwLLSpJQLWFvuHUCWoZT1ZzNZE5dNdkExagd7lOHDUcaMFYJWmzZN1g9Vz54ohw8zNNiL6Z1bMrKNN8FuF460sSJ+iJILSjicls+2hGyeGxDKkbR8bv1jH2NCffln+k1Xu4uXxIGUXB79J4pjaXmVqXVffIFm7juoJAmVmxuKuzuSuweKh4cQYuzsxApzeLiYRDz2GOTl1ftY6p49kTt2rDTT1Whg3DiYNKlhxsJVBhMqVS3e88OGQXg4mo0bkWLF4C/Iy4Xn+wQzs3fNz9SRtDyG/baPfIORce38WXlHn4oB+/TlESw1aLHExFZWRDxyBFXv3jzdO5ibQ3xwstEyINCj2iBn8pL9lR5Unp4wYQJ8913Dnl9hofCmmThRpDKC8In66Sc0a9citW2L+o8/GN7KgxV39L6gyFxiljiYmsvp7CJO5xRVDIYr6NpViHHDhonHKioSFXiuZBWeegaHw1t7seXea6uyXpahFJ+P1wEwuLU340J8KDZbKDHLfLIvFousEODuRF6JieLydAS1Gl1gSyzt26O0ay/ST8ePv/oCo5ULo9fDI4+gPnoEuZY0wVcHteWd4R2uQscaB1lROJlVyPaEbLady+HfpFz0hcWismn37kKomTOn7u+Ms2dFZFMt6Pz9sHTqhHJTf/E9VPUaFouIRIqMhKgoVEePoj16BHOaSKWy0WkxmUW6truTPblFZT5y9vbCb0arhb//poO/O/Y6DbICCgqKAi0cbLi5tRejQrwJ93KmoNTC6D/2sS8xh/kTutPZ1wVPextauthftAdUrL6IhZFJzD+WQkpuEdrWwSgGA16lxaya2os+LS4cWVJstnDnnwdFpbkXXoD330ft6MAbfYN5eVDbihTEZzce57OTWUipqTBnDqr58znw8OBGi1wpF7AKXhyH82VWHbZy8by38zSv/CsKnFxKQQAr1UkpKGH7uWz+OpXK8lOV/qAh7o7c360VEWl5HErNI7ms8MXg1t5sv7fpKjabJJn4XAOhHk5NJhAfTsuj5/fbrALWDYJVwLLSpJQLWBGPDqWHv4jGKPcMWh+bwdq4bPYkZiNJMtqQNiI66+67Rfh+Y3LsGCxdimbjBqRDESDLtPJyYUyQB6PaeDOxvf91aRLZFKyMTmPSkv3AtTvQWHI8mbv+OiTu6HTQq5dYKXd0FBFR5bfJyaiOHEF75DDmlFSgbLV5ym1iFfzoUTHpqMLsPm14ZVBbfJ3s2HEum3d2xVBklit0i0KTheOpuWj9/bA8MROCg4VBviRVrx4lSWAywX//W6P/TjZaikxl3lP+/tjrs7mjvR/Dgr0Z1tqLVq4XTn2JTM/n56OJzB0eXk0Q2nkum8E/7xIm48OHg8WCpk9v2qYlEPnw4DonN4WlZp7ZeJwfDp9DPXIk8vz5EBhY/z+ioWzZgmbiBHp42LN+Wt8G+9Mtikpi3oE4Al3s+etUat0Nz52DVlegKpWiVAqDF2BQK092PDCo6ftzmSiKwrKTqWyOy2T12SzSy/yGtK4uqOztwd4exc4Oy8hRQrj19xeRhu3aiQWLKxWBa6Vx+PVXuPfeGrtPzByOjUZNqUUm3Nv5mokcbAiKohCdXcT2c9lsTcjmz1NpqMLbI81fIH4z6mLtWrj1Vg4/OhS1SsXB1Fx+iUxiV2JZavXPP4uII71eeFF1qBT9fN2c6OnjRFcfF7r6utDVz5VQD0ciUvO4b8XhGv5N4b6u2NvoeLBTADN7t25QBIVZkonRF9WZ3nexyIrCjnPZ/Hw0kSJJ4ctbOuHndGFPMVlReH3rKd7deQbVnXeizJ8P9vboglrxdKAd/zeqU0Xbs3oDYV9upuqU5fSskbT1bEBUXAPw/L+16EvMpP53NP7ON5gX2lVmwZFzPLjqCAAZz47Bx9H6u3AxKIpCdrGJWL2BGL2IbD7fSqGVqz37Hx5S72fyWsYqYN1YWAUsK01KbQLW+RSUmtkan8362AxWxeeQVliCsmFj05W9z8sTVW82b0a3YQPmmBhmdGnFL5O6X1cD76Zie0I2Q3/ZVW+7QBd7nurbhkd6Nqyy3JWk1CIx658oUoqMFFkUCi0SBpNMsUWi2GShpNSM0WTGw9mBnr7O9PB1oZufK0GuDmw4m8HCE2nEZxeg8fBA0otKOUODvVk2tRdeDvUPvqIy8pm3P46Fx1MqVtXLUalUqFQqNGpx28Xfjdf7hzBh8f6KNidnjqDD11uECBAUhM+Rg2Q8NfL8h7loFEWh3bfbiB04AuXFF+GXX1B9/TV7HxxE3wb41/wTk86UZQcx29kjRx0T4lxjcfAgmltuIdRGYduMfhc9ENuXrOeJtZG1pxgCfPqp8O2aNEkUAmgKOnWCEyfqbbbizr5MbN/EZa0vE4ss8+TaKL4/nIC2Qwcs5ZWBZsywClPXIxs3woMPigpVZTzWMxg/J1veGNK+WaQJno+iKI3er6Ppedy/OorItFwRiTV3bu2phevWwdixbJzRn2f+jeZEeh6yLKN2sIdOnZC/mAedO6MObIlcJfX84e5B/DChe83rURklBGIR4+uxXZjeJfCaHLfkG83c/fdh/olJF8U8nntOVBl+6imk3bv5aFRHnu0fVu2cV7dG8+6O6Gr72nk6ET3r8n/7unzzL8cyCzgzayRhjSSKWamfUouE3burAfhmXFce79X6Kvfo2uLt7dG8sS267uND2zO7b5sG+4ley1gFrBsLq4BlpUlpiIBVFbMkM+aP/WwpMwDUenmilJai9vBA8fXF4ucvUkyCgmDatMZJO1y8GO6+G1cHO5zsdKTkCF+HAcHeTA7z4ZnzBlFWID7XwItbTrL0REr9jYH/3dyJOX3bNEqUm6Io6EvMxOiLiMkpKlt1MpBkKKWNix0h7o68MCCsXtP4hjxOXZMfRVFYeTqNyUsOVNsf7OlM/KwRtZ5TGxZZRpIVNGqVqO7Ihf1izuoNZBWX0tXXlde3nmJVXDZnMvLQqFUUvzy+Uar1fLYvlv9sOA6I6pGvDgjj9SHtKTZbWBSVTLHZgqyIKoczurTEzc4GRVFYEZ3GyzvOEJ2eh3rMaOSlyxrmGdNQoqNRPfAAyr59LJrck+ldLi3CK8tQiru9jnN5JYTO21R7o5UrUf3+O0pIiJhYNcTLqyFc4H87INCDga08aeVqzyM9gpt1Ofcik4Wpfx5iQ3wWyvc/CP81K9cnzz0HCxdCZma13Y/2CObLsV2a9fu05/dbOZwmBOvxbf3o4e9KmIcTYZ5OhHk4XnL0sEWWufPPgyw/lYZqyBCUbdtqNlq6FO68k8OPDuXOFUeIycwXkb4ffSSiawsLRbXWjz9m5V198XW0RaNW0cnHBbs6frtUb63AyUZL4Uu3XlK/rwQWWSbfaCHTUEobd4eK3+FSi0RqoZHkghIS80t4Y1csCaUy0uIlIrX75Zdh4ULa+bgyb1SHCxbTyS4uZemJFH46co7Zfdpwf7egy+73mN/2sD42k8OPDqV7A8aqVhqPcYv388/pNII8nImbNfyaFGSvFlEZ+dyx7CBt3B0J83AkzNOJUA9HQj0cCXSxv+xx8LWEVcC6sbAKWFaalPMFLFlR6p2k5xvNuH24FoCbQ3wY1cab7GITmYZS0g2lpJZYiMkupNhoQj1qFPLMmXDrrcIDoqEYjXDggKjK06aN8O05eFCkhVUxqwaY3rkljjotLV3seGFg2+u2pO+lkmkoJSGvGFdbLa52Olxtddhp1cToDTyxNpJ/47Mq2v5xWy/u7NiiQaviOcUmYvRlAlVZJaRT+SXE5hRRVFxa0U7j4oxUUFjt3C33DsAsyfx6LJlgd0fmDm3feE+4jIJSM31+3MHp7MrHvlgBqzFILzKSUVRKV79LMAiuhRKzxG/HkvB3suPPU6n0b+lBrwA3jBaZwT/vxCKXGTNrNHTzc+WV/iG8vecsUSl61MOHI8+dCzc1kjeaoojSyF99BYsWVex+bXA73h4WfoETRXrKQ6uOkFNswlarxkGn4YFurRga7F2RhvLtoQRm/hNZfz+OHRPRU5fL338Lc/J6+H1KL6Z1vjoVW/UlwqOqappmRpGRrGITgS72FJslxiw+wPGCUqS/lsPNN1+ZjiUni+qWl1MZrrAQfv9dRNmVe21JkkhvtFITWa722nT3cyXPaKaNuyNLp/ZucCrv1WLpiRTu/PNgncddHO0I83Ai3N2OUHcnwjwdywQux1ojFkySzJLjyXx0IIFjqXq0HcKxfPAhtG4Nhw/D4MGVUac//QQPP4z5tQni7uFzvLzjDPrCkmrXHNc+gDV3XiAVsQqqt1bgoNNgeHl8w16AJmZrfBbDL2AMHeruiIODHcmFJegLiqsd03bqiGXRb7B6NZr338NFDe8NacvDPYKuip3DQyvFjJEdAAAgAElEQVQPM/9oIg46Dc/3D2Na55aNlp5o5cLE6osIm7cZgFV39WV8u+YdfWyleWIVsG4srAKWlSalXMBq6eZIVnEppSYLz94Uykc3X3gyGJ1dSPhXW4DaS+kWmy0sPZHCl4cTiUjKQevni2X2HHjppdqjHIqKYO9e2LEDzbZtKAcOIJtM2NvaUFJqEtWCpk4VRqpmMzzzjDBjPY8/buvFXZ2uzsTyWiUu18DUZQc5nCYMzx/tEcx347vV2b6+QTEgUpQGDoTffhPRH+vWVTus02owWyQARoT4snlG05nN7ziXzZCfRUrlW0Pb8/qQxhfLmgKTJGOS5Dor/exP1tPvpx3V9lUzkbexER5dgGbAAKR33xXVuhqLdevQPvcslhMnaenhTJiLLdHZRaQVGVl7dz/GhvnVeaqiKOxPyeX2ZQdJKSgBrRZNSAjS6dOMbOPN5rgsvB1syCoW/V84qQfd/d3wtLch4JP1NS+Ymir8my6X48eFWXkthPu4clcHf25q6cHINt5XJSWr1CIROG8LWWWTzWNPDCfMw5HgzzeSXiREY7VKhdrXB8v6DSJy4krw+efw9NMAaDp1Qrr5ZvH5HzIE3N1hzx7hIeTuLt6Tn38uov8SE0X1SRcXcHFB9ftvKBs2ora1Re7ZU5wHsGmTMMK2Usny5XDbbdV2ya9PbJapgvWRXFBC4KcbKne8+64QneLiICYGzeloVLGxWLJzKpq4OtoT5ulIuJs9oR6OKAp8dSSRrIJi1KNvQZ4+AzIz0S78BUtkVMV52vD2WCZMBL0e218WYKwSLWUwWTiba8DJRouzjRZnWy22GnWDX1PVWyvQqFRYXp9Y63FFUfh4TyzPbxZpyidmDm80j6uqSLJC8OcbKwyga2NEa29k4HS+kfTcospiKYDG3x+5e3c0UZGQls5TfVrz6uC2VzXNaVtCFsN+qT7umBLuz1939AWaJh3VSiUvbznJ+7vO4OtsR9p/brG+1lYuGquAdWNhFbCsNCnlAhYgBKITJ5ii5FYMCi7Eoqgk7vk7gvRnRlMqyfx+LJlxYb6Eejix+kw630XE81TfEDbHZTHvQBwqZ2eUxMTKdJ8tW2D9erTbtiIdOYoiSbg72zOspTtDgjwZHORJZx9XFkYm8tg/URWCR22svbsfLZztGy3K5UakfJUtxN2RmNkj6xyg1CacdGrhwfEUfc3G330nVr0jI2HBAhGto9UKY/ZRo9CsXs1LnbybvCqWoihsOJtJdz9XfJuxSaaiKKjfXlltn1atYlbvNowO9WFQkCcOOiFoWWSZ93ee4fVyf4WQEDGhzclBHRuLKj4e6a67YMwYISQ09oDziSfg228Z3tqLddP7X1TkY1qhsaYQtW4dxMfDzJk12mc9N4aP9p7lz5OpxOmrGySzf/+FzZovhgtEYM3u0wYbjZqhwV7c2rZuca6xkRWFUouM0SLxd3QaD5WZ6Zaj0aiRJFnceeklIeRNmQItWjR9544ehTfegFWrqu32c3MiPa9IFEKY+y489BBqnQ5lwgTUyclI+yv94hztbDBJEmazhI1Ww8KJ3TmdU1TdNyQtDfyu3Gve7NmypYag92Tv1swb06VRJpbbErIwSwrR2YV8fjgJW60aO40aR60aB42KvgFuvD6kfaNWqxr/x15R6a4MtYM9qpv6I61YUZnqnJ8PsbFii4kR4taZ06hiYpCLDMgzZsDkyfD336h++RkNMCHMl3u7BNI/0INtCdmsjUln1dlscotK8HF1JOPpUY32HMo9sJQ3JlXbb5JkHlx5mN+OJdc4J+u5MQ3yZbwY/rcnhmc3CZEs+T+30MLFvuKYRZZrRFCVWiQS8oo5m2vgrN7A2VwDMfpiXO10vD20HaEezSfSqcQssS42g9uWHqj1+JRwf74Z181qNN7IGEwWnN5fA8D2+wcyOMjrKvfIyrWGVcC6sbAKWFaalHIBS6fVYH7pZTh0CI/tWwj2dKHYIkyzjWaJAQGufDe2C951DAqmLz/E77UMzspR3X03yv/9X+WkKjdXTEjKIkR0ahXj2/kxpX0A0zq3rJFjry8xUVhqQadRoVOrq9yq0Zb5E1m5PIpMFpzLBijlDAv24r83hXJziE81geKHiATUKujh70ZHHxcOpuQyYfH+ivQmNm8WqT+rVon0srffRv3PWpT9+/F1c6bEbKHUZEGWZTbPuIlB1sEQIASs5zad4H97Yy/Ybkq4P1HZBmKzCuCee6CoEP5egTY0BMu0u0Xkwu23C/HqUg27z5yBZ58V1QrLK9O1aiU+uxkZIurpgw8gJYX+wd5sm3FTg/12JFnB6cN/MJrMlTvj4kTURUQEDB0KRUUEuTvywfBwbgsPYPCivexLLxTpxa1awSefCHHU2/vSnl9d7NwprnsBrkR1z+jsQgYu3ENOYd1RFEyeLFIEu3YVkWON6WlWH7/9Jgzh66CiEqdazR3hAfRt4caC4ykYzDKLxndhwZFEfjxyjk339GdkGx9KLRKyQkU0r0WW+eZgPC9tP43R3gnp449FVbgbvRptfDyaPn2QsrMBKl6/xkBWFFafTufRdcfILE8pGzdOpN0ZjVBSAgYDqjVrGB/my+IpPWtEX18u+UYzL285ydeH4tH06oW0cyfYNWDRQZbho49QvfoK7vY2vNyvDQ92D6r1cyorCgdTclGpVPRp4d5ofa9q4l4Xj/YI5utxXfk+ojI9+nzBq7H6UfDiOJybWYGWxuJ4ZgGdv/m3zuPXajRic2bx8WSmlVWHLn11gtWuw8pFYRWwbiysApaVJqVcwFIHBCCvXy8mrcuXQ1mJdeztRXrPd9/hYTGyZFJ3hrWuOWEsNlt49d9TfLqvLK3vrbfgn39g+nQYMaJaCeoK0tJE2uDy5WIyVMYvk3pwb9dW9fa9sNSMAvVW0DNapDpNV61UZ2t8Fu/sOM3WhOxaj7vZ6Xh5YFvm9G1TYT55KDWX3j9sFw0cHeGVV1Bt24qysaYBt4+zPRn/vaXJ+n+9kVti4mh6PhFpefx2LLlmhb4HHoBvv0Xj5ck9IR6si88hu6iEEC9nzmTkC/+xyVPg7rth+PCG+9DJMprBg/GIOoyHox1xOQWYzTUjIL1cHPB3tqejuz2/Tu5xUd4ob22LJiG/mKFBXjy3NVqkxW3ZIqqbFhTAzp2o//c/5G3b8HNzxGK2kD11GvznP2Ky2q3uNNfLJj29zpTE1we34616/L0ulXN5xdy69AAtnWzJKCrlmMYRy1tvCxGyfOvdu3lEI+3bV6+XmoeTPU62Wo49MrjW7+mMIiM+jrb1FkaoMPPX6YSIciN6YmVlwezZsGRJtd2NKX5US+W77z7o2xceekikI1dl7VrUt99OX18ndt47oFEjsQBuX3aQ5fE5KCmpIu20nLNn0Ywdg+Lrh9ynjzBd79ev0tfqpZfggw/YMKM/N1/AZLypcH5/jRBta2HemC7M6lO9qM23h+JxtdNxVwN9JxvCnqQcBszfSRdfFyIfH94o12yOfHkgjtnrovhgRAdeGNgWEAtAk5bsZ9XpdN4dHs7Lg9pd5V5eX5wfIf5U3zY80as17bycr2KvrFwLFJSaeW/naT7cHWsVsG4QrAKWlSalIoXw55/FgLUuUlNRT5+Osn07A4K8GBHkwZAgL/q19GBtTDpTlwkjVpVWC48/jjJvXsM7YbGgmjEDZckSWjjb8fqQ9nja63C10+FWZjruaqejsNTC4uPJ3Ns1kC/2x/FlxLmKCI4hwd5su29AjUvftyKChZFJWF6b2OiD7OsdRVGI1Rv4+mA8n+2v6TcmvT4RtUpFVEY+L24+iY1WzclcIwk5BXQNcOdQYqUIdn+3Voxv68eoNt7X7YrwleJQai4jft2Lwc4Baf16ERE1ZgxRjw/Dy8EWg9lCqIcTJ7MKWHw8hV9PppGQXYDW0wPLHXcKASisnsqdZQbHa6b1q/B7SikoIbmgBE8HG0ySTPfvtgGw7b6BnMgqINjN4YK+Vxdi2YkU7igzc9aGhWKJPStSCT/4QHjdffaZ8EeaPQc+/viSHuOiURRRPCI3t8ah3i3cWX1X30ZPRzWYLPT7eTfH03JRubigfPutqObaXFm3DsaOrfXQywPbckuoD35Odpdltrw3SU//+VVSlmW58dNhmzs7dtTwr/tyTBeml1UZbUx6/LCdI6m5kJ0t3v/nc/w4qjdeR1n+N6E+rhx5aFCdPn2XypmcIjp+u1X4Zn74oRAuAfXIkchbhPemk50NRUZTxTmaPr2RQkLhzz9xs9EwOcyHmb1b09Pf7YaKxDmankf377bhbqdD/8K4q92dJsN27ipMkkzSf26hZZUUSbMkYzO3MqW5u58rrw1ux8T2/tZI/UYgIc/A8IV7iM81VOzr0dKD//RuzW3hAY0ekWmleVJstuD43poLtrEps7uQZBlJklHpdChms1XAukGwClhWmpQKAWvRIhEtdSEkCRYsQLV2Lept25Dy8tBqNVjO96b68EN4/vmL64iiwOefo3nzDaT8gnqba5wckcaOE6WwgQe7teKnidW/EEcv2sOGs6K0uPGV8TdUudqmothsYeD8nRxJz+fPqb25rUNNn51yM9WEPAPJBUZuaulhFQ+rEJ9rYEV0Gv1aetAzwK3OMPz4XAPbz2ULU26VCo1KRZ7RzPNbozEGBWNZs1b4Xj3yCEErlhI/c1iNiZqiKGyJzyKlwMixzAI+PxCH5a5p8MILohhC9+61igHqsDDk2JppjCqVCnVZyu75nnQ2Oi37Hhh4SSXOFUXhoz2x/HosmQAnWzaWfW7p109EaYKIyiqPQrpSzJkDFxDjU/57CwHO9nUevxiSC0ro+PUWCkpFBIfK2QklLV1ENTZXFAWOHBFbZCSawxEQGYlUJCY3t7b1Y/W0fhd5SYW43GL2JetZdzaT348nowkIEJFo9913Y0VfFRTAc8/B999X2537wtgmMdQuNluYsTyCv6PTICUFAgIqD546herNN1GWLaOluyNvDwxjRpfABqcNXyzv7TzNK/+eQuPogDx8OMroMRATg3bjBiwnT1Vr+86wcGL0RZzUlxCjN5BvqJl2a35twlWpnnc1KE8hTHtmNH7N2PPxUjFaJOzfXQ3UHoG4ITaD0b/trbG/sVM1bxRkRSEyPZ9jmQX0a+lBmIcjxzMLeHPHaZafTK3WtquvCwsn96SLr9WP9nrGLMmMWLibnYk5F27Yv7+wudDpwGCAp56yClg3CFYBy0qTclECVlVkWVTs2r5dRGft2Y3s5S1SDufOrQzpvxQsFjFwz8+HvDxxW/53UpKYwDz2mKhc9fTT8NVXDG3jy8a7+1YMprt9+y+RGUIIs+bqNz4GkwW1SmVdbbsEbv/zIH+dSKm2b3xbP+7u3JKJ7fyx12mIzi6k/y97yC2qORFTjx2L/Mcf4jPx1lvw00+Mb+vHwsk9Kia1sqKw6nQab+6KJTJFj6O9Daun9q5RPVLbpTOW114XfllVOXoUTp8WorUkic9k+d/lmyzDhAkilSw9Hc2vC/FLiOXlm9rQ2ceFTj4utfrPnMsrJi7XwJBgL/Yk6Ql0sSfIzaHieJ7RhN//1lNqEcbkmimTkf5afkmv9WWTnCw8wGrhwW6t+GJMFxwbKfqkWipuORbLtSXYvPcevPJKtV1j2voxONCDQa086RXgVmMhodhs4UBKLpvOZhGZVcie1Dxyy3y/tGGhWGbNFt/3V1K4bA5s2oT2wQfQZGbQ0dORw2kifXjzPQMY0aZxfd9kRWHT2UxmbjxBQkEp8kcfwaxZQtw+fRrVW2+hLF5MgJsjbw4I5b5urZr8N1VRFCLS8tgQm8k/8dnsT8pBkmS0rYOxdOoMa9fi7WRH1CODa4g0+UYzZ3IKeXrDcfYkieIiN5In0toz6dz6xz76tnBn38ONWHm2mbD6dBoTFu9nTt8QPh9de9XYctIKjfxvbyztPJ14pGfwlengNYi+xMS/8VlsjhPb2SoRVpfKf/uFMKKNN572Nng52OLlYIOLrfaG+RzeKGQUGck0lBLu7YxWrUZRFD7cHcNLW06KBqdPCx/VMt9Mq4B1Y2AVsKw0KZcsYF0tzGaYPx/NL7+ARo1s74Dq4AFaamSiHxuKnVaN3//Wk2kQJeWtqYNWmhvzj5zj58gkdp6r3WcMwMfFgZwWrZC27wBXVyEWSZKIeHFyElFJ/ftXO8fbxYGjDw9i57kc3tody6n0PNSDBiG/8AKauXOR9u2raBvi7ki+yUK2oRRVcDBKfPzlP7Fz59DeNgVLxOGKXe29nDj1ZPVqabct3c/yU2nV9g1t48NDXQOZEu6Pg07LjnPZDPl5FwAaRwekwqKrlzamKDWMw38Y342HewQ32kPoS0x0+eZfUgqNlTtvvx2WLWu0x7gidOwIJ8sGrWPGgK8v6uQkVHv3IhmKsdFp6d3CnaGB7pSYJbal5BGZmltRRVE9YjjygIEi8q5Pn9pT2K5nDh2ClSth4UJITKxx+J1h4bw6uPF8fTINpSw4co5vjiZzLqdApOH9shDatxeV/t5+G9Vvv+HrYs8bA0J5oFurOiOZP9sXy382HGfH/QObpChHQamZf+Oz2BCbydoEPUEudiyZ3P2CEZBPrDnKtxEJwI0VfdP3x+0cSMnl6f5hfDqq49XuTqPj9N5qDGaJLfcOYHgtnqxW6iffaMbtw7UNahvkas/INj508nFmX3IuG89mkmsU9h3Dgr34644+uNvboCgKWxOymbrsAPoScz1XrY6/kx0tXOz4YnQXbgr0uOjnY6X5kW8003P+LhLcfZAOHoLVq60C1g2EVcCy0qQ0awHLaERzzz2oD0dg7t4DwsPRLv4D6Wwc48J8cbPTUmKWcbLR8MHIjvg62lYzmLyRVlyvNgl5BgKc7a9apFtqYQlFJgn3Mt+0pkpraWwUReH5TSeI0RcR5uHEx1WrDyYlQcuWtZ+Yni5Si7p0EX5WLi5opt2FRq/HZJFQjxqF/NprMGiQaG8wiIqQZ87AmTNoT51A8fRCmj4Dpk5t3DS1Bx+EBQsAaOfpxNfjutIrwK3CxLug1Mytv++rFnquGTgQadcuHOxsuDvcnxldApn0VwR55RFoBQXgfBWNYjdtEtX+qvDSwLbMHR7eKL4qA+fvYHdZpAggKr8tWgRuF5+O2SyxWCAyUlR43LED7S5RWc4yaDAMHAgDBgjx61qKNmsM0tNh2zZRuGDVKlRffIHN6Wj6B3qwNS6zWtP7egSz4Naul/ybZpZk1sVmcHOID3uS9HwbkcDf0enIGg3y1Knw+OPi/xAfD++8g+rXX/FytOX1AaE83COo3kIoy0+lctvSAwCMDfPll0k98HK4ulFzsqKgqTImWD2tH7e2bQYFEJqQFzad4P/2xABXplrq1aBqtcezc0bRxr0Zp1k3UzINpfh+vK7i/rBgL0a18WFkG296+Ltd9sJvsdnCkuMpfLw/jpMZ+fWfUIV7uwYyvXMgw4K9rpmxnJXaOZ1dSK/5uygeNgJ52jS45x6rgHWDYBWwrDQpzVbAMhpRT5qIatMmQtwd8HVxJCqzkN7+rnw0oj3d/GpO7Pr9uJ39Kbl42OvIfm6sVby6QuQUm/D66B/mDgvnlcuMDihPo5rU3p+XB7alZ4BbnQKBvsTEm9uimXcgrs7r5b84rt4qlVebyUv2syJaRCQ5O9hSVGpBmTULPv304qKO9u2Db78V5ud9+lx+xzIzRSphWBgEBdWIQqpAUar3U1Hg55/R/PwzRBxCMhSjUqlo4+3KAH9nege406eFOw46Df/ddIJNsRmox45Bfvo/sHMn2gXzsSSLFEu1qwvysj9h1KjLfz6XS04ObN0qBL8yil8ef8lptBGpefT6YVvNA7NnwxdfXGInrVwTpKfD5s3CG6QWlDcmYZZk4nINtHCxbxST9IWRidy34jA2Oi0ms0WkZz4xE+69tzLSbd06VBPG42Fvy2v9Q3i0Z/BFvb93JeYwaMHOivsPdw/irWHtiUjNo19LD7wd6xe0Si0S+hIzG85m8sDKw0xq78/cYeF09HG56OcMIMkK2ndWVtsX4u7I8jv7XJc+PVXFnbeHtufVwe2uu7FQvtFM6883VkQBhXs5c/ixodZq082Uj3bH8PzmE3T2dyfykcG1vh8lWaHdl5vrTF1centvpnas6bl6o2O0SBxJy+dcfjHn8orJKTExsJUnI9t446Br3OIaDenLqaxCPOxtaOliXyGCrovJYOzve+GOO2DpUquAdYNgFbCsNCnNUsAqLUU9eRLazZvRKDIlFpnxbf34amwX/J3tajVirTpItaYNXlk+3HWGF7ecRK2Cxbf1ZkI7v0s2zE8pKKFleRl3wM3RjslhPtxaVsFQp1Gz5kw6C4+lsDo69QJXgts7BPD7lF7NdgUvt8TEX6dSeWT10cqdr70G998PbdrUeV6Tk5cHc+agXrwY2SwmCGo7O9Tt2wnvmQ4dxNaqFSxZgubbbyE8HOnHH0UUTVUkSfgfHDwIBw6g3b8PKSoKxWxBq9HQ0c+NjPwi0otEyi+vvy4M5vftg/nzUR86iBxxuHkZmZcNvr0dbZneqSUfjOxwSe/345kFdP7m38odw4aJlMEbLW3uRiE7W6QI2tmJ/3UdTOvUkt9v69XoD//EmqP8kCUh3f8ADB8OgwfXFMgPHIC+ffl5Yg/u69bqoh/j8TVH+a4sZa82vr+1W70+RF/sP8tT64/V2D+zTxu+GtPlovtUjr7ExONrjrLsPNPpMaG+LJjYvdEril4tSi0Sd/55kJWn0yv2zerdmk9Hd77uTOzLKy6WczkLClaajvtXRPBLZBIAK+7sy8T2/nW2lRWFI2n5/H4sid+OJZNRZgdip1VT8sqEK9Lfa4mZayP55lBNCwitWoX5tYlN9riKopCYX8LeZD17k/TsSssnKjUPiySK+2g0avzdnAhxtcNRo+KfmAyYMQMWLbIKWDcIVgHLSpPS7ASs0lLUU6ag2bSRtXf2YWiwV7WSyFXZdt9AbDRq3th2ik1xWRX7bySvi+bAnydTmLrsYK3HDC/fetGrQKUWiduXHWDNmQwAVE6OKEUGtBoNNjoNxUYTKjc3lLy8inMGB3kS6u7I4CAvbu8Q0GjG2k3F1D8P8eeJZFCpUA8Zgnz33XDbbeDRDLwf9uyBAQPo4O3M8jv6kJBXzMmsQk5mFRKlN3Ayq5CiYjGodLS35cHOLViXkMNZvQHlpZeEifeFDLdLSyEqSkyWDx5Et3cv5jNnqrfJygKvxvfRaRRiYuDLL6tFSf1xWy/u6lRHuucF+N+eGJ7ddELcef55UcHVyvXJww/DTz/VeqjgxXE4N3GkaOcfdnD8lokwf/4F26nHjSPowC7OPDH0ogWPU1mFvLPzDH8cS6r1+JLbezO1QwCyQp2LTDE5RbT9cnON/SqVitNPjiDM0+mi+lTXY9zx50GOplemNuW9MA5Xu+YdrXsxWGSZmWsj+eHwuYp9d3ZswYKJPa47kWf+kXNsisvk18k9rzuR7lonp9hEyJdbyC8pRaVW8eftvZkSHlD/iWX8G5/FiIW7eaJXa74e17UJe3r1scgyqYVGkvJLSMwvITG/mMT8EjKLS5k7LJx2XjVtFJ5cG8n3BVos4yeg++Jzxof6YKNR8UC3IG4O8Wm0vsmKwr5kPXuS9OxJzmVXaj5Z+SJaThcchHnAQLjpJujRQxQYio+v2LTnErDcd7+wRLB6YN0wWAUsK01KcxOwVFMmo12zhtV39OaWUF9ACBr/tzuG/Sm5HE7LJ63IWOf5c4eH88qgxjO5rYqiKJzKLiQhr5izegPfRSTw5tD23N7BGtYMwgfrl6NJ/HjkHMkFwruoPjFRUZQak5mvD8bx5D9RAKjsbFF++x26dYO1a4WPzqlTqPbvx8fJjjcHhvJg96BrqsqkoiiVXm3//CPMrpsbX38NTz7Jm0Pa88bQ9tUOKYpCelEpsfoiuvq54mKro9Qi8d7OM7y3OxYlwB+1pyeyjw/S+g0NS4MsKICICPj1VzhxAlasAP+6V2mvOllZ4FN9cPjBiA48NyCswZ5YSfnFtPpsY+WOn34S/mFWrk/qeF98f2s3VCq4t2vTVfYzmCy4fLAW+bvv4JFHLtz4yBHo0YMFE7tzf7egi3qc1/49ydydZxgQ6FHd0w0IcHfi/SFt+fTQOWJyDYxv48XcoeGEeNSMrpy9Loovy1PDn38eXn0VTVgo0/3s+GVS4058yiuvvTeiQ6Net7kgKwpvbD3F3J2ViwRDg734aUJ37LUatGoVOo0KnVpd9re6UXz9rNx4lEfl7EzMYVdiDv8m5xGTUbnQeCkVVG9feoC/TqVy8JEh9Apwb+wuX1VWnU5j8fEU4gpLOVdgJDOvCLnKlF/j5IhUZMDORkfko0No6+mESZL5+Wgi7++LI62gGLNFQh0YiNwmhNEp0ayd1rdR+2gwWfglMpGPDyQQn12A2s4OevVCHjBACFb9+oGvb8MuZq1CeENhFbCsNCnNSsCyWNC0bYtdWgqPdQtk/dlM5g4LZ3ItqzU/RCTw6Jqj3BLiw7P9Q+kd4N6kq6eR6fnM2XiCHfHVjXXHhPqy4q6+/BqZyMOrjxLgbMeme/ozb38cRknmx/HdremMF+CR1Uf4scoKcQX9+sHixeDtLfxiUlLgt99Q/fRjhT/LY72CrznPi1KLxONrI/n5aCLMmQOffNI8jatXrkR122083iOIr8c2PG3nRGYBn+07S0RaHkcyCoQnV+/e0KmT8MZasQJuvRUcHJqw81cIoxHsq1dAmxDegpV39CbPaOJUVhGnsguZf+Qcu5P01Tw8zvcKAoTReXN8L1hpHOoRBRZO6sE9XS8+ba8hbE/IZugvu0TkY+fOF25sNKLx9eGFLv68e5Giztb4LIYv3F1j/6LJPXlx+2mS9UWi0mRQMJp/1kJWFo/1COL1we2qpfApisLK02lMXnKg8iL332fTDfYAACAASURBVI964UIS5owk0PU6+P64wiiKwuf7z/KfDccb7ZrDW3vxUHcR6XG1DfutXHlkReFEZgG7EvWsOJ3GxrOZtbZr6erAvgcH0cKl7oqhdVHu6WZ6dUKztYO4WPQlJmavO8bvx5LQdO+O1KmTsGQo3wIDxfbDD/Dss8zq3Zo3h4bz58kU3t5zltQ8A6rbb0cZOFBcMDQU9W238eGgEJ7tH9YofUwpKOHLA3F8fSSJQqMJJk9GmTNHiFa6S5xrWQWsG4rmnQdjxUpjotUiRURQPHsWn/z2OwBTllYOYPsHerBhRn+cbLQ80jO4Xi+NxiC1sISZ/0Sxssxk+3zWxWZgWyXFMbXQSMevK31tfj6aaE1pvABP9w1hV2IO0dlF1Q/s2wfBwah1ugofJjdHO14e2p4n+7S+4uaUjUFaoZGJyw4SkVEICxfWaeB81dmzByZNQgFstRc3YOzo48IPE7qzPSGbmRtPEP3EE8iyjNrGBtlkEo22bBEePNc6dnYiHfLIEeH1tWsXq154Aa9Pc8kpKK7R/P/2xJBWZOSuTi35pGq1SRCh9lbx6oamb8umSx/el6wXAtrp08JP7kIee0uXIhUUcl+3i1/JHxLsxZpp/fj68Dn2JWajLzGz9PbeTGzvz7yIc6QUGpHvuRfuuw+puBjmzeO7999jftQWXuj3/+ydd3gU5deG7y2ppPcEQkIINUBC772DgA0UBRQLdrFg+fGJBbGgYkVURASpCiq9994hCZBGQkJ673V3Zr4/JiTEhJ6QBN77uvZy9512RjazM897znN8eL9vS7QaDRqNhmYO/ykVXLSINg0d7rrytzuFRqPhtW6+TO3alCVBsTyx5tRt73PXxTR2XUyrMNbZw47JAV7083ailXMtdo69R/lkXxgrz8UzwteV0S3c6NrI/obLKiVZYeXZOBaeiaGBiR5rMz3WpqWv0vcK8Ne5eI7GZ151P+Ymerp5OtDaoQEBbrY8GdD4tsWnu0W82hiexOSNQWSggz/+QJow4eqTG4nqc8fc4xeZe/wiaDRoxo2D999Had4cgoPVe+Xff0cuKqKf943ZLhgkmdSCYpLzipEUhY7udmXG+qcSs5hzOJI/z8eDhQXSlOdh6lTw9q6O0xfcQ4gMLEGNUqcysK4kI0NV6199tcJw4pvDcLMyJ7fYgJWpvsa66+SXGPnq0AU+PxxJUYkqoEzr7stYv4a4WZlxOjGbH45FcTA2nQZmpqTnl5Y1LlgAtrYVOpU1crJBUaC1gyU/D29bZctnRVEoMsqY6rT3fMZWRmEJYWl5bAhPws/FGtcG5rhbm9HErkG9fnhpM38vYYopxrXrqqdLYE1x6hRMmQI2Nuj27SX+tSG3bHBcYDByJimbEwlZLDwdQ2Byjloi2PoGMjtSUlRPKBcXeOEFsLm1LmR3DFlWTeg1GmjVSu3aOH789bd74w2YM6fm4xPULt7eEKNmm77cuQkNbSz4387zQM1nF8w9FsXUrcHIsqJOCnz/PTz3XNUPTs8+CwsW0MvbmQl+HmQXGzHTaZnarWnZKkZZJiqzgJBSb7yQtFwC0wsIT8uhqNhQYXcf9G3BY209aWxjzoubg/n9dIz6nZ89G0pK4Isv4KOP0Gk1XHhlEN525b+PFzPzicjIJywtFzcrcx5q7SHK26oJRVFYH57EmJVHAUiZNvyGukReRlYUorMKWB4cx4JT0cRkF1Zax9nSlKRpw8W/2R1gXVhi2b/l1Tj/4sBKomKJJPP5gXA+2BN6S8dtaG3OxHaetHe3o7ljA5o5WFWLB2loWi6tftwJgIVeR8H/jbrtfdYm2UUGXtsazKIzl9AOG4q84DdoeB37kYwMeO011Vph2DD1PkFR0L3+GsqBA8iFReh0Wtq623N/U2dm9G1R9rdmkGSWBcfy06lLTAnwZMOFVM5m5JOSV0ROfkUblhHN3fl5RFte3HKWDaEJ6D0bYXz9DXj66eq97xIZWPcUQsAS1Ch1VsC6zIwZ6D/7lM8GtCI6q4CgtHzOpuWSmVvIV4P9eLOa0mUvI8kKiwMv8e6eMNILDciPPw6LFvFcR2/+16s5XnZq6cLUzUF8fywKHxc7/OzMWR+ehOapp1CuNOnNyoJvvlFv0jUa9MuXoU9KpKWLLfklEvlGicISI4UlBopLjCiKgqO1Jc8HNOLZDt6Ep+cxZOkhbMz0/PtIVwY0uTnvAEHdocBgpMGnG+D339Uug/WBxETw8ODrIW14vbvvLe3in5AEHroiixJQ/a6srzMzf/Ei+sGDMEaW+uDMm6eKWPWNjAzIzFTT7lNTq16nLhvWC6qPUm+p//J0ey8WjG5/1c0UReGvc/GMbuF+WwK+rCikFZTw0Z5Q5p24CJMmqSW+/ymDJT8fVq9Gu2QJ8u7dIMvYWZgytUsTQtLyCEwvICotB4OxtNuUtTW0aonUpq0q3LZuDS1aqM0OqvD3e6uHL3OORKF07ow2MhIlI4PH2zbi/3o1q9KkWFCzvLIpkLnHL3L46T50u80sQElWCE3LZVtkCm9sKy9VzPvffXW+sUp95UqhB+CBlu4sfbAj+2LSWR+WxLrwpDJP0sscmNyb9eFJzD4YUeU+P+7fiuc6epNbYiSn2EBusZHcEiO5xUZKJJkBTZzxsDavsQlkgLSCYlrM3UFGoYH147txX3O3GjvWzWKQZPRazQ2f/57oVMavPUOqEaTvvofJk2/MGxTAYFA72Do7w5w5aGfMwMfekuf8G9G9kQMd3O1YEhTLouB4onOKcLcyY0IrN+YcjyY+M089jqKg93DHOHac6lfl6qpODLq6QnQ0+ldeRpOerl7Tf/tN/W3Q18DfqxCw7imEgCWoUeq8gJWZida3KUpODvqmvhjatlX9dMLCMF29inPP98P3v6UGt8iOqBSm7gjhfGImmnHjUD7/HPbsqWCsPHuQH7nFhnJD1FdfRRsYiOLvj3I9P6PcXHXWOTVV9QCytFTLOS7/18ICDh9G98dipLz8SpunvjX8mj4TBy+l31S6uODOEZScjf/Pu+HgQejRo7bDuT4FBWhHjcLkwD52PN6dXo0db2k3JxOy6PTrnoqDN/CTpu3eHfnIEV7s1IR5Jy6ia+iB9NPPMKqezsLGxakZZUePwogRYG8PM2eCv3/dLSUVVC8lJZW6c+6f3Pu6f1t7olPpv/ggP4/057lOTW47jNXn43lnxzmiMgtg2jT48surr5yRgbZbV+SIC+idHJGbNUfWaqGgQL1G5Oejc7DH0MQHmjRRs8y8vODPP1UPwyr4Z1wXbMxMeHpTEIO9HPlfr2ZVZiULapa/z8fz8BXdg/c+2Ys+XtUnpCuKwqAlB8tKDL8e0oZH2zTC3frWsnkFFckpNuD7/XZSC9TSfCdLUy68MviqXrDBydm0+3l3lcu+H9aWFzv7EJtTwK8nY3isbSP8XOp4xnM1oSgKuSVGMgpLyCw00NShAVlFBkLT8nCzMsPNyhwnS9OyzKZ/QhIY/+8pGpib0MHFhvYu1vi72eLvakNLJ+tKmbSKoqD7eK162zNrFrz4ovr7fzOEhaGbOAH5xEmmdW/KzP6tyvxflwfH8vg/J9X7inbt0C9fhhQXD488gjJ9OtrRo9C4uiGtWXN1s/WsLHjnHbQlJci//36z/wtvHCFg3VMIAUtQo9R5AQsgL0+98b/SODA/H33rVvTQFbNnYnficgoJT8+nt5djWSen0LRcUvOL6V16U1YiySTkFlYoUbjMZVNlXZcuSN99p5qIlx4Hq4oCmd7eDmNTX7UE45lnauZ816xRHwA2bgTAx96SXZN6lWWAXS7N6tbIgaDkbFo5WWP+yXr6eDmy98ne1R+T4LZYfT6esauOqyKGcx3PpMvLQztiBKbHjrD50S70866eeD2/2UpcTiG63r2Q9u2/+oqHDkHPngAM83XhxxH+9P/jIJeyCtRZw9DQm78BFAhqm5iYSj4i7/dpwUf9W1VaNaOwhKVBsVjodawOSWBbZAojW7iz4dFb7zCVkFvIh3tC+fXKphkxMapp8LXIzITwcLVs5fQZ5KIiNBoNvi62dHO1xkKvIyq7kKjcYuIy8ygxGAG1dHBiu8Y4WppgY2YiysjqEBHpeTSfu6Ps858Pd2acX810U565N7RSedoQXxcGeTszuX1jYf5+CyTkFtLw661ln6sqDbwagUnZvLI5iEn+njzV3uue+btMzC3ik/1hRGUVkFIskV5kJKugmJyCYmRZLlvP1daS7EJDmXUIgFarxdHaAjcrc0KSspDuuw8lIABOn8bk9GkMsbEVjvXvI13o5+1Ecl4xsTmFDF5yqHxfnTshHzvODSFJ8P33aP/3P7yszVg62p8enuUTHvtj0hiw9DDGxyeo2f0ajXq9zs0tv65nZKhlgDWRUXWzCAHrnqIOfOMEglrGqooMq7NnMV6KZR/g8s020nLVFGlX2wa807UJz3Tw4sG/TxKZnscPQ9uw42Iqq87FA5A//b5KJuDxpSnWypkz6Ka+irR0GTRrpvraODqqPySffQZ9+mBs2VL1t6nJ850wQX2FhcG8ecQs+p0mP2xnRDM3XunkTb5BqlCatfExVXDbF5NOVlEJduamNRef4KYpkUpvkL74Qs3EsLRUbyomTFC7zdQVcnLQDR2K2ZlTbHusGz1vMfPqvzzw59GyMgZp/wHVFNTKCt55p9xjISgIXnkF9u0r2+7HEf542Vqq4hVASgq6Lp2RTp6q+55YgvqBwaBeZyVJvd5ffnl4XN+j5Gbw8oJvv1U9TUqJzKycaRuYlM2oVSeIyylAkWQ1Y7FFC3ZejKLIKN1U59Xj8ZmEp+eRWWRg0ZlLnEwsb2nPhg3XF69AFYsLCpAOH2FqVx8eauVBgJst1maVMz0URSElv5jEvCLaudreMw/H9Y3L4lXQ8/1p62pbo8d6v29LpvXw5YejUbxb6vm27UIK2y6k8PaOc3zQtwVvdPfFporvk6BqTLRaOnnY8X+9m3N/y8pduq+Fv5st+ybfO5OciqLwR2Asr2w/R6GlFcZevcHBofxlb1/+3tyctPdnIDVvoWanpqdDYiJyYiKpSUmkJiaq5f4ffVQ2oW4A1dP0eLkoVaF76n/Q3Mg1F+DCBXRPPIF06BCvdPXh04GtKzy3hKfnMWrVCeRevWH+/PKSRHv7ihN8DjXXHEQguBYiA0tQo9SLDKyq6NZNLccxMVG9cfr2VYWAuXPRLF+GhU5LQbEBrYMDckZG2Wb/17s5swZUNpCWZIVXNwcx78RF9F6NMe4/ULeEhfx8WLYM/Q/fYzx7Dm8nG6LTcsoW25ubYKbXkpRXzGNtG/FQKw8e+usYax/tyugW7rUYuADU79fLmwL5+WQ0AA0dbUjPLcTQvgPS4cM37odQ02zaBCNH4m7bgLe7NeEJ/8bYW9yeGKooCoOWHmZXlNpi26GBWkKScdlI9MgRWL8ezezPUUp9dV7u3IRpPZqVZRyeT83h5xPR/HAsqnzHRUWVSrIEgpvmo4/gww8rDWv8WqOcPVe9xzp+vKyBQ0snKw491afC39fSoFie2RiIsVVrpDVr1d+gnBxISIA2bRja1AUHC1N+H9Mes+sIWbnFBmw+31j2WWdvh+TZGAYOhBkzbi6LsagIrZ0dY32d6OvlRHdPewLc7G7u3AV1gsCkbAJ+UUvJaqNDcnRWPovPxPLlkUjyrzD8f6NbU2YNaF2vG7UI6haXsgt4dkMQ2y4koZkwAeXbb9UJ6erm4kXVEsDMTM0Sv+wvdeV/7exubOJblmHePLRvv0VDCxOWjPKn73+6C6bmF9P594PEObkhHTmq7rs+IDKw7imEgCWoUeqtgJWZWZ4d9V9iYuCrr9Dk56N89hkUFKBp0YIZ3X0qlGvklRg5FJvBvpg0dl3K5HBMKpoHH0D5bWHd/UFQFDh0CM3cubB6NYrRWGkVnaUFUoGa7fKIX0M+7NeSlsIct9ZRFIWvD19Ap1Xbme+ISlFTy//9F+6/8w8SVaIosH8/mnnz4O+/MdXCcwGN+WZY22rNptB8tAYAe0szMosM6DUa3uvVjMFNnem5cD8bxndj5H9MWy0+WUeRsTzVn82b1c48AsGtYDBAeDh88AFtDu3i9/vacSIhi1e3BKO4uGBctx46dareYyoK/PAD+m++xhgdg5+7Pf0b2ZGYV0xkbjFn4tKrNldXFHQDByDt3gNA4PP9aXcDmTNPrjnJ4sBYaN9eLc01v3X/Ie3kyWhWr0LKL6CftxO7J/W85X0Jao8xK4+wLiyJyFcH16r3mKwo7IlOY+a+MPZGp5WNfzawNdN6+AovT8EtoygK809G88bOEErsHTD+ugBGjqztsKqmsBCio9VXTAzalSuR9+7lxU5NmD3YD6v/ND+QFYUeiw5yNC4D1q6FoUMr2qvUZYSAdU8hBCxBjVJvBaybxKR5M150kPl2WDtyig18tj+cr49dpMRgRO/kiLFvP1VEePzxupMNcz2Sk+HSJfXhRKdT/ZUAbG3h9dfVh6BSrmcAL6gdBi09zF6dDcZz5+uGR8GVJCerXTRnz+b4s33p5FF9vlMT/jlBC0crBvo489XhSD7u17LMNLbQIFU5C38+NQe/ebsqDv78s+pFJxDcLB9+qGZfAeP8GjKquRtPbQjEoDeB995TS1xzc1VPQk9P1Xy3upBl2L4dzbwf0YeGIjVujOzZGAYMKP8NSktTMyLXrUOblIi8/0DZDH7xe6PLvB6vxaXsAry+3ab6KT7yyI3Ht3w5bN6MyeFDyL6+SIsWg5sqKOvbtOEps3x+GRVwS6d+p1kWFIsCNLQ2p4mdJUuD4zgYm463rSU/3Vc/zqE6ic8pJLWguE5l0GUXGfhwTyjfHo0sG4t7fSgNbSyusZVAUJmozHye2hDI3qgU1aP2q6/Ue+K6yIkTaPv3Qy5t2qTVamnmbMPcIa0Z5ONS5Sa5xQY6LDzAhZTssjHNE0+gLFp0JyK+PYSAdU8hBCxBjXJXC1iSBNu2oflpHmzcxONtPOjp6cj0veFkGxXkadPUc27Rov6IVjfDY4/BihUAvN2jGbMH+9VyQIL/crnDGLNmQdOmcOIEuuPHkV1dUZ58EoYMqV1hy2hE5+jA+x0a8n7flrUXxxUk5RXhPmdL+cC2bTB4cO0FJKifBAejCQhgXCt3vhrShhZzd1BgkMoWm5uaYGaiJzu/EF3LlkghITUfU2IiLF6Mbu1apKNHyzp26rp2RTpyBNauRfPwQwzzcWb1w50qeTn+lxJJxuXrbWQ/9wJ8/fWNxbBqFYwbR0AjB3q42fJXeDJZFlYY/1oFsoxmyGB+GNSal7r43O7Z1jjH4jPpumBvlcue6+jNz/eggFWXScgtpPOCfSSU+iWGvzyIZo7V02VacHcjKwpzj0Xxzq5QjG5uGH9bCIMG1XZYVyc9HX37APyVQr4e1ApvO0s8rM1vOPMwJqsA7++2qR9++QWmTKnBYKsJIWDdUwgBS1Cj3JUCVnIyLFyI/uefMF6Kxc/dnqY2ZpxMziU+u0BtW//JJ9CoUW1HWrOsWKGKWMDMfi15uYvPbfsZCaqXdj/vJji5fCatoYM1XV2tCcksJCQpE72LM8ZJT8ATT0CbNrUT5LhxdDyymxNP9aqd4/8HSVZ4cWMg26JSSC8ykFtkUB/83dyuv7FAABAfD/36wYUL6sc3hmKq01IiyViZ6mlgoken1fDlwQje3nke9uyBPn1qPq4JEzD960+GNXVhTHNXDJLM8xsDYedONTsLYNs2tA/cT0dHSzY/2hVHy6tf0z/aE8pHByNQTp6Cdu2uf/zERHR+foxxt2T1w53QaDQk5hbx8N8nORSTCkATJxv2TOhGY1vL6jjjGqXYKLHlQgqxOYXE5RSSmFvIH0Fx2JrpiXhlMM4NRFZyXUNRFB766xj/hiYS4GbL6ef613ZIgjpOWFouT24I5EhMGrz0Enz+edXNn+oKsox25Ahs9u8l8Nk+t3QtNUgyzX/ew6XWAch79tSPSXghYN1T1LGaEoGgDrN3L5off4R//8VEA4/5edCjXQArQxJZF5aErk8ftSTqXrlwjh+vlhfOmcOHf/zBp4cjeS7Ak9e6NcXbrva8LwTlvNDRm+CUHMa0cKOjh11ZmaeiKJxJymbRmUv88fOPZH31Fbr2AUiTn1L/XZ2crrPnamTkSE6tXk1qfnGdeOBLLyxh/qno8gE3NyFeCW6OOXPKxCuACf+eYlepp1OBwcjj/5xgfXiSmpH15pt3RrwC9KEhTPDz4Lcx6m/Uc+vPqONvvI7xnXfVv/0hQ5BX/snx0aN5ePUJdk/qUeW+zqXkMOtABMo779yYeAVoX38NO2Mxv4zshqb0gcjd2pw9E7uz4mwcTe0b0MPToWxZXcdMr2NMy/ImJtsjU/gjKI7sYiMuX23mt9Hteaq9V9ny+JxC/g1NZF9MGn29nHiglTse1qKM7U6i0Wj4NzQRgDWPdK3laAR1mQKDke+ORPHh/nBkT0/Y9w/0rgcdFv/+G3nLVlY+3v2WJwJMdFrmDfFjxPJ9ZVmzAkFdQmRgCWqUep2BlZqqGvE6OUFUFLRqhbeTDVM7NmZIUxe+PhzJwsBL6Hx8MM75GkaNqh+zFDVBcjL8+CPar75CLizkgZbu/K9Xczo3tOd8ag6tnKzrzUPJvUaJJLMpIomFgXFsikhC1mph5H0okyfD8OE1a+ApyzBlCpqFCwl/eSC+DnVjVnPXxVQG/nHwioFdakaN+A4LbgRJgqQk9XszaRIA97d058VOTRiy9FDFdY8dg86d70hYens7PurgwfTeLVAUhbVhiUz49xT5JUY1s2DuXHXFhx/GbN1aFo0O4NE2aiZxfomRh/45RWJ+MW7mei5k5nPJwQ1jUPANm7frevbg4exLrHz4zpzvnUZWFP4JSWD+yWi2R6Xe1LYhLw0UzVDuEJqP1tDa2ZpzLw6s7VAEdZACg5GfT0TzyeFIMgtLUF6dCh9/DJZ1PysUgEmTaL1jA+em9L2lzdeEJvDLyRhSiiXOxKWjadYMKSysmoOsAUQG1j2FaMMhEPwXSYJPP1Vb0zZsqLaubaV2F4xOy2F9eBIdf9vPougclO++x3g+BEaPvrcfbl1d4dIl5ELVW2JNTCYDlx/h3R3n8Ju3i/D0vFoOUHA1THVa7m/pwbpHupD4+lC+GdCKNsf2wZgx6N3dVcP+wMDqP/AV4tXC0QF1RrwCGNDEmRUPXdEhbsAA0GrR1DcRXlA76HRq1l6peAWwJjSRoCvKecvo0gUWL675mLKyMGZl42PfgCKjxMBlR3jgz2MUdegEu3eXi1cAgwZRYpTo3bi8C+/MvWFsj04naPiDbGvbg+gO3TEuX3FTnQelQ4f581x8dZ5VnUKr0fBw64Zsm9iTwv8bxdCmFY2ShzZ14Zf7Agh9aSA/j/Sn3xXt61v9uBPHLzaSVVRyp8O+54h/YyhnXxhQ22HUKgtPx2Dy8VrmHY+q7VDqDIUGiW+PXMBr7i6m7QwhY+x4lPAINaO2vohXsox+8yZG+dx6Fv2f5+LZkiVxavBo5GnTkD7+uBoDFAiqB5GBJahR6l0G1oUL0KzZ1ZcPGYJm7x6Ul19RO0nZ1Z1OO7VO48YQGwsbNqjmwKNGlS0yzhiDTnsPC3z1kKDkbBafucSic4lk5Baga9sG6eGxascdc3NV2DUzK39vZQXdu18/Y0uS4PBh+P57NKtXs2hMeyb5N74zJ3WT5BQbiMrM5/MDEeUP3vb28OSTEBBQQaAQ3KPk5sKaNXDhApoVK1Ceflr9DfnzT/jrLwDsrCw4OKk7LZ2s0ZZOdCiKQnaxgZc3B7MyKgMp+Cx4e9dcnKdOQceOHHumLwUGiX6LD6i/y489VnnyJScHrZsbzqZaGpiZgAaiU3OQP/4Ypk+/teP/9FNZp8WS90ZjcgNdDu8Vzqbk0PYntQPqC52aMG+kfy1HJLibOXgpnUErjlFUVIyviy0RL9zbPmBFRon5J6OZdSiStPxilIkTYcYM8Kn7jSQqcfIkdOrE7id60s/b+ZZ28cy60yzWOWM8fryag6thRAbWPYXwwBIILvP007BwYdlHjU6H8vnnapvzBx5QfT40GhSDoWbLquorly6Vv58zp8KiV7YEM2/EjfmkCOoG7VxtmTO0LZ8P8mNrZAq/n7nEzi8+p9hgpMRgRK5q7mPZsjJj/wrk5sLWrbBuHboNG5AyM7G3smDuAx14rK1nzZ/MLWJjZkKAmx33t3QvF7AyM1WvO4B//oHjx2HMGJg3r/YCFdQOq1ahe+UVpORkABSAd98tX+7vj9bCgqwjR/jhaBRZxQbSCw1sj0zh9W6+fD20DT8Ob8fu+XtJmjRJNcu9wS5RN01kJABH4jIw0WnV37exY6vOHLaxQV68mOTDh9XPGo2aZfvaa1fff0YG7NunTur061c+fugQuremIR06XB5KZr4ol7uCNi42KB/cT1habplPoUBQE2QXGXh07RlKAtqjT05ioENtR1S77I1OY9ya06TmFqJMmKAKV76+tR3WrXP+PAD+rra3vAsLvRZNnqiaENRthIAlEFxmzRr1vxMnwvPPozg5QfPmldcT4tX1+c+PX1M7YVR7OxhlmUOxGfRu7HjHvcRMdFrua+7Gfc0rGpkbZZkio0yxUabQKOH5zVYoLSGtwJ49aIYOQSkx0MLVjgf9XBjVvC1dGtrXm6y8Du52fDHIjwsZ+RUM3q22bSavsETNLvnpJ1WkGzKk9gIV3DlOn4Zx45CABiY6xvk1RFIUHmrlQZeG9nx7JJLZBwORXdQysl9CU9B06oy8dy8ANmY6AGzNTVg6yp8Bf+xXf3veekvN7qtuiosBeHVLMD08HVAkCc0TT6BMn64KzIoCPXqoYlVhIbi7Q6dOqjjboIqmHBkZsH8/7N6NftdOjGfPqfsAtEOHID87BbZsgQULkEo3GdrUhca2FjS0vvGyw3uJFkLU+7fNKQAAIABJREFUE9QwL20JJrFERp49G7lvXwZ1ujv96G6U1IJi0nIL0Tg5oj96BKVHd5SOHZE2b1GvgxYWqt1BQYGaPa7RgI1N5R3JMpw4oW7T99a8p6qFLl0AOBqfyTBf1xvaxCDJHI3PZFtkChuj0jgdn4G2bS11pRYIbhAhYAkEl0lPr+0I7h7ee08tWVm3DoBp288xpaM3cTlFNHVogKkoH7kpziRl03fRASb5e7L4/o61HQ4Aeq0WK1MtVqZUnY11mdat0fTshbJ7N8N9nPh0YOs7F2Q10dzRird6NsMgybzQ2Zv2v+wBUMWrKykquvPBCe4cX38Nb76JxswUvZMThtLh2YP8eKmLWm6iKArLg+NYFZ6iLpw8GQICUMaNQwH07QMwDw9j9sELtHO15cFWHvRv4szPI/15f+NaUpYvR9e5E9KixdC6Gv9WHnsMjhyBH38ks9DA8gc7MWXtv+StXFm+zvDh6FNTkAIDUQxGAHQuzkgffgTPPKN64S1bpgpWwWdBUfBwsGZIY3v6jW5PX29HTidm89rOw1zauq3C4T/u34r3+rSovvMRCAQ3xcqzcSwLvAR//AG7d6PRaOh/i2VmdwsPt27IcfsG/HziIpYmRo7kSZw4eUqdvI6IgOhotA89hHzyZNk2mtGjUL77vmLJ99y5MHWq+r6w8Ka8AauV5s3Ru7my62LqdQUsWVGYuOYUayNSyC8sRmdnhzRkCAwdinTffXcoYIHg1hAeWIIapd55YAmqj+Ji6NkTTp7EydKUt3s04+0d55g7vB0vdm4iuhLeAB/sCeG7E5fwtjUnMCETgItTB+NtV0VGRC0iKwq6mWvht9/gqacqr6Ao8P77aD/9lJQ3h+FoaXrng6wG4nMKafTN1krjvbydORKbgVGS4IUXwNpaLUWwqjvG9IJq4OhR6NYNgFe7+GCm1xLgZluhDDY5rwi3OVvQDByolqB36lRxHxkZ4Kiao2+b0IPBVxh9H7yUTq/f96sfJkyAJUtuL16jEbZvh9BQyM5WO+teUeq678leALy4KYizKTk0crShr4cNPTwd6N7IAStTPTP3hbMsOBZdE2/klBScdTDM24F+3k7083aq8lpUbJSIzy3iaFwmJZLMJH9Pcb0XCGqRpUGxPLspiKJWfmjt7JD37GFKpyb8IvzWKvD8hjP8cjK67LPezRVjUjJP+Hsyspkb6YUlfHjgAqlFRuTp0+Htt1WxKiKivGLjxAnoWIsTjRMm4L9nC2ee6X3N1fJLjFh9tkF9Nps6FTp0UBuQ1FeEB9Y9hcjAEggENYOZGWzejHbSRNK2bOXtHecAeHlzEAtOx3D6uXvbOPR6xGQV8OnBCxgD2hPo64v2zGnk0DBm7gtn4ej2tR1eBcqmQa72kKrRwEsvIX/yCevDE3kywOuOxVYdnE7MosP8PRXGnmnvxbfD2tLAVP0Z1XykliC7LP+DnMISjCtXYNyytayDqeAuYMWKsretna0Z6ONcqXvm5exS5YUXKopXeXlqt7/ExLKh8PS8CgLW8VKRGoC//755ASs/H778UvVl8/RUPalCQgCwMDOlsLgEX0crLpR2hR2x/Ai5/7uPA5N7U2SUcLWqnDWw5IEOvNWjKe/uCmFHUSH7nx9AM8drC7Nmeh0+9g3wsa9bQrtAcK+RV2LkpU1B/BF4SW2ss349MjD/vgCe7ehd2+HVOR5u7UFaQQl/hyRg28CcxxtZMnFkH7o1KjcLm9DOk5l7Q/nygw/QzZ+PNHo0upUry0qlOXasdgWsgQMJWr6czMIS7C2uPlloaaJDp9Mi9ewJne/tUlJB/UMIWAKBoOZwdkbeuEmd9T9wQO3MBbg0MMMoy+hryrD4LqDIKKEFOHECfYf2GENC4dtvWfzmm0zv1azSg3Od4FrGn25u6Lp3Y1VIdL0TsP4OSQBAq4H9k3vTw9Ox0jq/jgrA2lTPQ609+GRfOB/uDVUbGwgB6+7B31/1gyou5vmNgXT0sOPEs/0qrHJZ0CQ3t3xw61YYNqzso1ajQVYU8g1ShW1f6+bLa9186bFwH4djM+D999WyVCcneP31q/sv7tsHgYHofv0Vzp9jUBNn4gOPEpWWQwHwWNtGfDesLZ/uD2dMC3f6ejsRlpZb5kFna26CLVf3dmznasum8d0oNEhYmNTjGXqB4B7iTFIWD/1zmqjUbPDzQx9yHmPpsj5elX/DBDDIx4WBTZw5kZCFv5ttBbuLIqOExSfrK6wvxcejXbyIoQ1t+OjhvoxefYrEmJg7HXZF+vdHURT2xaQzpqV72bCsKEz49xTh2YVkl0jkFBmQJPna920CQR1FCFgCgaBm0Wrh5ZfV1x9/QP/+bDt0iMlrT7E0KI4vBvnxVs9mtR1lnaOFkzXfDPHjpU1BGM+rWRQ8/zya2Z/zwd4wlj1QN7ywQBV2uns7c+SNN1AKC+HNN6tMRZceHsu2t98ip9iAjVn9aYYwa0BrZg24th/RMx28Afjm8AVVvAJ1Jnbo0BqOTnDHGD8ezbx5KCdOAHAyIYtzKTn4uZSb+prqtJjodRiufCiYNKns7bdD2zK1W9NrHqaflxOnknKwn/stpnot8Rl5yIcOovz9T+W/q9hYdKNHI2VnI1lbgyQz3q8hTwQ0BqDQIGGq06LTavh6aNuyzW7FMFyIVwJB3afAYOTjvWF8fjCibMw0PIyHW7rzzKSe9PV2QitKeq+KRqOhc0P7SuNX8/qUCwp5xK8VnTzsae/cgKTgYGrVm8fbG71XY3ZdTK0gYBkkmT/PxSN36qQ27LCxUbvGjh9fi8EKBLeGSH8QCAR3joQEOHQIgKVBcYCaxiyommc7eDO6lQfaY8fU7LXFi5GeeJIVwXGcT82p7fDK0Gg07H68G291aYLm3XfRDhigZh/9l169MBoltlxIufNB3iEqZNW8/37tBSKoXuLjwcKiTLy6jKuVGQBZRSVsvZDMB7tD1AedywJWXp4qYGm16HU6XBqYXfdQnw5sTdH0+0h8dSDRL/RjiI8TyvoN6vXzSiQJ7eOP44SRie08ITcXc9OKwrCFia7edPsUCAS3jqIo/BuSgM+Pu8rEq5audvw4oh3Jbwxh2YMd6d/EWYhXt4iliZ7kacPLPs8d0Q5daRWBY2mpXhsna/RBgbUS35UYBw5i66XMCmMZhQaszU2gVy/45hv46CM1s9fN7Sp7EQjqLiIDSyAQ3Dnc3VWPlrfeAuCNbk3LuncJKmOi0/LXgx0Z9ddxtj/6qDo4YQIaa2tm7Anj77F1x7fATK9j9mA/hvm68Ni6k6S2bYP0xxIYM0ZtP71gAbr/+z/sbSxp5VQHyx+riYdbe7AmNJGTiVnw5JO1HY6guoiMrPBx16SexOcW8d6uEE6mF3AyJhVFUdA72CMPHwEjR0JICLpePZEyMmnlZM2qsZ3LsrWis/J5fetZnu/ozdCrdIuSFYW3t59jc0QyLFqk+lpdRlFgyRLk/ftJBt7t1ZVhvi4Mbepab5skCASCG6dEkvnqUASx2YUk5BdzIiWPhIzy0uUdE3sy0Ofe7jJYnWQUljD/CoP37o3s8XZoQFROEXNPRDOyuRttXKwxHIqAnBw1w6m2GDiQsIULSc4rwtXKnD3RqTz8z2nyrGzUBiECQT1HdCEU1CiiC6GgSuzs1K5YqDdZA5o4iS5V16DIKLE9MoVtkSn8eOoSiqRm+Zx5rj/+bra1HF1lMgtLuG/FUY5pG2A8dVqd6fv+ewDiXh9KQxuLWo7w9jFIMnui04jLKSQpr5ikvCKisgrYEJEEGi3IsupZlJUFlpa1Ha7gdomJqdg2vRR9i+YY/QNgxAi1LMPXt7yZQXIyvPkm+p07MCYlA+DjZI2dmZ5T8ers+JeD/ZjWo3IJtcecLSTmFZUPJCSoEwCX8fOD8+fLPn4ztA2vdfO9/fMUCAT1gg3hSYxacaTSuFar5ZP+LXm3V/NaiOruIzApm2HLDpGUV1xpmdbCHHnmx/DWW+yf3JsGJjq14cvOnTBgwJ0P9jKJieDhwfIHOxGdVcD/7QlB07sP8sqVd2/GlehCeE8hMrAEAsGdRZbLxCuAQUsOAvDD8HZsjEjih+HtiM4qoKeno/BcKcVcr2NUC3faudpSYJBYejaeEqPEsuDYOilg2VuY0r2RPYcOXwBH1SzWpYEZKfnFxOcW1XsBK62gmAdXn2T/RbUUUm9nC87OSEYLNDo9irHUKtdggIwMIWDdDXh5qf+WX3yhtkl/9VXo0QOj4zXMkF1dYelSjAkJaDp3QklIJCqtPEOiKtFJkhUKjRJOlqYVBayvvgKdDk3gGXSBgRiTy8tw5w5vJzJZBYJ7jPuauxH8wgCCk3M4k5SNjZmeno0d6OxhX95MQnBLSLLCzycu8vLmoArjnRra06+xI1GZ+fwTmoj86wIYPx7dH4uZdfACGx/pQgtXOyJmzkTu3//qnZlrGnd39C2a89zGM+QWG2H6dJSZM6v0JhUI6iMiA0tQo4gMLEEFjh+HLl1uaNWP+rXkpc4+ohymCjQfrQFg75O96OPlVMvRVI1RlglJzSUkLQ9zvZZRzd04FJtBl4b2mOjqr/3i2ZQcRvx5nARMkP78E3r3Bo0GfedOKOfOMa1bUzxtLNQb37/+grFjaztkQW2yYwe6Rx/F0VjEF/1a8Nf5eDZFqNlYjZxsKDZIlEgyxQYjBqOkdoUCNFoNGnNzlL79UHJz4cABGjpY08HZCn8Xa9q52tLO1QZfByvhcSUQCATVgKwofLw3rLwRC2BnbsL2iT3o5KEau8dkFeD7406Mz05RO2wDPPUUnXau5/jkXqwLS2TMyqOwZUvtNnF59110839BWrpMzRC+2xEZWPcUQqIXCAR3jrZtwdxcbQ1/HT7YE0pyXjGPtW1Ez8ai5XNV1FXxCkCv1dLW1Za2ruUZYrX573g+NYf/2xVCoVGutOxqj/9VTZ7uuZRJSbNmSBs2qlk5AIcPYwwKZuuEHnjaWNB63k4YNEiIV/cykgQffwwzZ2JuouPZrj5EZuZzPDkXOneGXr2IMzNTr4dmZurriveKnx+Kn59ahvrmm7icPUPcKwNr+6wEAoHgrmV5cFyZeNW1oT3bJ/bA+j8dky9k5GM0Smq35cvk5mJbWjEwqrkb3bycOP72W0iDB6uduGuDWbOQPvxQ/V0RCO4yhIAlEAjuHObmalcuffmlx7aBOd8Nao21mZ71YYksO5eAwah6PP0eHMf80zEsf6AjI5u7YmkiLlkA4S8Pwtbc5PorCgAIT8+j79IjZDi5Ire/YmbuvwnIVSUk/3dshBfMmgVWVxjRHziAuakJ3RvZY/P5RnVsxw5VATt7VvUrEtxb7Nuner8B+SVGPjsWg87BHsWnGcyfDwEB6npxcRAVBe3bg7V1xX2cPYvm/Rko/67B07PuitUCgUBQnyk2Sjy97jTLgtXu2M2drPlmaNtK4hVAcakH6ZXCkCY3FxsTVajSaDR8OaAVvX/fr3aPHj++5k+gKvT6CvfaAsHdhPhmCwSCO4tOp2ZgyTLk5ZE7dixPb9jPt0PasHBMB6Z2a0qP3w9QJENhsQGAcauP817v5nw8oHUtB183aOZ493bxq27C0nLpt+wIWe6NkPftBxeX6tu5JMEvv8Avv9CtkT3Pb6zcPlvTvx9Kx05oZAnl2+9UQaxly9qblRXcGfr2VU3WrazA0RHZ0pLKuX/AZ5+pZSgaDSbNfDF06w7+/miOHkVZtYpG9lZ8PKYDj7drdKfPQCAQCO4JDLJSJl5NDmjMwjFXL0ErKS3zxsysbEybk421WfkjdQ9PB7o3duT49P9hfOghMBVWGAJBdSIELIFAcOe5/MNvYYG8fTtMm8arc3/g9a3BmOi0FBrUGS6NmRmKqyvaokIiMvIxSHK99k+qyxQZJZYFxWJlqsfLzhIvW0tcrczQ1sPukJKssOVCMvNOxrApPFEdHNYBfZ/eSFEX0dlYo7GxQbGzxzhiOMz65OYPYjTC//6nmmsDL4/tTCMbC0Y1dyMsLa+sDEFJTYMtW1AAWpcKsNu2weDBt3+igrqLVgutWlW9LCdHfaAxN4fnn4effmKIjzNNbYwc3rWRs8uW4WRtzkcj/Zkc0Fhc8wQCgaCGSC8oYeyqY2Wffxvd/prrF1+2IbhClNLm5GBtqWfOoQi+PnmJ5Oz8Uj/DdPjhh4rlhgKB4LYRApZAIKhdTEzgu+9QunVD/+svFO7eC8CzHbxYfjaOgoR4lK7d+PPgQXbHZXFwUnd8HUQGUnUhyQo5xQYcvthUaZmJiY6hvm78+3BH9PUgYygxt4iFp2OYdyaWhMy8CstcNq9nlI8T7Qa2JK/ESFaRgYiMJNZ88imMf+zmyvySktCOG4e8f3/Z0KgW7pjqtHRt5ADAB/1a8vrWYOJzCvlmaFsOXEpn0trTGH2aIickQHp6WYdGwV1OTAxs2gQnT6I/eBBjWBg6ZyekRYuhsBBatOBUwiX+faQLliZ6SiQZnUYjzNkFAoGgBpBkhe1RKUzdEkx4evm9QvF7o9FcY9LOKMssCIxF5+CAdGV34bw8zG1M+fhQJNk9+8CYMeok19SpMG2aOlHRoEFNnpJAcE8hBCyBQFA3GD+eovHjYckSNNOnsyAoHqXUC4uDB2HKFFLmz+fv8wm806t57cZ6l7AzKpWXt58jNCmrfHDfPrCxgZgYDKGhbJw+nQ/3hDKrDpdvpuYX88KmINaEJZZ1cQPo7uXEGF8Xhjdzpa2LTYUb0/wSIwtOxbAmNBGWL4dPbiIL6+mnK4hXBdNHYVpFlsw3Q9uWvV91PoESowTh4fDkkzBunOqPIbj78fYue/tUB2+63OfPl8eiCSvtDGWi1+HkZE2RUcbShCq/SwKBQCC4PaIy83l9azDrwpIqjI9p4cbCMR2ue+19Y+tZdkanoWzdVsFfSsnL43iChuz8Ivj8c9XTEKBhQ9ULsbhYCFgCQTUiBCyBQFC3mDgRZft2NEuX0L+JCxeyC0nKKcAwfz4A+2IzeKeWQ6zvRGXm88b2c6wNSUDXvTu8PxECA2HGDPWGC8DfH0aPRjEY+HTGDP6KSMVCr6W7uy0/j2hXuyfwH04nZfP3+fiyz95ONvw01I9hvq6AatCqnbm2ym01w4ejPPHEjR+ssBBNZCSXrd2f8PckJrsAX4cG6LVaDJLMv6GJvLvjHL+Oas9AH2ckWcHZ8j8eGH/9pQpnOt3NnKqgPvLKK2oZCfBur2Y0trXksbaeRGTk4WFtjqOF6TVn/QUCgUBw48RmF7DzYipmOh2mOg3J+cW8tCmowjptXGz4crAfA5s431CZ9s8nLvLDsSj46ScYMKDCMjkvn33pxeib+mC83KAD4KGH1JdAIKhWhIAlEAjqHk8/jbJkCR/2bU4fLyeeXnuKhWcuAbApPAlFUcQD3y2QW2zgk/3hzDkaheLiAitWID3yiNot72q8+y5KgwZExMRAeDhBmzbxaf+WOFjUDVPSzMIShi49VPZ5Zr+WvNWzGeb6cmFIr9XyYCt3/glJrLS9Mn06NL+JjD6jUe0aV8riwFgWB8ZiaqKnpYstiblFpObkAzBoycFr7+u332DKlBs/tqB+Mns2+q1bMIZH4PP9dkz0OrwcrWllZ8E7PXzp2ViUkgoEAkF14fP9doxyFV2FgVVjOzO6tOT/Rtl1MZWXNgfDyy+r5YBXYjQiFxcDIFtaQklJBYN3gUBQ/QgBSyAQ1D369EHfxJvvjkbSxM6Sk4nlJW5e9iIN+2aRFYUlgbG8sDmYwhKDaj7+3nuqifTevbB4Mbojh5F27FS79Jlc0Tpap4PXXlPfR0bCpk0cictgRDO32jmZK1geHMvj/5ws+xz56mB8qvh+6LQa/h7XFYC8EiNPrDlZLmY1a3ZjBzt8GBwcoEULlB07YPNm6N9f9c4KD6ckKIigwEC1TODiRdi4seL2Y8fCqlUVxwyGGz5XQT3GwgLjufNw6RJERGAID+dCRASR27dzcs1pLrzQHwsTkYlX3SiK+gB7s5MdWUUlBCfnEJicQ1ByNsvPxpNfYixbfr0uZTdKUl4RFnodtuYmVS6Pzspn64UUTiVmY29hgmsDM1ytzHCzMqenpwNmevGdEQiupNgoMftgRCXxqomdJTsn9aTJLdw/hqfn8cDqk2rW1TffVF4hT/XQertHM74+FoL8xhvw44+3FL9AILgxhIAlEAjqHhoNxmen8M/06ZxJyeXw5N64frWZEc1cWfdoN5F9dRMYJBnTWesqDkZFweefo1/0O8bYOBo72ZCUXYDi54eck6N2zJk8GWJj1delSxAbiyY8HAU4HFu7Ata5lBz6LNpPRqEqAH03rC2vdPG5oe+FlameEb6u5QLWX3+pJV7X4pdf4MUX4YknYOFC6NNHfV2mYUNVzLrMpk0VBazVq9XyzFLcrS1IcW+E9Oyz141XcJeg14OPj/oaOhQAJSKCxNat+frwBf6vT4taDvDuILvIwIbwJJYExbI1MgV7SzOOPNWb5o5VN/4oNkpczCpgaVAsgck5nErLJyEj95rHeLCVR7XE2vv3/VzIyCfn3ZFYm6ki1p7oVNaGJrH+YjqRKVlodDp0rVqiSctBSo1FLiwCoFcTZ3Y81u22RCyDJDNrXxhedpb083bih6NR5JUY+WVUQK11n80tNvDrqRjmHI8ua8Th69CA/t5O9PR0xMfeEi87SzyszcktNvLXuXhKJJlXujatlXgFdQvzT9ZX+Dy1qw/PdWxCK2frW9pfZmEJw/88RkHDRsirVlXwvSqjVMA6lZSFq4UJ8fPmQUAAiN93gaDG0CiXp6gEghrg1KlTdOzYEZYuhccfr+1wBPWJvDywVm86tjzenaGlfkaCm0NWFCb+e5L4nEIe8WvEi5sCAWhgYcb4Vm484d+Ynp4OzD8ZTXh6HqY6LbMPX0CRy7MXnGws8bSx4FRsWoV9j23tQTMHK5o5NsDXwYpmDg1waWB2Q0JSZEY+jWzMb+oB7GhcBt1+21f2+Yl2nnw3vN1VMxiuR+MfdxE7eKRaymdhUXkFWYbp02H27PKx/Hy4svtQVSgKhIWp2VjOzmqm27ZtcPQomk8/RaPTIm/YCP363VLcgruIN99E++23dPF0ZIp/Iya396rtiOolsdkFDFt2mOQCA+n5RZWWb5/YAztzE7ztLHGyNKPIKGFR+rCr1+nA1gapUycU/wDV/2/ChLJth7fwYMX97W/5OnM1Zu4N5YM9oQAoH9zPiuA4HvvnBHoPd4wj74Nhw2DgQLC1Ld8oL0/14Hn7bYJfGEAbF5ubPq6sKHx3JJKE3CK+OnxBLSG/4lFAen9MrQhY/4Qk8NBfx25p26L/GyUy0gT8eCyKEknmmQ5eZaLwrWKQZIauOMq+tCKkEyfA17fqFUNCoLXa5EZnbYWUW9rVMCoKmjS5rRgEN8GyZTBhAidPnqRDh9vPkBXUbUQGlkAgqJuklYslL24KJPLVIbUYTP1Fq9Gw7MFOZZ8fb9eI5LxiGtlYVChbeq5TkyvW8WT2wXAe8WuEk6Up3x6NYnVIQqV9r843QZ+Vi+FAeNmYpbkpPo5WtHOwZGa/VjR1qJyyb5BkfH/YDsAz7b2YPyrgmqLX9sgUhlzhcwUQ9vKgq2ZV3CgPN3PlmxUrYMUKeOed8hnTixchOhp27VKXXYHphMcpWf03aK/hn6HRQMuWFceGDIEhQ1BmzECR5WtvL7h3+PRT5KZNOfLll5SculSnBCxFUQhPz8PbzrJOiwMp+cXMPxnN+dTSzKmjR8HDAzw9y9YZvES9fjQwMyHpjaHYzS7PkDS+9x68+64qNF9m2DBwclKXGwzVLl4BvNrVh7icQvJLJNaEJvDclmA048ZhXLny6r6EVlZot2+jXSNH/G4hq2RHVAqRGfm8se2sOjB5spoR+Oij9PFyZOuEHndcvFIUhQ/3hjJzb1jZ2OhWHnw5sDXedpZcyi4gKrOAoORsdkensSc6jQKD2qH41S4+fDqwdZ3+fgruHC918amW/RQYjDy06gR7LqWrHQevJl4BZJVaXPi3Qzp9Rl03Kura3qICgeC2EAKWQCComySpbY5PPNuPDu6211lZcKPYmJlgc52ZyU0RySwNimPluUSMkoTeqzHSezPUdtBXoCxfjqFHDygoUG/YIiIoiIjg7IULhGzZwvbFB9kzoRutnStmCZjotCwYFcAz68+w4HQMC07H0NnDDhOdFg3lnjVZRQbOpuSUbWdlqif4hf542926D5qiKJxMzGLBqRh+ORldvmD27AqZVhqNhqoSlEsk+ZaPXYYQrwSXMTODF19Ev+BXbEtLpmqTEklmY3gSGyOSWReZRmpOPh/0bcGH/VrVdmhXxfvbbRQaVUGDKVOgSxf1vaKAJMFnn5WV8JZIMtFZBUhXeuQ89hgUFanl0p6eoChoJ03EwsKU5wMac39L92qP+WxKDp1/209RiVoGvfxsHHpvL5Sffqr84JufrwrqZmYQE4O8fQf39W5+06X0O6NSy4Q8QDWk/vRT2LIFgFe6+GB2E8bW1UV4ep4qXrm6QnIyq8d25qHWDcuW+zpY4etgxZCmLkzrcYOehQLBLZJZWMKIP49xLDUfZeOmivYAVWFnp2ZqT52q/u3++adqu+DtfUfiFQjuRYSAJRAI6iYhIWg0Glo7WwvPqzvImtAE3t15Ht54A6NOB126YLSyguHDAfi4fyu2RadzMCYNuWdPmDlTfThs00Z9WHzkETh8GOnjj8kYNJCeiw+x8/FudHC3q3Ccpzt481R7L6ZtO8vXRyI5npBVVTgANLKx4PDTfWhkU0WZ33UoMBh5eNVxzHRauja0Z8n5RM4nZl51/e0Te2Blqic1v5gvDkVw4FKGumDOHNUry6T6MzEEAqO9A9lpcbUdBt8fjeSt7efQN2+G8ZnnICSE348dwMpUz6+BsWx+tGuVjRJqA0VRkBUw0WkoNAL79kHv3hVXOnWqgv/LNg5XAAAgAElEQVRc1CuDaGRjwbYJPcqzOltU9B/T6HQgy/z9WLcaKV1XFIUpm4IxeHnBosVgbw92dhidnCpfX5KT0XfrijE6psLwrP3hDGnqQm8vpxs+5ox94eg6tEfauk0dLM0wY/hwtEMGM3bVdvo3deWX4W1pdpvZrTdDc0crXuzsw7zjanfXvt43dk4CQXWTmFvEwOVHCC8Ceddu6Nr1+hv99hvMmYP26FHklSuhUyf1JRAIagwhYAkEgrpJSAgNHaxFd647yNmUHB74s9SDZPx49SZsxgyYNQuAYb4uvNenBe/1gYzCEsasPMqBI0fKd2Bjo3bW69QJ9uxB2r2HnAH96bvkEJdeGYS9hWmF42k0GuYMbctXQ9pQIsnE5xbR9PvtFda5WmfBq2GQZM4kZdPK2RoLvY70ghI2RyQDsDYyFaVdO1DMyjL8/suE9UEkZ6mZMDpra7TduyM/8IA6u6oT30VBzaCPCKePR+1nmnrZqv5uxn371YyYXbu4NHAzb20/h9bOjvtXneDo5F514ro8pTSDs7GtJTmDhlYWr0C9Fp0+rXrSPfooOcUGwILGthY80NKdf0MTK22iSBIT2nnSw9OhRuL+IzCWwzGpsGMF9OhR9Urp6XDiBDz1FMaEBFaP7YyDhSnFkkxeiZHU/BI6edjf8DEPxWaox/zx93Lh6jJWVshbtsK0aez++mvmHLbg5/sCbuMMbw6NRsN3w9pwIauA/TFpOPznd0IguBNcyMhjwLKjJJo1QDq4s8zX6nroDh7A392Wi0cPkRvgj/Gff8uzQAUCQY0gBCyBQFAn0Zw/T1uH65hlC6qV4OTycj2OHVPLaWbNYnJAY7KLDcwb4V+22MHClCZ2lhzOzEC6PNikiVqWMncu9OuHpjSboKOnfZVli+kFJRyJy+BQbAafXuGjBXD2hQH43YJB8X0rjrAtMgUAnVaDRqtFa2GO/MGHKH36oOnbB3tzE94f2pZRLdwY+ddxQpNKs7/s7Eh+7jno0AE6dkRq0kSU+wlqnthYjLFx9Olecw89iqKwLiyJlefi6OnpyIOt3PGwrpzR2KVhqShy7BiMGgV9+6rdN0eMQG7enHPduvHipkAWjm5f65mxC06rWUlx7btcvZOoRqN2BGvSBI2pKQOXH8W9gRmn4zPQ2fw/e/cdFsX1NXD8O7tL7ygdBERFRSxgjRp7iRpbYtToT021pTeNJrEkb0w1xhRjEnuPxq6x94rYRRRBEERp0vvuzrx/jAGJDRHEcj/PwwM7e2fmLgnrzplzz7FVlxwOGwbNm6tj4+NhyhQW/f4766KS+biFH6Ob+GJlWn4fl1eeT0Dj64vcvv3tB330kdrx9Lrnlx+5r+Lq6fnqUkXq17/5SVlW37dnzOCNptX5qkPpLtzLk06jYc0LTYhKzam0DojCk+tEQjodF4eQ4eKGYdt28C5lLcKCAuSjxxjWoTZ96rjTd0UooS1bokyfDiNGFC8H3r1b/d6mTcW8AEF4wogAliAIDyXdmdPUdX9wyxgEGBjoSUpuAW9vO4vSr596YQP0ru1GT/+SdWD2XEphwak4IE4tfv7dd2Bnh3QhggYejnzV1p+Ia9nk6I281aw6uXoDF1JzMMoKBlnh1XXHi4suX+dpa86Kfk1p5nnvmQ/vbQnjeEIGu6LV4BUtWqCkp2F8+RV45RV1mc7UqZhpJC690YFruYW0WXiIeHNr+Ha8Wrj900/B1bVMvzvhCaYoYDCUfXnp3r0AtKpWpRwnVWx/7DXe3x7O4dgUtP7+LNsaxpv/nKJZtaq839SXfgHF9Yaq2Vng7mBN0hujMWRmqpmYc+cWPS/PnMncYcN4ytOR14J9KmS+paE3ypjotOi/n4r81lt338HODmX/fhLmziUhIQH698f47LMlC7cDeHjAzz8jjxlD+v/9H2NnzeLrwxcZ38KPEY19sDS5/4/Nbzf1Ze38/ervNTj41kGl6sXFqF8M9KR7TZf7CuwUNdMID1e7+xoMxZlYY8ci/fYbfzzbkFeCfMp8jvtlrtOW6aaFINyPPZdS6LYshPzaddXltU5Opd/52DEUvZ4WXo542lqwb2hLPthyhp9GjUL3808YGgWp/y7MnQvdu4sAliCUExHAEgTh4ZOXhz42jjr1G9x9rFCu/jgVD917qB/iUtX6Twa5ZDHzzAI9bebuK3oszZ6F0qAB9OkDW7cxqlt9utRwKaofc+hyKr1WHCUpI+fWJ+3bF8uN64l8s9M9d5PKyNfTYfFhjsapXSu1detg3LsPHB25qdx6djaFeiOf7Qxn6blEku2rYNi1u/R3WwXhRno9LFuG9puvkc9HoLz2mlorTqtVM/c0mtL9vH49fs72OFmZlfrUiqJwIiGDHdHJNHC14ykvx5uCK2eTMxmzPZz156+ibVAf/lyMsVMnSEuDdesImT2bgav2Ut/FFv+qakc7SZLY/mIzPtoezrrBg9F9NQXDbzOhZUv1oEOHwoEDjJo9CwsTLQFONvg5Wt21MUR5O5eShd5gVLOrSuteatN4ecFvv6GMHUvqF1/wwdy5TDl0kU+f8uP1YB/M76PrXXtfJ/oHerHs5ZfVDVeugNt/CsWPHw/vvouutj+mWg0vBnrdfKB74GtviVYjYezSpXjjpEnq7+Pbb1GA7rVE8F54csiKwvKweIasPYGhZSvktWvV4O69OHAAM1MdDVzU5d+mWg3Tn6lPp+pObLiQyPG9m4nNzCfdREu+m5saONaJS29BuF+Scqs2S4JQTo4dO0ZwcDAsXAiDBlX2dIRHxcmT0LAh+19uzVNeFZOVINzsTFImgTN2wOrV0KsXZGWBrS1Ln2tM/3qeReMURWHeyVjcbSxo61OV51eEshEbZDd3TPbtJem9LkVt5w/EXaPNvP0YjLL6wc3cHMnMFMzMUMzM0JqbYww/h29VW06/9vQ9L9V5d9Nppp++gjz5c+jbV13GeDsZGfD112in/wgeHhh37FQzLgThXuTmwm+/oZv6PYb4K3Su6UpjF1t+OR5LRk5+mQ45qrEvv3QvXcA+NiOXHn+FcvpKKpJOh2IwoNNpaebpSCfvKrTwcuSvsHhmn4xF6+WF4cspMGDAzcth8/LQ1fang5meTS82v+k8B+NSeWvLGY5n6tX28P9mBRUUoG3fDuOBgwBoNBJftqvD+0/VQPcAltxeyy2k5/IjHErKQb56Va29V9GiouDzz5EWLMDJxoIJLf14pZH3PQfc/3U1Kx/3qWr3P8LDoXbtWw/88ktMJ05g95CnaOrhcF9ZWFujkrianY+liZZ/IpOYfX0JplaroZG7A+teaIKrtfldjiIIj4YfD0Ux+/RlxrXwo1+AR9HfztWsfOacuMRvJy4Tl5qF1LcPyqLFN2dj3s7WrdC5MzoHe+T8Alq4WLNvaMtbDo1Oy2FXTAovrz2ubtBq1SCWUP4WLYLBgzl69ChBQUGVPRuhgokAllChRABLKJOlS2HgQFI/6nZT4W+h4hyJT6Ppn7th1y411T0lBZycOD2yPfXusLTjt9BoRm44SXUnO37oULtouWFMeg5LTl9m1vFYotLU7Kvn6rhjYaLBICsYZQUTrYYX6nrQo5YrWs29XZydScqkwcxdyFOmqDVjSiszUw2mWYoaa0IZTJ0K779Pe18nfuwaWPS3kW8wkpanR1YUjIqifpfVO/3F27i+vfhnWVGo52xbquCtrCjU/2MP502sMcz4DTp1gogI2LEDaft2NDt3YszMROvoiHHCBBg+HMzukNm1ciU89xzrBza/ZQZORr6ehrP2EufujfHQYbC4XjdLliExEeLiSnTqWvlCU7rVdClzYOduIlOz6bwkhFhZh3H9emjRokLOc1sREUiTJ8OSJbjaWvJV21oMaVCtTIcqer89fvz2mWRJSWgbNcJ45QpVbS3p6efEoEBP2vvewzKnW9AbZXbGpFCrihXedpaVXs9MEMqDrChcuJZNWr6eVnP3Ifv6okRGEeDmwBtB1fgnKpn1EQlgaor8wgtqDbynniquVXU3WVnwzjswezatq1Whg68TzTwd6OznXCK4HJ2WQ+elIUQmZajHVhSwtob589VMdaH8iQDWE0XkMQqC8PC5nsZ9OTNPBLAeoGB3e1zsrUhctUoNYK1fD4Cd2e3/qVh97gojN5zEztyEt4Kq8eW+C3xx8CJx6TkkZOSWGGtlqmN5vyblcrGkKAqjNp1B41cd+Z137m3nB5GxITy+XnoJ7cIFHIs4V2KzuU6Lm03FdufLNxg5l5SB8dtPoVs3dWNAAAQEoLz5JkajEcLDMXp7l245TJ8+aNq1442tR2nkZndTYXc7cxNWPxdM09l7MY4eXVxYXKNRl725ucGMGTByJAB9/wrB3MyEgXXdmd41EOtyLH5+7Go6wb/vUh9ERoKfX7kdu9Rq1UJZuBA++YSEceMYumoVQW72dwzw346DxfVll7t23T6A5eyM8dIlOHCAlHXrmDtrFkvCDpMztvt9vY+aaDV09nMu8/6C8DDaH3uNp6+XN9AG1kMJPQohIYSPG8fIDXvRBdZDnj5OvaFub3/Px9f07Yu8bRsA1R0sOZWcxcTd5/CpassbjbwY1tAbCxMNPZeHEmNhB2vmq91RHUrfMVQQhLsT7ZUEQXj4dOqE1sHhepFw4UHRSBLP13RGt2I5GI1o5s7h6erOeNndOlMpPjOPPstCADVT453Npwlp0YEjbbuR4F+vaJxOp2VQfS9OjWhXbnf6DbLCmaRMFK1OTelftKhcjisId+XggHH7DrKs7ZhxJPqBntrSREdTzypIe/bceoBWC/Xqlb6WiyQh//wzcUYtvj9t5/3Np0nKKSgxpIGrHTO7BcKcOWrHvq+/hgULIDRUHTBihJphIMtw6hT5n01kfkQyzebuJzrtNnXvyuBIfFrxg+3b723ns2dh3Di14cSLL0KvXmg6doApU6Cg4O77/1ft2ihLl6J1dCxainev/ByseLOZH9L776uZcLej08HTT8NnnyEVFtDA2YaRG07SePY+5p+MLdO5BeFxsyM6mZGbwtQHn36Kcc1aMDWFVq2Qd++GxEQMJ0/B6NFlCl4ByBbFAf55J+NYFZcJ06YR06k7H+2KwG3aFqy+XM/ZtDwMa9ZCz54ieCUIFUAEsARBePiYmmIcOJD5Z69ilMUq5wfpuTruGOKvoHV1Qd69hxENb7885vWNp4sfuLrCzJkozzyD9swZCAnB3cGaKR3qEv9OZxb2Caa6g1W5zFFRFNynbqalhx3Gc+egRw8YPFitTSQID4KDAxoTXVGtt4qmKAqHLqfy2trjnEhIRxMeXn4Hr1sXY3Q0heM/4cczCXj/tI3x28+SlldYNGRYQ28mtqlNzU1rsZ48AYYMgSZNID29+DiSBIGBMG4cxsMhRJjZ0mlJSLlNc3hjX+TPevFGE1+kkSNh7do77yDLsHEjmo4dISAAh5+n0Wjzap4+tJ0e5w7T4/JZtJ9+gi6w3r0HxED9d6pJEzZGXyvT65EkiWld6vF8XXekAQPUTKy7UGSZQ5fT+PNKPkf96jF09TFmHYsp0/kF4XEx9WAkHebv51y1mnDoEEyeXLIepiSBs3PplwreTu3aaDUSJtfLHSimpjBqFCxejBwfj/7zL9A93Vota9BANCEShIoiamAJFUrUwBLKbNs26NSJo6+3JcitbHfLhHtnkGWeWxGKl7UZgwK9aOHleNuxv4VGsyYikQuZBcSlZlGoV4uTdqzpylvB3nSree91rf5LURSuZOUTcS2b89eyibiWTVhKNlsiE0uM0wTURT4SWlyjRxAqkqKgsbBgattavN284payJeUUsOBkLL+fiiciMR2dpweGV16FV15RO+Xdi8JC2LMHduyAl16CmjVvHnPtGnz7LZrpP2KJwkfNfHm7ud9NXQZf/DuUpRGJKD9Oh5dfVjMd/uv11/Fft4Jzw8u3dbxRVuj3dyhrLl5DHjtWLb5sbw92duqXvT0cO4Zu2g8YIqNo6OHIB0196Rfggam25H3bM0mZDP/nNAdikuG556BrVzWDrW7d2y81NhhgyxZ1OeXff/Nb9wYMb3yH5hF3UWAw8szSEPYk5WDcs/fOnRVHj4Zff4VPPlEv0kePhhkz+PPZhrwS5FPmOQjCg2SUFTQS5ZaR3XfZYVY511SDwBVZz23NGqR+/cDODiXleufjTh0xbtlacecUSkfUwHqiiACWUKFEAEsosylTMJ84gZT3u9xzZzrhwVMUhcScAoyygodt+QSRErPzGbj6ODuj1GCVpNWi866GoU5dFD+/4otND4+bO6wJQkW63qFzcd/GDAz0vPv4MtgUmUjPZSEYJQ1Knz4or74K7durywTv1c8/ox03DmNWFlqtBsnbG8ORUHC8TYA6MRGmTEEzYwa2JhrGtfBjdFNfLE3U9+KY9BzG7TjH0jOX0VbzwjD5c/Xf+BvmpgsIYJhZDn/0bHTX6V3OzGPNuaucTMzgaHI2Uam51K1qTUt3O1p4OdLc04EL13J4a9tZknL15OsNpGfn3fZ4Go2G5+q48U6z6rTwdLzjhbKiKMw/GcfnB6K4mJLJvx+LTTw8MNSpo2ZZyDKSLINsRHvyJIbkFGq72vN2sDcj7iN49a+sAj2tFxzkjF6H8eDB4o6P/3X+fHHHwnXr1OVJvXrBtWtEvdWp3LJcBaG8ZRXo+f5gJNsupRJyOZXRwT780DXwvo9rkGVazd3P4ebt4a+/ymGmd5CSgjawHsaEG26gSRLEx6v1AIXKIwJYTxRxVSgIwkNJt2ghvWq5iODVI0KSpHJtwX7hWjYt5x8gzcxS/WDSuDGKry96kwezZEsQ7igpCQBnqzt0+LsPR+LT6LMiFGPnLsjz50OVKvd3wMOHcdfKrB3eFhtTE4Jn7yVr2DDk2y3Dc3GBadOQP/iA9C++YMysP/kmJJoJLWvwWpA3PvZWLO4bzKjGPrSesxeGDlWzupYsgeefh+xsDOHhtHj29tlEGyISGLk5jEYuNkSmZHE2OQuNuxtyx+5QvToHw8I4cmA/3x2MLLljrVpqB9HTp8FoLNr8bacABtTzJCNfj6OFKW42pXs/kiSJoQ2rMbRhNfL0Rs6lZHEmKZOw5CwiLochKwoaSUIjSUgSePnZMbhPPRq52pVbBomNmQlbBjaj+bz9xDaoj7FBQ/jqK2jVquTA66/Xr4oNUc8+C4BPVVve7lIPH3vRVVV4OEWn5dDtryNcyCzA2KUrtLFl2rx59K7tRhufqmU6pkGWWXgqjkn7o4hJyYQx5ZvpeSvS++9jk5XBnhHt+Hr/BSQJloRdwbh6dVEjC0EQKp64MhQE4eGUlEQV71IWIhYeOzHpuSRn5sLezTdfxAlCZUtIAMDZqvy7pEamZtNlaQj6Bo2Qly9XgzX3q0YNcowKDV3V5dhDAtz57cxp5Lvt5+kJv/2G8tFHpEyaxFsLF/LlwYt83742AwM9mXVjAXNZhv790QbUxbh2HRpTU/4+l8Dg+l43Ld0D2ByVRFxqFnGZeeqyPEC+chUmTCjKQDKEhqq1tm4UEVHi4dxeQdiZ63i2lhtajYTnfWSAWphoaeRmT6NKWLbubGXGK/U8+GRnOOzfr9YZu3ix5KBDhwAYEVSNrAIDrb2r0N7XCU1FLpsShPuw51IKvVccJcvJBeOOjVCnDnzzDQDxWWoWpd4oczEtB09bi7vetNQbZRacimPS/khir2Uh9eoJEyZCo7tnet4XRUGZPx9fVzvqOduysG9jAK7mHGTn8uXIIoAlCA+MCGAJgvBQMowYyexvvuKL9nVwsCj/i0Th4VJgMLIpMokTCRl81safJh7XLyDPnBEBLOHhM3s2DtYW+DmW75KtXL2BjotDyHLzwLhxY/kErwBq1CA1K5fMAj22ZiacT81BH9Dk7vv9q3p1mDcP5eOPSfjoIwavWo+ZTsPcE7Hw449q/agdO2DIEIxhZ8HeHnn1ajb17MkLf4ey/LnGmPwniDW+dS1mn7pMTrceakF2gwE6dACrG36nQ4YA0NTDgZUvNKWKpSl6o4xeVig0yljotA+skP6DsDoqGZo1g88+g9atbx7wzDMAfLhV7ba2aVALEbwSHlqzjsUwYuNp5FatkP/+W80k/fVXGDOGz57257k67vx+NIYvDkQRl5oFQFU7K2o5WOJvb0EHXycG1S+u9XcmKZNuy44Ql5qF1Kc3fDYB5U4148pTjtpR9XhCBkeupNPUQ+0u+HxtV3Zs2qPWD7zfTFlBEEpFBLAEQXg4jRpF4Vdf8fvRGMa0qlXZsxEqSGpeIZ/uCOfX0OiibYVGmci0XDQmJsiiloHwsDl/HmnuXD7rVLeoJlR5OZ2YyaVrmbB6Q/leDF0v2H4qMZNcvZGjiVnQt+69H6d2bZSlS9F4efHHsRhsLc3JWbgA47Bh8L//gY+P2pnQ0RG6dkVeuZK1ffowaNVRFvcNRndDrToXa3OqmmnJWbkS9u1TlwY6OZU4nVStGkp4OCHXl1SGvNwac10ZaoA9ArIK9ITGpsDI96Fbt1sPcnOD776DDz4AYFlYPF1quDzAWQrCrf1bBzM1r5DUPD3Lw+KZHnIRhg+Hn34CExPYvFltPAD8dTae309dJiEjF+n559VmEMnJpERGkhIZyYEVKzickFkigPX70RiumFjCyX0o9es/2BdobQ3Tp8Nbb2GuK34fa+bhgGI0wtGj0Lnzg52TIDyhRNVbQRAeTq6uyIMHMzX0Enl6493HC4+kvZeuFQWvXgvyBuDLfREsD7+CvHQpNG1amdMThJv1fBZFltEby78HTp7h+nvdkSNQnj12/NROia3n7KXLwgNkmFtC9+5lO5alJca332ZnbCqv1PfAeCQU6eWX1edat4brtZkA6NEDZflylofFY/L5Wl5YHlL01NaoJC5lXC/EvmnTTcErAOX772H5cjSeHgRUeXwLlGcW6Hl64UHs27dRL/jvpFevoh83Xkwhs0BfwbMThLv79kAkbt9vIuDXHbSes5efjl5SA1czZqjBKyhRs+5cSjaJPfpAWBjKX3+pTVn+9z+YNEn9GygsZFyLkh1ek3MLkVNS1OPGxz/IlweAdtkyWng7Ud/FrmjbkjOX0draQsuWD3w+gvCkEgEsQRAeXmPGkJJv4O1Npyp7JkI5UxSFDgsPsjTsctG2MS1r0el6NoGyaBH07VtZ0xOEWzMYIOICAF/tjyj34Lqv/fUgzXvvQVhY+R24ShV4/30YNw7CwjAkJsHTT5f9eK6uFBQa+OFQFLr6gSgDBtx+bO/eRX/LskJRl78fDkcVjwkOVmto/VedOmi++xb5cjwH41If22BNSHwaJy6nkv7BGLWz4J3UqAH5+XDkCImZuRyJT38wkxSEO4hJz0Xr6Qnbt0N4OEpKCrzxhtql71/ffad+r1cPIiNRFixQa2LdyGAoykAcvOooRrk4kD+nVyO+71AH+yUL0dSsCace4GfD0FCM+/fzQbPirqO5egMzT1zG+OqrJZc+C4JQocQSQkEQHl7+/si//MIfr75KDUdrqjtY4mZtTstqos7Aoy42I48dUYkltj2zLIRgZ2s0FhbI/ftX0swE4Q50Oli9Gnr3JjVPz/yTsQxv7Hv3/Uoh32AkaNZetFWqYJwwAQICyuW4Rf69eLyb9HTYuRNSUiA5uei7lJyMLjEBJSERw/Ui9prWrTHs3l3yIvVWFi9G27Ilfx89imbympuf79MHXQ0/DIuXlCzavmcP8mE1a+v8tWw2RybRL8CjdK/jEdLUwwGdVoshKurugwHMzMDVFQD9rQJ/gvCAmWoljJcvQ8eOmHh5oh8zFkaNKjlowQLQ69WlxrczbVpRvakOvk5kFuiL6qCa67S826IGLzfypvm8/VwYOgRjyJHiDK+KUlAAEyfi5WhDL383FEXhpXUn2HYplcy8AjVQJwjCAyMysARBeLi9/DIMG8aYbWH0W36EVnP2ci23sLJnJdwnb3tLFvYJLrHtQlIGS8/EI0+efPcLYkGoLL16wUsvAfB6sE+5HFJWFNaeTyA1Ow/jrl3w5puV9zcweTL07Ys0fDh2X35B9UVzaLF3M70vneJ/pBUFrwDkGTNKN08zM4xDh95xiCEySs3euFHDhvD220UPj119PLONbM1MaO1TFc26taXf6fpFe6FRBLCEyvd1xwD2DGvFnz0a0M6kAO348Wo2laLA7t1I/Z5HGjUKli5VA+RZWbc+0A1Lp7dHJ+P0/SbaLThAZGp20XY7cxPm92iAfOpU6QPzZXXkCNpGDdFu+odv2/mj1ajvdwtPxREf1AzWrQPf8rmJIQhC6YgAliAIDzdJgtmzS7ROL9G6XXhkDajneesn3n33wU5EEO6VXk8LHyckSSKzQM/JhAzWnLvKmnNXi5bIldbM0GisvtpI/xVH0FX3Lf/MqxspitrZ84cfYOPGW4/p0gWA+u4O/N/TNQkZ+hQHhrVkZf9m9K7tpo6ZMwcOHry3udarB8Divo2RP+vFgv8EsAF1KeGN7O3VjIydOwHYFZtKfGZe6c/5CHne3wV5y1Y07drCvHmQnX3nHUzVrBS9CGAJDwEznZbW3lV5JciH/2tfB2N6OowfjzaoEbRtS82922lz5hCWkyZA+/Zgb4+uXoAaALrRhx9CaCh8+y0sXYpx+k/szZX4cm9EiWFNPBz4sHkNNBMmwNmz5fMiNm9WP3NKEly6BGPGIDVvTkBmEsdea0P/659ZJEnCytwUOnYsey1BQRDKTCwhFATh4SdJULMmOh9vDDGX6Faz4rsurQy/UuHF4y1MtPSt416h53iY3XhHtcjFi6B9PLuMCY8PzeXLnIhPw/bbTWTl5pd47p1mfkztUg+pFJlJq8KvMHLjKZQhQ2DAAAyNG985o0lRICEBzp9Xv3Q6CApSA0mmphAVBTNnolu7BqOXF0pAPahbFywtYds2dJv+wZCYhFarwWiU1eyFnTvVFvAHD6rn6IjIo0YAACAASURBVNIFVq/m1J9/8OY/m3hnSxjda7nwUn0vph2JRhscpHYdvFft2iH16sl7O7azPTqZtj5V1e1WVmrNr0mTbv/a27aFl1/m0OzZeP6wGYD5vYP4X4NqJYaFxKdxLbeQuk42eNtb3nYqBlnGKCuYXe9oeOFaNl52FpXa4XB4sC9WJjpmnw5nz7BhaEaNRO73AgwdCm3awA0dHJFlyMgAoLACmgkIwv0IdrPH09GGy998Q7sarnw4+Ck6VXdCVmD3pRQ+33OeXTEpGMLOqgH1Gxs/gBrI/jeYffYsxtGjmZMAM7o3KPqbBZjYtjZ/X0giZsRwjHv23t+kDQa1kPx12o4dkGJimNTWnw+fqomJtmTOh5WpCZmZmfd3TkEQykQEsARBeGQYZvyG1KMHvx+NYfozFdtCOU9vJFGvJYeKqa1ghR4Xnuzuiv5VbVjdvxn9Vxyh4N8sApGKLzwC5JdeIq9mTfX/Vx+f4u8rVzJt9GjMdBqmdKgLwOLTlxm35wIpOfkogCIrKCjIioJeb0Tq10/NMtX8JyleUWDHDjWwdP48urNhKBcuYMxSA78ajQYU9TiSiQ6try+GC5HYWpjxfC1nrl0+y6lToVxKzkRWFOq4OtC9ehU6d6pBq2pVmLArnG8/+ODWL7BXL5RevSApCcOSJWyYM5s1yw6rz835usy/N+X7qSQGBDDr1OXiTNqcHJgw4e5LEc3MSjwcsvoYBy+n8X/t6+BgYUpkajbN/twNgFar4aX6XnzytP9NgazQK2l0W3aEPL2R52o5czwlh1PxqfzarQEjm1Te+49WIzG0YTWGNqzGpfRcFpyKY9aGVcTMm4fOyxNDy1ZoLl9GG3sJw9UEFL1a0N7CRCymEB4ukiSxdWBTZEWhrpMtAHOOX+LDnee5lpWLzsMdbXAQSmws8osv3v5AioKmfXv+zTE8kZBBM0/HoqctTLS838SH0ZsPqrW17qcW1oYNAGgkCVlRaJCfzvzX2hDgbHvT0ANx17ialgX+/mU/nyAIZSYp95rrLgj34NixYwQHB8PChTBoUGVPR3gczJgBo0YxvWsgbzbzu/v4Mlp0Ko6LenOSJWvMyrlAaIFej5OSTXWTfAbV9yrXYz9qFEXhj2OXGL7+hLph0SK40wdaQXjYTZsG777Lm02rcywpi/0xyUh9+6C0bKUGqf5doqLRgI0NDBhwU3CGyEg0b76BvGkztlbm+Fexpp6jJf5VrPGvak3tqjZUd7BCb5Q5mZjBsasZnEnKpJmHA/3reWBpUnx/ssBgJLvQSBVL05um2mjmTk4kZMC5c3e/GDt9Wg02NW16c7DtXly9ComJ0KhR8bYLF9TueneSlAQDB0LjxjBkCGzbhvaT8dhJMqMaehFyJZ3tCdkYT56CNWvQfvklUno6rzb0ol+AB5GpOZxJyuT3E7EYGjTC2LkzuhXLMRQUQkwMZ0d1oI6TTdlfVwVQFIUDcanMPRnL2dQ8fGxM8bSxwMvOAi9bC7ztLWjgYleqbD9BqAxxGbmM3xHOtphrXK0TqL4/3st7yEcfqcsJgbQx3bA3L/k+tv1iMh0X7FfLTNSsWeZ5ap7pSoMzoRwe1pK9sdd42rsKutvMsdX8Axyyc8MYelRkjD8sFi2CwYM5evQoQUFBlT0boYKJDCxBEB4tI0fChQu8/eM0fB2s6FHLtUJPZ2ZiQrv65VuTZuepMBB16AH4at8Fxu24oX7FoEEigCU82t55B/bs4adVq5DsbGHjRpRnnrnzPno9/PUXhIfDxYtoVqzA1dqMX/o3pZe/220DFKZaDU95VeEpr9t3ZjXTaUssu7mRm60FpyULjC6lWJYdGHj3MaXh5qZ+nT6tXnBmZoKT0933c3YuWeQ9IABjv36kvfceX23ZjOTsjHH8O+DnB++9h3H4cPj5Z/746it+OxoDGg0mvj7oX31dXTppYYHhiy+Q+vUjoDDjoQtegZrJ0rJaFdF5V3hkbY9OZsGpOPXB8OHQvPm9HWDKlKIA1unETFp7Vy3xtJXp9fe2K1fuHMDKylLfa/R69ctgKP45JQV58xZG92iAiVZDe99bvx/FpOdgZaKjirkOKTNTXcorAliC8MCJAJYgCI+eb7+FqEj6rdzEgaEtaeRmX9kzEsogNiO3ZPAKyu8iWRAqy7FjsGoVTT0cOJqQifLTdGQfH4iNhchItU6VoqhBFK0WQkPRvvwS8pkwnO2s8LWzoOtTfnzYskaJTKqK8EvXQOr/sYecl4ahrFz1YDsfXi/qXqrg1e24u6MsXYrhVs9ZWcGYMRhHjVILMteogd7cvOQYRUFav54XmvuUfQ6CINzS5shERm0KQ9uoEcYtW6Bq1bvv9F+5uejc3WhvqdDqhkCuoijICnx/MEpdYtuixa33z8yEiRORfpqOYrh92QY7S7PbNpbRG2WuZufjN30bsqLgam2GIbsAoqOhVq17f02CINwXEcASBOHRo9WiLF6CvnVruv8VStybHYpaGwuPsLFj4YsvKnsWgnBfpIkT8Klqy/6XW7MzOoWey7eTX1eth6XTanF3sCI2JRPt9m0oNrYohw5R18WOOa+2Idj9wQbjfR2seDPYmymr18CePWqx8MeNjU1xsOy/JAmNdzXiHtPOhoJQWf4Ki2fgyqPQtQvyX8vVgHJZfPUVJCYy840OKMAfR2OwNzdhXUQiqy8kkp1XAH/+WdSVs4gsw8KFaD/4AJOMdMa1qkmwuz0mGg0mWun6dw0mGgmdRsLV2pylZy5zIiGDsa1q4WFrgaIofLHnPJ/tOlfi0AnZBWrGrAheCUKlEAEsQRAeTVZWGD/6iKsDBxKekkWAk42oA/KIiUrNKX7Qp4+6VEAQHmXHj6OsW8/E3kHoNBo6+TlzdnhbotJyqOFohZetJVqNxG+h0YReSScnM42mHevyRtPqN3W5ehD+OBrDVwcuqDW67nVpz2PC0Kkzm5bMr+xpCMJjZdqRGGRZhnHj1S6oZWVigsEo8/q6E2y9mFzyuU6dwMtLrYl3o2PH0I4ahfHwYZ4L8OS7Qe3wsrPkwrVsfguNZvXFFIwKaCWJGvYWbBrQlKi0HF5dp9bi/PlINK8H+VAoy8w9Ease86WX1Hq+ej0cPw4NG5b9NQmCcF9EAEsQhEeXtzdotQTO2IGLvTWdqtnT1rsqbX2c8HMs490+ocKFxKfxzYFIVoZfQVfFEcPQYTB+fGVPSxDumzRpIt5VbXkxsHgpiq+DFb4OJd+PRjSu/G6bX+49z/gd4TBqFEyf/uTWcrGyIjEjB6OslGsmb06hAStT8TFbeDINqedOZFouya1aofP1wbDibyhLcW03N4CSwauBA6FtW7VeprV1yfGTJ8PEidR0sePXIS2ZfiSG4etPkFpg4HBcKmg0SI6OKNWrQ2oqeckJABjlkj3NZkWlIVmYw9ChcP48TJ0KM2eqy6x14u9aECqT+AsUBOHR1aIFpKTAvn0k7trF0h3bWbjhFMgyPWu7M+vZBlS1NLv7cYQHYtvFJCbuvcD+mGR01X1Rfv0Vw9ChYGFR2VMThPuTlQWTJ6OsWcuEXo1u273qYfLr8Ti1o9/UqU9u8OrqVTTTf+SdptXLNXiVlleI4zcbAVAm9C634wrCo2JEY19eC/Jh96UUXl5/ikvffQeLF9/7gV59Va1h16wZ1K+v1tGyuU3DhawspAUL0KAQ6GjJH8cusTo8vsSQHjVdcDDTsSAkBI2tDV2qO5JRoGfK/gsAaNu3w7hlK8Yn9T1REB4BD/8nLEEQhDuxt4cePeC77zAcOw7XrsH8+WxIyKXuzN1sjUqq7Bk+8WRFYeKucDotOMAhJ2/4+28MERdgxAgRvBIebYoCS5eiq1UT0x+n8Xm7OgxpUK2yZ1Uqk1rVgNBQdN7V4JtvICOjsqf04E2YgI0GPm59h+5lZVBglMv1eILwKNJqJNr7OvFqA0+0a9dAXhlqzWm18OWX0KsX+PreOni1c6eajWVrixIZiVGBFYkFLEst/jt8tpYrNmY6/B2tqHk9Q19xc2fuiVjq/76Heafj4fffMW7d9uQG9AXhESECWIIgPF7s7eF//8MYFsa1Ji3ovPCACGJVouxCA88tP8Kk3efhiy8wHg6Bvn3FB0Th0RcWhqZdOxg4kG72Ws6PascnT/ujeURq8b0S5MPZUR0Y6m6Bbvw4tJ4e8MEHcPmyeqGZmKh+lbfz5yEhofyPe6/Cw5FmzWJiqxrYm5veffw9cLU2p5mHA6BmngrCk6xfXXeMObmwaVP5Hzw7G9q3hyVLABhc35MV/Zpglp2JnJ4OgH9VG9L1Mjk6U6adSVCLso8dixIWBjNmEF+rLpw+Da+9Bo9A9qwgPOnEX6kgCI8nd3fkLVvQNmvGuN3nURTl7vsI5UZvlIlJz6H5nP2si02H1avVOlePyMW9INxWdja8/z5SwwZ4hx3nn0EtWNO/KT72j17dvTpONvzZsxGX3urIBw3csf71Z7UosqUluLqCqys6/1rw3nuwdSvk55ftRIoCW7agbdMGatcGNzdMqlWDAQNg6dLyfVGlpPnoIzztrRhZQfXIpnRQO092WnAAadJqvt1/gT2XUghPzqqQ8wnCwyQ+M4/ph6NQFAX/qjbUdXMoCjKVq//UwFoTkUTfOu4cfqkVZoUFEBzM+ZQs9kYnIW/egvFSLGzZomZ1abUwYgTyocNQp075z00QhAohamAJgvD40mgwTppEaNeubIlKoksNl8qe0RMhq0CP7VcbANB5V8O4ZTcEBlbyrAShnIwejdnSJUx42p/3Wvhhpnv0swndbSz4qmMA41rXYs25q0iShK2ZjnyDzNaoJNbN+Z3EH35AY2GOPPZj+Oyz0h983Tq0n32K8cRJAj0c+fj5JkjAocup7Ny3lePLloGjIzz11M0FmSvKnj3I69fzzXONK+y/XztfJ5I+eIYWs/YQlZbDR9vCip6r6WhFxJudKuS8glDZ1p2/yk+HL7I1OpmU3EImt6vD8AaevL18OYwdqwaPyjHTSRo0CGXRIgCy8guRFcgqMFBgMKrB9/Pn4eWX1cY/oHYvFAThkSUCWIIgPN46d0bbpDGf7b1AZz9npOsZQAfirnExLZfetd2wFp2iytWZpOIMA0PoUbXoqiA8Di5eRFq0iG861eWtZn6VPZtyZ2tmwv/+U8PrhQAPFEUhLDmLX0IuMnPSJJTnn4e6de9+wORk6N2bpl6OTP7fU3TwdSp6D+4X4IFBlqk1YxfRXboAoLWxQePhjuHFF1E+vYcg2b1QFLTvvUt9D0deCPComHNc52RlRuRbncgq0PPnsUtcysjlx8MXuZCaU6HnFYTKEp6cRc+lh4se+zlYIk1aXTzg66+RzoahLFp8+2Ls90iZNw9++AFtzZq8WbsqWo3El/sj0dX2xzBggFgWKAiPGXHVJgjC402SME6aTEi3bmy7mEwnP2cAfjgUxYqzVzA3NeG52q4Mre9Fe1+ncu1E9SQ6k5RJ16UhaFu2xLhli7oUSRAeF1Om4GBpyqtB3pU9kwdKkiTqOdsyrWsgG6KvEf/+e8hLlqo1B+8kPR1kmSlta9PG5+ZAtk6j4fgrrTmZmMHlzDwuZ+YTeiWN5Z9NgKsJ6vGtrNTMLDc36NABqlS59bkyM2HxYrRLlqBoNMheXmqjiKeeUp9XFLW21/LlGI8eY+rQlg+sXpmNmQnvtqgBwHstarAjOvmBnFcQHrS6v24HYHX/ZvhXtSazQH/TGGXdevjxR/jkk/I5qVYLS5dizMhg2uEMrEy1bIy4CvO/FsErQXgMiQCWIAiPv65d0QYH8dneCDpWVzMAUnIKAMgv1LPoVByLTsXhbGfFxheaEOxuz8yjMeyNvQZAXkEh3Zo0KnHIaWs2svX46aLHg9q25MW2rW469dRVG9h+8kzR404NA2lQveTF77Izlxnwd2jRYxcrMxI+eOb+X/cDZpBlOiw+TE6Nmhg3bBDBK+Gxo/t7Ba/X98TS5Mn8+GSm0/JDh9o8v3wzODhgUtsf/VMt1SBRixZqHZkbg0LXa2aZ625/EWlnbsLT3sXBrUKjjKQ9zsnVy8jRG8gpMJBXoCe/UA8aDdoWzTH27KV2n61TBw4fht9/R7N0CUp+AR1ruGBvqmXr4QOkLliA1tUVjSJjTEtHLiwEoFstN9r6OFXML+kuqtlZMqzhkxUAFR5/iqLw4srizzG9arsVPzehN0ZZYfyOs3y9/4JaUmDEiPKdwKFDRT/+394IdN7V1OwrQRAeO0/mJzBBEJ4s17OwDvXowY7oFDpUd8LD1qLkGD8/UiSJiXvOs25AszseLr9Qz76w8yW2bTtxhoFtWhYtj7md3WfCqeXhhu0Nw34KuXhPL6eibL+YzKnEDN5u7sfZ5CzqOtncU4aCUVbILTSoF5d2dhU4U0GoHJKrK1mFBZU9jUr1XF0PIt+0Z3/cNQ7EpbLnn1WcmzMHRVHQNm6Mcfp0NZiVnw/LlgFgYVL6OlOmWg3L+gbftP1KVh4bIhJZeyGarZ+Op2DMGLT2dhjTM/BwsGZEc19ealit6L1dURRcvt9ERnIS41rVwtHCBUcLUxwtTGl7i2wwQRBuTVEUQq+kk11oINjdHlszkxLPp+YVUuWbjUWPr7zX9aZjaDUSQxtUY0tUEsdPn4ZZs2DMmPKb5B9/qI0npk6FZ5/F8MsvYGJy9/0EQXjkiACWIAhPhm7d0AY14rO9EbT3rYq7jXnJ56OikF96iQ1z53IpPfeOhzoQfp6863fyJUABEtMzOHMpjkCfanfct9Bg4FRMLJ181WUwJxLS2R+XWtZXVSapeYVsikzEykRHjt5AdqGRnEID721RM8X+/f4v/yrWvNvcj+F36dZlptPygr8L8xcuwDB5sug4KDx29DVrEXH28N0HPub8HK3wc7RiyPV6WZkFenbHpDB+dwSnn3oKevdGF3oE+cpVRjXxpZ6z7X2f093GgteCfXgt2Ic8vZFdMSnsi73G09516Vjd+abl35IkUd/Zlu3RyXzydC20D/FSIr1RZuy2MHr6u9HGpyrJOQU4WZlV9rQEAYCDl1NpOXtv0eOzozpQx0mtX7XibDz9lh8BIMjNjiOvtS1x40tRFP5vbwSf7gwvPuCbb8Jrr5XvJC0t4fvv4bvvxGcPQXjMiQCWIAhPBknCOHESB3r2ZFdMCpY3ZgRotWA0wq5dSFaWzDwac8dDbTtRHOB5pnEjNoYev7799B0DWC72diSmZ3Di4iU6+DgCMP2wmn3la29J9F0CZ6WxKyaZy5n5DK7vVbQtT28kOj2Huk7qReQHW84w50Rsif20lv/JSLvBBY05IzacxMXajH2xqfxxMo6qVuaMbebLq0HeJbLOBtf3Yvb8/Wo6f4sW9/16BOGh4uxM1KEnOwPrVmzNTHjW341uNV2Ze+ISn+/bQZCzDVN6tcO/avkUar6RhYmWZ2q68EzNO3eWbeJuz/boZLZdTH4ou9AuOhXHp/siMddqCE9IY+qhKDwdrLmcls3ivo0ZGOhZ2VMUBFp4OvJj10A+3BpGoVGm7q/bMdNq8LS1ICpNbUhwu/9fD8enlQheSZKEZt48jG5uakfC8g42ieCVIDz2Ht7bUYIgCOWtRw+0DRvw8sZTJOfccBFaowaYmUF0NHLjJvx2Ig5ZUW55iKT0TE7HqMGfKjbWvNSpDWY69V7A/rMR5F/PzLqVzo3qY6rTkZWXx7mEVLIKDCw5cxmAUU3unN10J/NOxCJNWo00aTXt5u3nf6uO0mzufl5YHsI7m07h/9suAn7dwdhtYRhkme8618PqxgDeJ59gzMlVg3j5+Wqx4xu+5MvxaO3t6LMshGnhKWQOH0V02868vv4EE3adQ7nhd9XGpyou9lawcGGZX48gPJSOH0czbx69q9+miLiAViPxSpAPMaPbs7JfkwoJXt2LQBc1aD9pT8RN7+k7o5OJzbj/mwb3IzI1h+jkDMIbNIVXXoFffuHyC4OQ2rblne3hZBcaKnV+ggBq0OmtZn4UfNKTzYPVpggFRrkoeJX84TO3DbY283AgfHQH0sd0R5nQm9eDvDFmZsK4cZCVdct9BEEQ7kQEsARBeHJIEsa/lnPZyYPfj9+QgXT+PPheDyCdPUtadh7JubfOsth+8nTRhVCruv5YmpnRuGZ1APIKC9l39vwt9wOwtbTg6Xq1ATgUc4WdMSnkG2Q8bS3ofUPB03u1+nxCyQ3+/oS0eYa/Xfz5NVVDfLNWMGEC3xy6SKt5B6jyzUZy9Mai4dKaNZCbq3brMbvFshVTU4wLFsK8eRivXIGpU1H++gu+/prP95wvEcTSSBL/q+OGbukS0N/cfUgQHklhYWj79CagqjVfdqhb2bMRSqmphwMAB+Ou8d2ByKLtV7PyaT9/Px/8Z7n0gxSVmsPE3efUB6+8An/+CaNGwW+/ocyeTUqenq/3RVTa/AThVjr7OZP1cY+ix191qIu16e0X9EiSRO2qNtiZm6AoSlGGu2RjDbb3v7RYEIQnjwhgCYLwZKlZE0PIEQy16xRt6lHTBW1EhLqUMCkJyc+PSxl5t9x9x8mwop9b16tT4juUXF54Kz2bNQYg5lomGy+ogaeRjX3QaUqf9h56JY0/j8Xw46Eoeiw9zOpzV2DAADh9Ws2aOncO5s1D3rEDfcQF5I0bYeJElJ07CdWboOnQHqpVg06dAFBOn4bs7DuftEcPGDIELG5YavjRR0VBrNnHLxVtHlTfE0NqGmzdWurXJAgPrUWL0DRpTM2CTNb0a4yZrvQFyYXK5WNviamJDoKC+HhHOHsvpQAwdPVRAIYHlz3z9X75Oliy9LnGWJmbwp49/3nSF/nDD/n60EVi0nMqZ4KCcBs3Zl2P3X6W+Mz8Uu1nvGE/5fMvyn1egiA8GUQASxCEJ4+1NTz3XNHDMynZ/PNic3SoH66UlBQKpJvfHs9ciuNKapp6CHNzTHU6oq4mUsXGuqhA8JmYWBLTMm57aj83FzyqqFkB2XojZloNrwX5lHrqGfl6mvyxm9fWneCdzafZcP4qLFigLtmrV+/OO7dujfHyZeRt2+HSJVi/HubNg7Q0cHYu9RxK+PBDtHZ2xGUWB/wauNjh72KvzksQHkWKAtHRakbM4MEMrOlE6Eut8HWwquyZCfdAp9HwTfs6cOwYSvXqPL/qOFez8tl6MRmA9r6V141QI0n0r+fJ24190M6dc/NyqrFjUapU4f2tZytngvdJURSiUkXw7XFkY2ZC9sc9eLOZH+89VRM/x9K9Lxb9/9CzJ7z9dgXOUBCEx5kIYAmC8GS6odBnrsFIJz9n5vdqpG7IyACjXPT8hSsJxCansO3E6aJt2fn5vDVzLm/NnMuHsxdhlNXxCuoywztp5Fd8139APY9Sd5uKz8zDa/q24g1du6o1qwYPVrPHSuPGTlympmpWlb196fa9lYgIjBkZxKTnFi2tlCSJoQHuaNasvntmlyA8TLZuhSFD0Hl5QvXqmPzxOzO6N2BB7yCs7rBMRnh4vdWsOqMa+0J0NCmKluazi7Odhq8/QU4l15ka2cQXJTdPvZlwI2trDN9+x8qz8Sw9cxn9Df8mPexmhkajmbyGGj+JLNzHlZWpjuldA/m+U8Bdx17LLcT5+03U/mU7AJKofSUIwn0QASxBEJ5My5YV/ZiUlU92oYEetVwpCmvJxRcLW46fYuQvs9gXdvv6VjfaduJMiRT7/6rl7kqge1WC3ex4t3mNUk95c1QSWfmFEBmpZoj888+ta1Y9SPHxAMw7GVeiMP6LgZ7IefmwenVlzUwQ7k10NFL37vhvWcebXhasGdCMxPe6MKKxb4lOm8KjRZIkfnwmkI6+VQGF2H+Xhw8cyKyzibxfiXWwADxtLehb2w3dj9Mg5z8ZS4MGoW3bhoF/h2L37SaeXXqYkwm3z/CtbGeSMpEmrWbEhpMAvNrI+47/FgpPBmtTLcnZ15cZbt+OsmpV5U5IEIRHmghgCYLwZPItzoKyNdOhKAo2ZiZ83KrmTUMtnukNqEXaAfxcXdgwcUyJr7WffUgVG2sAEtMzOHMp7ran1mg09Avy593mNWjgaleq6f59Np5X1h5XA1d+fqV+mRWufXskBwc6VnfCxdq8aLO3vSUtvJ3QLBTLCIVHg/TRhzhZmnL05VZM7RJIT383HCxMK3taQjnQaTTM7FYfsnPg9dfhzBlYvBh52jRmHo1h7fmrlTq/sS1roouNRRvUCE6eLH5CkjBu2w5HjpA3YSL/YEuT2Xv5JeTiHQNDJxLS+SXkIoUPMGtLURQCZ+wA4GnvKhR80pM/ejYSwV+Bw/Fq6QXmzIH27cGudJ97BEEQbkUEsARBeDI1bVr0Y55B5uPtZ3GbtoVGbvb0qOVSYqiuek0k0+IL2Y6NAm86nFajoUPD4u03LjcsDxYmD2/haGX8eLZHp1Bt+rYSNU+G1nNH2bYdEhMrcXaCUAr79qGs+Jtv2/mLpYKPKV8HK/oHeKDbuAFq1VI3vv46Uo/uDFt/ioTs0hWirgjB7vYcf+1pameloGnaFH75Rb1ZAery8MaN4eOPMZ44gf714bzxzyl6/3WEqNScokBWUk4BPxyMJOD33TSauYs3/jnFolO3v5FS3r7cq3ZM7B/gwe5hrTHVikuMJ92681f581gMIzeHoW3aVC1ZIAiCcJ8kReT2ChXo2LFjBAcHqwWmBw2q7OkIws0yMpBefx1WrkRp2ADNseMs6hPEyvArLD97BYuuvXD8v+nIWZlkfDuB3A0raRlQmze7d8bG0uLux7+FnafCsC1Mo7pJPoPqe5V6v+8PXOCjvVHIWVmge4gusvV6GDMGfviBaV0Cebu5miG251IKbebug9BQCA6u5EkKwi0YjTBrFtpx46hnrnDsldZoRMbIY+tkQgYNZ+5UG0wMHqxuTEpCGxBARwcd/wxsVqkZQ/kGIx9sOcMvR6Lv/LlpzRq0w4ZhTE/HxtKcmo5WnLyaTLCXcwAAIABJREFUhqLRovTsidK+Pfz8E7XTEjj7epsH8pr+Coun/4oj9A/wYOnzTSr8fMLDT5p0QwmBI0fUQKwgVIRFi2DwYI4ePUpQUFBlz0aoYOL2iCAITzY7O5Rly1DS0uDQYeRBg3hx1VE8bSwI8nKmcN8OFKMRjY0tDpN/wPGrX9kfHsHc7bsf+FSbeToi5+dDWNgDP/cdmZjA1KloWrdm5/U29QBbopLQOdhDw4aVODlBuD1t3z4wfDgDPCz5p39TEbx6zDVwtaNzDVe0X00pznBydsY4bx6bLyTw65HoSp2fuU7L68E+6gN3dzh+HFatggsXSg7s1QvjxYuwfj1Z4z7hWJuuGKf/hJyQgPLuuzB6NISf41xCelHHxYr2QoAHAMvC4h/I+SpDSm4B0qTVSJNWk1iJGXuPnA4dRPBKEIRyIwJYgiAIANbW6lKNuXOR6gUSciWNoGouGLOzKDweUjRMsrUDWaaul+cDn6K9uYn6Q/zDeYEgd+/O2vMJDPg7lMjUbNZGpWB4plvpOyQKwoOUkoJx3Xp+eqY+C/sE42Zjfvd9hEfexy39MIadVZtg/KtbNxg5kve2neVscmblTQ5IzVNrLZKXh+7556BvX6hTB67XYCzi4ADdu8P48Wq21qhREBICrVqpz//wA9qGDRiy9gSDV4by9b4INkQkEJuRe1+F1TPy9ZxISGdV+BX+OBpDgcFY9Fw7n6oAbLuYVObjP6x2RCfj9K36/4yNqQ7nUnYPflJlFujVH55/Xu3uKgiCUE4eojUogiAIDwGNBtnDg/zkS3jZ22BjZUnuP6sxa9wCAEmnQ2ttw7S1/3A0Kpq+LZpQw921wqe1KyaZdvP2qw/at6/w85XJe++h2NuzfOwYQhYcIDo9V73AEoSH0ebNoCg8V8e9smciPEBtvKsS7FmFE1OmYOzWrfiJ777DuH0b/VcdJ/TlVpjpKifw3sa7Kq19nTkwejSGmBg8bS1IMLXEYHqXhgLLliENHoy7rQXxmXnQsCHGTotInD6dpSdPsPRwGMZstUahtYUZ9ZxtaVDVikBnWwJdbKnnbIujhSkFBiOXMvKITsshOj2Xi9e/R2QUEJOeQ2ZOycwjSxNt0VL4IDd7dsakEJ6cRcfqzhXy+6ksH1zvVrmqf1N61/5/9u47PIqqe+D4d3Y3vfcEkpBAqAk1oXekI0JAulRBQVSU96WIviL8ULFSVESa0ouoiBTpLYSOhFBDQguEFEjvW+b3x4RASAJJSAG8n+fJ4+7M3Zk7CJvdM+eeI94zHufy3RSm7M7JFN+1Cx7ObP39d+Um3FtviZtbgiCUiAhgCYIgPMrKijSdjCRJ1HGvxMndW5GnzEQyNsHEvxnO24+R/ucGjqxaxIFFy5k1dAANq3mV6ZSm7g978MT0Gc0UMTKCN9+ElSu5djgn2NalS8XOSRAKs2UL9Srbi8yrfxlJkviwRTX6bAiCo0ehWTNlh7k5+jVrORcQwJawaPrWqVxh81vYzY96P+0HQC1JGPzyNw7J46efYNw4Btd1Z9krDak0fzf3tm6Fr76Cn35CD8qSyZs3ITSU1HPnOBoayqkz/6DbfQFZqwPAytyU1Iys3AwtSa1GU7kS+mo1MbSoBunpYGsLzs7g5IT601l8cfgKp+8k4udszTdHwgElW7g8C8g/DTMjNX0eCWIbZJlu647TyMmSzzv6ApCYqWQU9azhVu5zfJ5EJqVT64c9DzYsWPDg8d9/I/Xvr5RlOHoUw+rV5T9BQRCeeyKAJQiC8ChfXy5t2MC2c1ep7l2NY5fDyQzah1mHrgCozC2wHDQSi35Die0SwI7TIdTz9kStKrtV2TEZ2eDlpdREecYZ/vgD9u2DyEhwcKjo6QhCfocPo/5rM738i95EQXhx9KrlRjUnG65+8gnytm1w/73b3x8jTw+CbsZXWAALoI6TNRObVmXe8WtkSyoM9eoVPFCWYfZsmDaNd5pUZW7XuqgkiT4+Tvz820Z0s2c/yHKRJKhSRfl5+WUAtKA04QgLg9BQUiIiwNUVvL2halVkd3e0DzcMWb0azb1E1Fk6SNOiq9uQ0B3bCI1NppGHknFVxd6a67qSNTgpbxZocUGfb7vOILMz7A47wyAuPZtFPRvkBrDUKlEnryCRSemM+PM0e68pdTAlLy/ky5fhfuZgSAjqV/vSuZoT/8SmEP2kjEJBEIRCiACWIAjCoz76CK5c4di6dVy8mwJAwtS3yGjaCothYzFp3AJQlhNavvcRQTMnkbl+E1P7voxpGX0oS8/Ww7jhyt3vZ52TE/TvX9GzEISCzZ2LNHkyzSvbMrF5tYqejVABVJLEV+1r0mfDDqROnZC3b8/9oq3t3IXvf/kZE42KD1vXwMrEqELm+PlLvoxp5EWdH/eiCgrCsGULbN6MJuQMemtrZGsbyMiA7dv5pG0tPm5bM7fb4IgGniz95TDSkCHIK1cq2bGFMTICX1/lpwjUWTrMkjKRTE2hVWfkFh1JW/odp28qBfDbNqhPsrHNU19/WcvSakFOhQICWMZqFRtebUz/jSdY+s8Nlv5zQxQNfgyDLHMzKSM3eMWwYcjfffcgeHX7NppuXfG1MeUtfy96rj0Ko0ZV3IQFQXiuiQCWIAjCo1Qq6NoVjasH6WtXQ2oqpmo19lfOEf3fN3D++zgqM3MALHq+itrBkdOTxzF5+XpmDOqDnaVFqU9JZzCARrxlC8JTmTIFvvwSW1Mjdg9pVmF1joSKF1i7Et625lzbuxe+/x4mTlR2zJuHzt2dr2bPZsnZ2+wY2AT/SuV/40CtkqjuYMnGVxvz4cEwzvfsiY2FKb18nEiPuk3ydT0pWgPDe9TnzQDvPK9t4eHAhr7+DNj4K2zbiqFtW+SOnZT6iX5+eWsSlYBkaop598Dc57pr4Wh/UZaKrdh7CIAl776Bm73dU52nLO07ex6yC9/fz7cy0VUcaLLkADeTMuhYzZmdES9ecfqnlaHV88n+S3wZnNMp88cfYezYBwNSU1F364pTRirbR7Vi6p7zaKp6o7vfbEAQBKGYxLchQRCEQqicXTAbMwHD3VhSF36Lu70dUWERZGz7A4u+Q3LHmbZoh/2SX7n57nDeW7qa/xvcB08nx1Kdi8EgPx8FTxMT4fJlqFwZ3Mu/U6MgFEqWYcUKACLf7yKCVwJjGnkxbe8FGDbswUZzc5g+HcOoUSR27cr7uy9wcFiLCptjr1puvFLTlRNRiVSzs8DBvGhZvn3rVOYfB0v+vBzNzvMnOPL33+h0eqV49g8/lOocrUaMQ+1aicw928g6EQyAo7VVqZ6jIrhYmnLjvS5cuZeKtYmmyH/2z4NsvQGTWZvzbDNRq9g5tAV6g4yLpQm1Ha1ys/oKMnFHKHOORjzYsGgRjBmTd9CaNcjnL7DzzXZYGqvZcDEa3cfTnzqIKgjCv5cIYAmCIDyGpFZjNfItZL2OU4vnoVKryDoRnCeABWBcyw/75ZtJfGcYE5etYcbAPvhWKb0Ajs5geLYCWKmpcOECnDsH588jhZ5Fc+4c2jvRuUM0ldzQtWgJXbsqXxAft4xFEMra5s0QHc2fA5tiYSw+/gjQyC1nqVtkJDg+ctPBwwP9Z59xqHdvDly/S1uv0r0pURySJNGkcvGzmeq62FDXxYaP2kC6VsfCk9f5z4IFUK+e0nCjlKisrLHsNxSL3gNI+mYmab+uZO7mv/H1qMzd5BRuxt2lf+vm1Kj8fBZAr+5gmed5araOe+nZGKklKlk9H/W+HqWSlL//p+8k5W7L0hto+0tQ7vMGrjbYWZjyx6sBWJloOHE7gTStHnMjNfZmxvwVlvP7/vvvlayrgj6jXLyIo6UptR2tWB5yk0ytLm/AWBAEoZjEJzhBEIQisBwwnOzd29AENMN6zHsFjtG4Vcb+599JmDCKz3/fwtK3X8eklII2z1QG1q5dSN27I+t0uZtkcgoCAyfHtONGUjpHIuMJOnGAY7/9hurzz9B//Q306iXuvArlLyMDzYR36eDjSs8arhU9G+EZ0cLDHk8HK263bYP+p0UwaFDeAa+8grpeXT4+GMaBCgxglQZzIw0Tm/twNSGNBW+PR/b1hVJexiUZGWM7dRbG9QPY/9EE9p89n7vvpfp+8JwGsO5LzMzmXroWn+925W77rls93m5StQJnVTIalYpTb7TPfS7LMotOXSciIQ21JDH78BXORCcBSdh+sRUHC1PupWXmOYbKxAQ++ADGjy/8RL17Ezd/PtP3X2TvzQRUHTpg8BDNMwRBKDkRwBIEQSgClZUNjuv+LtI4mxnfENu3A38ePUn/1s1L5fxOlqbcuHGjVI71VAwGpLlzkXU6NCoJnUGGESNg2zaIVeqDnIhKoJm7HT2qu2CiURMSncR/dl9gT2Ag6hYt0M+ZA02aVOx1CP8u33wDt24zf2y7xy6JEf5drEyMODu6DWO3hrBu8GCk7duRFy5UlhECSBL6Dz/i4IABRMSnUc2+9Osblrc5XeoSEpfKkcBA9GFhYFf6daqyQ07lPjY2NqZ93To0q1U9d1uWVssbPyzjbmIivZoF8EbXl0p9Dk9rzpFw3K3NcLU0QS/LqCQpT3YSlpbQvTv/27qZ4fU9KqzYf2mRJIk3A7yRZZl7GdnMPnwlz/57aZnQtCl07gwuLuDhgaFjxwf/VgrTti3yp5/y6QcfKM8/E8XbBUF4OiKAJQiCUMo0Hl6Y9xvKuj/W0qVRfWwsnvABrwg6e9rx868b0H3+OViUwZcoWYaICKXL4aNLae777DP48EPk+y+pWRMWL4GWLSElBcaMQRN0iHFbQwBQqVRUdbKmkaMF7TztqWFnzvbLoVxv2hRpwADkzz9X2rULQlm6fRvVp5/yflNvajo+/3V5hNJlY2rEmj7+dPdxZvS6tWR7e8OMGQ8GVFcCLwmZ2cDzH8BSqyRMNSpQld2ydNM2L5GxeQNOFmZ8OWJQvnpY16JjuZuYCORkFz9jIuLTmLjz3GPHSK1aIX/9Ncl//MH8Y1f5sE3NcppdyaRm62iz/DCv+VXmlZqubAmLZmyAN6Y5tQANssyHey4QFBlP0M17D17YqRN89x3s3v34TKvHmTIFaeUKNNnZaAMDnzxeEAThMURXWEEQhDJgNXoCOrWG34OPl8rxPmhVA+nePfjyy1I5HgDR0bBqFYwYgaaSm/JFzckJI28vZSnN77/nHd+0qdIWu00bWLwY/ZkQJXgFYGUF69ahu3UbkpLg8GEMCxYQ/uoQfrPz5pPTUfx48hqe1qYserkBjtv/QlWzJvznP3DwoDIX+dn7IiO8AA4cwJCZyZSWNSp6JsIzSpIkhtb3ZHR9D6Qvv4SsrAc7c24YpGXrK2h2pWv+sQh2h8egX7kKrK3L5BymLdrhsHQj8SoNE5et4XpMXJ794Xdich9fjLxdJnMoidCYJHquO0b173c/2Fg1Z3lgtWrw+uswcCCcPYu8dauShfTmm3xx7CqJmY9paVhOTkYlkJylzbPtakIaVX/Yi83srfwTlcB/dp7D98d9vL/jHPV+2s/4rSEsPX2dbquPMPvwlQfBq0mTIDQUdu6EmjVLHrwCkCTkkLNoQ86C2fNZM0wQhGeHyMASBEEoCzotslaLmXHpdC3ytrPgv02r8sUXX2B4/XXw9Cz5wc6dQzNoILpzSn2SOm72dPe2p30Hb5KzdBy7lcAPv25Af/kShj59HrzupZfyfrErjLU1tGih/AB6UIJT27dzsEcP+tZ05dr4DnxzJJzZP3xHxrffAqC2tUG/+S9o3brk1yYIj9ql1Ks5eOMugbUrVfBkhGeZjakRcmYm/PorvPaasjEngHXpbkqFFnIvDWdjkpi05yK8956yFKwMGdeui8OKv0iYMIKJy1bzYb9XcLW1Zcc/Z9lx5kF2U/eABmU6j+JYHhLJ1og45AULYPBgpaOuvz9cuaIEcQoybRppixcz50gEM9rXLt8JP0RvkGm8+AAAURO7MjsojMv3UglLzCDS2gHDrC/BwwNiYsjevx/V5s1cuZvIlbspAKgD/GH6OJg6FUxNS3+CGo3yIwiC8JTEO4kgCEIZSFm+EIM2mwZVq5TaMT9oVZ1FIbeInzoVec2akh9owQLsb15jTh9/XvJ2wsUy74dVK2MNc49FwPRPnm7CD5Mk6N4d3n6b9xb8wJcnblDFypS9rzXH2kTD+dgU+m88AV98oWRwtWun1BgRhKeVE3Qd8Pspzo+1ztdRTBDuq+uck5FU5aH37UqVkAJ7M+7PP8nWG3inabWKmdxTuJ6YxvIzkay9FI1cqxZ8/nm5nFft4ob90t9I/GA801dvRJZlNFbWmLzSH5eBo0j88B12hJyji3/9cpnPk1S3t1Cak/Tpo9yIadxY2VFY8ArAzQ3D+PF8veB7qtlb0MDVhnouNuUz4YeoVRKfdqjNh3svUunbB/U61R3ao//+B6j9UHCtfXsMK1bgY29BeHwa3LuH3t6+3OcsCIJQEmIJoSCUhSVLYNYs0GqfPFZ4IaVtWAHAvZTUUjumlYkRX7avibx2LRw5UuLjaHbvIrC6M4PreuQLXmn1Bt7dfQFVu3bwyitPN+GCfP018sKfuD14OMHXY/kqOJw6Tta8WqcSk1r4UPnIQejZE8neDlX79kpdLkF4GsuWwY0byFWqEPjbKWSxVFUoRHWHnBpXDy9zkiTkXzciT3iPd/8O5Z1tIegMhoqZYAkkZ2lpu+oonxy4xJXEDPTr1pdNhk0hVBaW2H27FOvJM7H7v7k47ziB7X8/QePuiSRJ2D2pCHg5uRiXwpT9l1E3b154HcjCTJ1KpkrN8E2nee/v0Ap7j5nWuiaLXn4oo23MGPR79uYNXgF4eaGp60d4fBoaP1+lNIAgCMJzQmRgCUJZ+PNP2LIF9V9/oV+79kENBeG5I2dmkr7tj2K/ztivPtLFUK7FxJKt0+XZl/UUgc3h9T2Ze/I6Fya8i/7oMVAV8z7E7dvoroTT4dXGBe7+/vhVrsYlw7x5StZUaTMxUZZm5GRXbb8SQ/c1R8jQy2TqZZwsjLkdD7JWh/rmDQzZ2bBuHarFi1FfCUN2c0PnVgkqVQJX1wc/tWpBDVHjSCiAqSl4eqLrP4CIb79Ga5AxVotOhEJ+3rY5Aaxr1yAg4MEOtRq+/RZq1eKHt97iSmIGv/b1fy46z4XGJHPzXgps24bByyt/MKMcSBoNlv2H5dmmT4gn89wZmvbsWu7zeVhylpbZQWF8dfwaqVW80W/dWvzfq05OGL75FsaNY9/1u3h+v5ct/QKo71r+mVjXkzIAUAUEYJg/P/+AU6dQT3gXOSYWSa1Gd/6CUsPy55+VjsKCIAjPOBHAEoSyYG2Np605yedCSK5fD8PJU49PQReeSXoTDRk2JbxTHdgHXVI86w8dpW99H+pWdsqz24KSBbHUKonvO/sq7bzXrHlQp6Wo9u0DoF0htVx+PH1DefBI0K1UZWYi1a6NfO8eGY0asd3UVLkDbGKi/FSrBi1aoGvdGq5fh0GDMAAGYLi9RPT5m9w6oSU6NYuElHQMsqx84Vi+XPl3FhBQNsE34fml1aJZtpQRfpUxVovkc6Fg9mZGmJsak37tWsED3ngD2dub3X0CeffvUH7u1ah8J1gCublAFRS8KoycmgKyjL1VxXR2TMnIYFfoFc5F3UXWaDAMGqQsrbSzK9kBx45VAkBz53Lrgw9o8NM+DB/3QirH30XpWh1fHQ2H99/H8PXX+QNxp0+jfqkDdczVdPNxxK6uI7amRkzbd4mE/ftFAEsQhOeCCGAJQllQq7mZmK48bFIfRG2B54+ZGToHKHkYxxGmfwyLF/NrcDBkpfJKDdc8H2bNjErWwrxNFUf61KnM5smT0AUG5hYZfqKoKDTTPqChpyPOFib5dsuyzJsNPfnvrvNl+3fWwQH5woWijfX2huPHYdo0jA/sZ1HPhnkCEHqDTFx6FrV+2EvS0KHKxtu3lQwtQbgvPh5dTCwtW/hX9EyEZ5gkSVSxs+RiYQEsgE6d0M+Zyy9jxvBaXQ9equpU+NgKlqHVcy42WXnyjAX11e6eaKysCbsdTUD18q0rlp6Zxa/BJ0jUGzD07w/ffw8ODk9/YFNTOHEi9+lfYdG8UtPt6Y9bRPuu3UWr1cMbbxSYRaYaM5qqRnBoWAtsTJXswYUnr5GQniWCV4IgPDdEAEsQysKIEWjS09ANG46+Z89n7oOjUAQPd997GsOHw4wZ/DpjBubGGha93KBUMkC+7liHzQv2omreHFxdMPznv9Cly4MBej0cPQrbtikfZDt1Qj3+LRySE9g4smW+4+kMBuovOsCFmCQ0vnXQeXk99RyfSkwMzJ6t/NtxdISEBLK1OuYdjWBSy+q5w9QqCVdLU/YMbUHA4v0AaBo2QDdsOMycKVp2CwoXFzS+ddgREcNr9TwqejbCM6yuvRlhv21E368fdOhQ8KDXX0e1YgWvbwvhwpttMDd6tj5OG2SZwZv+4bcLt9Hp9KidndA7O1fonBJmTiL9zw25z63efB+Nb30uR0Xlbvv2j63sCVE6FA5u25Ih7VsBsHpfEGsOHM5zPJUkYWVmRvVKrvRqFkAjH+8izUNvMPDF71tIzMxC/fb7GBr6lU7w6r4FC+D33wE4cP1uuQawzsUmI2k0yDYFL100tO9A7MKLmGiUzyCn7yTynz0XYfRopXFKWTp2TOlG7OamLPs3yX8TTRAEoShEHr0glIUOHdBt/E0pgi2CV/9ukgSffAKrVrHy/B1a/hLEN8FXCI68R6ZOX+LDettZsKpXQ/rL8TS+eBqpe3eYP19p/z50KGonJ2jVCtv5c7Ce8zW0bYvF1Qj2DG6Kp03+orlLTt/gQkwSALqXOpZ4Xk80YwZGNapj5OGOxtEBtZ0dTJ+er+GBNHQozJ2LzU8L4MMP4dQpACbvPs/ea3EA7L4ai+O3O3CYs5NR20PpWdOVppXtMMTFwddfQ1hY2V2H8NzRBfZhc/hdtPrnpwC3UP7mdPGjpaUKOnaESZMgOzv/IEnCsGQJkSmZzNh/ufwn+QS/nr/N+rM30c2YCSEh6O9EV2gmuCEjg4zd2/JsS9+yEY1vAy5FRZeo6LlBlklKT+dk+FU+XrWB45fDn/garU7HD1t2cDL8KuYDRqBycS32eZ/IxQXu3oUOHdhy7V7pHx/ou+E40oxNSDM28crao7nbRzWsgqO5MaohQ6CgRgNvvEG6pOaVtUcZu+UMAUsOkFXNB776qkzmmSs6Gpo1g+bNlaWspqZo7O1g4cKyPa8gCC+kZ+uWkSAIwotqyBAMVarwz4cfcvrQcQyZ59Fo1LSu4siSHvWoalf8OiAD/NwZ4OeO3iDzn52hzJswAYA6bnb09nXi5Rp1aVLZDhmZI5HxOFuYUNPRqsBj5amJNXx4iS6xSNzd0UVcRTYYUElgkIGZM1H/vR39gYO53bHkCRNQHTlCUmr+Lo4dVwUzsWk15p24hqFdOwyt2xB/6xahkZFobt5AlSkpGWn1n43W7MIzolcvkmfNIujmPdp7F3/Z1+8Xo8jQKkHn2LQsNl26w/m4FBIztRipJSyM1DhbmOBhY85A3+LX2roQl8JnQUrQtbWnA2/6exV7joWJS8vi/Z1KZkstR0s+av2gJqOZkZo+tcWS2/sqWZmxb2hzvgkOZ9qcOejj4pB/+SX/wBo1MEyfztf/+x8D/SrT0M223Of6sMTMbJaevsHNpAzWX4pG1b07hmnTKnRO92Xu3Y6clvNeLkkgy+hvRyKZmpOSmkZsYjIudkUreP5SfT8mBvYgITWNOZu2cir8GjKw+dgpmtT0KfR116Jj+WLTVm7fTcD2o9lIRsYlrERZBA4OMHYsYf37E5mUjkcBN41KKkun5/eLD7LW/gqL5s2/zvBTzwY4WZiwtldDOq3aD19+CVOn5n1xjRpo353AvtWr2HM5Dvnrb9C//TYYlXEzgtu3AVjTJwB7MyOuJaYzbmsIxMeX7XkFQXghiQCWIAhCeWnVCv2BA0q20dmz6IKDOTTnWxouOcT6wIZ09XEp0WHVKom5XesxyM8dV0tTqtg++mFZonWVx7cFr+VohZmJMRmffQ6NyrAw8euvI7u5oZn4PlJaGubVqpKZnIzeyztvtmKPHhgiImDTJnB2Bk9P8PAAe3vk11/nm+XLUbVtg2Hb9twP3zKU3RcS4fnXqBGSsTEnohJLFMDK0OqJ0aqJTNPzU9AlMrQPKuTpdTKZOgP3MrRcvJtKw2peWBgX70vhHV1W7uMUg5qr2hI2kChAwkPF/DINqtxjW6DFhZJngr6oVJKUu1R56po1yN98U/Ays0mTkNasZuTWs5wc1QpNcbvXlaJ3/w5l9YVo1FW90bVuhzyvgA50FST9r19zH1v0HULaxlUA6K4otRAv344qcgDrPjtLC7oHNORUuFKvLDYpucBxBoPMH0eOs3xfEJoqVXGcuwKj6rVL1F24WDp2BJWKHRGxjG7klbtZlmVmHbzMyIZVcLcu/hJ3E42a+MndsTYxwiDLGM/azKLT16nvas1bjavyUlUnpraszuyPPkJu107JfHrYp5+imzVLydBSl6wOZ7HFKVnTLT3t8bQxJzw+J5j5DDUVEATh+SECWIIgCOXNyAj8/cHfH91rr5E6ZDDd1+ygfVVnhtetTGAttxK1Z2/qXvIlIulaHRlZ2UqwqKx1746ue3fgCQEnZ2elGO2jli6F1q0xvPxy2d85Fl4c588jZ2fj/xSZMmkYsfdadG7wqmlNH/x9qmKsUZOcnsGdhEQu34oizdgWvbFxkY4ZGXePczciyXxoGa1WZUyycQm7oRUgVZue+1in0pBsbEeWVgtyKogAVqGGN/Dkg30XYfVqePfd/AOMjNAv+5mQZs2YdzSC/7Sonn9MGdMZDATdvMeqs7eQ583D8M475T6Hx9HduU3WKWWZm8rJBet3PyD9r43IWZlkBu3FyNmVsNt3aONX/GBwnd2wAAAgAElEQVTGwwsPbS3yZzklpaXz2cbNnLt+E8sho7F+679IJqUXGH4sTcFfsTJ0ej7ef4mvgsNJ/uDlEh3azkx5b1EjET+5O/ZfbmP8trO81bgqADPa1WL3jXv8M6A/urOh8GhNLEkqv+AV5AawnMyVulfV7Cyo5mRDxMaNEBhYfvMQBOGFIAJYgiAIFcnODsOWrbB8OQd+/pm9mw7xhrGGwBquDK3nTqeqzhiVQtH3J9lzVfmASZUqZX6up6ZWw+uvV/QshOfN3r2o1SqO3opn65VoolOziE7NpIWHPf/XvnaR290np2fkPn61ZVPqeLoXOvZGbByr9x/mekwciWlpZGRlY2pshCxDRkG1lXK42NliamTE2oPBRMbdw9Haiu6NG9K7WUCeeSamprHx8DFOhEUQm5SMJEl4OjnQpVF9uvrXzx0bk5DE4h17AbCzsKB9PV/2nT0PhU9BAJwtTOhVw5XNi35C9847Bde0bNIE3nmHDxcuYICfe4myaoojNi2Lo7fiORIZT9DtRE5GJZKZrUVT1RvdmDFleu6SSN+yMbcek1nHHqgsLDFp1Z7MPduR09PAy4eLUdHFPm5CahrbTvyT+7x9Pd98Yw6EXuD8zVs4/rgGk8YtSn4RJXHiBBgMNH/oxtKg305gplECRynZOg7duEvjynaYakoeTLofzHqYkVrF+sBG1F10AEPXLhgWLYa6dUt8jqcWG4u5qXFu52VJkuhcxZ7Ff29/ik7PgiD8W4kAliAIQkVTqWDkSPQjR8LNm2StWcPG5b+wbs1R7CzNGFrHjdfqeRBQyfaxX7JTs3WYG6lRFbNxQEJGNqO3n0PVqROGVq2e9moE4dn02Wfo9QY+2ncxz+Z91+/y6aEwToxpS0ClJ2c9WZk/yOD438oN+FevSm33StTyqEz1Sq5oHspsiLqXwOELeYt8p2fljRp1aliX/q2acychgY9XKUutgi9cZm9ONzaAqPgEluzYi52lBe3q1gHgTnwik5etJv6ROnFXoqK5EhXN2es3mfLqK0+8HuHxxjSqwu+rj8DJk9C4ccGD3nmHrPnzuRiXUmYBLJ3BQNtVRwm+FguAxsUZXYtWML4FNGuGzt8/t4bgsyR96++5j806KxlH5p16krlnOwCG5EQiYqLR6YuWCbgn5Fxup0IAM2Nj+rVqRreABoDSZfC3w8c4EnaV8NtRqO0cyj94BXDkCABWJhoMsszmy3dYd06pBaXyqYYhPII2vwTxYesazOpQp1ROGR6fio+9JaA0evl7UFNGbDnL1YYNkcePhxkzwLYca7UZDDByJJw9i4Plg7+bF+KSWRoSie6NN8tvLoIgvDBEAEsQBOFZ4ukJU6eimzIFQkJIWLWKBatWMv/4Aao62TDC140h9TzwsjXnYlyKcif+VgKH7iRzJSaRGs42bOzTCD9n6yKf8r0d54hNzYS5c5WOW9HRcOfOg5+oKOW/MTHQsiW8+WaFdrQShGLT6ZAS4jFSq1jbNwBXSxNcLExxtjCm6ZKDXLybQuPFBzg8qjUtPAqodfSQRtW8uRQZhVavJ1Or5fCFy7lBKmszMwJbNKZfq2ZIkoSXixOfDH6Vqq7OWJmZEvjptwAYadRodXqszcyY8Eo3JEnibnJK7jkytVr6t25Gv5bN2BNyjoXbdwOw58y53ADWor93E5+ailqlYnLfnjSuUY2MrGx+3LaLoAuXOXjuIu3r+dKkRrWy+BP91+hU1Rk3W0vuLF5ceAArWam/ZF9ANkxp2XftrhK8+uEHePlldB4ez3yX46x/jqOPvA6AZG2DZGxC9uXzqJxdQK0BvQ797ZvoZZnwOzElOofBYCDzoWzG3f+EsnzPQcxe6ob1a+Mwadm+NC6l+D76CIAqc3dib2FCfFoWal9f9LVrY1i5Eq5eBV9f7qY/fRrkpx1q8+Hei1T/bjfn3+pAHSfl938rTwcuvNmWuUcjmP7Tj2gP7Ed//AQUcXnzUzt5ElaswEijxienDmeWTs+AP/7BULVq2Xc/FAThhSQCWIIgCM8iSYIGDaBBA3RffAH79nF15Upm/LaRj/dfUgquZ2WDSoWmTm10r3SBhg0Jnz8P/yUHmdfZlzf9vYq0LOpmahbo9eDnB4+0M1erVThameNmaYKTiZr9O3eg/7+ZGEa9Du+/D9XEl2PhObB6NbJWx/5RbWjukTf4ev6tDkzZfYGvgq/Qctkhkqf2eGwNOicba+a/OYJV+4M4HX4tz1LA5IwM5cuzsTE9m/pjZ2nB7jPnWL7nAHfiE3PHaXX63PGJaenYWebvQuruYI+5qQkdG9TNDWDFJiYBkK3V5Rav1hsMfP7rnwXO9VT4VRHAekpqlcSYepWZuXgxNG8OI0bkDxwlJABgb1b6Nfmy9QZ2RsTy6aHLyjLBceOe+cDVfQ8Xb5eTk4gb0iP/IFlGbWnFpiMnMS7CUrqX6vsxoVc3Lt+K4tP1m0hMS2ND0FEuR93h4q07ZGdnY96lF3afVXAR+44dYbfy7zY+LQtNrZroQkIe1J6qUwdN0yZkZRV/+eSjprWuibWJEe9sP4vvgr3I03vn7jNWq5jcsjodqzrRZOlBJQvr00+f+pxFklPXb/ugZjSurGR+fbzvEufjUpC37gGzsl1uKwjCi0kEsARBEJ51arXyYbhjR/Q//gh//knGjRtK7ZXGjdFZWeUO1Q8fjn7iRMYtXMiOq3Es7dngiVkBe4c042pCOgdu3EUlgZulKW5WprhZmuJgbpxnSWJMaiYLTlxj/vJlJP34I/JXX8HEiWV26YLw1NavRxo1iiH1PGnmnn+JoCRJfNnJl6RMLYtOX6fytzueWFzZ09mRaf17o9XpCL8TQ+j1m2w7eYa4nE5oB89dpGdTf77YuJnjYRGPPVa2Nn8VmDa+tfh20zZ8Krni6fSgg2i2ThmbnJGBPqeu0OM8XK9LKLmRDT2ZefAyjBoFFhbQv3/eAfHxANiYlk4AS6s3sPdaHOvP32ZjWAwp6TkBkK+/eW6CV4aMDDJ2byvSWFmj4dD5izSrVbQi+GqVijqe7rz9cmdmrVe6CYZcvYFpm07YduiK2UvdSjzvUrNrl7KELjwcLCzQqdX5CqfLJqZkpT3533FRWBk/+Ep3IzE9XzfiRm62fNKmJh/Pno08cGD51MRq2hS1lRWHI+/xUlUn4tKy+OpIOPL06dCwYdmfXxCEF5IIYAmCIDxPzM1h0KDC95uZwY8/QufO/DVyJH6LDrK+dwNaV3Es9CWSJFHN3oJq9vmzQB7lYmnKjPa1mdqqBoN+O8HWn5ehEwEs4Vn1559IgwczxM+dX3o1fGxG4k89G2CklpjaqsZjD5n1ULdAI42G2h6Vqe1RGb8qHkxathpQAkypGZm5wSsjtRqtXk8dj8p89fprDPxiHikZmYWewying9meM+cY0bFdvv3WZmaoVSr0BgNmxsasnfwuRgVkr8iPZFQKJeNla8GwBlVYceYGqmHDkNevR+7fH/r0UTqh5mSinopKpFO1kndyPXzzHitCIll/OZqktEw01aqimzgJBgxA5+dXWpdTLjL3bkdOU+qzGdX0xXlN3mCWrNcT/XILDLHRGBITUNvYcS0mrljnaF67BnW9PAm9flPZoFFj0fPVUpl/qVCpoEbh7ycGU1MydKXTBbSuizV2FqYkpGXyxeErLOhRP9+YKS2r8+nhcDJ37iyfAJZGg75TJxbu3s7le6n0q1MJKzMTknWidLsgCCVX9q2tBEEQhPIXGIg+NJRY3/q0XXGYGfsvoStCxkZRmRmp6V7dFf3FS5CeXmrHFYRSdfo0ssFADXtzVEVIXPm+e/0nFuHeE3KOj1dtYG/IeWITk9Dp9SSmprE/9ELumCpOjqhVKh49Ze/mjVm179Bjg1f3fTywD78FH2fzsZP59hkbafD38QaUboZz/9xGTIIyl7ikZHafCeW/S1dx7kbkky9aKJLlvRqSOKUHn7f2of7x/TBwIKper0BWFjRsiMbbi/Xnb5f4+F8evkKrnw+x7K6epLcnwOnT6K6Ew//9n7K8+zmTvmVj7mPzXv3z7ZfUasxf7pv7XOVRhZiExHzjnmR05/a5/84y9+9Eey282MeoKHKdOhyLSSmVQHMjN1tOj24NwOk7Bf85GqlVNHCzVToklpdx47iTnMGa0FsErj9Oy0o2qDesh7Nn4ZdfYN++8puLIAgvBJGBJQiC8KLy8EB/4AB8+ikzZsxg5/V7fNiyGu28HDE3evq3fwczI2S9XilgbG7+5BcIQnn75BOQJD6eMYMrCeks7dkAI/XT3buTZTgVfi23BtWjTDQa+rVuzq2797j/tVSb02Htsw2bsLUwx8LUhLTMrMeep2mt6kzq25O6VTxYvGNvvv1vdutIxJ0Y7qWksj/0Qp4A2sNzLanIpHRWhETSyM2WbtVdSn6gF4iNqRGTW1Zncsvq7AiPoeeGXRDYG8Mfm9ANHMSv8+bwo95QpL9jeoNMaGwSwZHx7Loax6ZLd+Cjj9DNnPncLBN8HMcf1zxxjM34ydiMnwyAnJlJXM+WtKvixnu9uucZN6R9K4a0L7hDrk8lV7Z8MoXX5ixE2+c1jLx9nn7y5aV9e+7MncvcoxG83/zp5+2a0+nvWmLhN5Waulpx6vgxtIWOKGUdO8K2bdC9O009HRkb4MX2dceg/oMMMal6deQBA2DSJLAuegMaQRD+nUQASxAE4UWmVsPHHyN36MDxkSPoseYoGo2aNlUc6VbVkS7VnPFzts5dWqXVG4jPyMbZwuSJBeCP3U7AqHIltK6u5XElglB8kqQEsZydWTl+PC3c7YhNy2JwXffcdvPF5e/jTV0vT87fiCQ2KZnk9Az0ej12lhbU8XTHxNiI9xYtz/MaM2NjDLJMHY/KvNHtJaav+vWJASwgt+NgQVztbPlu7Eh+Cz7OibBwohOSkAA7K0s8nRxpXL0qPm4lDzxN3n2ededu42hlxh+vBtDK8/HdGf9tuvi4sGVAU15evxv6BGL4ZAbJn3/O7qtxBQb8krO0HL2VQHDkPQ7dSuTIrQQysrKRNGpUDRrA4pkwenQFXMmzQTI1xWz4WPbM+4xBbVriYmdTrNd7OTlwMeJyGc2ujLRpA8DEnecY2dATW9MH9SqTs7ScjUnG2kRDPZei/VmY5iwjjk3LIjIpHQ+b/DeWAirZoT12ChITwda2FC6iCNq3B5WK8IQ03tx+Lt9u+coVmDUL6dQp5G1Fq5smCMK/lwhgCYIg/Bu0aoUu7Apcvoxuxw72b9/G/v0HmLTrfJ5hKknCIMv81r8JfWpXeuwhD91OQltRLcoFoThOKsvwxm0NASA6NavAGjFF4WpnS/t6vnm2aXV63lqwlAPnLuZuc3e0Z9bQATjZ5M8o+Pn9cfm21fP2ZOsnUwo8Z2HbbSzMGdWpHaM6tXvsnF3sbAo9RmHG+nuz7txt7qZk0PrnQ0xpWZ2uPs40d7fHpAjd4v4NOldz5q/+jem5YRcyEqpq1Vh//laeAJYsy0zedZ5vj0ZgkGU0drboW7ZEHt0KWrZEDghAL7qxAWDRdwjpy77n16CjvN2zS7Fe6+loz4XnLYBlawutW8GhIJb9c5OJzX1IytTSbPlhLkUrywBruNhyeWy7Yh86MVOLRwFxr4BKOUGr06ehQ4enmHwxmJrC4cPcW7sW6U4UDB+Bevhw9Pfu5Rkm168POh1oxNdTQRAKJ94hBEEQ/i0kCWrVglq1MEyYABkZcOiQUvR90yZwdMRgbAxRUQRHxj82gJWtN3AqKh5atCjHCxCEEsr5olTb0YpZHWrTu5ZbiQ+VpdWy7+yDwG9aZhbZOh1R8QkAtKxTk2Y1fZAk6ZmuQfVwMfqCtPVy5JXaldh8MQqALw5f4YvDVzg5ph3+lcopc+M50MXHhc39G/PKhp1ovbzZeDmGQeExpGbrSMnWsedaHKvO3oKZM6F/f3Q1arwQSwTLgsrMHPNhY9n549cMbNMcxwKCv4W5FnsXybVyGc6ujBw8BEOGMG/HX7zXrBpJWVoleDV5Mhw6iPn1S+yKiMXG1IgmlfN3US1M3UKytmo45GSenjxZfgEsgGbNoFmz3GXV+qAgpGHDkN3d4Q+lkySzZ0PNmjBiRPnNSxCE544IYAmCIPxbmZlB587Kz33LlsHrr7P7ahzax9Ry+edOIlqtvvwDWAYD/PADJCXBlClKBzBBeJK//wbg4t0UGleyRVXCAIIFWpBTIVt5ficplR8PhWCkUjGjR4sHy261xS9GXREsnlAJ55uOddgWFoNOr8dIo2Z4XXdqOpZs6eWLrGtOEKvnumOk6Q10XX0kd5/Kwlx5Xx05sgJn+Pyw6DeU9F8WsPHwccZ271ik19xNSubstRvYDh1fxrMrIy1bcmvdOnQGGTvTnN9pDRuiDgrizJ1EOq8KBqBPncrM7+JH5YcaTYTGJNFi2SEi3+9Mpu7JjVpWhuQE1a9fL+2rKJ5atZCPH1cK9e3bB2PGwNWryr+TkSPR1KyBbvcecHev2HkKgvDMEQEsQRAE4YFRo8DMjLPDhtJrw3E2vhpQYMH34Mh4VCYmGOqXbBlWicTEoBo+DMOOnahUKqTt29DvPwAbNyJNfB/50mWwKV7dFOFfIjAQ1q8HoNvqI8zqUJsD1+8xo30trE2KFgQ1M1Ljgh5QCrLfTc/i40NKPZfJLX2oZvzkmlbPIjOjwpcD+thbsqxnfe6mZzO6URWsivhn9W/U1ceFaS2rM+v4dQyXLoOVFVhaKlmtJXH1KuzdC23bQvXqpTvZZ5jKwhKzIaPZvmQ+/Vs3w97qyQHTfaEXUBkZYdahWznMsAycPUt1ZxuM1Sr0hpwcpeRk9L//Drdvg50dBAfz53vvsXPhfi6NbZcbxLqWmE5qto6ea48RdPPeY06i+Cc6UbnxM3t2WV7R48XGKssKra2VbMQOHeDiRZg2DdX8+TibqCDmNnED+qM/HFxx8xQE4ZkkAliCIAhCXoMGIdvbsyOwNx1WHWX7wCbYmeX9EhZ8KwEpwB9K+uWsuHbtQj1kCEZJCbjamnMjOQNVQgJkZ8PgwcqyhG7dIFh82BUKsG4dvPYa9OzJ+bgUAtcfB2BUQ89Cl9o86uEltbIso5r5p3LovgEM8CvfLIE9V+OYuuc8S3o2pL5r2QZth9b3LNPjvwiSs7Q0+mk/EQlpygZPz5IvEzx7Funzz2HDBmRDTkbNwYPQunXpTPY5YDlwBOkrfuL34OOM7vLkZW57Qi9i2r4rKkurcphd6ZMiI7mVmMahG3cJjU1GUqmQO3QAFxflB8DbG32XLqR7eLAiJJIPWtcAoGcNpYnK/eBVPVcbdr9WeGZ0eEI6UqdOyBXY7U/drSuEh6N/d4JS4N3aGgIC4OuvMTRvTnS/fvjYaYg5dhzS0sDCosLmKgjCs+fpekkLgiAIL6YuXTDs28/JZB0tVgRzOzkjz+5DUUnom5fR8sG4OLh+HVVgIOqWLZS7s1260NZaxbcdfbmemI48aTK6VatR9e//4HVHjqCpXAkGDoTly5WlCYJw38svw/HjUOdBZ7+Hl+IUVUJGNqqZf+JsYcw3nf3KPXgFoFFJnIxKLFLGhVD2Vp2NzA1eScZGSsDpcXQ6+P13+OorZSn066/DK6+gDvCH+vVx27GF+V382Da4uTLe6vkMzJSUysoG80Gj2HIqhKS09CeOj0tKRlPL94njnlXyxImkZWYTlZLJ50evQb9+4OOTf6CjI4bAQJadu83pO4kkZWqRJInq9kqAp6GrDWfeaIeThQkGWUZnyLuk8NiteI7eSUIu6NhlQaVSamw+QlKpcJG1mH75Bbz0EtKrrz7Y2bcvRn6+hMenIev18M8/5TNXQRCeGyKAJQiCIBSsaVP027ZxKTqRpksO5NlV1dYMzW8bITW1dM+5YQMqryrg7Y1h0yYCE2/QK+oiczr7smtIM0Y08EStkuCLLyAgAI9jQaztG0DQyNYs6dmA96pY0OjwbqUI7K5deY+t1+cPasky3Lmj1AO5eFH5sHzkiLLcLCKidK9NqHiNG8Mvv+Q+dfhyG1k6fbEOkZqtA+CzDnWY2Lycvgg+oq2XI/L03oxvUrVCzi/kNS7Am/jJ3Umc0oO27nZInTrCmjXKTlmGo0dh2jRl28qVaGrWgL59sZz+PzyWLcR/12Z6XD7Ba7o4VvRuxPXxHXi7SVUiEtKQjDR5gq7/FhaDX0cvqdhx+uwTx1pbWmBIiC+HWZWRdetwtrEgXavnVnwK8rRphY8dMYLw2CT8F+1n0q5zyLLMz70aAfBPdFLusN7rjmH0f5sBuJaQxsDfTtJs6UESq1SFt94q08sB4Ntvlb/7BZxL7+RMXWdrhvrlZLUmJ8Pu3bn7tUuXKbXjAC5cKPu5CoLwXBFLCAVBEITCeXsDcCc1b32fFT3rU2/RAXTvvAM//1w65zpzBmnIYF6t6cZrdSuTptUzwLfyg8LYKPV67j+b2sKHme1r5xaab+npACjLu2r9dICwt99GVbkS6uho5Lg4dPEJaLy90H08HYYMUVp1f/CBEgwriKcn3LhROtcmPDvuB7HmzIGQEIIj42nv7VTkl3vYmHPnP11xtTQtuzkKzxVJknKXWe8Y3Iwxf51hxZAhsHcvmmNH0Z07j7W5Ccnpyvto11puzHyjHQ3dHt/N8beLUchanRJcL896g88Ata0dJi3acuTKefq3blbouGytDisTE1Lu3S3H2ZUu9Yb1vFLNkdnHrqHq3g1DvXqFD37pJeX31+rVLD59g/Px6czr9CDAqZr5J92ruxCdkgnAhO1nWXD6Bjg4wLJl6IcNA3Xhde9KzaJFhe6SLS3ZERGLpNGgcnbCEBuH9H8zkTvmFO1v3BhD3F2lBlyzwv/fC4Lw7yQysARBEITCubrC+PEYZBlpxiZmB4UhyzI+9pb80MVPCQT8+mupnEozaiS1naxZGdiInjXdGOjnnid4BXA+NhldTpHbsIT0ArskSpLEZ22q006XRL+4cMZZa/mkngsLu9ejh0kWjBiBpkZ1pB498gSvFvds8OAg774L27crXQ+FF8/w4XD6NBonR6btu8iB63eRi7HkVASvhMIYq1X80qsh09vWxHTlCnroE9g+pDnx/+nKrfe7cGn8S/w1oOkTg1fpWh37r+cEZQ4dKoeZP3tM2nQiLPI2CalpBe6/HhPHoG9+IOJ2FGQ+eanhs0qfnMKSf24QFpOI4d0Jjx+sVsOqVbB4MQwbxnFTe5osOUh7L8fcIduuxHA6Jxvr+3PR6D76H7qInA5/5RG8+vpruHwZANXAgfn3d+2KVL8+8rx5GGLjAJBHjso7xswMevRQAm+CIAgPERlYgiAIwuM9VED1gz0X+Cc6mZ97NWBEA0+2RsSyacxo9M2agYdH/tfKMvz9N2RlgZeXkkVQSHFjOTyCoU08MC4gKHXfRwcuo/byQj91Kr+PHcuZ6Oo0cM3/RbBvncr0rVM53/Y3A7w5E53IrKBw4i6epFdnP3rWcKW6g9LpytnChMD1xzF8/z3Mn4+6QX30C36E5s2f8IckPHdUKnQrVnJy4vu0Wx5E91qV2DqgSUXPSngBSJLEJ+1qM71trTxB+OLUXIu5n/W6fTt07VraU3wumLZWCrifCIugc6P8WUkr9gVhcHDCqnsfUhbPI37KW9h/saC8p1m6itoYZfRoGD0anU4Hc+awb/JkXqvrzqrQWw/GtGiBISio5A0FSuKnn2DSJOXxH39g6N07/5hRo5AzMmD8eAAkjRp5wIC8Y6ZMQRUWhmHBAnBzK+NJC4LwPBEZWIIgCMLjTZ6MNHiw8rh5czZevUvL5cFEpWSyuEd9nCQ9qiFDlJpR8Q/VIQkLgwYNoHt3CAyEhg3R1K8HCxdCSkrec4SGIqsk7qZnP3YqPjZmEBerZIYBF+OKX4OrgastG18N4MCwFkxs7pMbvAJ4paYbBlkGg4EVvRvhGxcJLVrAH38U+zzCc6BrV3TnlRor2y5FcfTW81dHJ+jmPZy+2sbea3EVPRXhEY9mkBbHzaScxhk573X/Rmo7B0zrNuRoWHi+fTfj7nLsUhiyjV3utozdW0ndsLw8p1g6evWiplNOV8CFC5XsqqLSaKBuXQD+17YWL1d3ebBv27byDV7t2AFjxyqPY2KgoODVfY0bI2k01HCwRNbp4e4jS0Bv3MCwaRPq2rXz1McSBEEQASxBEATh8RwckFevVj6QBgdjOBzMOdmERksPYaRWsbZXA+SgIKVrkoMDBAYide8ONWvCWaUAr525Ce7WZnTKuov01lto/HwhKkrpxjV7Nip/f3xMJd7w93rsVD5oXQML2QC9e+PpYEVbr9JfXuCQU8umb51KnB7VGhsLM1FI9kUmSXDqFCqvKvx48lpFz6bYlpy+zt30bF5acRhpxiYmbD9brOWQwrNHlmU+ORSGpqr3v7KA+8OM23XhdMR1UjMyc7f99Pdexv+o1F7U2NmjdlEydLycnUj+6hMyg/dXwExLSJbRHAmmV3UX/NzssNm6Gd54Q/l9W1QHD2Jhasya0Ei2X41DXdcPrlwBG5uym/ejDhx4kCm4ezc4Oz9+fJMmyAsWEHYvFbWDA1jnBPDOnEHdqiXSwQM4WJlhqc2ErVvLdu6CIDxXRABLEARBKJr7H0gbNkS3dBmxyelYfb6FJpXt+KVXQ+q5WONmaYrH4f34nD7C+82q5b40oVlLbqdnY2tixKKX62OXeA91q1ao6vohTZvGfxt7ETK6DTUeyoYqiL2ZMX8PbMK2wc25+lYHKlkVfUnOk8iyzOk7idzLULLALD7bQnDkPQyyAdW8eWjq+sHKlaIu1ouoUSMM7h6sCIlkw/nbFT2bYvmltz9xk7rR3N0egPnHr9Lv1xPcSHx+awL92/15+Q77r8aimze/6EvKXlBmnV/GYGzCxJ/XcCc+kdSMTLYcP4VZv6G4bAnGfv5ydJE3cLCzY/7YEfj7VCVxys5WVbgAACAASURBVDi0EWEVPfWiuXEDXWwcnjZmhL7Rlstj2ynbi5N1dOcOaZnZzAwKRz/tQ/QnTyk3lMrLmjXQrp3yePFipdB8UYwcCYMGoU9JVrK4Fy6Ehg3RHw5mgIOa8Q09SUrPguDg/B2EBUH41xIBLEEQBKH4atXKfWjx2RZGbwkhQQ+v1ffkxri2HBjSjGWht9F4uMOJE7BnD/KatawNjWTMX2eY1aYGhuvXMFy6zP9a1+CLTr6YaopWXLa5hz3dqrugVpVsaYRBlvNkqJyNScJ/0T5UM//Ef9H+3O0mGhXu1mZ81MKHNzwt6KqNh2HDUDdvDsePl+jcwjPszBmA5y6ABeBobkLw620wfNyL3/s34beLUTRZcqCipyWUQKZOz4TdF1F16awUsf6X07i547D8T+KMzZiwdCUfrNyALElYDR+Hxq0yslZL6vIfkQx61CoVU/v2xNHMlNQl8yt66kVz7BgAb28/y8moBFwsTfF1s4OdO4t+jEWL4MIF5IgImDmz/IOeQ4Yo//3jD6U2V1FcuIC6eXOk9esYWssVw9atMG4cNZysGdHIi7V9GzO9XS1GNfBUft+KLGhBEHKIIu6CIAhC8Xl5KXWs/vc/VL9tRDtpMpGnTvHV8uWsv3SH7l4OGKtVpPj6gr+/8pp+/cDMDFtZx5hGVWjgakPTJQc4eSexzKcryzLT91/i/w5ezt1mrFaRrc+bTeXnbM2cLn60reKY2+Fwcsvqufv3X49j/M4LXGjWDNatg/79y3zuQjmJiEDVrx9/BAWxNvQWg+q6V/SMik2SJAJrVwIgNi0LacamfGPaVHHgwIjW5T01oYjmHIkgMikdee688q1f9Awz8vbBYcVfJE57h6iUJBxmfpe7bFDWKhmzd5OSATAzMaZrg7qsPLATQ1oqKovHZ/VWuAYN4L//Rb13D702niJkdGu6eztw+e/t6GS5aH8HjIygdu2yn2thrl4FR0ewsira+KQkVM2aok9J5b2m1Wjlac/Ks5G4W5txcVx7VDnXrJIkvursx7IzNyE0FHx9y/AiBEF4XogMLEEQBKFkLC1hzhwM167DO+/A0qWoO3XkpoUdW67d+3/27ju8qbJ94Pj3JOneiwJtaSl7Q9mjbJApQ7YgCCIviij+fFUUQUXE/aqIskSRDbJk71H2hrJnW0r3nmmTnPP740ChtECh6UCez3XlIj3jOXdKmyZ3nue+6VXJA3nLVti16945X3xBkt7AsnO3aeLlwvk32jOzW97uUuYUm56F9/+25kpeATnJq0blnQke2x5lSm+Cx7ano3+ZnOTVg9r6eXD2tdYMquWFZuhQOHCgSGMXilGZMsg7d0K1asw8doP0bGNJR/TU7CwePptxeL0KxRiJ8CQiUjP5/MBVlHFv5ZrlKoDGyRnXmQtx++sfrBo0vrfd1g4LLx8aVbm3ZL1tnZrIWVnod28tiVCfTLVq8O23mNauI1qyZODqk7Sv6IExJhbOnSvp6AqmYsWCJ68Ali9HTlUbsPx45DrD1p4CIFZvyGlGoSgK26/HYGuhxcPJ7tn5XgiCUOTEDCxBEAShcLTanH9N27bDunWE9+7NvIRUpJdfRmna9N6xEyYgnTzJqyuXU83dnoByzkUamsEk4/fzdjLuJCOyJr2I5Z3kVJbRhFUBly3eT6uRWNA7gGVf/AMTJ8K+fWaNWShBOh1y714c/OZbvH7ewdsNfRnXxB8PO6uSjuyJpBtMAChTHtEFTCh1PthxEaO9I0yZUtKhPJKi15OxqfR0ZtVWqsa5o/vZdeZcTufH8u5uxC2aA5r8P4xQ9Hqwsi7OMB/NxwfTypXs7tSJuu722FpZkN2pI8Zu3aFrV+jVq/TVQ8vMhNGjIT0dPvoIGjd+/DmAtGQJCqBp3x7500/Rf/01vPYahpGvsuVaDB39y7DuciR9lh+lorMtCWl6tduiIAgCYgaWIAiCYG4vvqjWq4iIQFm0SJ2pdZckocydi7F2HXqsOE7inYLpRWXDlaic5NXtd1/ISV4BT5W8uismPUu9ExSkJrFEgdl/jy+no1y7RvLI0XxxLJTKv+5iy7Un6AhWhKLT9Gy7HsOY9afRfLaW/WHxouPgv8Th8AQWnQ3DOH06OBdtYr8wTFY6Mp2sybCi1NxMVaug1+vJSojAMTsRUqKIS07B5OT00HMynawxWZWypEj79ihffcWPR67z32b+jK/oQJVNa2DAADQ9ekBGKWvMMH06LF4Ma9eibd8ODh8u0GnK+PFoKldC/uEHCAxE2bABWrdGTkwioJzaOfGLgzcAuJmUgalVIEyaVGQPQxCEZ0spe+YWBEEQnnmS9Oh6HDY2mOb9TmRAACcik+jo/5h224XwxqazAOwd0cqsHQtP3anb1blSGbZ99RXSrVso8+eXvk/Ihafj5wc//4w8eTJprwyj25KtTG1bnYmBVXPqsxSH4Ohklp67zfGoZE7GpBGfkp5rf+AfQbjYW7O2XyNa+7oXW1yCecmKwptbz6OtVxfTyJElHc7D2dhgdINSt7jWzQF+lwgOCaOqmz17QuMx2tggjxqB6XFL22zM93fBLN57D2nDBvbdusSuYS34Hth5I5YeK/Zg6NQJ06ZN4ORU0lHCtWtovv4aGfiqQ00WnrvN+U6dIDIy94dW+enbF7lv39zbLl0CYPuNWDpU9CA1Q49ka4OSkQmJiWIGliAIOcSzgSAIglD89HoAytoX7RKOX3vU48TtRLO/ue9S2ZMz/2lHXU8nlp8LZ+jyZZiCg1F8fcFgQDIakAxGJEM2ktEIBgPGho3U2Vr+/maNRShC7u7IGzbCp58yaepUjkQms7BXA5ysLYrskkZZZt2lSH46HkrQzRh0bq6YmrdAGVRfLfhcrx5kZcGZM6AoJM+bS5s/1Y6Df/RqwIj6vkUWm1A0Fp65xcnweFiy5t6S7NLowaRDKaJdsZy9W7exNywBXSV/5N9mQceOJR2WqqDF2EGdpdyxI8e/OoqiKEiSRAd/D3YPbU7npUfIaNcW0/Yd4OZWtDE/iqKgeeMNyttbcfk/nbG10PHhzjtdAh0cYMECtTPhk/wsN20KX33Fwmlf8OfpLfe2T5oEvcVSaEEQ7pEUMfdcKEInT56kYcOGsGjRvTa7giAIq1ZBv37E/bcbbrbP/qyloNA4vj10DRTQaSQstBp0Gkm9SRKSJLH2WiwJGVkow4apL8orVXr8wELpsX492peH4GutYX3/RtT0cCzwqSlZBm6n6PF1tsHWIv/PDmPSs5h3MoQZJ8OISkpH26I5pvFvQ58+j57Zp9fnmkVy8c321Ji5i6ZeLhx+rU2BYxRKRmqWAf9fdxPfpQfK8uUlHc6zy2SCs2ehSpXHzwAqTleuIAUEoHN2xlS1KnK1amqMVapAQAB4eeU9Z9Mm6N6dG+M7UdHFLmfz6agk2i8+QoqPL6bde8DTs/geR04Qp5G6dkWJiuKfQU3pWU3tBjn/VCij/jmVc5iuahWMv8yETp2ebPzYWDU5f/e8zEywLkW1yoTSafFiGDqUEydOEBAQUNLRCEVMzMASBEEQil9EBBY6La42RTeTpTgF+roT+JhZXj8bjMw5EcK01SuIX7gQZehQ+OorKFu2mKIUCsVgwDTlU0J++IH6c/YyNsCXJl4ueQ67Ep/GgbB4LsenEZtpIMtoyrXf3kpHFRc7Olb0oJq7PbdT9Gy7Ecvh24nIGg1Ky5bQqRMmPz8wGmHlyryxyDIcPQqHDqkt7HU69Vig/4pj+DnZ0qVSGRafvQVAapaRlCwDXo55l0vZWGjpW6N84b8/wlOZFnSFhGwZ5dtvSzqUZ5tWCw0alHQUeXl4QHYW9ZV0KkRd5sKlM9yMT0WfbUBjZYW8dSu0eSDRfOcN+InIpFwJrPplnTk0vAXNFhwkacoUmDWrOB+JmiRcsgQlKorBtb1zklcAIxv40rdGORacvsW0A9eIvXJV/fD6SRNYHh7qzLm9e9XZyiJ5JQjCA0QCSxAEQSh+ERF4ONrmdIx6Htha6HinWWXGNKzInBMhfLpqBamXL2MKChL1PZ4FmZnoLKzRjH0b08ol/Hz0DN6ujjTw8qBWOTfCE1PZeyOCW/HJ6nKhh0xwT8sycioqmVNRyTmHaZ2doWsPLBo3RbK984Y1Ii7f85XUFAx/zUcJDcl3/7nYVAA+23eZqmVc6Fjdl83nQ7gZn4yDtSUDAqrh66rOHrPDgCemfMcRit61hDS+P3IDedInUKFCSYcjFAUXF6ROncg6dZgFvQOws9ShKAq3U/UMW3eKoO7dMO3cpS6hu6tsWXRlPTkZmUy/mrlnaFVzd+CtgAp8uWghpm+/VZfsFaWsLPj2WzS7diEdO4opLZ0Kbg7M6lEvz6Erz0fwztZgaN0aPvssb2LuSbRuXYigBUH4NxOvmAVBEITiFxmJm7Uup8bH88TGQsvbzSrRqLwzrf4IAgsLpEGDUJYsKXidFKFEaLOM2OgV6DcCQ/VTRJ88yvpzl1kffB0AXdnyYJEJBrW7ps6vEtbtu6LzqgCShJyUgPHmNbJOHcWmSy/kmCgkRycsqtRA0tzpkJn18OsrJhOp8+agRIYDoHF2wabzi+gqVQWtjrQ5/0OTEIfhzmysKzGJXIlJzDk/VZ/Npkvh9G7WEFlR8NICIoFVIlKyDAxYfVKdgfnf/5Z0OEIRkv/7Pue6daXevCBW9mlAg3LOeDvasGFgE1otOEhw//6YwsJynWNq1JhD54/mO96QOt5M3XdZnYHZuXPRBv/FF2inf0n3yp40a+JLM28Xmnq75FoKnZpl4I/TYRy9rT7XaNLTkdu2Ldq4BEF4bokEliAIglD8vL0Jjkik+/JjbBrUpKSjKREtK7jxVhN/Zhy9gbJsGUydCpUrl3RYwmNI1tbYdusD3dWC1qa4GPR7t6Pzq0T6mmUYN68BwKJWPTx+X4Vk8fhlslnHDpK25Heyg08hpySjcXDEonZ9HF5+DasmLXOOS1+7DNOd5JVk54DHoo3oyt2boWHdtCVpC2ZhqUDGptU4f/gFWh9ftO5l0Ng7oj8SROTEcfy2aQde7m6MaVbdnN8aoYDSs410WXqEs2lGTLvXg61tSYckFKW2bZFPnSZkQH+azA/i2w41eLtpJewsdVR0tOJsaBzMmQOjRuUUPld69WLvxo2ci0mhdpnc9fZsLYqp0P+ZM0hfTWdSqyp82vbhnYU3XY3m7S3BaMp4wMCByF26FE98giA8lzQlHYAgCILwHJo6FdzcuJGUUdKRlKifutThzH/aoZEk2LOnpMMRnoLWvQx2L72MZYMm6IN25my3Hzq6QMmrtGV/EDd2CPp9O5AT48FkRE5KIGv/LuLeeJm05X/mHKvfsy3nvm2XXrmSVwC68j44T5yG80fTKL//IrY9XsKqXiN0XhXQODlj07E79sPHAnA7Lr6Qj1x4GnqjiV4rjnEkNh3Tlq2ls26TYH7VqmE6egzjm+OYsPUcM47eAGBG17oMruIOY8agrVcXduxQj3/lFbTeXny+73KeoUzyneXJRdmx0mhEO2I41dwd+Ciw2kMPOxeTwtgt5wBQXN1g2TIYMaLo4hIE4bknEliCIAhC8Vu6FOLj+apt1ZKOpERJkkRdTyfqernC7t0lHY5QCHJyIkpaSs7XFlXuzW5KX7OU2w19c92Sf/4KU3QkyT9+eacQlg7Xb36jXNAFXL/5TX1zqigk/28appgoAIy37y0z0t03vvFWSJ7xY4bnbT0vaTQ4jf8Qu8GvotPpSNVnF8W3QngIg0mm/9/H2R2ehLxxEzRrVtIhCcXJygp+/BHGjuXD3ZcJT8nEy9GGRX0acuS1NjRKjYFOnZBGvgo6HcZPJvP3hQjOxaTkGsakFGEC6/ZtmDcPqVs35LNn+atHPSy1D3+7WN7BGjsrC7CxQZk71/zxCIIgPEAksARBEITik5oK69ahHTeOAbW86V1ddD8D6Ojjgm73rocW/haeAQ/83ylZjyhmdYf+4J6celnWrTtg06EbGls7bDp0w7pVB/UgQ7Z63IPXyH78+A9j3aItRqOR9GzDU48hPBmTrDBs7Uk2Xo9FXrMGRI2g59f06WQ7OTFuS3DOpiZeLhwa0ZJ5PevDnwtg0iQYPhyttxdD153iekJ6zrE5TwPp6ZjNpk3o6tQGb2+k11+nyeVTLOwVQON8Oq3ez9XGks0DG2OrmJC+/krtVCgIglCERAJLEARBKB5HjiC5u0Hv3lSzhhld65R0RKVGGz93jJFRcONGSYciPCWNsyuS3b2OYMYbV3Pu2/UZjNeJUBxefyfXOXLCvU6D2nLeufZpy3vnOU7n7ZuzzXDf+DofP7xOhOI+e1mBYs3ctQUHOzs8Hcxbe8lx+gaWnQt/6P4Mg5FbyRnsD4vnj1Oh6I3Px5vd+Ixs+q48xoqLESjLl0PXriUdklCSnJwwzfiFdRcjmHcyBOVORkqSJEYF+PFNx5owfTr89BPG3n04Z+FAnTl7+etMGIqi4O9iR/WyzminT3/6Dz0eOE83ZTK148JZ+lIj4v7blcOvtuLluj4FGqp2GUd+714XZcNG+Pzzp4unoLKyYPPmor2GIAilmkhgCYIgCMUjMhIl28DR19pw/vU2lLGzKumISo3ACm5Y6LRo+/WD1atBlks6JOEJSRoN1q075Hyd+tdslMfMRtC4uufcv1ucPefriPA8x1m36ZSzLXPzWoyRt584TsVoJHvXZqp7lTVrB9DQpAxSs40sCb4X98nIJF5Yehjps7VIn63F7ssNVPhxG4F/BDHyn1PYTFvPzhuxZouhNNp6LZoas/ewMSoDZdVq6Nu3pEMSSoP+/dEMGcLo9adpNH8/O27E5Oz6v+aVGdPQD95/H2bMQG7QgMz+Axi+9iQDVx0nJcvATx1rYjpwANasefJrL1mC5OkJ58+rXxsMyGeDGVGvAoNqe+NqY/nEQ0an3ZkRWtQzsF57Dbp1g/CHJ8oFQfh3EwksQRAEoegtWYI0cACSBL7OouPWg5ysLdj+cnOaJ92Gl16CmTNLOiThKTiOmYBkZw+A8epF4ieMIvvCWZTsLOTUFEzRkbmOt27RFizUN4v6oF1k7t6KnJlB5q4t6PfvUg+ysMS6eRsAbHv0Q1dF7QamZOmJf3MYmft2IqenoWTpMd4KeWyMWScPY0xOoppXOfM86Dv+vqAm0/rVLM/pqCSkz9bScM4etl2JynWct6MNrwf4MbJ+BQA6LjxAs3l7kf9ly2czDEbe2nSGLosPEd+kBabz56FXr5IOSygtJAl58WLYuZMz5SvRaeFBgkLj7uyS+KVbXQL9PLDWaeCff8DBAZYuZXV4KjXn7CU2/U7C6KWXQK8v+HVPnUJ65RWU2Fi0TZsgde8OkyYhZ2cTUM7pqR9OtyqeWFtaoF29Ci5dynuALMP165D9mLp7iYlIQ4ciNWyYd59eD4sWqfdnzoSxY8WHPYLwHNKVdACCIAjCv5zBAKdOgcHAubHtxcyrh2jj584UWaZTSKz6Ql945uh8/HD7cT4JH7yBnBBH1oHdxB54eHF+rWc5nMZ/SPL3n4PRQMJ7r+c5xmn8RLSearJJsrDA/ec/iZ8wCsOlcxhDr5MwYeQTxajftQUAC50OMF8NrBUXIgD4ZPdFwpIzc7ZPbVeDlj6uNCrvjINV7q6Mn7atToUft3HkdiLaz9dx8vW2NCjnbLaYSsrJyCQGrj3FjWQ9/Pwz8ptvgkZ8Zizko317TIcPo3N3Y/uNWAJ91dmWOo2GfcNboigKv58KZfRvv4GnJ6azwcQMHcrQNUH3xjhxAlq2fPy1MjLQ9XqRWmWd+LtvACvPR7Dt0nEObt+GxkJH/bJPn8Dyd7FjSM1yzD99CU3DAOTf58OgQerOW7fUxi0ffICk06KrVAlD3XpQu7Z6q1ULKlWCPXvQvTJMXU7/9tt5L/Lnn/fuf/WV+u8336jJPUEQnhsigSUIgiAUjbg4NMOGIe3biykjE1d7G/zE7KuHSs828t72C+oXnTo9+mCh1LIKaEqZlTvIWL0YfdBODDevoWRmonFyRuvugUXVWli37ohV89YA2A8Zha5SNdKW/I7h3Gnk1GQ09o5Y1K6P/ZBRWDcLzDW+tkxZPP5cS8bmtWRuX4/h0nnklGQkOzu0bh7ofCpi3ap9ruWM97Os35iMNUs5ezOUimZsonD0diJATvLq/Bvtqenh+MhzfJxskSf34j8bzjDnZAgBc/YwpU01Pm1bw2xxFbfvD17lg10XoXZt5N1LoWbNkg5JKO0kCVPLVuw7fySfXRKvBfgRk57Fx59+CqdOIY8dC+PGQfv2IEng5law69y8ifFWOD8Ob0llV3smBlZlYmBV9EYTiZmGPAnmJ2GUZeafVrukyhmZSKNfQ+nTBw4fVuOUZfrVLE97Pw/Ox6Zw5tgezm3eQFKa+nyhsbREzs7GCGgr+WP68su8F9m2LdeXukr+GG3FawpBeN6IBJYgCIJQNGJikLdsYVQDX0YH+BJQzhmLR7Tjfp7FZWTRddlRglOyYOtW6Ny5pEMSCkHr7ILDyHE4jBxXoOOtm7bCummrAo8vWVhg92J/7F7s/8SxJX0zGcVoJDQmDoqoC6jxk15oNQWrryVJErN71mdC80rUmLmToXUrmC0Ok6yw+Vo0Jlnhg10XGVijHB39PXJmuZjbvJMhvLf9PPzf/8GXX4Llk9cSEp5PSqtWHNm2BaMso8tntt7EVlWx0Wl5d906WLdO3bh4MQwZUvCL3Kl5p3mg9p21Tks5B+1Txw6w9G7zBn9/eP11lF69wMoK6bvvUO4s8zselUJ4ugFJUmvY1PawJ97Wkkuxych3lxZKEqYFf0F+iakGDXLV/DJevwHJyeDqWqjYBUF4togEliAIglA0stQaHQ3LOdPUu3S8wDSYZNKyjVhqNVhqNeg0klkLWT+NiNRMWi88TIisQ/7+B3W5xcaNUK6cevPwAJ34c11aKHo9GZueonByKaEkJwEQl5LKrcRU/Ms8/ayLu4wP1KFRUIAn+72q7u6AMqV3oWO563xMCi+tPsnl6KScbZ/HpjDtwFU2DmqKpVZDu4oeZrvenpBY/rPpLIwZA99+m5MsEIQC6dQJ/QcfMHr9aeb2rJ8niSVJEmMa+fHutnMAeNhZkfD555ieJIHl7Y3WzY0RG85y+rVAHAsx4+p+UWl6Xt94FkaNgrlz7/3sL1uGsmGDer9DB0K8vQlRFLVulaLkf3vhhYcvh2zcOO+2uXPhgw/M8jgEQXg2iFfEgiAIgvnduoWmZUsqeTgyuI5XSUcDwIvLDrP+ctRD99cp40jQq4E4WZvnRX1BTdt3hRCTFtOc2TBgQN6itFotrFihdi9LSAAXF/HmuISYrHRkOlmXdBhPTTEaAbC11NGjdiWqOlsBhS+CfCkuLed+4wruaEvBz+ePh69zTWcLQevVmnLNm0NGBqYGDeiy+BAAmR/3xFpXuJknANcS0uj99wmU1m1gxgzx+yk8uQYNYNEiFgwfTlKWkWV9G2L1wM+mrYWOrEkvEp2mp+KMHZjGjHmyazg6Ypo4kdD338ckm7dpgsFoUrsD3v+zv2XLvfuzZ6t1rgrj/gTW2rXq77TzQ2rmGQzwzz9o5s1DsdChtGkLbdpA/friAyFBeMaJ32BBEATB/A4eRM7MpENNT5ytS8cyGnvLR//JC45JwfnrjbxYrSwr+jXO8+ahKCTrDcwPDsf09gS0Uz/HJMtkfNSThMxsItP0rL8cxef7LqN5/XUY/xby7Qg0tWoi//QzZGZCjx5FHqNwh40NRjcwlnQcTyskBCZNAuCD5pWp5GoHyNhYFO7nPD3bSJ3fduV8vX1w0xKf1QhwKDoVU9c+0KqVegPYsSNn/xftamBphiXNiZnZdFl2jPRyXsirVoFF8SbAhX+Rl19GcXTkn/796brsKJsGNcmTYLXUaph/KgyTSYbwcLXGVJMmBW8ScPAgsizj+s0ms814dLDUYW2pQx8crH7QcldCwr37dxNNQUFqMis7G4xGyM5GMplQ3n338bUf3dxg/nwYORJ694b4+PyX6c6ciW7q5xijY2hUwR0bnYbDW7eQlW1Ea2+HacYvMGJEoR+3IAglQySwBEEQBPM6eBAGDaJOORfeaupf0tHkWNK3EUv6Nnro/gWnwxix7iT/XI7Cetp6xjfx539d6uSpF2JO0/dfQZ9lgB9/xHSnBohGAi9HG7wcbZhx5AaSgwPWaSkM9CnHqjgdblG3uNmxIwBS5coob7wB48erb2BKQeLgX+v+N2bPouhomDQJC43EpDbVzPJzbTDJuH27CQBHKwtuv/vCYxPFxSHTYOJSdBI0euD3/eZNNJKE/uOeZqnHZzDJ9Ft1gpBsMG3arM6OFITC6NkTecsW9nTsyC9Hb/Beiyp5DulVvSwX4lLZPOtXUn/4ASZPhs8+K9j4ixeDjQ0AA1afYEXfhk8d6oXYFHovP0ZoUjpGC8vcv29nzsD69TlfagYORP76a7TduuJvraWCkzWnIpJIyMxGY2+H6b33CnbRV19VZ1eNGQNXr0LTprn3X7wIb71F/1pefNinHXU91c6K2SaZ4xGJvL7hLOc3bRIJLEF4holquoIgCIJ5Xb8OwOFXWz62C1lpMrx+BeTJvZjWXu2A9vPRG2g/X5envk9hbb0WjevXG5E+W8vXB64C0N5bfZFtoYHY9CzWXoyg34ojLAy+hZKaSkaWgc/aVif5wx5ce7M9M7rWBUC5dg3efRd0OqRRI80ap/Av4+kJkyah0WmJStMXejhFUfD6YStZRhmtRiLq/7qUiuQVwNnoZHWGyv1vqI1G2LsXV0dbszWTeGdLMLtD4zCtWQNV8iYaBOGptG2LMmoUUw9cI0mfnWd3/bLOLO/XmIT/60ygnzsEB0N6OvzwA7z3Hvz++8PHtraGgQMB+PtcOBmGp5tTmmEw0nfVSa7Gp2Jq1gz5zBno3v3eAceO80WqxgAAIABJREFUAaD/uCfbh7WAXbugUSOqO1iy/eVmlLWzUpNXXV7AdOEidMi/a2q+Xn9dXWr/YPIKYMECUBRWX4miw5IjbL4aDagz11r4uNGkvBO6kJuPeGAZMHcuuoYBaJs3g19+gZiYgscmCEKREwksQRAEwby0Rb/0rqhIksRHgdUwftKLqm72ADSeuxdFKXi9kFUXbmMxdR3SZ2tpOX8fk3dfJDwlk0txqUifraXL4kMk6g25ztl1IxYAgww+P26jz4qjrLoYyf2XvdvVTSNJjGvijzy5F7O618vZr/zxZ86bBkHI13vvYbS1Z+rey4UeqvrMncRmqI0a0if2KPRSRHP6+0KEeqdOHfXfqCg0gYFIS5cwsWnFQo//5qaz1Ji5g1+P30T59Tdo167QYwpCLlOmkCZLfHPg2kMP0Wk0VHWxQ3PyBLzxhtr98vvvkcaOhdTUh4+9bBkcOoSiKFy+r37dk5h7IlRtkLBqFab9B6Bq1dwH3PnjJSvQ0b8Mx0a34a0m/pyPTMTvp20sC02GBQuQN20GH58nD+BhM0jHjYM5c8j6+lsS/Cox9cA1FEUhMTObM1HJXIxLRb50Kf9zExMhIABef50X0qPonBCK9p23kcqXR9O1CyxaBGlP9/0SBMF8SsdHZYIgCMK/x51aHFfi0/g06CpedlbM7Fa3REJJyTLw15lbRKTqiUzTE5ueRe0yjihA3TKPnh32UasqjFh3itNRyXRdfIhhdfN/kX0uJoW5J0NoWM4ZkwI7b8bm7Dt4K4GDtxKYuu9ewsBap+F/neswdtOZPGPVcLfH3daKoLB4AIbX86Gdnwc6jcTum3F5jre31DG1bXW+3H+FTKOsfrI+dixs2gQ1a6q1UR5VsNbG5tlfGicUnJMTpo8+Yu7ED3mnWSWquTs81TD7w+K5Eq++kcue9KLZZjSZi1rfC7QtW2KqWgWOn0C+qs529HIoXBH++Ixsfj12Q/3iu+9g9OhCjScI+SpfHnnCBH74/lveauJPuYf83PasWpbflx+Bv/7K2aYYDPDTT/DWW+DklP/4NdSZxhdiU2lQ7iGF0B9hYG0vfj0VxvUJEzA9+DckJQXd1M9pVtEjJ7EdUM4ZP2dbZhxVf3dM+4KgbhG8LvD2zvmdlH18ONSvH/bfbCbjwZlsx49Dw4Y5iTBp9GiUefMANeG2YZA6uysuI4uV5yNYeP4kh4ZtRWNtjdyrFwwdCp0751+DSxCEIiUSWIIgCIJ5tWmDrqIfAXPuzVz6vnMts3T7ehKJmdm4frMpz/aNd5YUdKvuTbPKvo8c4z+B9ZgVdIat12OQLWwIrOyda//BGxFsuaAuR9h2417iqmvNimy+kHeZwhut61PW0Y5YoH21Cuy6HEbbKj5oJIldV8LoVq86KfosgsLi0UhQyacCYSbA9PAY9VY6NXkFcOsW0scfYyWBfs8eNIsXI7VsjeTgoH4UntPCXEZ2dkJu1+aRj1/4Fxo3Dmn2LNotPsK+Yc2o7Gr/xEPcXYL4TcdapS55BeDrZAuA3cVzpJw4kWtfcx/Xpx532/UYBqw5idbBHtOPP6nFpAWhqLz/PsZff+XzvZf4rUf9fA/pVb1czv2q7g5cibsz8+qTT9AuX44pODj/sZ2csChXlqCweMraW3MrJYOY9GyG1/PB096abJNMltGEg1X+TQmyjDK3EtOQuwTm3fnee1jExPDXGPXvy5HwBN7afoGETAML+zTknR0XSRr5KqY9e8H+yZ9/ALh9G7Zvh9BQqFgRKleGatXUQu93XbwIkDd5BWpHw++/V5fgL1+OMm8eX7SrQZfKntQqcy+x725rxdjGFRnbuCIhSeksDb7Ngj1bubx8OToXZ4wDBqrJrBYtCl5IXxCEQhEJLEEQBMG8ypXDeP4CfPMNfPop1TydsSrkm9zdN2P54fA1ytvb8OeZMIJeDaSJV/4FkxVFIcNgyklevdXEn97Vy1HO3hoLrcSqCxF8uPMCmy6Fk2HhQKMqD2/tbe/hgqPtFVIyMtl+KZTtl0IB8HByIF2fRUaW+sL41Y5tSM3UcysunqbVKmOp0xF0I5I0vZ6X27aknOu9WFPu/FunuiO7LodxIymDAYHNqVujFpJWy/mIKwB0bdSAFMsCFIW2hJoVvLkQFg5GIzV9fehQrxZJaRkcv3aDi5s35FkCKUkSiqKg2bYFuWzZx3d/Ev49bGww7t1HTNs2tFhwkH3DmlP9CWdiOd55U2uOLn6FoSgKBlnJE0cLH1cqu9nzY+fabLgSxawTIXzYsgqT21R/6qWOBpPM6M3BpDRsgrJihVpTTBCKkrMzpkmTmPPBB4xvWokaHvn/nh4f3Zbq7vYogMf3W9Bnq3WtTL6P/oDGVK8es7dsZfaJkJxt6dlGKrva8d/dl4lLy6RrZU9+71kfOwstNhbanOYPnRYeINNggmGv5BlXd/Ag/at7UtHFjqvxabSYHwSVKyOHXSXDYGLb4Ca0WnCQrIEDkDdsfLLmI+npOUkvSZJwsrMmKS1T/dpCh7J1m7qkV1Hg889zTpvargbTgi6jN8q8Us+Hv87cQvf1VxhdXdG+8w59anrxUWDVR3ZQ9XO2Y2JgVSYGVuVsdDJLgsP5a/liImfPRufjjfHloTBkyL2ly4IgFAmRwBIEQRDMz9oaKlZEY2HBqDpej3xR+DhGWab9XwdybWs6by+3330BNxtLrO7M7Oq+5BCb7syuumtQbS9+7pp7mcIHrapy5HYiay5Fsif4IkcuX2fm2JF4uqhLLUKiY7GztsLDyZHrkdGkZGTmiSk2+V59kWUfvI2DTd7lHd+t3gDA4DYtH/r4vd1ccXd0pIzzveWMUYlJHLx4hUaV/WlSrfJDvy/3O3DhMlZWVrzVvRPt6tbK2T6wdXOMJhOKotbO0mgkJEli99nzpESHsevyTa517oymywvI3/+gLjsU/v28vDAF7SehfTta/nWQPS83o47nQ5Ya5aOjvwczutZldMCj3yAXtUm7LvLl/iuYJvfK1VXRydqCq+PUTp21yjjQv5YX7fzcC/U89NeZMMLiU2HGDJG8EorPuHFoZs+i9aJDbB3UhIB8lvs1LH9v2/vNKvHFiXDkRYugWbNHDi3P+x0uX1ZrUHl7w5AhfLFuHbKiIL3UF6VBABsmTcLzciQAbzSqyM9d6/LtwatcTUhXB+nRI8+4xqZN2bZqGf+3NZgeVcsiKwoMGADTptGovDMB5Zxp7uXM3uMnwGR69DL3By1alHNXI0HKnTp8AIrBiHbcm5jOnFXHzMiA335D+9FEbiVnor8zU3lB74Z82qY6VWfuhFdfpW3lsszqXu+Jnh/qejpR19OJLzvU5EBYPIuDw1k640dSvvoKXa2aGIe9AoMHQ4UKBX9sgiAUiEhgCYIgCOaVnIz0n/+gLFvG0HoVGNfEv1DDaSWJ/7aozM2kDN5oVJG1lyL5+egNvH7YmnNMh4oeObWnJNRkzWsBvsx6yLKLnlXLcjoug5txyWRmZzPyp1mPjMHV0YFX2rWiVc3q6LQawmLjSUxLp4G/H9qHzELxK+NBbV+fR74orlnBO882mzs1NWysCl5b4/UuHdBIEu5Oeet66R5SVN/bxYEprapga6nj3Z2HuBUQgLx2LXTpUuDrCs+wsmUx7QsiuUN7AhceYtfLzfJ9c5yfu40EStqX+9XZiudiUqj7kAScn7Mdfs52hbpOtknm0wPXkV56CaUo6vYIwsNYW2Pcf4DE7t1pueAAq19qRNcqD0+gxmdmo63gg9y79+PH9vJSb3eNHo2Sng6ffIISeGdpoKUlZGXBP/+w+lIwJ2NTORwWD++/r85wsrLKO+6gQcTtD+KHw1cpf7d2V0ICGktLBq87zfLe9TkTk4pSs7a6pP1JNG4MDRrAsGGY0tLAwwPKlIHoaLRTpqgdDZcsgVdeUZNYb72Fac8etu3akjNEyz8PcDE6iXa+bszqUR9/l6d/ftBIEoG+7gT6uvNzV5mt16JZFHybdZMnkfXhh0hDBqPMmQt2hXsOQlFAr1frVgrCc04ksARBEATziY5G16QxVrHRzHupEYNq503QPClJkvimU+2cr9tV9KB2GUfWXIrkXEwKt1IycxVOl6c8/oW7pVbDq81qk2Lpgre7G+/MWZDvcd7urkzs3xs/T49c2yuVe/wMjJlvPF19nB5NAnC0taW2b8E7M5VxLvjsmftJkkTfGuXpVsWT/n8fZ2PPnigrV0JB3vwIzz53d0x79pLWqSNtFh5ix5CmNPV++hpRxUlvvFcYbtfN2IcmsMzhz9NhhCemwaefFtk1BOGhPD0x7d2LPGggPZZtZnb3urwW4JfvoVcTMzDUfMolbN26oXTrlnvbf/+r/hsVRdSxY8TYOMDevRCYT+2ruzp1wnj5CpJOh72lDmd7G5LKl0c+eZJrvXvx5tYLfNWuGqPXH1Objvz+e8FjDAiAkyfz3WUaOhRmzYJatXLv8PcndF0WUr+XUAIacjAoCEI3s/1GLCa54B2GH8dSq6FntXL0rFaO1CwDS4LDeWfV3xiCgzH9sx78/J5qXM3w4bB8OXJWFnz9tZo8FITnmKg2JwiCIJiPXo8x7Ba/dK5lluTVw4xu6Meml5sTNuEFTo1pm7M9+r2uTzxWlfJlqV3RD4ApQ/qx8dMPcm6zx43Ok7wqajqtlvb1ahVqudOTstZpWd2/Mf2qeSL16wdLlxbbtYUS5uKCadduMuvUY9C603nqpZVW1jotVd3UWjjbb8YX2XUMJpnPDlxD6t8fatd+/AmCUBTs7FDWrkMeM4bR60/zya4L+f6uXknWqwXNze3jj2H7duTw249OXt1lMqGYTFhoNXg52qhF12vVQq7fgGO3Yhm9/jQAmk0b1WWE5uDgoCbcGjbMvf2LL1BiY1FW/g0TJ6pdehcuROvhQdVfdlBrzl6m7L7I6agksz3/OVhZMKZRRY6+2oryt0PRNmyoJv6eghIfh4OkzlTT7N1jlvgE4VkmEliCIAiC+fj6oqtWlaDQontD+aD6ZZ1RpvRGmdKbMnb5LGcogCmDerP643dpUvXhBd3/7Sy0Gpb2bcSw2l7w8stY+FdE26I5vPQSvPMOREWVdIhCUXF0xDRtGiFxKRyPSCrpaArsbgfFPWHxGJ90KVIB7QuNJyIxDeXuTBRBKClaLcycCd98wxdBV3hl7SmyTfd+7k2yQnhCGlQqgr9j5cpBx45gkX9Xwjyy1QYnVVzt8LWzhFu31O1eXhhMCroKPhAaihx2S31cRcnKClweaIgydCimmzfh77+50K4r005H0GD2Hir8sosJW4LZFxpnltlZdTydODUqkEZ2EroRwwt20pIlMHCgej8uDik+nmS9AY2NNfKMXwodkyA868QSQkEQBMGsjD1f5J85v6IoSrHOIioM2/zqeDyHtBqJP3o1oI2vG5fiUolOv03k2Zsc25pM6pbNmI6fePq250Lp1q4dOg93lp0Lp/FDOnyWNlmyAt7eZISHcyIiqUiWP669FIHO2wvjg7M6BKEkSJI6y8jHhyXDh3MpPohX6nhTxc2eledvYzSZwL/k69ORrhZ533wtBpMsY3ErDAPAjz/Cu+9ihJIvcG5np35A89JLmLKzYe9ewlev5pc1q/nxyHUcrC0JHtMWX2fbQl3GzdaSQG8Xjl+Oh+PH1Rli97822rwZrl5Va1xlZcHkyep2Dw9069ZimxCHzsaCJJOs1vsShOecSGAJgiAI5mVlRVxKBvGZ2bjbisTQs0YjSYxskLu73LmYFOr8tgs2brz3ybDw76LVYhwwkF/mzMbHyYa3m1Yq9QnoLFmBFi3QrF/PnpA4syewFEXh76uxGF8ZmfsNpyCUtEGDkN3cON65M8dvJ+bet3w53LwJNWqotzJliv/nV6tFsrZi+p1GC9ra9y3FL+nEVX4sLaFTJ7V+18yZ8NtvpI4bR4dFh7g2rkOhh2/h48q84NskNW6Mzs8X46DB6t/SevWQxr+Fcu06AE521iTfOcd7yQLCE9OQrSxIyDbCyJFqh2dBeM6JJYSCIAiCWWlWLMfaQseBsISSDkUwk9plHKnm6Qxbtjz+YOHZNW4c2QYjE7aeIyw5s6SjeSyNBKxejZyZiY+T+btzxWZkE5WUBuXLm31sQSi0Tp1gzhy1M92nn8KHH4KzMzZLFqF9axy0awdly6JzdVGXg8+Zk/84yckQEWHe2FxcUOLi1aXnYWGYDh027/hFSaOBESOgShUSsoxmGbJPjfLETujEtqEtGOECjjN+VLspTpyIcvQYvPsukk6HjYWW/jXLU8HdkfDENGycHUl3dlFnbs2bp3ZWFITnnEhgCYIgCGYl795DdqfO9F5+hMGrjpOkzy7pkAQz6F7RDd2WzWo7b+Hfyd8fXXm1i1Zhl80Uh0ktKoNRfYP5/dEQIlP1Zh3fw9aS0QG+aD75BA4/Q2/AhefH6NGQkQHDhqm1k5KSmN2tLpkTe3DxzQ6sGtCETxuUp3tCCIwZoya6EhLgbs24w4fRVqoEXl7oatWE996DHTtyfq8Kxc4OPD3Bx+fZW3puZwdTppCYlsnk3RfNUtxdp9HQqVIZpravwcfNK1HR2RbNjJ/VpNT336NcukR0lx6sdq1I2NCRsHAhmYeOoERGqd0XBUEARAJLEARBMDcvL+QNG2DhQlaGJjFy/ZlnprOZ8HBdKntijIqGc+dKOhShqFhaYvx4EhuuRnEpLrWko3msTpXK8FWHmgCcDI8nYH4QCZnmS5hLksQv3erRuJwTut691ESBIJRG8+dDWBgAozac4YWlR6jmZk/fGuX5uHU11g1qxrT2NeCzz8DNDSws0Lm6IAUG0theYnHfhgyzTMdj3izo1AlpyGDxYcWAAQBM3XeZiTsvmG3YZefC+WDHecId3JBatry3o1IllKXLMAXth//9D4YOherVxfJlQXiASGAJgiAI5idJapef+X+w5sJtlgSHl3REQiE1uVvY++zZkg1EKFqjRqH19GTqvislHUmBvN+yCn1reQEQlZTOyvO3zTq+pVbDwOplMcXHq0WWBaE0mjpV7fS3dSuGdu3ZcyOamcduci4mBflOImpcE3/WDWrK3/0bM7tbXT5vUJ5v21Vj99DmDKnjw/xeAUS/3ZE/ejVAWfk3rFhRwg+qhB04kHP36wNXC9yVcNq+yyw4HcaELcG8suZEnlno7Suq9cAM332Hadt2cHAwX8yC8BwQC2kFQRCEotOvH9KgQYz9Zw1t/dzxcjR/nRqheESnZ6l3RD2gfzcrK4wfT2Lp+LeY3Loq1dxL95srSZL4rkNNVt9JXC2+EMmYRhXNeo13t92Zdehq/i6HgmAWkgTe3urNwgJNairjdxxHMRhxtFMLf6ekqwlYfw8nBlQtQ98a5WlU3jlXswZJkhhR35cN12JYO2ok0nffodjaYrK3h+nToW7dEnl4xW7dOujdO+dLVxtLAFKzDDhYWTz0tPCUTCbtvphrW1q2kWF1fWjj546rjSV1yjjSqmIZ9g8aBPv3w7RpIoklCE9AzMASBEEQipQycyaZDk6M2nCmpEMRCiE06c7yqdLYQUowr7uzsIKejVlYFV3s8HFzBDs79ofEmr0WFiCKJwvPjnbtMB06hJKUDDt2kPLfD0n56BO1Rtbq1dzo+RLfXYyjyby9eM3Yych1J5m69xILToex+2YsNxLT+aVLHf6vnhevGGMYmHgD253b4e+/879eSAjs2IFka4v00kuwe3fu5Yc7dqhL4m7dyn3evHlq97+4uMc/JqMRYmKKZ1ljcnJO8qqDvzpbKtNoxOm7LTh/s4lVF3LP8lx5/ja9lh1m8Kpj+Pxv670dFSqAszMb9Jb0XXEU928385+N6uug3UOb8V3HmljPnoWuWVPz1BwThOeE+GssCIIgFC1XV4y/zGRr//4cvZ14bynaMyoyIYnl+w5y+mYoialpWOh02FtbUdbVhYqeHozo2AYri9yf0C7de4BFu/fnfN2xfm0m9O6eZ+zFu/ezZO+9ZQt1/SowfcTgXMdcDo/g3XkLc21b8/H/YWlRtH/SV1+MQGNtjezjU6TXEUoBa2uMg4ew4uefWNSnYUlHUyAv+Lrw+/koFEVh5YXbjG9ayWxjl3d1IGLoq2YbTxCKha0tdOig3u7Xpw/G2bNh/34iV61i4cEDcC4MY1x8ziGSJOHmaIufkw1Da5RjV0gcGefP573Ghx/C118DoACsXg2rV6OrVhXjb7Pg4EGYNEk99t130bRpg+zhkTsZZmmZe8yjR2HlSggLQxcaghR2C0N0tFp4fu1a6NWr8N+bR/nnn5y7e23LIFVyRF/JH6VNW6Tjxxm8dj277K1pVcENAJOisDM0gfT7lwrOnQuvvQaAASA0FGXpUmZPnEhVVzvebV6Z/2tRhVYV3Gj2+z5YtQoGDizaxyUI/xIigSUIgiAUvT590PlW4KcjN1jc99l4Q5yfyIQkJsxdQGrmvRkexuxsMrOziU1JJTgkjEGtW+RJYO06k/uF/4ELVxjbrRPWD75wf8DZkDBComPx8/TI2fbPkRNmeCRPZt2lSGadCIGZM/O+2RD+fZKS0P7xB0Nqe5V0JAX2UauqxGYa2HQ1muCYFLOO3bq8IysPHsBk1lEFoQTpdNC2LbRtS87cn8xMdZZUWBhKWBhxoaHEhYVxfNEiJBQ0ycnI94+hKGjnzc3/9yI+HoKD4ZNPcm2W9+7NfdyBA+DoqN7X62HKFKTvvsPT0ZbKzjacvJ1AhsGExsYa+cOJ0KWLOR79ow0ZArVrQ4UKGN3ccu1SsrIwde5M9+VH2PVyc3QaCZ1GYl3/xvx6/AarL0bC8OE5yascvr5qsi8hgfe+/47aZRzpXKkMTb1daetfhqApUzCdPg1Nm+ZauigIQl4igSUIgiAUPa0W4/i3WfH++3zXqRblHKxLOqKnsvbwsZzk1YDA5vRu1ggbS0tikpO5cjuSoPOX0Ghyr84/F3qLiIREACTUT6kzs7PZf+EyHevXeew1Nxw9ybieLwCQmJbO/guXzfqYHic8JZPhG84gvdgTZezYYr22UELOnsWUmMjQHjVKOpICq+hix9oBTUjPNmKly79ChsEkczwiiWbeLrnq/jxOez8Plm06pS4tcnIyV8iCULrY2EDVqurtfn/8gZKejqLV5t4uSZj+WY/Uri3aOnUwtmgJzZpBo0YYT56EffvQ1aiOMaChOmsqNhaiosDCQk3y3D+b9/hxdMOGwrVrTG1XnQZlnZiw8yIZBhPSsGHI06eDVzEl1LVaaNAg/31WVsjr1pHRsgWN5u7JtUuj0aBt0QLTtGkPH3v6dKTgs/RbvYeTowKp7GrPZ62r8sLiw2i++wZT7TrIgYFqp0hBEPIlamAJgiAIxWPkSGQrS2Ydv1nSkTy1iPiEnPuNq/jjZGeLpYUOb3c32terzZQh/XCwyZ2c23E6OOd+10YN7tt+7pHX8nRW3yjvPnuetDtJs83HT2M0mXL2FTWTrDB4zUnSHZ1R5v8h2nk/L1q0QOdbgd9PhZV0JE/MzlKHTpP/y9s3Np6hxfx9TN//ZLW9Ovh7qMuX9u0zR4iC8OyxswPrfD54atECRZ+F8fgJ+PlndfbS1asweDD89hveEaFISxYj/bUAhg2Dzz5TlxQ+kLySmjWjVkosK/o2ZH94Il0WH+KKX3U4ehTlr7+KL3lVEM7OGPfug+XL4dAhtTbXnDnIU6di2rPn0bFqtchLl5FZ3ptuy4+RkmWgta87GRO780ZDP+TTZ8DdHd55p9gejiA8a8QMLEEQBKF4ODsjDx/BL4v+5KPAqljptI8/p5TxcHLMuf/JwhU0rOJPDe/yVPfxokr5suge+IRan21g/3l1xpSFVsvwDq05fvU6MckpnAsJIzoxGU+X/JNRLWpUZW/wRRLS0th+6iw9mzZky4nTAHRv3ID52/cUzYO8z1f7r7A/NE4tyis+EX5+6HQY3/0/VkyYwNcdM6jgZFvSEZmFh50VAB/vukhrX/ecGjaPU9HZFi9XByK++w6laVMoU6YowxSEZ8uDH2x06wZr16Kd/AkhZ+98gLN+A3TsCG+9lff8JUvQomCjUej39zFwdoFx4zA1bQpXrqi30ur6dfVma6suE1yxokCnGV8fw/XJk6n12y6quNjhbmuJi7UFjcs7cywiCX76SX3cY8dCz55F/CAE4dkiEliCIAhC8Rk/noTffmPF+dsMq/fsdbN7sWkjdp05j8FkQm8wcODCZQ7cWdLnaGNDnxaN6d+qWc7ypIMXL5OZrRZ2bVjZH3sba1rWrMaaQ8dQgJ1nghnStlW+19JqNHRtVI/Few6w4dgpXOztiU9Nw8rCgs4B9Yo8gXXwVjyT916Gjz+GNm2K9FpCKTRyJNLkT/jp8HW+f+HxS12fBU28nHPur7oQUeAEliRJ/N61NoPXHSOlVi1Mf/4J3fM2YRAEATWh1asXpp49YeJENHPnoqSno61RF21E3o6DhstXMJpkjqeYkDp3QxvYBsnCEiLj8xm8dFISE8DOHqnANSItkUeMJmLfbiITE1CiE5EzM3MfsnkzUlwcikhgCUIuIoElCIIgFJ/q1dF06sT3x04wtK7PE9WhKQ38PD34ecwIFu3Zz8lrN3OSUwApmZks2LkPG0tLejZVC9Xfv0wwsHZ1AFrXrsGaQ8dy9g9u0/Kh34eujRqwPOgwUYlJzN68A4C2dWrmWaZobkn6bAasOYXUpAlMmVKk1xJKKXt7TG+8yaz/fc/kNtVxsrZ4/DmlXOPydzqgenqy+nosPyhKgZ+DXqjsyYUxbei06BAXhg1DTkh4/EmC8DzTaKBuXXT//Rjr2GS0rm6Qlfcwuc/LyOlpaD3KIllYgEy+xz0pRa8HS0ukhywpNhf9ob1kbl6LZb2G2L40tOAnelWCwfe6pSrZWcjJSegP7SX72EFo2RJl48YiiFgQnm0igSUIgiAUK/mddzjTvTsPAHZxAAAgAElEQVT7QuNp4+de0uE8sQpl3PloQG8MRiPXIqMJDglj0/HTxCarnc/2nbtIz6YNiUlKIThErSGkkSQ8HB25HhmNVqPB0daGlIxMopOSORd6izp++c9Gc7G3o1XNauwJvkDKnU9nezYJKNLHpygKYzacJcokYVq6VO1WJTyf+vYlY/p0zsem0MLn2V9C6uVog4eTHbFlyxJ25gyX4tKo4eFQ4PPtLXWEpOiRX/9PEUYpCP8ukk6H1tUN2259iu2a2ZfPEzukGwAun/8Pmy69kB4sQm8mad9/jruDPfFnT2L5xU/oynkXajythyd07Up21YqiaYQg5EMUcRcEQRCKV5cuaBsGMHLTWTIMxscfX4qk6+99LGyh01HDx4sBgc15/6V7U/zvJpp2nglGVhQAZEXh/T8WM372n4yf/ScpGfeWCtxf5D0/L96ZzQVQx9eHimWLtv7OH6fDWHE+HNO838HPr0ivJZRyN24AUNXNvoQDMZ/Gng7qLA/g6O3EJzo3PdtIWmYWtGhRFKHBnecLQRAKR8nS59xPnDyBiCb+pK9aTOr8XzBG3Mr3HFNczFNdy5SRRvfGAdjaWJO2cO5TjfEgyb7giXVBeN6IBJYgCIJQvDQaTIsWE5KSxQfbz5d0NE9k1qbtTF60gl1nzhOTlIzRZCIpLZ09wRdyjvH1UGeV7TpTsMd24MIV9PctRXxQNe/ydG/cgGbVqjCwdfPCPYDHuBSXyptbzsGoUdC/f5FeS3gGnD+Pq4Mt7rZWJR2JWcSmZ7EnLAElNRWAJl4uT3S+p7015Vwc4OhR8wc3ebK65EosTRSEp6Zk6Un+/nP0e7bhNmMBdgNeydmX9OVHpMz8lvg3hxHTuSEJE0aS/MNUbjf05XZDX6JeaEzqwjlPdD1jZDhydjauDnb0bhxA5tqlmBKfndpdgvAsEusCBEEQhOJXvTryt9/yy/jxvFitHJ0qPRtdvWRF4cS1m5y4djPf/VY6Hf0Dm3Mu9BYRCersDmc7Wxa8+0aeDoXvzv2Ly7f/n737jo6qzP84/p6STgKEnoQQQu9NQKqABQULKmIFd5W1d9R1dS1r+629V9YCLoogAhZAkd57Cy2QhAQCCUlIr1Pu749hgyhKm+TOJJ/XOTlMufc+n/GcODPfPM/3OURpRQXLd+zmgu5/3Cj7rpEXee9FnMCKtBw6Ngrnmm834oiL8+yAJLVbaiq2/0ykb1TNWcIyd28mJWUV0KkTzQ6n077h6c8sGxQVwYxVK3F5M9inn8Jzz3lub98OgwZ58+oiNVbus49QMvvEO/8VTfoQALvdjtPpme09qFN7dh/K5Jz4OJZsWEXR0gXHnVPw5gsEDzqfgLhWGA4HRVM/o3TuLJxpKRhOJ9aIutgaNsLeuj2hl44m584bAOjTtjUA01eupfirz4i46+GqeskitZ4KWCIiYo6778Y6axZjv1/DztvPo37Iqe7eY55R/XrTuF5dtqfu53B+AQUlpbhcLurXCaNTi+aMHtCXlk0b89bsuZXnDO3a6XfFK4CLenZld/ohwNPM/c8KWFVp1f4jDPxsGVaLBcNux5i7CMLCTMkiPuLQIexDh9CsrIiJ11bRcjkTnBsT6bmxZw8lFS7cBthOcx+JjKIyjJQt3g22Zg3R9cKIrRvC2pEjcP08H84917tjiNQw7tJSSn+Zc8LnPrx7PEEBdurXCeOd739iwRbPhirNGzbgsWuuAGDc+YPZnLyPf0+fXXle6IWXYo/29KQ88tjdlC3+6fgxc7Jw52Th2L0DW5Nmx84LCsRuszGiZ1e+//pz6vz1LqwhoV59vSLioQKWiIiYw2rFPWkS2Z07cdecrXx19TlmJzqpNlFNaRPV9KTH3X/FJdx/xSV/eszFvbpzca/uxz1249CB3Dh04Cll+fGZv5/ScSezJt2zZMmoUwfj22+hWzevXFf8VE4OtvOH0eBIFktu7k90RIjZibymbYM6xDeuS3J5OfnFpWw8lEfv01xGuD6zEPd5Q70brFkzyg346fq+XPDlajbeeAPOpGTvjiFSw5QtnItRXOS5Y7FU9pD757VX0rzRyTedCA8Jpm7or4tMFur937tYLBYqdm6rLF4FtOtE/RffwR7dHHfuERz79lK2+GfssfEEtWxNz2Bb5R+phnbtxKzV63EmJRLYufsJRhWRs6UeWCIiYp6YGFwPPsTX29OpcLnNTlMr5Zc5CWjSGCMnBy64wOw4YranniIsbR+LbzqXlvVr3ky8q1s3wpZ1GFtYKD8lnX7T5n7R9bHYvbSb2Ysvwrhx2CdPok6AjfCgACb0iceZnAIZGd4ZQ6QGKF26AMe+pOMeK/l++rE7v9oAYfXuPWc0hiUsDIvFMyXTmXqsgBzQoQsBca2wBARia9yU4D4Dqffos9hjYilP2cvIc44VqqIaeArizjQVoEWqigpYIiJiKsvGjXRtWo9Am96SzJBX5oCICDi6M5vUYi4X9m+mc2uXaNo3rJm7YF3erhmu3DxcQcHMSc4+7fMHN6+PdfkKcHuh4D5pEnzxBW3L8llwQ18A+sUcnRG2atXZX1/Ej5VvWV/ZYP3Ig7dw+Oph5D7wV9ylpTgPpVO+YXXlscN7diXQ7llYdLKNUX7N4FjhyxpRr/K2rWlU5e2SWVPJ+uuV5L/7MqWLf8aV5+lvWbpwHvXrRtCtZYvKY0ODgogID8e5L4mKbZtw5WSd2YsXkT+kbwsiImIqY+RIthzKZUGyPuiZIb/cgVH/9JZRSQ21ciXOw1mM7hh18mP9VL+YSLpERcKRI6zZn01hueO0zh8Y2wBXfj7s2HHyg/9MaiokJgKw6dZBxB+d7da8biiN64WpgCW1WsF7r5B9y9XHPfbIVZfhXLOc3HvHUjzzy+OKyBd070LvNvEAlRujnIq96See6RjYtReB3XtX3q/YupGiz97jyIS/kXFRL3Ie+huWoGBKysqx/KaPXnRkPQo/eZesv4wi+9rhOPbsPKUsInJqVMASERFzjR+PbfBgbvhuM3tyisxOU+vklztw1VMBS4AZM2hcN+xYs/MayGa1sOnWQXw7pg93n9PytGd+9o2uj9VqheXLzzxEVhbExQGw9C8Df5dhUFRdbCvO4voifqz0lx8p/PTdyvsf3HUrXz16H0O6duTFsWNwJWym6JN3jzvn759/RZvoY03Vf9mccNJxDMNg3uZtJ3zOYrXS8L3/Ej7+PmxHm7pXcrkoW/IzpQvmUF5ezuG8guOevqZ/H8YMPJcXxl1LTHAAOeOvoWLbppPmEZFTowKWiIiYy2rFNXUqOU2iGDB5JTuzCs1OVKvklLsw6tU7+YFSs7nd2KdPY0zbxlh/O6WghrFZLVzZIYq3L+lK0Gn2s1qTnovb7YYznbW4eTM0blx5d1CLhsc97TYMzo2uj7FhI5ziMiiRmqJ45lcc+ftdAPRu24q3bruZ2MYNiQj1bCbRoXk0DsfvZ02Gh4bSskljbFbPV9uEfWlk5uYDVC4tBCj/1bkl5RVkHsmtvG8JCjrumpbgYCLunEDT75bRZNZS6j3zGkH9z6t83pWWAsCh3NzjzuvbrjU3X3Ae3ePjePnm64gJC6Ho3ZdP/z+GiJyQClgiImK+Zs1wLV3GkZgW9PjPEv4+fzvZJeVmp6oVcitcoAKWrFuH8+AhRneMNjuJzyp3urhtbgK2/v3hmmtO7+TkZHjiCejRo/Kh1AcuOu6QnVmFNH79Z55Zsht3eTns3euN2CJ+wZGcSN7zj1XeP6d1PK1/s+tvUWnZCc/NLyri6SnTcR1dVmgAC7Z4Zlc1rhdReVxK5rGNG8KCg7i457Fddy2hxzatcJeWYLhclfftzVsQdtloGr4zGVvzuMrHAwICaPurmV+/FRYcRIeYZhiF+X94jIicHhWwRETENzRpgmvlKsoffYzXtqQT+/YCnlq0k7wyzUKoSrllDqhb1+wYYrY5c6gbFsLA2JNvP19bvbpyL8m5Rbg++gisJ/kIXV4OP/4I996LvVU8tGrl2XUQGNmmCfPH9ie2buhxp2SVlJNTVEpxhRN7u7bQtm1VvRQRn2FUlOMuzKdi68bKxwZ37sCFPbr87libzUrAKc6a/GVzAoZh0Kdt68rHNiXtY/KCpWxJTmXu+s0sSTjWn8qxcxt5Lz6OIymRiq0bybxyCIWfvEPFzm2eglZZGaVLF+A6fKjynKGd2xP6m5lbvxVkt0P5iQtvInL67Cc/REREpJrUrQvPPYfr/vspfeklXnj3Xd5cv4+/943nvr7xhAdppzxvK1QBSwDKy4kICcRmrdnLB8/U6gNHeHb5HowHHoTOnU96vOXWWzCmfEl0ZDiXtWzA8Gv7YLVYmLnrEJ9c3uOEyzQ7Njq682NsLM7PJ4FdH9Ol5nLlHqH4689xFxZQ8s0XWOod6713/eD+BJ1gZ9xVOxNxOD0zo1o1bcLbd/zl+Gu63fz1jQ/IKSwiMy+fhNT9dImL5ar+ffh25VoM4Otlq/h62fGbJHRoHk2v1vF8//N3HJ4xhYBW7XClp1Hw/qvw/qt/+BquOLf3Hz73P0EBAbhLijEMA0sNX54tUh30zigiIr6nYUN45RXcEyZQ+OKLPPXhh7y6bh9P9Ivnrt4tCQ3Q25c3GIZBUWm5lhAKBAZS4XSd/Dg/ZhgGzy/fw1MLdzB5VE/Gdos96TnLUrN5dvleftmbgb1zJ3j66ZMPlJUFX0/jpQs68Uj/1sd9ab283R8vN2oYGkT98BBy//pXOPfcU3pNIv7IKC8j76HxlG3dcOyx7GPL+8pP0OcKjm/OfsIZWlYr53fvwrSjBapfNm+jS1wst140lLbRzfhpwxaSDmVSVFZGUEAAzRs2YGCndlzetxcBdjujB/Rl1a5EZq7eQCJgCQyEkDBwuzBKirGE1SGgdXvcOVm0MiqIa9LopK+1dVRTKpavJu/JB6j39CtYAgJP9T+TiJyAvgGIiIjvatoU3n4b9yOPkPf88zz66Se8tCaFpwe05s5zWmq2yFmqcBk4XW7NwBIICqLC5T75cX7MYrGwMi0bgHGzNrI9q5B/X9Dpd8cZhsFPSYd5dvkeVqVmY+vYAb58Hec115zarKgvvsCGwa09WpzWjItJm9PIKyrT76PUeHnPPopz51b6tG3N2kRPrzeLxcLEe2+jaf26f/h78+LN15302jefP5ibzx/8u8cHdWrPoE7t//TcALuNwZ07MLhzB1IyDvPjuk0s2LYDS/M4Ij/5Bmt4XRwpezg8+gIuv/qyU3ilMKBjOx69+jJenjGLoMEXEnrRpad0nvyBigpITYU2bcxOIiZRDywREfF9zZvDRx9h7E4ke9Ro7vspgbGzNuJ01+wv3FWt5H8zbjQDSwIDK5fm1GRzb+xPyeOeL54vrdjDgYLSyufchsG3Ow/S45NlXDJlFWsbxcHs2bi2JcD115/ykj77Z59yVbtmNAg9vZkWb25IxRg+HO6//7TOE/En7tISSubN5sbB/Xlw1IjKx8/r2olmkfV8Zpldy6aNueey4bw5/iasB/eTM34MuS8+Tt6LTxBeJ4wBHU69R915XToSHh6OM2VPFSauBbZtw9arJ7RrB8uXm51GTKICloiI+I/4eJg0CePrr5m68yA3fLsBRw2fNVKV1hw44rkRE2NuEDFfUBAVTheGYZidpMqFBNhYdPMAAJq/8RMAeWUVdJ24lKunrSWhVWeYPx/X2rVw+eUnb9j+W04n9YNPf5GDw214/h93uuOJ+BFrSCiBUTHkFRURERrCtYP6MbBTBx65cqTZ0U6oReNGPH/D1XSmgsarFhKesptrB/Ql4DR71DVvUB9ninYWPWNTpmDt1Ys22emE2q3Yrh0DTqfZqcQEWkIoIiL+Z/RoDNt0vhkzBseM9UwffQ52fek7LcnZeUxJSIeHHoLu3c2OI2Zr354Kh5MfEjO47E/6NNUUQ+IacVvPOHKP7nL67+V72JlXCsuW4Ro48Kyu7ew/gKVzZ572eQXlTjjJjmYi/s5dXIRhtXEorwCAcSdY7udr2jeP5rmbrjmra8Q2qE/yPhWwztj+/bidTvbnlVDicGHJy4eCAoiMPPm5UqPo076IiPinK6/E+OorZu08yLLUHLPT+J0tB7KwNGsKL79sdhTxBRdeiPWCC7hn/g7KasFSQoCPLuvOtGv6cKCglDfWpuB++BE4y+IVAP37sysjj8LyEzeiPpEdWQXszymAIUPOfnwRH2U4HOT9/U6sWRmMHeqF3zU/EtMgkoq0fRhqfXBmHnsMduyg+MEJ8M03GDk5Kl7VUipgiYiI/7rM08tmX16JyUH8T2G5A3ezKLDZzI4ivsBiwf3uu+zPL+XVlbVnlsCy1Gz6T1qJq159ePhh71y0Xz8Mw2Btet4pn/J1Qjq2iHAYPtw7GUR8jGEY5L/4OOVrlvPkmFHEN21sdqRq1S4mCnd5GUf+ehXlm9eZHcc/tW8PL74IV18NwcFmpxGTqIAlIiL+KygIe+NGpOWXnvxYOU5BhVO7ncnx2rXDeOABnl+xh9QaXBROLygls6iMh39O4LxJKzjYvjOuVasgIsI7A7Rvjy0iglX/6zF3EoZh8N+dGbiuvEpLCKXGMYqLcezZSd7zj1H83TQevOISerSKMztWtesYG8ML466l2ZEMsm8dzZEJf8OxL8nsWCJ+Rz2wRETEv8XGkpafdUanljscLNq63cuBfN+hI7lkFxZDs5rf60hO01NP4fpiMg/O38631/Q2O02VGDx5Bck5RVgDAjBefhnXgw96dyai1Yr73L6sSNl2SodvycwnOSsfrrvOexlEzFJQAJMnw7Jl2BYuoCI7hwogMDCQIV06YrFYauX77v9c1bcnuw4cZMna5RwefT5B5/QjeOjFWMM9BXSjrAyCfGh2UUkJBAR4fkR8gApYIiLi15zNYzmw7cBpnxeGA4wiqKiCUD7M5TZYtHkbNGgI559vdhzxNeHhOF9/g5k33sgvyS24IL7mLfMpc3p60Lg3bYJOnapggDKs6ekUOk+t183XCenY69fDqd9H8WfZ2fDWW9jefgtLcQm9YyKpW9dGg+ataFivLpGhwVgsFqjINTup6fo2CaVnw26sTT3E4i3rKNi8DtsNN2Pr1BmCgnEF+dBX9CuvhJ9/hg0boGdPs9OIqIAlIiJ+LjycfMfpNUUNCbDRBBdQO5pV/9r3iRkczC+CpydoCaGc2PXXY3v/fe78KYHttzUk0FazOk60bVCHgwOHVk3xCuDBB7EmJvL+rYNOeuj/lg86R1+nGQ7iPwwDpk7F/o/HMJo2w9WjB9ZJnxPocnFXz1ge6tea6IgQvt15kFLH/95ny02N7HMCoF27BlzVsi6vr0lmz5L5OC8ccuz5kBDToh3nhhs8BaxeveDjj2H8eLBYzE4ltZgKWCIi4t/q1KHIcXqFqKs6RFVRGN+2I6uAv3y/GSZMgKefNjuO+CqLBdd775HUsyfvrEliQv82ZifyqqvbNWXJ3LkY27ZBly7evfj06fDhh7wzshtdm5y8QLzuYB4HjhRq+aD4j127sN55J+7FixnRPoojmcnsmLKNe3q34N6+8TQMPdbHrba+156uhmFBXD1trWeGU4cOZsc53s03Q2Kip3n6bbdhWbwY46OPoE4ds5NJLVWz/qQmIiK1T506nobk8qcMw2Dcd1ugZUt49lmz44iv69YN4847eWrZHg4Vlpmdxqtu6xVHi8g6WP/+qHcvXFSEbfytjOkUw2294k7plK8TDmBv1BDOO8+7WUS8raQEHn8cS5cuNN+2gbk39mP2tX1YdvMAch66iH8N7XBc8UpO3cg2TYgIDYYvvjA7yok9+yzWIUMAML78ElvnzpCQYGokqb1UwBIREf+WlETT0ECzU/i8wgonGw7k4HzkUd9ZmiC+7bnnKA+tw6O/7DA7iVcF2qy8MrQd7rnzYOFC71146VJcBYU8O6Sdp9fPSbgNgyk7M3COuda7TeRFvMXlgjfegGXLsLdvR8Crr/D0gNbsumMIF7duYna6GiPIbuP6Dk2xT54E7tNriVAtbDbcU6diGT0aAFdqqmf26nvvmRxMaiMVsERExH85ndjmz2dEywZmJ/FpBwpKeWDe0b+WlpSYG0b8R/36uF56if9uTWNFWo7Zabzq6g5RnNO8AbZ/POa9iy5YQJN6dWjb4NSW1qzcf4TM/GItHxTftXo1PPQQDB5Mi9ICdtwxhKeHtCfYroKrt43r1hxn+kHo3x/LgAGwZAmUlpod65gmTTCmT4edO+GaazyP3XOP5w9ihmFuNqlVVMASERH/tW4droIChrfSX4J/Laekgunb0zEMgzUHjtDq3QVMTiuEt9+Gu+4yO574k1tuwdazB/f/stPsJF5lsVgY1boxlqQk71103z5aRgSf0uwrOLp8sFlT6N/fexlEvGnFisqbzw5uQ+tI9T2qKv1iIj031qzBWLkShgyBO+4wNdMJtW8P06ZBSgqEh0NZmZq6S7VSE3cREfFfP/9MeGgQvaPrmZ3EVE63m38u3MmaQ/l0jAzj/fUpAPRoWheH28AVEoorJQUiIkxOKn7HasX1t9vYdPfduNwGNmvN+aLicLuxeHPnvwsuYN3sWeSVVVAv+M+XNbvcBl/tysQ5/naw6u/J4pssy5ZybmxD7usdxzUdo82OU6NZLBbm3NCP++ZtpUXdUBakZEFBgdmx/lhcnCefLy55lBpNBSwREfFbtrlzuCiuIfZa/AWwuMLJmBkbmJt0GOOSS1iRtBdb58646tZlU2QkOByeGR4qXsmZatECt9vNwcJSmtcNNTuN1zhcBnizgDVyJK677uLnpCzGdPrzL/tLUrPJKSzR8kHxXW431uUrGN6tKdd1jjE7Ta1wSZsm7GlzIQD9P1/BquBgkxOdglr8+UvMoQKWiIj4r4QE+vRraXaKarctM59VB3LJLiln+u5MtuWVYfz4IwwfjsPscFLzxMYCkJZfswpYFS43BHpxA4jYWOydO/FDYsZJC1hfJ6RjbxGLs3dv740v4k27duHKy2NgbCezk9RK5zaLYNXUqVjKyzCefwE6djQ7kohPUMlURET8ljUyktzSCrNjVJtSh4tH5yfQ7ePF3D5nK09vziChcSyupctg+HCz40lN1bw54Clg1RSF5Q42Z+Z7t4AFOC+/gu+SsnG5/7ipscPl5uvdGTivu169Y8R3rViB1Wqlb0x9s5PUSq9c2JlJo3oSvWSBZ8e/H34wO5KIT1ABS0RE/JYRFcWhojKzY1SLVfuP0OnjJby2Pg3jhRehrAxnzhGcGzdBz55mx5OaLCICW0QEafn+v4OlYRjM2JFOmw8Ws/BQIY7H/uHdAS69lPziUlYfOPKHhyxIySK/uAyuvda7Y4t406ZNxEbWoU6gFuyYwWa1MK5bLEl3DWVkmybYxo6F/fvNjiViOhWwRETEbzmjY0gvqvkzsLZl5nP+lFWkxbfHvWULPPaYd3v3iJyEtXmM38/ASsktZsRXaxg9fR2HBw/FvXMXjBvn3UH69MHeIJLPN6fh/E1z4zKni2Wp2by2ai/21q2ge3fvji3iTUOGsC+7gC0Z+WYnqdUCbVYmX9GDxjixjRnj6WspUouppC4iIv6rWTPSV9XcD3M/JGbw6so97C0op6JtO1wLF0JYmNmxpBZyxLVkX+IGs2OckQqXm1dX7uFfy/bgbtwYZs3CuOKKqhnMZsN5733855lnWHggj791jSavzMGi/blsPJiL0+nCVicM13uvavmg+LZRoyAggLfWJPHpFZrla6bIkEC+uaoHgz5fAU8+Cf/+t9mRREyjGVgiIuK/MjIIs9fct7Jvdx5kSWoO6blFuL77XsUrMU+LFiT74WzHJfuy6fzxEv65JJGK+x/AuWs3VFXx6n+efhrWr2dfn4E8vmQ3ryUVsPbcYTjfeBM2bcKVl+/9mV8i3jZ1KjgcfLY5jcPF5WanqfX6N2/A/w3rAC+9BPPmmR1HxDSagSUiIv6pogLbT/O4ones2UmqTPuG4Z5ZGmvWQFyc2XGkNmvRggN5xWanOC27swsZMmm5587cuXDxxdU3eK9euH/4AYqKcIaFabaV+JeCAvjxx8q7t8zeyA839DMxkAA83L81c5OyWP7Iwzir8/9nIj6k5v7ZWkREarYlS3AVFXNZ26ZmJ6kyb6zfBzfcAL17mx1Farv4eIpKy0k4XGB2klPWKjKMusFHe8WFh5sTok4dFa/E/+TmwrRplXd/3JNpYhj5H6vFQlzdYAgNNTuKiGlUwBIREf/03Xc0q1+Hrk0izE5SZc6PjcS+Yjn8phm0SLW77DJsreK5Y+42DMMwO80psVutPNq/tedO377mhhHxJy1aVO6S2TcmkkMTNNvHVyTll+GMb2V2DBHTaAmhiIj4H8PAPnsWV7VuhMWE2Q3bDxdwz9ytLE/LISIogPrBAdQPCaBesOcnrm4ozwxpT9hZbj9+W88WTPl8uWcJYT8t3xATBQXh+uBDVlx0EVO2HeCmrs3NTnRKlu3PxXrhBbjt+sgrclreew/bvHl0aRRO0zrBZqeRo5ILyjwFRpFaSjOwRETE/yQk4Nx/wJTlg27DoPMHC1m8Lxun2+BIaQVJucWsP5jHL8lZfLPjIK+u2ovTffazVEocLs+NRo3O+loiZ+3CC7GMHs0Dv+wkr8z3G7q7DYPlB3JxDz7P7Cgi/qdBA1zPP88nm9PYeCjP7DRyVNPQQKzr1pkdQ8Q0+nOUiIj4n+++IyQokCFxDat96Clb9wNwRbumPDOkPXarFZvFgs1qwW61YAEMONZ75yysOZCLrV49XK20XEB8g/HGG+S2+5GnFu3i7Uu6mh3nT20/XEBRaTkMHGh2FBH/dMcd2N5/j3t+SmDFzQNMmfEsx3u4TxzXz1gImzZBjx5mxxGpdpqBJSIifsc2exYXxzckyG6r9rHHzdoIwBdX9qJ703p0bhxBh0bhtG1Qh/j6YbSsH0yIVTIAACAASURBVEZ8/TCvjLUiPRd33z5qAi2+IyYG97PP8e76FJ+flbE0NQeL3QZ9+pgdRcQ/2e04336HVanZTN9x0Ow0AozuGEVMZDiWV14xO4qIKVTAEhER/5KRgWv9Bq4wYfmg81fN1MODzn6G1Z+N8+C8bczfm4lx+RVVNo7IGbnvPqzt2nH73G24fbSh++xdh3hk4S6s55+vHbtEzsYFF2C5/DIeXLCTEofT7DS1nt1q5W9do2HGN+Cj//8VqUoqYImIiH85eBAMg1aR3pnldDru+GELAP8+v2OVjVFU4eSiL9fw1vp98O67cOedVTaWyBkJCMD14Ues35/Dp5tSzU5zHMMweG7JLkZ9vYayESNwfTPD7Egifs94/Q0yisr5eMM+s6MIkJpXgq1tW83OllpJBSwREfEvXbpgDQlm5f4j1T70J0e/rD/cv02VjfHM4l0sSc/H+PlnuPtufUAV3zR4MJabbuLhhbvILik3O02lfy3ZxVOLd8G//oXxzQyoU8fsSCL+r1UrrD17sCkj3+wkAixKz8d53hCzY4iYQgUsERHxLwEB0Lkzq9NzTYtgs3qvqJSSW8yN364nJbeYHVkFvLk2GfeTT8KwYV4bQ6QqGK++SpEtgH/8ssPsKACsTc/luWV74Omn4amnwKqPuSLe4mzdhj15ZWbHqPUyi8pIycrX5hRSa+mdXURE/MvixbjXrefClo3MTuIV+eUOvtx2gPi359Pp/YVYWrSACRPMjiVyck2a4Hrx//jPplRWH6j+GZG/VupwccPszVi6d4MnnjA1i0iNFB/P3rwSs1PUesvTcjw3Bg0yN4iISVTAEhERv2J9/nl6Rkdy+zlx1Tpuhct98oPOwIzf7OzkfPc9CAqqkrFEvO6OO7B178Ztc7cdt8lBdfvHgu2kFJTh+u8UzyxNEfGubt3Iyi82vVhd2y1PO0JAbCxER5sdRcQUKmCJiIhfsTgctI8MxVqNvaFcboOg578DYEK/1l677pSt+3l+WWLlfcs558All3jt+iJVzmbD9eFHbDuUxwfrUkyJ8EvyYd5ak4z73/+GDh1MySBS440aha1rF+79eTuGdr8zhdPt5vvkbBznnWd2FBHT2M0OICIicjrcoaGUHnZV33iGgf252QD0i4nk1Ys6e+W6q/Yf4aaZG457zJihHdPED/XtC+PH84//TuKaTtE0rRNcLcMahsF/NqZyz08JWIcNw33ffdUyrkitZLPheutt1g8dylcJB7ihS3NT47jcBqn5JezMKmRXdiE7s4vYllNMSn4p/aPqcl3HKC5t25Q6gTXn6+7ba5JJyi6Ae+81O4qIaWrOb7SIiNQKRkgIpc7qW6o07miRqU6gnRW3eK/nxHWzNx27ExkJSUlQr57Xri9Srf7v/yidPJmvth3gQS/OUvwjRRVO7vhxC1O27ofbboO33lLTdpGqNmQIlitHMWHhfEZ3jCbQVvW/c6UOF4k5RUeLVEcLVUdKScouoMLhBMAaEoy1XTucgwZCTAw/LPiF2TPWExRo59LWTbi2YxQj2jQhzI+LWal5JTyxeLdnd+Levc2OI2Ia//0tFhGR2ikkhGJX9S1fWLHf0+8j7YGLsHhp2eK+vGLScgo9d3r0gPXr9eVb/FuDBtjatGZ3TlGVD7X9cAFXzthAUlEFTJkCN9xQ5WOKiIdxzRgyZs6iqMJJZEhglYyRnFvM++tSmJZ4mANHCiuXLNobNsDdoSPuQZ2gfXvPkuH27XHHxOD+1XuoCyAlhfLp05k99StmfLOO4MAALm/ThL90a84lbZr86fiLUrI4L65htbYqOJlXVu6hrMIBzzxjdhQRU6mAJSIi/iU4mJIqaqh+Inf0iuOxBTuYvfsQf+newivXXLwv23Njwwbo2dMr1xQx1ddf405LIzs6vEqHmbwljdvnbMPRqhXuJTM9X2JFpPqkpBAeGuz14pXbMJifdJi31qUwb08m1ogIXDeN9fyR52ihyhkZeeoXbNkSHn0U56OPQlISZdOnM2Pix0z7chWlT1xGsN12wtNS80oYNnkFTw5ux7NDfaOn3sHCUj7dnAY2G5SVmR1HxFT6c6+IiPiXal5CeEsPT9Hq/d80qH5x2W5eW7nntK/nNgym7TiIvWsXFa+kxrC9/DLxAQbvj+xWJdcvdbi49btN3DxrI2XX34Br/QYVr0TMsHcv8ZFhXr1kudPFwMkruXjKKn4OaogxcSKugwfh3Xfh1luhf3/PUvsz1aoVPPYYrjHXAnDNN+tJyS0+4aFbMvMBmL370JmP50XL03LoOnEZjoaNYOVK7T4otZ4KWCIi4l+Cg6u1gNUoLIiezer+bvfBJxbu5OH520/rWoZhcM+crczdexjnP5/0ZkwRU7nGjCG1oIwgL/fEyS9zMH17Oud8tpzPd2bCp5/C559DaKhXxxGRk1i7Flvvc+Czz+jXxLszLR+Yt401B/Nh3jxcW7Z6ilZV8Tv+5JPw4YfMLYC//rDluN0UDcPgrdVJjJq2FoA6QVWzPPJ0TN+ezpDJK8jt1hPnps3Qp4/ZkURMpyWEIiLiVyzJyYQHVO/fXzbcNvSsr2EYBhN+TuCD9SnwySdwzTVeSCbiI266CcfjjzN5SxpjOkXT5E92IswpqeC73YcorHDSrE4wUeHBNAsPplmdYILtVhJzivghMYPv9maxIi0bl8uNvWcP3D9Ngi5dqvFFiUilRYswNmzkv1f24qoOUSc9vKDcwZurkzhY+Pslb7/uLFVQ4eTLbQfg449h+HAvBj6B0FC4/XZc0dEsuewyvk/M4PJ2zahwublnzhYmbkyF88/HunIlsfXMLZI73W4eWLAT14iRMGMGBASYmkfEV6iAJSIi/mPfPpg9mzsu9p0vsc8t2cVjA9sScJKZJ/9cuJM3Vid5lkTccks1pROpJtHRWIYN4755v3D/Twnc27slzw7tQN1gz5euI6UVzNp1iK92HGJh8mEMwGK3466oOO4yIUGBlJZXYA0KgmFDcT98GYwcibOFd/rPicgZatMGt2FwTlQ9QgJO3D8KPH+smbY9nXvn7yDH4cZ6dKmv5dgBx59gAx4fC+PHV0nsExo5EuuwYTzwy3p6R9VnzLcbWHEgFz79FPurr+AsLWXmjgOs7h3HuTFnsXTxLHy78xAHc4vguedqZvGqpAS+/x5at4ZevcxOI35EBSwREfEfb79NeHAg47o1NzWGYRg0rRdGRl4xTy3exb9XJzOsRQOGxzfiwvhGBNttJOcWk5JXQnJuMVszC/g+MQNee82zBbZIDeR+5hlo0QKjZUveffEFvtyVwQO9WrDsQC6/JB/G5TawDRqE+6Gn4KqrMBo3htxcOHQIDh6EQ4cozciAjh1xDxumZYIivqRfP2yR9en84WJu7BLNI/1a06lxxHGHJOYUcdfcbSxIysQy6gqMt9/B3dzc9+sTslhwp6SQkl1A1OvzsEVGYixaBB07wsMTACh3urlh9ma2/W0wYYHV/5X51TXJWM87D3e3qukraLoZM2DcOM/tlSuhXz9z84jfUAFLRET8Q2Ehtv9M5M4ezU35MPlrFouFtX8ZwO1ztjI3MYOSsgrmEMGPv+zAcDh/fSABTZvibtUKHngK7rzTvNAiVW3AAM8P4B43jpwH7uefM2dhGzgQ1/3/hKuvxtW06fHnREZ6fjp1MiGwiJyyZs1wpeyDiROZ8vprTPpgIQNaNKR5eBDhgXZcboPJCekQFQU//IAxcqTZif/cAw/A/fcD4Bo2DNq1gwYNqHwHb9OGlD17WLn/CBe2alyt0Y6UVrBufw60qtZhq9eYMccKWP37w1NPwaBBcMEF5uYSn6cCloiI+IfPPoOSEu7pE292EgCa1w3lx+v6MjUhnbt+SqAwLAz3kVxYvtxzQHw8tGiBIyjI3KAiZmjeHGPGt+Bw4KqJy19EaqOICJgwAed998HUqayYORNrbi7WggIspUU4H/07PPGEf8yevO8+uP12mDoVOneGRYsqn7JFReHOOkxIgI2EwwX0jq5HveDqa+o+NeEAAJau3TBOcqzfCgqCzZuhe3fP/Wef9fybmgqxseblEp+nApaIiPg+lwv7G68zukMUMREhZqepZLFYuL5LDG+s38e6uDioUwcuvtjsWCK+Q8UrkZonIADGjoWxY3ED1bcvsJcFBcHNN3tud+sGmzZBq1a4cnOhZUtK3G4mLNzJS2tS+OqK7gxt2ajKI63cn8Pdc7bC/fdjvP56lY9nqm7d4OWX4dFHCQ2wUeJwQX6+2anEx1XvNk4iIiJn4vvvce5L5cFzfXM+/ZGSCmw/zYOa/mFTRESkJrLbPbOBwsM9M4CysqCsDCMpmUy3lWGTV5CaV1LlMXZkFYLFAq++CtZa8FX9oYcAPMUrgK5dIT3dxEDi62rBb4WIiPg762uv0Te2IX2i65sd5YTW3TKQv7RtBBMmwIEDZscRERGRsxEZ6ZmhFRsLb78NQHJucZUPe6iwDHuDSE9BrTaw2WDHjuMfe+EFTxFv2zZzMolPUwFLRER82/z5uJcv5+G+Lc1O8ofqhwRyTccoz52MDHPDiIiIiPcc3SHPYqn6oTKKyrE0aVL1A/mSDh1g4sRj9z/4wPPvLbeYk0d8mgpYIiLisyzjx8NFF9GpWX1GtW9mdpw/VFju4I6ftmPr2cPT00FERERqhhYtsIaE8OrqZCpc3u/4ZRgG2SXlrNyfw6aMfJzRMV4fw+eNH//7x9av9yzl/LUNGzy9ytx+23lNzlItmZsoIiL+yMjOpmuzemwYPwi7D/eCuGfuNtJKHLinfq2m1SIiIjVJcDDub75h7qhRXPPNer4ZfQ4Btj//TGIYBt/sOEhkSCDnx/+++ft/t+5n7MwNtIisw5EyJ4UlZceeHN/f26/AP2RlYWvditvaNGB0xygu/nI17vMG4xo7DoYOxfL66xjTpwNg69Ed18ZNJgcWM/jutwEREZFBg9idU4Tho/tI784u5NbZG5m8JQ33+x9AmzZmRxIRERFvGzEC97ff8n3SYZq8OZ8bv13P5C1pZBSV/e7QwnIHo6evY8w367jgixU8u2QXxtEPMgXlDh76aRtjZ24AIJVACp94EqZPhy1boLgYnn66Wl+az2jQAEtUFLllDoa1bMT8G/txlbWQ4Geehn79iJz3I5NH9aRTk7oY9XyzJ6pUPc3AEhER3zVgAOUVTjZl5FdbA/eiCicF5Q6a1QnG8quGF2VOFzuzCtmaWcC2wwWsz8hn6b5sbI0awptvwrhx1ZJPRERETHDppRhr15E7bRrT5s7hy1kbAegcVZ+RLRsyvFVjwgLtXDdrEynZBZWnPb14F5e1bcp3uzN4dW0KReUOT/Py2bNh5EizXo3v2bQJ585djL3hXADOi2vIeXENKXE4WX0gl57N6pJVXMH2zI3w+gmWHEqtoAKWiIj4rp49sQYFsSItp9oKWA/M28Ynm1KpHx5Cr8YR1AuysSm7hJTsAtxHey4ExDbH0e1c+OconDfe6NmpSERERGq27t2he3ecL74ImZkwfz4J8+ax66d5vLRiDwC2bl1h5TfQujWsWIHtumvp+fFiz/njx3tmWMXUwj5Xf8Qw4OefsT34IJERoVzUqvFxT4cG2OnWpC5p+aW8syYZW0QEriuvNCmsmE0FLBER8V2BgdC7N8v2J/Ngv+oZsszpAiD3nHNZUKcO1vx8XMO6Qpcu0LUrdOqEIzy8esKIiIiIb2rSBG66CW66Cafb7VkCuHs3rlGjIDjYc8zAgbiSU+DDD2H5cnj/ffXK/K1nnoFnnyWuQTjTruvzu56nPyZmcPnXa3C7j/aTeOwxCAmp/pziE1TAEhER32UYWMrLKXBU324zZc6jYz38MMaIEbiqbWQRERHxS1Yr9Ojh+fmtwEC47z7Pj/ze+edj/3IKSXuT+NfSRJ4f0o4uTeoC4HIbPLRwFwwYAC+/4ikaxsWZm1dMpSbuIiLiuxYuxLVuHQ/1iau2IUucLhg1CkaMqLYxRURERGqlwYNx7twFkybxY4mNcz9bXtn0/r9b95OYmYf71dfg3HOhZUv4VX9SqX1UwBIREZ9l/de/6BYdySWtm3j1uhUuNzklFSd8rtDphtBQr44nIiIitYjDAatWQWnpHx/jq1ssV4eVK6FuXZg3z3Pfbodx43DdcishQYFYLBbKnS6eWJqIZdQV0KePuXnFZ6iAJSIivmnZMtzLlvGvgW2O2w3QG15ankijV+cy7L+r+GJLGmn5JcxPOsxrK/eQmF0EYWFeHU9ERERqkV9+gf79sUZGYrnicvjsM8jKArcbli2De+/FHtUM61VXmZ20erlc2K643LMksKAAvv0WXC6YORM+/RSSkoiJ8PQP+3jDPg7ml2C88KLJocWXqAeWiIj4pp07Ac9M8R1ZBRgGbDyUx01dm591QSuzuBxLwwYsjWrLolnLKh+3hYZg6dwZatsHShEREfGeo03c7+kaxerNq1j3/Q8YgK1ePVy5uTSuG0aLsAA2/jLfU9Sy1pJ5JRMn4vrue94b0ZV3N6SROGsmrokTjzukWevGfJ1wgKeW7cEYOxY6djQprPgiFbBERMQ3jR8Pt9/OFVPXHPfwqPbNCA86ux18ypxurC3icC5dCvv2wdat0LEjrvj42vMhUkRERKpGq1ZY7DYqXG5W/2UAh4vL+SExg6TcEka26Uy/5pHMTzrMxVNWQVIStGljduKql5mJ7bG/c3OPFtzVO55L2zbljh+30CQ6ls83p1UeNm/vYebtPYx1+EXw73+bGFh8kT6li4iIb7JY4JxzPLfr1QPgus7RZ128Aih3uXAXFkB+PqxYAYsWgYpXIiIi4g2xsRgffsSHG/bx8M8JNKkTzK0943jx/I4MiG2A1WLB/b8WWF99ZWrU6mKZMIFwZwUvX9AJgNi6ocy5oR/39Ymnfp0Q7F06Q3ExTJ4Mq1fjnvcTNG1qcmrxNfqkLiIivsligXXrPE1OjzZVn5qQ7pVLX9MxGvfuRE9h7Kab4M03PYUsEREREW+46SYAXl+dxM6swt89vTkj33OjdevqTGWORYswpkzh9fM70CA0sPLhJfuyGfTFSgradcS5cJHn897YsdC3r4lhxZdpCaGIiPi+I0cAiIkI8crl8socv38wMREGDfLK9UVERKSWCwrC2qwp7kMZhAbYADAMg56fLKNRaCBBFoOAzp1w3HCDyUGrWHk59ttvo3eLhtzcPbby4e92H2L0jA24Bg7CPXs2hIebGFL8hWZgiYiIb8vNxeJw8N6IrqQ9cJFXLjmqfTNa1P1VMezbb+GWW7xybREREREA9+Il2KOjGPTFKr7ctp/laTlsTj/CgpxyfkjMxNGps9kRq9aWLVgvvBAjOZmPR3TFenQTnh1ZBVw5bR3OSy/FPXeuildyyjQDS0REfNuOHRguFxFBAWe9+yBAal4JQ6asZn+ZG15/He67D2w2LwQVERER+ZW2bXGuWMmhkSO48dsNBNis2KOjcO7cBe+8A4MHm52wamRmwj//CZ98QnyjCN6//lw6NAzH8q9ZAPx9QBvcbje88CIEBZkcVvyJClgiIuLbgoIgKIh/LNrFTV2bn/Xlpu9IJ624AveWLdCunRcCioiIiPyBFi1wbkuA1atxfPUVDBjgmXH0+ONmJ/Mew4BPPsE2eTLWwgLce/YQZrh5fnhn7jinJXarhb9+v7ny8JdW7PHcuPBCOHDApNDij1TAEhER3/bmm1BeTkyjUHJKKo5r/nkmEnOKsLZrh1vFKxEREakOFgv06+f5qWkqKuCee2DiRIa3aUJMeAjRvWO5u3d85We2hMMFTNqU6mls73BA+/bQsSP06mVyePE3KmCJiIhve+klWLSI1QcOsjQ1mys7RJ3xpbKKy1mfWYhzUA38ACkiIiJSnTIzsV15JZZ1a/no8h7c0qPFCQ/7bvchbGGhuP7zHy0ZlLOiApaIiPiuxESs5/bFnZvH6xd1PqPiVcLhAt5cncSi9DySDx/dsrp/fy8HFREREalFUlIgPp564SF8P24A/ZpH/uGh3+7Jwj38YhWv5KypgCUiIr7F4QC3G+x2WLAAd24eAK+t2suD/Vqf1qX25RVz3n9XkV+vIa7RN8LAgZ7eE7GxJz9ZRERERE7sxRcB6NGozp8WrzKKytiwPxuev6K6kkkNpgKWiIj4jiVLYMiQEz61/JZBp3Wpogonw6euo6BBY1xr10GjRl4IKCIiIiLWPXuoFxLAbT3jSM4tJr5+2O+O2ZlVyMPzt4PVCiNGmJBSahoVsERExHe43Sd8+JtrehNX7/cfjP5MZlE5SdkFuMZcAg0beiOdiIiIiACWzAyOlDoY8806ALpFR/K3rjFc1zmGbYfzeW99Kt/tycTduDFMmaLPYuIVKmCJiIhvOP98WLjwuIfqBNpp3TCCq86g91WryDA+vaw7N3/1FbRrB08/7a2kIiIiIrWaa9ZsSE2FsDDIyGDr5EncO2cO987bhmEY2Nu1xfn8C3Dffep9JV6jApaIiPiGuDjPv3Y79i6dce3YwfBWjfjqql5YLJYzuuS4brGk5Zfy5DPPYP/gfVy9zsG47DK44w7v5RYRERGpbdq18/wcZVx9NRw+DDNnQuvWOIcNgzP8/CbyR6xmBxAREQHgk08gKwuKinBu2oxRXsGMHemkF5ae1WWfGNSWH64/l0fb1KPThhXYHnnYS4FFREREpFLjxnD77Z5Z9SpeSRVQAUtERHxHw4bw6afHPdTyrfl8v/vQGV/SYrEwsm1TnhvWgX7R9bBoGruIiIiIiN9RAUtERHzLhRf+7qHPNqed1SUTDhfQ//MVTNyYinP8+LO6loiIiIiIVD8VsERExLe0bu1p+HnUJa2b8O6Irmd0qRKHk3/8sp3uHy9mQ1A9WLQI/v2St5KKiIiIiEg1UQFLRER8zyWXADC6YxRzbuxHVHjIaV8ir6yCTh8v5eV1qbiefgbntgQYMsTLQUVEREREpDpoF0IREfE9EycC8M2OgxwqLKNZePBpX2La9oOkHinC2LoVOnXydkIREREREalGKmCJiIjviY+vvPnKyj28PrzLKZ3mdLsJeO47BrdoQKkbLMOGYah4JSIiIiLi91TAEhER37JhA7z6auXdYS0bnfKpdqtnZfzS1BzPA2/f7dVoIiIiIiJiDvXAEhER39KkyXF3L/tqNQmHC07p1I837MNqtUJEBCQmwqhRVZFQRERERESqmQpYIiLiW2JiIDX1uId+TMwgu6T8T097Yelubv9hM+477oCcHGjTpipTioiIiIhINVIBS0REfE90NFx1VeXdxxbs4Ist+//wcMMw+OeinZ47110Hdq2QFxERERGpSVTAEhER32Oz/W7530M/J/DU/4pUv7E9q/DYncGDIS+vKtOJiIiIiEg1UwFLRER805gxv3so0Hbit60Aq4WrO0Rhs1gAsF55JTgcVRpPRERERESqj9ZYiIiIbwoKwh5ZH+eR3MqHpiceZlZSFjFhgbw9vDMfrd/HpIR00vOKsdjtGJGRWIqKcK9YAWlp0KqViS9ARERERES8RQUsERHxXVFR8KsC1tYRV0FxMRu+/JLZOw9iCQrEKK/AarUQXTeUtvXs7HYHcKhJNK7f7GYoIiIiIiL+S0sIRUTEZzmXLMVy+22eO3fcARMnwpdfVj5vXDICm83K2C4xjG7TiMcHtOan6/sQkJKM5W9/A8MwKbmIiIiIiHiTClgiIuK7IiMxPvzIU4jq1On3z995J+4LLmTSzkzeWJ3Ed7sP0bFRBJ9f2g1j6lT4+99h375qjy0iIiIiIt6lApaIiPiHe+6B7Gx48EHsLeOgfTsYPhwjNBQqKggLsHFfX0/Pq2s7x/DU4HbYX38dWrbE3qUzPPkkrFsHbrepL0NERERERE6fClgiIuI/LBb4/nucKftg127PYzNnAlDscNHq7fm8tToJgH8N7UDOIxczbXRvrrPmE/H6q9CnD/aoZnDbbZCcbNKLEBERERGR06Um7iIi4j+Sk2Hv3j895IGftvHOpv00DAmgcZCNBqGBpBeU0Sw0gIKSMpyZh+E//4F+/SA+vpqCi4iIiIjI2VABS0RE/Mc553j6YRkGFBbCkSOQk+P5NyMDcnOhoICknBySjj5nz84ibFgHChJ2wr0joX9/6NMHIiLMfjUiIiIiInKKVMASERH/Y7F4ClARERAX96eHOoH8agklIiIiIiJVRT2wRERERERERETEp6mAJSIiIiIiIiIiPk0FLBERERERERER8WkqYImIiIiIiIiIiE9TAUtERERERERERHyaClgiIiIiIiIiIuLTVMASERERERERERGfpgKWiIiIiIiIiIj4NBWwRERERERERETEp6mAJSIiIiIiIiIiPk0FLBERERERERER8WkqYImIiIiIiIiIiE9TAUtERERERERERHyaClgiIiIiIiIiIuLTVMASERERERERERGfpgKWiIiIiIiIiIj4NBWwRERERERERETEp6mAJSIiIiIiIiIiPk0FLBERkTNlGLBnD/z3v7Bpk9lpRERERERqLLvZAURERPxGcTGsWwerVmFZsRzjxznHP//MM/D006ZEExERERGpyVTAEhER+SNlZTBzJqxYgX35MlwJ2zFcLsJCgiguLf/d4ZaZMzFUwBIRERER8ToVsERERH7L5YIpU7A/8TjOA+m0bFSXLpEhZDaNICzQxt2947l1zjbyh13oKVg1aQKNGmEEBpqdXERERESkRlIBS0RE5H8MA+bMwfboI7h27OSyjtFcN7o3k7cdYM7ewzjdbuxNGrNw2lps9etjTJwIjRubnVpEREREpMZTAUtERGq3+fOxvPYaRqdOWNeuxb18OTH1wji3UzQHiiu49pt1xx3ufPMtiIvDVaeOilciIvLnKipg5kws06Zh27oF563j4a67ICLi9K+1ZQssXw5jxkCjRt7PKiLi47QLoYiI1G6LFmGdzjpVAgAAIABJREFU/zMxk/5D1307eWpwO1Lzivl6ezorHIFw441Y4+KOHX/dddCrF3TqZFpkERHxE++8A9ddR7e1ixkTUo79yX9iax4DTz4J2dknPmfLFiyjr8Y2cAC88opnt1vDwDZuLNxzD5aoKCxXXw07dlTvaxERMZlmYImISO1SUgJLlsC8edjnzsG5Zy/N6tdh/z3DACh3uggJsDFxazrJ6enYly7BOf5v8Mgj4HR6zrfr7VNEqlFhoaeIsWcPJCZ6/i0rg2bNICrq2L+9e0PdumanlV9zu6kTEsSmWwcD8HJBKa+t2ssHL79E2QsvYLHbfnWwBQDD4SC2QQSdG4Yx/4nHqXj0UWyxsbjS0vh2TB/S8kuZMGsmrvr14d13ITj4zPNlZnpmdu3b5/lJTcWWnIQ1MxPHTWPh0Uf5//buPD6uut7/+PucmcnMZJLJ2qxt031f0pYW2kLZFxGoKALei1ev21X5ca9X8Qr6++lVQUFUFOGiILhc9aq4IAoClxYKLQVLW5quadp0S5qmTbMns53l98dp08ZuKW2Saft6Ph7fx8yc2b4zSSbnvOf7/XyVlfXOH3+guK6USnl/F/G4lEgc+zSZ9P5mRo2SCgslwxjs3gPoI/bAAQDnjqVLZVxxhdxEQqV5Wbp+ZKGuvnmOLh95aCpG0O/TXReO0xfmj9Xru5r1k7d36uf3fF2p9nbp29+WsrMH8QUAOOvF49Jjj0lr18qsrpa5uVpW496eq3OzwhpXEFGmz1RdV1J7OmLq7PZWRTUCfhmXXy7nfTdJN9zANOdjcV1p924vuKmqkjIzpQkTvDZ0qGT2cZKK63qnRwtAXFf629+kl15SPJnq2VweDeu7V0/VFy8apz9talDSduXK7fVwRZGgbpxYKr9pqitp6X9r9+rpTQ0KF4/SjRPL5Liuvr6sRvufeELGz34q36RJsmbP8UYHz5olTZvWt1CrqUm+8eNkt7XLNAwV52ZpVE5Io3NCysg19bP7vinnRz+U/Y1vSrfdJgWDfXtfTpXrSuvWSb/9rdTa6v0uX3KJFAgcedtkUnroIfnu+brstvaTfipfJFPmiJFKjRkjjR7thVoH24gRA/eaAfSJ4boHPyqB02/VqlWaNWuW9ItfSP/4j4PdHQDnqqoq6cEHpV27pEWL9PpHFuiCoXky+vit6z2vVuvLr9XI3bhRGjOmnzsL4JzT2Snt2+cdMG/YIE2ZotKcTF08LE9j87M0rsBrY/MjygsfudppLGVrV3tML2xp1FPVjVq6fZ9cw5AefVT6xCcG/vWkq+9+V7rnHvnlympplSRFwkElLUuplC1JMkMhmWPHypo8+VCoNX68N3Ln4Ci4mhr5qzfJrdkiu6tL/uwsGTk5Um6u7Px8OXn58m/cIGtTtUpzs/TZ2RW6c97Y0/pSYilbVY1tWtXQppUNrXqjsUObGltl244Mn0++iRNknTdbOu88L9SaPt0LgN5+W3rtNenVV+V/dYl8nR1a9bEFGpufpYCvd3C3vbVLdy/aqF+vq5Ph88k/ZrRS06Z7AdmUKdLUqdLIkScO/FzX+z/8/PMyn31W5v4mWf/+WSkjQ1q3TkZVlfxrq+RmZMi6+hr5X3lZVvVmZWcGFQ0GVN/SKV80Kvv666X3vle6+movdHz2Wfk/829ytm3XJ2dW6PyheQr5fQr6TIX8poJ+UyG/zzvv8/Vs8xmGdnfEVdvSpdqWbtW2dGlrW0yb2+Kqb+6UZXu/CzIMBUpL5IwaLXvMmN7h1qhRXkB8+H6EZXmBW2Fh79efSEgPPSTl5kof//hp+Omjl1/+UrrtNq1cuVIzZ84c7N6gnxFgoV8RYAEYVD/4gbdDuX279NBDmlSWr4jP0JIPzlM44Dvh3Q9qjiU15IG/yrnnHumLX+y//gI4t7z4oncwfoA/P0/2hRfJXbJEozOkTZ+8WP6+jgY6zJOrd+ijz6yWPvIR6fbbpUmTTm2a2ZnGdb0gYedOaceOQ6ff/rYkaWRuph68eqqml0RVkZMpx5V2tnVrU1OnNjV1aFNTp9Y3d2nj/i41d3T3euiCaETj8zM1ITessQVZyg0F1BZPqTWeUlvCUms8pZZ4SnnhgD48fbguHzlEPnNgpqjFLVtrG9u1sqFVqxpa9UZjpzbuaZVl2zJ8PhkZATmxuAIBn+aU5+uSYXl638QyzSjNPe7jrtvbrmU792vt3nataepU1d4OtXfFJUlmOCRz0iQ50RwZ8ZiMeFzG303Xc7q7ZXd1K5QR0GUjCmQahv5S3SBJKs/PVmVhRFOHZKupO6nndzbrkvIc3Tp5qK4cXaSAaWhNY5v+uLFBT23eq417WmSGQtLYMXLWrtOlo4v1g6sma3LROyiKfxS246q+I9Yr3Kpt6dbmtrhqW7vVctjvgxkOyTdihFIjRspfVyenulpOMin/9Gmy3n+zNGeO9PTT0n/916En4ND79CPAOqcQYKFfEWABGEzGlVfIfWlRz+WWL1yr3NCRoxdOhBFYAE7ZAw/I/M+vyDdypFITJkrjxknr10vPPNNzky/MH6s3Gtr0Zl2L4smUln90gS4Ymn/ST/VczR59+sUN2rm/Q67reqNnxo5RqnKGVFDgTYsKBr1Q6/DTY50/3vUZGX2fcjcQ6uvlv/QSWTVbejYF/D6V5kY0PCuornhSP7yuUnPK8/r0cM2xpKqbOhXymxqTH1F28CjT2NJYwrK1bm+HVja0qi2e0rxh+TqvLFdBf9+/xPl7rutqT2dCa/e2a92B1p2yFfSbB0Y/eaOgDh8BNaMkVxcOz+953l1t3coJBRQ9yfdzS3On/rixQcvrW/Th6cN0/biSPo+mPh06Eilta+3uFXBtb4upNBLU1OKo8kIB/aVmr57Z0qh44tDUUaOsVO6GjdSo6w8EWOcUAiz0KwIsAINqxw75pk9TuSzdNX+sPnneiJPe0d3dEdPoRxYrfvsd0ne+008dBXDWOLy+0po10ttvK7B6layttbpqZKFG5UW0qblLG5q71dja2XO3W6eU6xc3niefaShlO9rW2q2x+ZFTOjjvTFpat7dda/a0qarRGz3TkrQVtx0lLEcJy1bSspVM2UqmLDnv8LDACPhlBoMyMjJkHAi33Lw8WT/8kTcKpT+5rtTQ4IWB69fL9/jjGrJ7h753+USNyM3U8JxMFWcFZVKoGwMolrJVvb9D975Wo99tqJe/tETWLbdKN98snX9+eoW+ZzoCrHMKRdwBAGevigrZTzypnTfdpKDffEcHgl9avFGpzCxvyXMAOFwiIW3c2BNWmatXy1zzdq/6StOLo5oxJEuV756m26YNU+iwkS9dSW/KWVl2qNfnU8BnalzBqa/8lpXh1wVD8/s8istyDgRbtqO4ZR9xPn7gcsKyj3r+8Ps8V7tdG2+4Xtaq1d4KiafT2rXSI4/IV1Ulbdggu61NkpQR8GtycY5+euscTStmpAsGTzjgU2VJrn5z03latnOkntqwW79+8nHt+9735C8r9cKsiy8+clXjw/dT8vKkCy44tM11pT17vJVIN2/2auZdcQWrKOKcQoAFADgzOY5X9DgUOv6Q/GuvlS83R2sbT351olUNrfrZml1yf/ADr/gqgDOLZXkHeqtXS21t0lVXvfNpwHv3egWwD4RVgVWrZNVslmt5BZ+HF0Y1a0iWKqeXaHrx+J76SscLziMZfkUy0md33G+a8meYipyGx/pMZ1yVP35NTQsXyv7Up7yw7/Bm29K73uUdoJ+Ml1+W74brVRIwtKA8V5Nnlmly0XhNHhLVqLzIgNWbAvrCNAxdVFGoiyoK9eDVrpbt2q+n1tfr10/8SE0PPnji+194oZxhw+TftFFuTY3szq5e1/vHj5P1mX+XPvhBKXI6/nKB9MYUQvQrphACOK2WLZPvrrtk7twhq2GP3FRKvkim7Pvulz796aMPyf/+92V+9rOqvv0yjcnv+4gG13W14Oev641gnqx164/8lhRAeuns9EbmvP22tHq1/KtWylm3Xk4iIUny+UzZtiP/2DGyblgoXXedNH++tzLbiXzzmz0LOISCAU0pytGsoixNL87R9JKophZFz7jaSAPhrd0tuuwXb6gjlpBpmsoI+JTh95plO2rtjMk3b67sL9zl/TyONa3KtqXqaumll2TeeacuHZ6vp2+eraw0Cv+Ak2E7rvZ1e59Nhx+Nuzp0YVVDm762bIsyTEMT8zJ7ViMdV5ClUXmZerO+RQ++Was/bWqQGY3KvuYab1XIESMOnVZUePXqzmZMITyn8KkPAEh/S5dK69ZJNTWyly7VB6YN1QWTJ2poNKwXtu7Vo3fcId8vfyn7G9/wVvzZvVu+PXtkNu6RvWOnbps69KTCK0n68+Y9Wrp9n/TczwivMHCSSe8gPp1+5+JxackS79v9+fPTY7pKY6M3qupAWBVYtVKprbWS68rnMzW+OFezh0Q045JxqizxQia/aWpR7T79efMe/enxR9X0ne/IF43Kfte7pOuvl665xgtKrr9e+tvfvJFW06ZJv/+99MUv6nNzx+hfZo3Q6PwI9ZT66LyyPDXfebUMGUeMjHJcV89UN+i+5TV6c+FCbyTJkleloiJv5dgVK6QVK2S++aaMVStld3mrv906bZievL7ylIqQA4PNZxoqyTr+yqBl2WFdN67kmNcvqCjUgopCbW/t0qMrtmv5315W7Ut/VUNLpxzH8W5kGAqUFMsZMUL26DGHwq1586QJE07jKwIGRhrtHQEAzmnPP+8djK5a5dVLuf12aexYaetW+a65uufgRZImFUZ1+5xRkqSFE0r1gSnl+vCzVaq97DJJUnk0rEsqClRUEFRpxVh9bGbFSXdnb5f3zajKy0/9tQHHkkh4B+qvvCJz0SJp+XLp0kvl/PSnXmg7dKg0fLgUDp/4sSxL8vmODJg6OqTFi71wLCurd8vO9k4zM3uPftm7V3r2WRnPPCPzxRdkd8ckSb4LL5R95ZXe9N29e+VraJDZuEfq6JB13my5V14pXXaZFzA984xUU+MdLI0a5bXRo73LWX0MlB1H2rKlJ6gyVq+Wb/UqWXv3SfJqTFUWRzWrKFuVkyo1ozRHEwuzjxluLJxQqoUTSvWY62pVQ6v+snmP/rj0f1X1m99479vhQyG6uqSVK2XedptumjxUD1w5eUBXOztb+I8xqso0DL1nQpmiwYAu/3mTrOrNMq67Tr7arbKaWyRJJXlZmlsS1fkXjNDs8jzNKs1VToiRbsDhRuRGdP+Vk3sup2xHde0xbW/t1rbW7gOndap5bau2/SWmfW1dkmHIveMO6etf9/4PAGcIphCiXzGFEECfbNokTZx4xGbz2nfJqKvXsN3bteKf52tnW0xrG9t1yYhCVeRm9rpt3LL19SXV+sbSzZIk9yvvOaUuJW1Hkx9bom1jJsteujQ9Rp3gzJdMeoHVyy/LXLxYWr5cTjyuSDioS4bna1hWUD9cuV2GzyfXtnvu5i8skCoqZI0c5U0JqajwCvxu3iytXatA1Rqltu+QL5Ipc/hwpUZ5QZGxrVbGCy/KSSZP2DVfZlhGJCIjFFKqrl6GpPOGFejGMUW6blyxdrTF9J9Lt2hba7eKskIqDftVGslQUWZQIb+ppfWteqOuWdaBmlDFuRHNHJKl2o6kdjR3Kp48tKS8v7BA7qhRsseO6x1uBYM9K/f5Vq2UW1Ul50B4VpybpVlFWZpVkqPKA21k7vFrTPVVfXtMz9U06o6/Vik7M6j9nXEd3EWeUZ6vZR+ar3CAET/9YVHtPl37q+WqLMtTUTigmSU5ml2ep9lluSo+wQgVACcvlrL18N9q9eVXN8sqKJD1rQekKVOkaPRQy8gY7G72HVMIzykEWOhXBFgA+mzRIunZZ2X+7KdyDnz7LkkBv0/LPnyhZpfn9elhlu7cr5W7W/VvF4w+9S7V7tMV/71M+vnPvQKpOLfFYtJbb3mjpFav9i6nUjIsS0YqJVmWDNuSYVk923Ww2bZkWbL37ZMT8wKri4fl67KKfF0yYogqS3LkMw25rqu7F23Q0GhYV4waoj2dce1ojWlHW7d2tHZrW3tctR0J7W7pVMqyVZgT0bTCLE0rzNKEwiy1Jyxtb+1WbVu3atoSKgj5dfP4Yt04sUwF4Qx1Jq0DzVZn0lJHz+Xe2ycUZunasSUqipxc7ZTulKXlu1qUFw5oRklOT7jkuq4auxKqbelSbUu3alu6tLWlSzWtcW1p7fZGBBxgGobGHJgCWFmSoxkluZpeElVh5sDVcWmLp7Rid4s2NXXq5snlJ/0+AEC629Harf/zwlr9ZVPDEdeZGRkysyIysrOlaFROTo7snFxv0Zxo1Bu1FY1KU6d6KyEOZgF5AqxzCgEW+hUBFoATeuYZ6e67pQ0bjnp1cTRT379ykm6ZMnSAO+a55Xdv6Q9747Jqthx/tUOcXVxX2rHDC6uWL5d/2VLZVVVyLVuhYEAzS3OVl+FTwDTkMwz5zcObKf8R271t+eGALh5RqMqSnGNOreoLx3XVlbTOmsLhsZSt7a3d6k7ZmjQkm9FOADBAtrV0aX8sqfaEpfZESu0JSx0Jq9fl9qR32pJ01Jq01Za01B5LqrUzJjMYlHvF5XLfc6NXQ7C4eGBfAAHWOYUaWACAwbVw4RGbzLFj5WRmSmvWqLG9W6v3tA1agPXdqybrmf9aLOvLX5a+//1B6QMGUFOTjDvukG/xop46SxWFUS0oy9Hcq6Zo7rA8TSmKnlL4dDqYhnHWhFeSFA74NHEIdVgAYKCNzItoZN47G0FVs79Tf6pu0B/Xr9Dy5/4qV5Jv9nmyb3yvdMMN3uqhGzdK//Ef6bU4Cc5Y/BYBQLro6pJ27erdGhq8Jd6zs49skyadHSvItLd79aUyM6Xf/U564QWZi16SU1MjwzA0vTz/uKvw9LfyaFhfu2icvvDww3I/8hFp+vRB6wv6WVubfFdeoZwtm/UvlcM097JRumBovoYwfQwAgCOMLcjSnfPG6s55Y7WvK6Hnahr1dHW9nv/KlxW/++6e25kvvCDn97+XCgsHsbc4GxBgAcBAWr1aWr/+UEC1Y4cCO7bLrauT1dbe66YF0YhKs0NKOa46kpa6Eil1x5NKWYcVdp4wXtYtt0o33SRNnpy+hcZdV9qzx9txCfzdqJGDq9+sWCHdcoskyTpw1aUjCnR+eb62NncpK8OnypLcgevzYf7tgtF6vKpOtZ/6lOxly9L3fcbxOY63ul59/RHNqNsl34YNCrc26+V/mqdpxUwXBQCgr4ZEgvpQ5XB9qHK44patry2p1jcPLKzjvPqqt9r0bbcNci9xpiPAAoCB0twsHZibH42ENDQnUyOzMjQ8GtawWUM1LCesYdGwhueEVR4NK8N39ClKSdtReyKl13c163cbdusP37pPXV/9qvzjxsq69t1SUZGUm+utUHZ4y831Wl2d9D//49X2GTfOG1E0bZq3CmCwn0aaPPmk9LGPSaapQGmpnJEjZY8aJY0Y0btt2SLV1Hgrq1VX65WNG/Va9SalDuwA/eHmObpxYln/9PE4MnymfnjNFF3+82XSr38tfeADA94H9MHevV5AfDCY2r1bqq+Xf9dOGXV1svbulXtYAGyapoZEMzU0O6SKrIDKh4b10esJrwAAOBUNHXHd//oW+UeNlPX+m6Ubb5TmzBnsbuEsQIAFAAMlO1syTT1yzRR9evaod/wwGT5ThZlB3TC+VDeML9Xjlq2XavfpqQ31euUXP1FrPKmO7oQcxznmY4QyApo3NFebl7+quv3eyC/D75N/7DilZs70Aq2DwVZJycmPONqyRXrtNWn2bGn4cPnuukt5mRkqyw6pvnmf9tfXS0uXqjAnoqbDVh/7+4DLuegiOR/8oDRkiIwvfUlfenWzFk4olTkII6CqGtu8Mz6KS6edlhbp3ntlPvSQnFRKkpQVDqo0mqnhWQENyw6pfHS2yiuLVB4NqSw7pPLssIoiQflMRtMBAHA6PfD6Fpl5ubLWrvNKRACnCQEWgMGRTEoPPOCdr6z0WlnZ2T01KxCQv7RE979Rq5r9Xbp4RIEWVBQqP5xxSg8b9Pv07nElevdhdaJc15t22BpPqSWWUks82XM+kuHXtWOLlZXh/QtoT6S0trFdVY3tWtPYplWvvaC1v/ut4gkvCPAX5MuZXimnsvLEo7UaGqSvflXGEz/uNdLFltQkqak72evmGz6+QNlBv3a1xbS9tftQa9uuLUuqte1P3dp3IOByJW2U9EZds+YNKzil9+xk/WXzHn32xfXSnXdKN988oM+N44jHpYcflu+erysQj+mueaP1galDVZ4dUiSDXRwAAAbKwRkC9e1x/XjNLllf+U/CK5x27N0BGHiJhMz3vU/G888rnOFXZywhSfLn5cqpnCFnxgwv0JoyRers9Ka8HawZ5TjeNLicnENT4o52PhTqW1/a2yXTlLKy+vEFH2L95KfaedVV+t6bnfrem1t7ti/6p/m6bOSQ0/Y8hmEoGgwoGgxo+AlmQ0WDAc0fXqD5ww+FQo7raltLt9Y0tqmqsU1v796oVWve0q5jjdaaNk1askTm976nLNPV/7t0gj4yo0KrG9q0ZEeTFu9s1pt1zbIsWxkBv3Iyg5pUEFFuKKCAz9TYgiyNLTj6zyBu2T0BV1N3UpUlAzu9q6qxTTf/YZV0/XXSffcN6HOf02zbq5tWVHRk3TTHkX71K/nvvkvO7gZ9YmaFvnzxeJVk9fHvHgAAvGP7u5N6/x9Xqaa1W10JS53xhFKpQ19c+nJzpNtvH8Qe4mxFgAVgYMViMm98j/yLF+uZW+foqtFF2tHWrTV72vX2nja93VCtt6pWqu67vQuaR8JBledkym8aak1Yao8l1RVLyHXdoz6NmZEhM5otIydHbl6e7NxcuXn5h0Kuzk75X10ia8NGSZIvKyKzpET20GFyhg6Vysu9EWFlZd75MWOkIachYLrySu8f+iOP9Nrcfdg//XRgGoZG50c0Oj+i9x5Wc6o9kdK6ve1as6ddVY1tWvnaC1r3u6cUSyQVygjoc+eP1J3zxig35I0qu3zUEF0+aoi+Ji+IshxXkYBPxkmMtAv5fccNuPrTns64rvn1CiXHj5f7y18xfbA/rV8vPfKIjK1b5a/ZLKuuTm7KkhkOSbPnyLnoImn+fEmS764vyK5aq3dPLNP9n7pU4wuzB7nzAACcvd6o8+quHvRmfYuWt6Vkf/JTUjR6RLMnTvT2uYHTjAALwPFZ1qGi2p2dUizmTduJxY7e4nGpu1tmd7eMmHd68Do3kZDT1aWAldKzt56vy0d5gdCI3IhG5Ea0cEJpz9O2xVPa2NSh7Ay/huWEFQ0Gjuia47rqPDBNri2eUuuB1pawDp2Pp9Qab1Lb7gY1b7O1P2mrNWEpYEgXl+Vo/sIZyvCZ2t0R1+6OuOr31WjntvWq60yosb2r59skw++T+4F/kO66S5o06dTe04cf9gqaz5jRs6m2pes4d0gf0WBA84YV9JrCd3C0Vm4ooILMY0+HDPnPrPAnlrJ13W9WaF8wU/azzw3YKL1z1vPPS48+qstHFWlacbZGT5ykYdGwNu/v1NJdW7TkoRVqufdeSdJ5wwv1nX++qNeoQQAAcHrFUrZ2tcf0y6pdenjFNq9W6cgRUmah7O/fJ73nPYPdRZxjCLAAeFzXm66zdq1UVSWtXSv/6tVyqqvlJHvXLQoEfAoGAgr6fQoHfAoFfMr0m8r0m4r4TEX8hkJ+n8J+U+GAT+FMn8L+iMKBqML+Yl0+aogqS47/rUxOKKALhuYf9zbmYdPk1A+zylzXVUs8pfr2mF6q3af7n/mDGv/7v2UsvEHuF790aDWV/fulF1+Unn9egddelcJh2YVD5BQVSQUFh1ph4aHzP/pRr+f6yZpd+tfzR5/+FzEADo7WOtt88rk1Wlm3X3roIe9nh/51yy0y/uM/9L6JpfrkeSN7XfU5eX+PW5q7tK87oblD809qFB8AAOi7Dfva9aO3tuvJtfU9pT4kSY6j1G+f6llVGxhoBFjAmSqV8mpC1dd79WHC4UMtFDp0/mhTnrq6vOk6B8Iqc80amWurZDW3SPJWqJtcnKMZhRFNu2y8phZHNaEwW9GgXyG/b1BWgBsMhmEoP5yh/HCGphbn6PY5o/SLql269/Ulqj3/GZkLFsiIx+S8tVKu42hSab6uHJ4ry4lrf/NW7auv1t64pabupFq64z1F0Y/mHyaXD+ArQ18EfD4FM/xK/Ou/yvzc52TMqJQ9/0Jp3jxp7lxvailOjetKO3ZIq1ZJq1fLjUb1k7X1RwRYkvf3OFhTSQEAOBfsaO3WP/5ptZZt3+dtGDZMev/7vS9f8/K8lamnTBncTuKcRoAFpLu9e6VXXpFqa6XaWplbtsi3dYus+t1y7RPXTTICfpnBoIxQSMaBwuap+t2S68o0DFUURjVrSERTpxVratFYTSvO0ci8zHMmpDoZGT5TH5lRoQ9NH64/btqth97apKJwQNdeN13XjClSWXb4uPdPWLb2x5La351UU3dS+2PeyoBXjS7S8BxWaUk3P75uuh5911RVNbbr9V37tbyuQUt+9mPtfvBBSVJgaLlS8+Z7dZnmzvUWHvj7YuM4uj//WeZ3viPz7dWy2rx6dwXRTM0qytYtk8pOcGcAANAf7l9Wcyi8krwvy7/73SNvuHYtQRYGBQEWkK527JC+9S2ZTzwhJ5FQVjiokflZGp8T1KihEY2eNlWj8jJVnh2W5TiKWY7ilq1YylbMshVLHbjcs827bDuuxs2s1NTiqCYNyVZmgI+Bk+UzDd00qVw3TTq5EThBv09l2eETBl1IHwGfqVlluZpVlqs7zve27e6IafmuZi2va9GrbyzW6j/8XpZlywyFZMyaJfvCC71Aa+5cbwU9HKmhQXr9dVmplOaU5+mp988mxAUAYJDtbI9JkydLH/qQt0q3bUutrVJLy6E2erS3uBEwCDjrSkt+AAAJwUlEQVRyBdLNhg3SfffJ+J9fKRoM6HNzR+oTs0aomOXhgbRQlh3W+yaV630HAsyEZWtVQ5uW1zVr2a5teu2Hb2vf/fdLkgIjKpS6aIEXZs2b531bea6tZJhMStXV0rp1Xlu7VoGqNUpZliRp9Z42tcVT/VLHDgAA9N26lpj0waulz39+sLsCHBUBFpAuVqyQ8Y175T79J5XkRnTX5ZP0sZkVimTwZwqks6Dfp7nD8jV3WL4+O9crNr6zLabldc1avqtZr778nNb+6peybUe+SKbcOefLmTfPq6GVm9u75eVJxcXSmTiF17alrVuPCKqs2lq5ljfduSg3S9MKIppWmqUp0ys1pSiqiUOylcXnHAAAgypu2drV1C5NnDjYXQGOiT1G4BSYH/uYfIsXSdnZcqJR2dEcKRqVsrKk7Ozjt4O32bRJ5r33ylm8WCMKo/q/N8zQbdOGKcNnDvbLA/AOGIahitxMVeRm6tYpQyVJ3SlLb+1u1fJdzVpWt0nLH/6bWjpjsm3niPv75syWffcXpRtu8Ibvp6NEQlq82FuxdN06+des6bViaU4krGlF2ZpeGNHkq6doSlFUk4dkKy+cMcgdBwAAR9PUnZTjujIff1zOxIlejc/jeewx6Y03eh/XHOv84dsy2BfAO0eABbxTy5bJeeIJfWDqUGUHOtTR1qKOfZZak47aLVvtCVudSUtdiZRice8fwrFMKs3Tl2+arfdOLJPPPANHXgA4rsyAXwsqCrWgorBnm+u66k7Zao2netqu9ph+sHK7Xr/xRvnGjfWCrIULpcxMb4dvsEdm1dRIjz0m/5NPyGpuUWYoQ5OLoqosjGjKZeN7gqqiSFDGYPcVAAD02dBoWM/9w1x9/uVNWn/hhTLfdY2cb3zTW6TmKHw/+YnCq1eqPC9LHSlbXYmUuuNJpazjLzJlBPzyRSIysrKkrCy50aic7Gw50Zy+BWB/fx7nFMN1j3NUDZyiVatWadasWfLn5sooLVFq4iSvBszkyV4bN+7MWLUrlfKmxmza1NPMRS9pkt2tNR9fcMIV+w4eqHYmLXUkLXUkDp1Gg35dOLyAgz0APZbt3K9vvr5Fz1Y3HNpomjJDQZnhsLeiaDgsZWbKycyUG4nIyYx4QdeB7b1Oj7bteKeHh2XJpPT00zIffVTOK68oGgnpo1PL9dEZFZo0JJvPLgAAziKO6+q36+t195LN2t7ULuOWW+TeeKNXwL2pyWv79klLlmh4okM7br+s1/2TtuMd8ySsXsc+JzrfnrTVZjlqT9rqSFrqTFjqTiSVSFrH77BhSK6rlStXaubMmf34ziAdEGChXx0MsD4+o0IBn6l1+7u0rqlTzR3dkiTD75N/9GhZwyvkBoPeQdPhLRAYmG1+v/fh19bmFRveuNELqjZuVGDDelnbtvXUcImEg5pQmK3J+WF9ft5YTSmKDuZbDOAstnFfh9bva1csZav7wAqj3Sn7sMuOulNWz2mn5arLctRtOeqybMVTjuIpS/GkpUTKUp//5RtGT1jmplKyOzo1t2KIPj1zuG6aVKaQ/xwrRA8AwDkmZTv66ds79f9eq1FjW5dM01ROJKTCSFDF4YCKQ35dODxfn7mgf1cktBxHXQdCraOFXxubOnTva5sJsM4RBFjoVwcDrJWfuEQzS3N7tjd1J7RhX4fW7/UOzvZ0JpRyHCVsV3HHVcJ2lXS8lrAdJW1Hqb9vli3Lso87Ne9kGIGA3FSq53JpXrYm52dqUkFEEwqzNaEwSxOHZKuYqTEAzkCu632eHjsMO/JyLOXIlauF40s1mbAeAIBzTsp21JG0lBsKnHDWyWBY1dCqWY+9QoB1jqAGFgZFYWZQCyqCverBvFO24yrleCHX4S1lu0duc46y7cDtEraj/HBAEwuzNa4gi9X/AJxVDMNQyO9TyO9TXniwewMAAM4EAZ+pfBZhQZrgCB1nPJ9pyGf6mNICAAAAAMBZKk3X5wYAAAAAAAA8BFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIa/7B7gDObrFYTJK0saljkHsCAAAAADibHDzOPHjcibMbARb61fbt2yVJt/1h5eB2BAAAAABwVtq+fbvmz58/2N1APzNc13UHuxM4ezU1NemFF17QiBEjFA6HB7s7AAAAAICzRCwW0/bt23X11VersLBwsLuDfkaABQAAAAAAgLRGEXcAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKS1/w+viglH3G3I2AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLAAAAJYCAYAAABy5h8aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdd3wb9f3H8ddpWN4rnnHi2HH2HiQBEjaE0bBaZhllQ0uhLR2UtkAXHbSlLe2v7D3KKBQIq6xsQppJEsh2Ymd5b1u2pbv7/fF1HBvbGTRDSd7Px+MekiXd6aTY0el9n+/na7mu6yIiIiIiIiIiIhKhPAd7B0RERERERERERHZFAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDQFWCIiIiIiIiIiEtEUYImIiIiIiIiISERTgCUiIiIiIiIiIhFNAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDQFWCIiIiIiIiIiEtEUYImIiIiIiIiISERTgCUiIiIiIiIiIhFNAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDQFWCIiIiIiIiIiEtEUYImIiIiIiIiISERTgCUiIiIiIiIiIhFNAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDQFWCIiIiIiIiIiEtEUYImIiIiIiIiISERTgCUiIiIiIiIiIhFNAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDQFWCIiIiIiIiIiEtEUYImIiIiIiIiISERTgCUiIiIiIiIiIhFNAZaIiIiIiIiIiEQ0BVgiIiIiIiIiIhLRFGCJiIiIiIiIiEhEU4AlIiIiIiIiIiIRTQGWiIiIiIiIiIhENAVYIiIiIiIiIiIS0RRgiYiIiIiIiIhIRFOAJSIiIiIiIiIiEU0BloiIiIiIiIiIRDTfwd4BObxVVFTwn//8h7y8PGJiYg727oiIiIiIiMhhIhgMsmnTJk4//XTS0tIO9u7IfqYAS/ar//znP1x++eUHezdERERERETkMPXss89y2WWXHezdkP1MAZbsV3l5eebKN78Jkycf1H0RERERERGRw8i8efDAAzu/d8phTQGW7FftwwYnTwYl4iIiIiIiIrIvPfCA2tUcIdTEXUREREREREREIpoCLBERERERERERiWgKsEREREREREREJKIpwBIRERERERERkYimAEtERERERERERCKaAiwREREREREREYloCrBERERERERERCSiKcASEREREREREZGIpgBLREREREREREQimgIsERERERERERGJaAqwREREREREREQkoinAEhERERERERGRiOY72DsgIiIiB1llpbn0+TovHg9Y1sHdNxERERERFGCJiMjBYtvQ2AheL/j9ZlFY8uXU1MCiRbB+PWRnQ26uWVJTd/2etrZiXXMN7nPP9fgQy+fF8powywkG9/2+X3kl/OIXkJe377ctIiIiIocNBVgiIrJvuC7U1UFZWdelvBzKyvCUlOAtLcEtLydcVW3W6cjjwePzYfl94DWXls8Pvg4hl88Hfj9u28+u34/r8+NGReFGRbXfj8cD27dDUZFZ+veHDz6A+HgTnDU1mcsd17OzYdgwiIo6OO/f3tiwAQoLYerU3T/W58MaOhR32DAYOhTy8024lZWF59vfxjNrJn86YyR9E2MIO27b4lAZbOWDwnLeXV+GHW7Zf6/l6afN8u67MGUKBALm31BEREREpAMdIYqISM9cF0pL4bPPYMsWSEuDrCzIzISMDBP2OA7WUUfBypW4oVCn1T2WRXJCDOlx0WTF+MiO9ZORGCAjO5OMuFwSAj5cF0KOQ9hxCdkOobbLsOMSchxCtglUdt7eSshpMdebXUKNndeZvrak+9eyYYMJb3bB8vvxDh9GePxRMHYsjBtnLqOjv/z7t6sKqG3b4OWXO1dNZWWZ8K0ndXUwYMCe70M4jLtiBaxY0eWumJgopn/9aE7KT+90+9LtNYx7eOaePwcQ7feRFBtFcnQUKdE+UqK8xPu9xEX5iPN7ifP7iIvymuttt1352pKdGzjjjJ3XPR48gSg8UVFYgYD5PYuOhkAAOzER56GHYeTIvdo/ERERETm0KcASETmSNTRAcbGpUCouNuFIcjIsXAiPPLLb1X3JSVgZGYTWruty37eOyuf+M0fh9RzYYYFvrNnOuS8swGtZjM5KZHRmEkPTEkiK9reFJ15i/b5O12N8HoprgyzcVs2ba7fx4WOP7dzgGWfAO+/Apk2wdq0ZrtfNYlVX462uwqquhtpa7No6rMQE7JWfQXo6tLSY97vjsL5ly+C73+20/5bfhy87GycvHzsvb2ewlZsL/fpB377w2mvw2GMwffpevz9nDczkvqkjKK4NMjgtntyk2C6PGZwWz4+OHUjA52FcdhLxUb4OAZS5bArZLNxazdziSqqbTXBpWWBhdbgOruvSGLJpCtmUN4Hjuu2B46ScFBZtq8F2XXrFRFEVbMUFcBycYDNOsLnTfnmPOQanoAASE/f6dYuIiIjIoU0BlojI4a6pCe64A1avhq1bTdVPdXWXh3k8HmKjo2gMtuB+cWhfB2Ozkrjn5GGUNDRT0tBCaWMzJcNz2NrUyrxN5e2jAv+xaCPfntifoekJ++uVdVLS0Mw1ry/FY8F1Y/uRnRBNdnw02QkBEgN+orweAl4PwbDNlrogy+qa2VIXZEtdkI2NrWypa6ayrqn9tVupqbiZmdDSgjV1Ku7773d5Tp/Xw5CsFFKjvPQKeEmO9pOc6ie5dyqJgQx+Nnstjd/+NsTH4/3Xy9h19Xiio/H2zsbO7YeTmwsnnACzZgFwXG4vLhjWm611zRRXbaCwaBVFtUHKaxtxOvyb+FKSsfr2ZUe927RBmcT6fawsq+Pz8noAZn5jCifkpREM2VQGW6kKtlLZ1Er/lDj6JccyOK3nf5dYv4/fnza82/umr9nOOS8s+DL/RLtUGWzd9QOmTcPuGNjtGAKalNT9sM/WVvO+vvEGvjdexykvxxMXhxUXB/HxOAkJOAmJuAkJZlhpfDwkJMBFF5nKOxERERGJKAqwREQOF64Lq1aZXkKtrSYYOeooeOopuP/+HldLj42iujlE2HFoaDIVL+cNyeYXJw5hfVUjMzaW8/Ln2yhtNH2QfnLcIM4cmNlpG622Q5R357C35rBNfUuY9LjAF3bRpbC6iWeWF/P7eetoDjssuv5ExvdO/p9f/kcby3lnfeler2dNnYrbp48ZHjlgAPTpA6tX4952G8cneYnfUkWs30tlXhozNlV0WjdsO6zcambwe/b88Vw2qm+n+5tCNj996SX6pibwjdHZjMocwtb6IJtrg2wpX8fGwpUU1zVTblk4rsuc4kq+NSGfWycVdNpOyHbYWh+kuHbH0kRxbT2r8tJYsr2Wnx43mKP7pHb7+mL8Xvr4Y+iTGLPX7013nA7Z5uS+qeSnxBLl8eD3eojyevB7LHPZw89eC66bvqzbbQeifPRLTWBwUoABKXEs2FrNx5ur8EyejPP442Yo6zvv4HnrLdx5c3FDYQA8gQCexASsxETcpGSchHisJUuw6xvonRLPVwekUzB0AI2tNg2tYRpagzQ0N9BQt5mNNUEWb+sQ6GZnK8ASERERiUAKsEREDmUNDfDee/DOO/jeeZvw1m1E+X34vB6amlvxxMbgTp6C+/3vmwbZQ4fCvffC44+3b6K8qWvly2urt/Pa6u3dPuWFLy8EFna5/b6pI7huXD8SAn6ifV78Hg+rK+pZsr2GhVtr+MuCDd1u77GlRYzKTMTv3UXfp11YWVbHyAc+2uv1rNgY3N45eDcWEn7vvfbb/YMHEWqr6Pn3hRNIjela3dNqO7y/oYy/LNjAB4XlALy2ZnuXAOv2yYM4b0g2Q9MSsHbRCyvsOKaaraGFERldK6P8Xg95yXHkJcft9evc184dko1793lfen3XdfnrgkJWlNVx0fAczijIoCA1jgGpcWTHR2O1hXk//fBzPt5cBTk5OAMH4hs7pv33+6S8NL5yylD6JMZQ2xKitjlMbUuIupYwtc2V1FWUMmJ8H84ZnM3IzEQaW8PUt4apbwnT0GpT3xqiviXM2+tKmb6+DE8ggPONb8D3vgdDhuzDd0tERERE9hXL3dU4EZH/0ZIlSxg/fjw8+yxcdtnB3h2Rw0trK5x4Isyf3+nmR84ew1VjclmyvZYZG8v5sKiSOZuraG4J4Y2PwznueNyTT4aXXjK9rvax+CgfDa3hvVrnXxdO4GvDcvZqnapgK/fOW0dOQjS3vrsCv8ci1u+lxXZotZ1OlUKW328qrFwHt7wCbJuA38ekPqkMSo7h0aVF7Y+9ZWJ/NtY0EXbh9Ysndqosk/2vJWxz4SuLmb56W/tteemJnJOfxpkDMzmhXxq263LWc/OZU1z5Pz2XLyOd8K3fgRtvNL8fsu+EQjB7NgwaZKoavxjgOg4sWgQTJux6ogMREZFdee45uPxyFi9ezDhVUB/2VIElInKouegiM3NdD66fvozrxuUxMSeFiTkp3D7FDEFbtK2GGZvK+WjtEuZ++D4trWG8CfE4Y8fh5uVBVRXWrJng9eHuaFxeW9vzfsTFmR5EX/DF8CqvVwJDUmKxgKRoH+mxAdJio9qWAH0TYzimb/fD3zoqrm1iyN8/JBi2u70/5LjUtoTB48E3dBjO0UfDp5/C4sVmdsTt28lJiGZcQTrjs5MZ1CuesOPQYjtcM7YfW+qCDEiNY2z2/z6cUb68jTVNfLKlijMHZfGVggzOGJBJQWrnyrMNVY1fPrx65BET/CYkEO7VC3w6FPpSKitNM32/3wxffuEF01svPt78vHQp/PWvAPjSemFPmIg7YYIZ1jxuHNx9t5mI4JZbzMyb69fjXbcOT+EG3OxswmPHwZgxMHo0jBqlxv1yeKitNROCbNoE27ebz/PoaDNLbv/+5nNVRER6pAos2a9UgSWyHwQCpvqqG/dNHcEtk/rj8+y6aqjVdvjv1mpToVVcxfzNVYTCNkPT4llV3YRb3wAffoj31luwCze2rzcltxfJ0T5abJflFY2U1nYNsMZnJ/N/Z41iUg89mfZEeWMLA/72PnUtYc4ZnEV+ciwba5p4Y01J9yuccAJcdZX5AjBunPkSDabK7OKLd/t8l47ow/NfO+pL768cHHd88Bm/m9d1BsxOrr0WvvENMxNkZiakpByYnTuUOA6UlZlJHrZsgblz4fXXYd06GDjQ9NabPt0ETUcfDYCnoD+eUIjwnXfBueea97YbZw/K6jRT5Q6WZXFa/3Te21BGYlw0A1LjGZwUTV5yLNvqg8zaUsOmyvqdKxQUwPr1++0tENknGhpMOLVx486gqrAQf+EG3KIiwrV1XVaxvF5c2waPB//AgYQmTYJvfQsmTTrQey9yaFIF1hFFpx1FRPaHlhb46CNITTVNobOyup8p7ct4/HF44gmsoiLczZvNc7VZWVbHxuomPJaFxzIjczyWhUXbpQWNrTZ9k2KYktuLKbm9uBPTdL2hNcymmiYmPDILX34eBIPYbRVWVnQ0hELM31LNeUOyuXViP07pn05lUyv/3VrN08s389JnWwFYvL2Gox+bzcn5aXx45ZQuu//yZ1t5dsVmEgM+EqP8JAZ8uEAwZNMcdgiGbbY3NFPXYiq5doRW/qxMvLEx2E1BALxjxmCfey7cfLMJJ7pz0UVw6qnmi29MjAn/Zs7Ec999OGvWMCQrmTuPLeCi4Xs3fFEiw41H5fH0Z9sIuZAeF6CkuoGqttkMvYkJ2DfeBHfeaWYXlK5Wr8Z75pk4Wzbj9lDZyLp1WOefhzv9TQA8J5+Mc/fdkNsP79zZ2DfeiPeXvyB8xRVY/3oZt7kFOpwbnb62a+g8MSeFq8fkcs7gLGJ8ZvbOotomPt5cxcebq1hc3khxVUPnla65Zp+9bJF9buVKrFNPxS3tPJFIv7QkBiZF0z8phrzxfchPiSUv2Sw//WgVFubvYUhaPOsqG1i8vZYnX3ieYCDQNcB6911zTDFx4oF7XSIiEUYVWLJfqQJLjlizZ5uqoA58KclY2dmEc3Jwe+eYYKt3b3O5Y+nd2wwn2BvDhpkKib0wNiuJJTee1Om211dvZ2RmIs+v2EJz2KauJczy0lqWl9Z1qZ7Ywe+xGJudTGF1IxVtzeAfmjaGN9eW8L2jCzgp3wRLruty4lNzmV20F8O++vQx1R8zZpjhSTsqqcJhaG7eWWUFUFoKCxaYnl6VlaZCraVl52VLC57mZjzbthJeu45xfXpx95QBTBuUhUf9dw5pYcfh1VXb+eOCQhZursTXP5/w924zFXkdf0ekq9paPJdegvPOuyQG/Pz59BE0h22Wbq9lSUUDK0tqaQ2FiYuJ4qlpo3GBO2evY3VpDcTEkOKFOVccwy9nr+WD4iq+PiSTxICPNwsrWb6tyjyH1wt2D+FYmyi/j9a2GSX9AwoITTkOJk82y+DBsJuKUpGDrqYG7r0Xz6KFeJYuJVxhPutio6MYnZnEuIx4hqYlEO0zM7L6PBY+j5mltf2611w/719LqP3Rj+Guu8y2y8qwbr4Z91//gmOPNVWlM2bgW7CA8Eknwa23wvDhB/HFixxkqsA6oijAkv1KAZYcsVwXLrgAXn21y12xfi/Ds1PY1thKWV0jodDOL3eeQADnN7+B7353z7+0bd1qKoy8XjjuuB4fNqF3Mlnx0SQGfFwwrDeVTa1cPqovAZ+XRxZv4oY3lxEd5ees/mm8X1RJfbD7YYq785/Lj2VqQUan28KOQ/Svp2PvzUfOY491X3URDMKSJSaw+uQT/J/MJ7R5CwC9EmPJio8m4PUQ7fUQ7bWI9kDA6yHg8xDn9/H1kX04KS9tl7MCSuSraW7l0SVF/HlREduqG/CecAL2978PX/mKAo+99e67eL9zK8669Vw3NpdfnzyMjLgAYcdh8bYalpfWsbSklrc2VVJR18T5g7N4boX5m/vFiUO4blw/eifEtG/OdV0Kq5t4fGkRjy8roqShrUrUsuCrX4Xf/Q4qKkzYXFFhemcVFMAxx6iZvhweSkpg2bL2xb9kMaENhWa47p546SVzDPHCC3hvvpmEUDMZAS9rKxuwLIuRvVOYkJHAGxvKKa9rwnPiiTjf+Y4ZzqvPNjnSKMA6oijAkv1KAZYc0UIheOop+NvfYPnyTnf1Tk0gPzGaAUnRpERHEe3zEO3zsrK8jn99vg3PccfhPP005OXt3XOGwybMevDB9gbKO1w0PIdpAzOJ8nr48ycbWLC1GoCbJ+Tz4JIi7KuvgdhYrGefxa2q6rTu5L6prK9uorShmX5JMXxjdC5rKht4sW3YIMCi609kfO/dN0B3XJfyxhY21wU58cm5NIZ6qM5Yv958qXVdczA/axa++R9jr1yJG7YJRPkYl53Csb2TmJSTwqQ+KfRNjFEwdZjbXNvEHz5ezyOfbqbFcXEv/Tp873um4bd8eaEQPPAA3rvuJLq1matH5LCwtJ4FxRV7tPqOv/9NNY2c9eIiVpVUt9/nTYjHk5dHqGCAGdJ7883761WIRDbHMZ/TO5ZQqOvPlgUxMVg33oD75lsMTUvgJ8cNYlV5PbOKKihIjSMYstnSFKKorpltVR16xb31Fpx11sF7fSIHgwKsI4p6YImI7C9+P1x3HdTVwfe/DxkZMG0apKezzeNh26ZNLFi/DjZsbB9usIMzZw7k58OLL5o+TnvK54MhQ+BPf4LkZBP8tA0vfOmzre19qjp64LMSOP54SEqCDRvawyt/v1zCw0fgJicz7/nn8fTOhobt/PrkYYzPTmbmpgre21DWPrxwbWUDY7KS8Hp6DpA+KCzjto/W0Oq4eKD78KpfP7PPMW0VHdu2meFgzc3smN9wfHYyV4zqy4ScZEZlJhEfpY+zI8UxT8xla21T+8/etWuw//Y38/eVn2+G13i9B3EPD1F+P9x6K/Zll9F41108+Mq/CJfuWXh1zZhchqbH82lJLaf9cwHVqenw4oMmgM7Px05JwVawLGKqQ6Oidt0Ts6IC0tPZUWGwqqKeK/69GABfUiL/jY3B7p2Dk5lp+vsNHGiG3OfkwJSufSdFRA4nqsCS/UoVWHJABYNmxp+6OjNV9Y5l/nzTDLVXL7OkpZmQxxdBoceOmYsKC83sRZ9+Ck88AW+/DWeeuW+ew7bN2d1QyPSGCoUgNtZ8cW1tNYFXB57oaDzDhhIeMtQEAoEAPPpot5s+uk8Ky8vqabEdMhLjyEuMJi8hQN/EGHKTYuibFEPA6+Frry6mafQ43IkTzZlo24YVK8ysZz/9Kfz6193ve22teU+WLoVly/AtXoy9ehVuKIxlWeSlJTIhI560mCjqW8MEwzbBkE1j2KHRdmkMO9S1hDktrxePTxu9b95POeCCIZvY30zf9YMuvRRuu81UZEXS3/ih6MMPTcXUbpT+4ExWltVxzssLaR4yDPudd3uclVBEdiMUgttvNw3bhw/f2SMzHDbD5+fPxzt3Ds6yZeYz0O/HV9Cf0PARMHSoWc46q8tnushhSxVYRxQFWLJfKcCSA2LVKjP05aknsevqu9zt93mJiQlQV7+zaoOf/Qx+9asDuJP70IIFJqSLijLhU8fLqChzRjYjY/fb+aLmZvj5z+H3v2+/aWJOCl6fjzVVjVR1fP+AWyb255tH5TM03czwNvzhWXy+vZrdevppU1UWCOz9Pu7wyiumKquhYbcP7chjWdh3nfvln1cOusXbauiXHMMDCzdy18zVPT/wD3+AH/zgwO3Y4WrAANiwocvNiQEftT+eBsALK7dwxWtLcU46CefVVzXr45HKcaCoyJwoSkw82HtzePjsM/jlL/HPm0doq6mg7tMrkeN7JzKkV3zP/wcef7xpIxAfb6qa/f4DuNMiB5gCrCOKTk2KyKGptRVefRXvP/6BPWcOKfEx3Di6D2cOHE2U18Nzyzfzn42VfH9SPjeMz2N2USVXv/kpGyvrTfDxrW+Ziq2YmN0+VbuqKnj5Zbz/fB571Gi47759V+Fh26bX0xe3N3s2bN68MwCuqzON2kPdzwrYbvFiGDfOvMbt280wvIULzfv2gx+YiqqtW+Ghh0wj5X/8o9Pq6QmxeBybHx07gHOHZOPzeKhpbmVucRXT15TwtWG9WVFay50zVvHKqm2kxUbxkymDWJIeR0OrTV3IoTZkU99qU9cSoqS6Q9B05ZWmx8fll3/59+vRR/c6vAJ4WNVXh6xfzFzNG2u3MzoziRbboSXsMG1QJs02NDsuzbZDbXOYkrom6ptbzd+OAqz/3fr1pgLytdfw/PN5+GgGTihEYnwM17+xlJQYP3/4eD3WZZfhPv74rodGyeEhHDbVwqtWweefw+ef41u5AmfNGpxgsxkqP303lZLS2Y56gi8MtfXceitZiz/h68N6c+zkiRzTN5WseDNT8brKhp4DrNmzYexYc33ECLj33s6V6R0r1WtqTAuB88+HM84wldkiIhFKFViyX6kCS/a5jRtN6NJWJdQ3OZZ7TxnG+UOyCTku//ffQn6/YCM1za24xxwLc+YwKD2RteV1eMePx05MhBkz2jfnOe44nLPOgqlTzZCj7mYvs22syy+DV17Bsh2O69eLucWVONOm4b740pevJCopMcMCOvDERONNSIDERFyfj/DqNeaO3/wG7rjDXP/0Uzw/vh3n3f+QFhfggiHZ1LWGqWhqpaKphSXba/fs+aOiTKC1G3ExAU7JTSXK6+G1NSWE7R6argNT8tK55ag8hqTFU1TTRFFtsO2yiQ31rawqq6N10CDshYv+twosMAf8FRWwZQv85z87358Olt90ElXBEMtLazkxL43+KXHEtfXLqmhqYUVpHctL61heWsvWhhbSY/1kxAbIjI8mIy6KjLgAWfHRjMxIxO/VzHYHi+u6RP36DcJOh0MWyzLVBYEANDWZioO8PPNzVJT5m96D4W+yl2pqYOZM+OgjfO+/R3jNWhMU/u53mv3xUNPSYoZl//e/UF5uTqTY9s7h3V9camvxr1xBeN163LaTKAmxAYamJ5AfHyDG7+X5lVtp/X7b78ORqLXVBHyuu3NxHHPp9XauTgyFTMXahg0mONrBsrB8XiyPF6elhUfOHsN14/J2+9S249IYCrOitI4pT8zp9jEeyyI2JorE6CiSAn6SA15So7wU1rWwqqQaT0w07lem4V54oRmGGB//P74hh7jSUnMCcMyYrrM7lpebz57cXM38eLCpAuuIogBL9isFWLLPVFb2OL36kKxkTshJ5sXVJdS2hHGvuQZ+8hNTNv/WW1i/+iXu1m0m6OhGdMBPc0sIX2oK4amnw+mnw2mnmYaoAOEw3lNPwZ41myn90nj87DGsqWzga/9aRPi443EefNAcwKxYgff886FfLva48XDSSeaMZk/C4R7L+r8zqT/BkMPpAzJYXlrLL2atMcMBbr1154NmzMD7ox9hL1qEJyYaT0ICVmIiofU7h/tcPSaXy0b25dRn5vW8H5MmweTJcOON8Mwz5oBtyBDTl+r662HJErzvvYdVU034mmtN5VR5ufkSW1FhKsJ++1vIzsazeDHOihXtm7b8Pnw5OV1tLA4AACAASURBVNh5+Tj5+SZguOYa03B2Xyovh5Ejzb63yU5JIDM+imWbOzfI75UYh4VLRZ0ZEumJijK9vvrl4a0ox1NSglNegV1X175OUlwMFw3O4KLhOZyYl4ZPX9QPONtxeerTYq59Y2nPD2pu/t+DUdk7ra2qujoUuK4JShYsgAUL8H48D2f5ctxQGL/fS1pCLB7LwmOB12PhtSx8ltV+PWw7VDcGifZ6iPZ5iPV7ifF5qXcsimqbqG0I7nyuuXPNZ8qRIhw2lWij96DCNz8fa0ABvnXrCG/egtvDCaG/nzkKx3Xxez1cPSaXgG/PJ6YIOw7Pr9hCfJSPrPgASQE/SdF+kgI+4qN8Pc7Uu66ygedXbOHns0xVlycQwD3lFNzrr4fzztvj5z/kVVXBq6/ief553FmzcB0HX58cwpdcChdfDOPHw2OP4bn1FpxgM974OKyhQwmPGm2q3YYPN5dZWQq2DhQFWEcUBViyXynAkn1m0yYzwxiYPk3jx5uZd1auhNdewzdrJuGvTDNVOLm5O9f7+ONdHkgvvP4Ettc3kxjw896GMt7eVMmnW6twXRff0CGETzkVUlLMmdPXXjMNxL1evjsxnzMHZnL2SwtpajZVTFaUn4HJsYzLiOfV1SWE/H7cuvquwwIfeghuumm3L9m92xwwuq7Lj97/jD/OX2+Gzl17becHhsNdn8Nx8Bx/PL1XfcrnN5xAQsDP1Gfm8X5heftDMpNiKa0LQkICvkAUbkEB9pChMGiQeW8HDjRfekpLuyxWyXZ827fjlpURrqwyZ5g78MREYw0Zgj3+KBg1Cq644sA0lA2Hzb/50qVQVmaWwg3wUVvV3eOPm98lxzGB16hRpsdPd0NBW1pMMFZcDNOn4/vn84SLikmJj+HiwZlcPCKH43LTdjnrouw7G6sbOeax2ZQ2tvT4GE9uX5yi4gO4VyIRqrraVFYtWID1ySd4P5lPuLoGgLz0JI7LTmRSTgqT+qQwKjMJC9hcF2RjdRMbaxrZWN3Eptom1tU2U1gTpLKusX3Tls9rTkzk98dpm2mSHScoBgz4cj0YI1UoZCpwtmzpsviKNmFt2UKotKzLZyDAn08f0T7c79JXFgGQ2yuBsenxDEyJoyA1jgGpcRSkxNEnMYb1VY3cN389x/frxRWjc7ts70D4tKSWMQ/N6HrHkXBywLbxXH457r9eBtvhhPwMLhueTX5yHK+s2sYLq0uobgjiTeuFXVHJdePyOG9wFnOLK/ndvHVdNudNSoIRw7FHjjLDar/ylYPwoo4QCrCOKAqwZL9SgCUH1V//Ct/9bo93xwX8NLaYYRB/Pn0EdS1hFmyt5u11pV0em54UR9hxaQmF2wOrX580lCivh88r6tlSF6S0oYXLRvbBsixu/+AzeOCB7oOqGTPg5JPNmbm+fc2ycaM5SG5zw7g8rh/fj5DtEnIcNtU0ccObn9KakIhbUbFnQ3U2bMAzaiQX9+/F0+ePw8KiOWy3D6ELhmz+NH8998xbx4SsJPolx/B5dTPrKuupb+oaEsTFBEiPjyY7NoresX6y4gNkxpnhduYyQHK0n8LqRlaW1fP8is18WtpWxfTKK/DVr+5+nyOZ65reYi++iO+FfxLespW0xFguGZzJRcNzmJzbC4/Otu4376wr5azn53d7X15yLGWNLTSfcBLO++8f4D0TiSB3343/+efaK3ETYqM5pncSx7aFVRNzUkiNMRVzjuvyYWE5/7d4E2+uLcG220IYy8KfnYWTn49dMMAEUx1Dqpycw3OGz+Ji+NOfoKgIX3ExbN1CuLxiZ38qICYQRe/kOPLio8hNCNAnMaZtiW6/nhLt71LlFLIdfB6rx+qnSPLPFVv4+quLdt7w+utwzjkHb4cOFNfFe/JJ2DNn8d1JBfzp9BGdPtPDjsPMTRW8ubaEE/PSOG9I7/b7cu57l231zQCckp/O0pIaqoIdepWefTa88cYBeylHHAVYRxQFWLJfKcCS/SIcNmc7dzdsZfZseOopPIWFeDcWEt62DTcUBsCXnWWGC27YYIY77MJlI/vg81gsrmhkdWkt4XDPPaB28Fx0Ic4LL+55+Xg4DH/5C97f/ha7qqr7bZ4+Fee3v9vZmHVPPPUUXHUVUX4fR+WkcGx2EhNzzJcY23X5oLCct9eX8klJPVP7pfCrE4eSmxRDZbCVdZWNeD0WmXEBMuJMf5MdmsM24x+bQ0KUj9P6pXJiXjrH9E0h1u+jvLGFFWV1nPJ0h2GLPt/uG88fSlzXDMV56SUTZm0vISMpjkuHmDDr6D6pCrP2sc21TeT+5b3u7xw/Dm9DI/bDD5teWCJHKOu663Afewy/18M/zhrFtWP7YVkWruu2hyeVTa08uayIvy/dzKaKOnzDhhK+7noz7Ck/35xUOdyrbXaorzeVuJZlJj555RWmDsgkNyG6UzDVN8mEU4mBw282v4qmFuYWVzK7qJKPNtewYlsVjuviS+uFfeppuI88cuT0wgqH4a678N53H3ZLC8N6p2K7Jux12i5t123/2W27bjsuFbU7qxQ9ffviXHABHHOMWfZ12wTpTAHWEUUBluxXCrDkS3ntNfjwQ9MsuLoab3UVnupqqKnBqavDbmzC8nnxjh1L+IQTzRfWKVPMUL8dmpthzRoz9G/4cHNwattmRr5gEAoKTABxwgldgpX+veKpD7uUtx2MeKKj8QwfRnjMWNPjYvRoM/wsKckEad0tCQlfrvdBQ4MZFunzmcXvN5dxcV/+AGjpUvN+LliAf8EnhDZ36AXm8eA9ajz2pKPxvfBPqK5mUIaZ5S3kuIRth1bbIWw7hGyHsG0Ttp2dZ+oLCvBVVRKursHn9ZIQG0V1fbDrPvzyl3DnnV9u/yOd48D8+fCzn5m+YMBN4/N4YNqYg7tfh6HvvLOc+/9biMfjwelmyA4Aw4fBys8O7I6JHGzvvgszZ2ItXQIzZuCGwhzbtxfvXnY0m+uCHPXobBJjo+mXGM3S7TXYWLgXXID7rW+ZYfZHauD+hV6UsVE+Gn78lUOiUurL2lIXZHZRBXOKKvlwSw3rSs3QUl/fPoRPPMn0tTz+eNNO4DB+H3aprAweecRUxnu9puq94/LF23b8bFlmdutvf1u9AQ8kBVhHlMOw/ldEDnmvvmqaiQMTeqcwJC2e5AQ/yelJpESnkRztJxi2mbe5hA8efYCyP/4RLMucRe5fgH/V54QKN7b3pPDl9iV83vlw7rnmwGzHweoxx0Bjoxk2UFhohvEVFlK4ZYtpAD96NIwahTNwII63hwaq+6qZdzBogiu/HxITzYHPF5fWVnN/xwPKmhq46y5zn89nDqJ2hF9fXCZOJHTssWbWnMpKc4B60knYSUkAhH/zG3jgAT4vKjLbqanZOdNbQoIJ7GJizL74/aap/rnnEnZd+PxzwjNnUl1RYc7ijxjRc2+pw43HA0880R5eAbywarsCrL00a1MF/1y5hXtPG05iwE/IdqgMtpIeG8DrsfhkSxX3/7cQBg7EWde130i7s9RnRI4ANTUwfTrMn4/19FO4jWZSih1npSf0Tua2o/uT+Lu32lcJfv0CSkMhcwLmmmsgPf0g7HgEcV1zYqu8HH74Q3jySQb1iqemOURKzOERPriuy/qqRmYXVTC7uJKPttSypbKuy+Os/v1xhgyGSy4xFWmPPGJ+R/r1O7A73NAQGdVeGRnw058e7L0QkW6oAkv2K1VgyZfiOPDkk3DDDWTFBdj63dN6HI7lui6bapqYXVTJ7KIKiuqbGd4rnhEZiQzPSKCh1eb11dt5ZX0ZpTWNeBMTsadNg+9/f+dQvIN5hrGuzvTceOklWL16z9a5+GJ44QVzff58OPZYCtKTCPh9hF0H2zG9GsKOKWtvv2471DeZHg1ER5vALivL/Oy65vk/+gg++ADvjBnYtbVdntqaMAH3+ee7NrTdvBnf5mKsigpCV12N9cADeIJNeBITISkJNzmZcHKKaeSelGSWfv3gyisj42D1fzV3rvl3vPZaU+V3ww2suvkUhqQl7H7dI9TaygY+LCznitF9iY/ycfwTc5hTXLn7FQGfx6J/WiJry9p+R2+7zfS769PnyK0YkCPL8OFm5rs9dfPNcP/9++6kSyR69FFYv96cmGpqMpeNjXgaGvA0NWI1NJjbgkGcpiacYHO3swD+/IQh3H3ikIPwAvadDVWN/HzWat7dVNk+464VH49bUACZmfBe1+HY4/v0YvGWSvM74jj4hgwmPP8T87m9bRvMmwdz5+KbOwerrg43KQknKQknKdmceNuxBIOwY/jcnlq/Hs93bsV5+x1zMvKcc03T86OPPjJOhMn/RhVYRxQFWLJfKcCSL6W2FuuKy+HNt7jnpKHccdyg/2lz2+qDvLGmhN/OXUdxrTmQY9AgfDXVuKNHY7/XoelzdzP69WTDBjOjYFkZVmkp3tIS7Jwc3K9+zTTsTEvb9foLF5rg6o9/7HRzVnyA7x09gDFZSbSEbV5ZtY1nlm/BcV2848dh3/fnnX1+SkogO5tXL5rI+UN7d/MkRnFtE7e8u5I3Vm/Dc+qpOA88YCqk1q6FX/wC34cfEC4tw+f1MrFvKlP79eKk/DRSY6KYtamC295bSatp+NBpuwmx0eQkxZAXF0XfxGhcFx5bVgyZGbglpZyYl8aojERqW0LUtoSparGpbrWpaQmxvboRNykJ+4474FvfgtjYPXvfI10wiKdXKvcc258fT/nffncPV/OKK5nyxJx9t8F33oEzzth32xOJVI5jgqiFC+H55/dsndtvh3vuMZW1hyvHwYqLI95y6J0cT7zfQ7zPQ6LPQ6zfS5zfS1yUr/16bJeffcRFeYnz+xiRkUDAd2i+V9XBVgb//QPKm1r3ar05Vx/H5L6pfLixnM/L6zmmTyqnPP8JDbn5+JoaCRVvBqBPr0ROzEkkIzZAXUuYulazVLc61LTarNneoYfnihUweHCnIZpdNDXBPffg+cMfyIoP8MOJeSwrqeWNDRVmxr+kJJwJE3B3VH93XOLi4JZboH//L/NWyeFEAdYRRZG2iESW1avxnXM2gc3FvHDJJKYNytrrTbiuy4qyOh5bUsRr60oprm7sdH90lJ9J4RrK3WbWbthgqplmz8Y3cwbh1WvwZ2ZgDx+OM2KkGUb47DPwkZlW2nvC8dgPPWwOyt56C/7wB0bnpJKfECA9NorPVm5l/ltvg8eDNWUKzt//bobTdeQ4pmLkr3/tdv9LGlrIig8wtSCDZ5dv5qlPzYGjFRuL3S/PDBuprzdnJzMz8cTGUFjdyKJt1dw1YzXH9k0l1u/F57HweSxKGlr4w4JCUwH14os4F15oqlRcF+/VV5P+2TKuHJ7DyacWMCW3V/sshQD3L9jA995bieN0PdfRLymGTd89vcvtl47sw4WvLqE6OsDMTRVE+XycWWDCvGDIoSrYyqqKelK8sLy0Cn74Q7y//x32m2/BpEl7/O8csWJicM85l5++/DLzt9Zw07h+TC3IwOtRZdAOt723ctcPePttOPNMcz0cNn3cZsyAJUugVy/IzTVL375mVjQ1yJXDneOYXoL//jcsXw6Yfk0eIDHKR4vjUNkxtBgyxIRcB6vC9ec/x/e3+7F29HH0+9uHn4f75uIOH26qyM46y1QE7TBzJmzaBFddtXfP5/HAKScz6rOFzP3G5H34QiJbUyjMU8s2899t1WTGBfj9vJ3Dq08vyGBgahw5bbMj5iREk9N22fFzvqNT+2dwav8MAN66aAK/mruO4dnxTJ40gcl9e5GdEL3L/fnjx+v44fttPQhHjsTy+/DExmLXN4Dj4MnIwMrpDfEJOLGxeFeuwCor48fHFPDjKQOJ9Zv9clyXhVureWtdKZ9v/ZxW26HZcWmxXVocl1bHpaimkdpnnsF+801TqXWgOI6ZVXnWLHNyPiOj65KebirXVBEsss+pAkv2K1VgyV55/XW8l19GQZyf6RcexaBee37gHXYc5hZX8u/V23ls2WYaW3Y2Zs9KiuXU3FROyEvj6D6pDE1LwOuxuO6NpTy2tAiA/hlJnJyTzLjsZLbWB7lnztoen8sTFYVz112mp9bIkbx+ySTOGZzdfn9pQzOvrynhno/Xs2Xc0Tjvv995A0VFkJ+Pz7I4pk8KU3J7AWZI1araZi4amMFdJwzGsiwaW8NMX1tCYXUjG6ub2FAbZF5xJXbBAOy2IYf+4cO4LraZjLgofjFrzc79jInGDdtgWbg33gi//rUp799h5kw46SSmX3p0t0FhSUMz2X96F045xTSB/4JZV03h+H7dV5kt3lbDUY/MBMBKTcWtqcHj9+O0tPT8vsbG4O3bl9BVV8OPf9zj4w4JixbBhAntP8YFfHxyzfGsr2rg7EHZR3yYVdcSIqlDb55unXwy3HuvCZE1hESOdJ9/bgKfDp46bxxXjs5l8bYaJj0+GzcqCueSS+HGG2HixIP35fmll+Dii7l+XD/6JsbQ2jYpSGvbpCCbaoMsKquntKbRBFVPPLFz3dNOgw8+gDffNCdpOgqHTdXw8uVmqPbYseb/2bg4c/8jj2DdeCPPnDeO0wdkkBZ7+M2kWN8S4u11pdw9czVrKhs63Tc2K4mlJbW8cckkzu5wTHIw1DS3sry0jpVldVQ2tXLXzK4tEmJ8Ho7qncKD08YwLH3vhtsP+8eHrCqvNz8kJkI3LQ/2mXAYXnwRli0zoXBCgvn9bNMrMY7qhmDPE4t054c/NKGbbZtArKAAxozRZ92XpQqsI4r+SkQkMvzyl3D33SRE+/nBhIH0Sdz1Wb4dPi+v49ez1/LWxgrqGpuxYmNxW0J8fUQfrhjdl2P7pvY47fVPjhvEWQMzmdw3lcz4nc+3trKhU4CVlhjLFcOy+fMnGzghL41JvVP44113Yf3zeZy4WF5bvb1TgJUZH80N4/OI83u5/N8fwGefdf7i0a8fLFlC+JFH+PjZZ5lTvJZj89K5YXRfnhrWu9OZ0bgoH6cXZBDweYj1+yiqaaLg7x9g33RT+2NCAwfxwOuvkxxnXoMnNgbn+z/A+eUvd/neeX/+c4b1TuErAzO7vT8zLkBqQgxVM2Z0ue/NS4/uMbyqDra2h1cA42JhcZXTY3j1rwsncMHLC3Gagjhr1sLvfw/33Weqa2bNOjR7ZH1hqE5jS5jXV2/nZzNW8cjZY7huXN7B2a+DrLi2iVvfWc5p/TPYetvpVAVD/PWTDTzaFiR38tFHcNRReONicSdPxhk9xvQYGzz4wO+4yMHS2gpvv431zDPtDdoz4qO5bkwuXx9pKg9t1/Q45P0PzIyCB9OqVXiuvoqLRvThoWljup3NLxiyOfHZ+VT4YrDvusvc6Lrw8cc7/++cNs0EVbZtejYGAmZo/memusfv8xIK21heL94RwwlPnmJmzUtN5fJ/L8ayLMbkpDKtfxqnF2QwqU8KvkOw/1dVsJWPNpbzmzlrWVrSNaTxeyzuOXkY35yQT3wPVVUHQ3J0FMf3S2s/TrjzhCG02g6PLy3iJx9+TnVziGDYYU5xJcP/YU6Q2Xed22O/0442VDXuDK/A9BLdtg1699BGYfFi09Lhyzakv/feLg3dbxyfR5/EGL57dAHxUT4c16U6GKK8qYWyxhb+sXAjL362tedt/uEPXW7yxsXijhuHk5IKv/lNl8BaRAxVYMl+pQos2SO2jZWfj7t1a/vMgakJMdxxdH9uOqrng7La5hBHPTGXjf447KuvMQ3Jv/1t4gJ++ibFUNvUyuuXTKJ/ShyNoTCNrTZ1LSFWVdRT1xLmpqPyifJ2f0C7uqKeVtvBAvolx3YJwZZur+HqN5fz6bYqkuKiqbhtapeD41bboe/fPqTsgktMc9nuBIPw73/jefRRnBkziI2O4vJhvbl2XD8m9E7GsiysX7wGwNQBmby3vhRfehrhjZvMWeemJjNr0JtvguviiY/H+dOf4Lrrdt2sd84cOP743fbOOv+FBby2ZnuX2+89dTg/nDyw23UeX1rEtW8sZUpuL1684Ch6J8SwsbqRUQ/OoKE13P64xICP68flsa6qgTfWlHS7Lc+4sThHH2N6uDz8sCnJP/10MywzUkvzbRvPpZfivPxy+00XDutNbavNe+tLSY4NUBtsaW8n5rUsqm4/q8eg9XDyj4WF3Pz28k63TclLZ0x6PIPTEnjxs61cPDyHG8bn4boui7bVMKuogp9+tKrzhtTzSo4U3/wmPPggveICnDswk7MGZhIX5SMrPsCYrGTAVDRm//k9WtMzCP/kp2b2uMABrj5yXVi6FO+ll1BQW87ia6Z0+9ntuC4XvbKIf2+oxJk1y/QveuYZfA8/RHj1GvqmJnDpkCyeW7WdrdUN3TwRDEtPYPlNJ/N5eR3zt1Qzf0sVc7bVsaGsZpe7WJASx38uP5aC1Lh98pL3h9UV9fzlkw08tHhTj4/xWLDh1tPIS47c17EnqoKtDPrbB1QGzdDX8J3n7lF18oaqRk775wI2VrTNpnjddaYf6RePeRob4XvfM5V5Ph/u9dfDHXeYKqft281SUmIuo6M7H1vYNrz88s6KqAsvBEyV2yfXndDjseMOYcfhkcVF2K7LQ4s3sbKs88yP719xLGOzkvF6wMLizhmr+Nt/C3c+4JRTTCWi7BlVYB1RFGDJfnXEBFiOYypFHnkE/7y5hCZOMsNfpk41H4o5OQd7Dw8thYXw299iPfkkSQEfP5yUz4l5aawqr+ez8npWlDeworKR0poGc1CycKEpva6shH/8w8xC9PTTu32at79+DGf2UH20J8KOw18/2cBzK7cy9+op7b0bOvrtnLX8bO56nC1bdj9l+caN8MQT+B57lPC27WQkxxGyXarr2xrPf/WrprfCtdeaoRPPPIPvJ3dAWTm3TMjjunH9+M3cdTy3fDPeY47BfvBBMx12d266CR56CI/HQ0JMFEnRflKivCT6vSQETGNb23EJhmw+3FhOqEMPrJMLMvnw8p5nFwrZDrUtoW6Hb7iuywOLNvJZWT1/O2sUHsuipKGZtZUN9E2M4dRn5lFY3dR5paQkrMYG4vw+QrZNS2sYX1Ym4QsvMjP/7apB7MHgunDVVfgXL8bZtBG7scPruekmePDB7le7+7wDtIMHz01vLtvlF7MdeqcmcNv4XL53zABCtkPGH9+hrmVn+En//mYSBTmyVFdDcbHp73SgA5qDZflyfOeda05afMH8a4/n6D6pgKlG/tXstbz42Va8WZmEf3wHXH89xMTsv32zbdOv7o038L05nXBJKb0SYph35bEM7mEG1vc3lDH12Y9NAP3732NNmojb3MLXhuVw47h+nNI/HY9l8WlJLWMeaqv+bZsVDyA/OZa/njGy2yFyVcFWFrQFWlvrgliWxea6IO9tKGt/zF9OH8l3ji7Y9+/FPtDd0Opon4dbJvbnrIGZ/Gr2Gj7aWAGAc9e53Va3HUrO+ecnTF9rTl59etNJjMpM2uXjC+5/j3MGZfPnM0YSdhz+uWILd81dz6aKOqxzzsb9xS/NsSDAsmV4L74I36aN/PnU4dS2hPjt/ELqdszE3EFKQixNLa3m2KJ3NuGzvmImlbn//m73Y8kNJzI2O3mPX+dv56zl/5YWc05BOndMGUjfpK4T1ry4cguXvLKo/WdPUiLO6WeYCXumTDHB2u4mYWhthfJyaG42J/uSkw/viRs6UoB1RFGAJfvVYRdglZbCK6/snKK5qQkaGvC98zbhjZvon57EWXmp/H3hxvZVLI8HzjrTzEznujvXKyw0vR6+9rWD+IIiXHEx/O53pjopFALLwp/Xj9DIUebDfNgw0/R7wIDO67377s4G0B30S4phREYiIzISGZedzOjMxPa+HBlxAXISovf5AWFVsJWcv7xPODOT8CmnmoOR444z/Q56ei7bNmfeZswwvR1SUuDUU2FgW8XTsmUmwAKm5PbiyXPHdTqjPHNTOTe8s5L1lQ24t9xihmcmfOHLRFkZ3H13j2HKrjz/1aO4dOTeNc0OOw7BkE3CbqqMVpbVMfKBj5iYk8ItE/tzxb8Xk5Ucx+2T8vnG6FzunbeO33VoUguYs6+LFpm+L0OGmN4vkTSjYWWlGcKwapU5uF6yxDTx78bhHGI1hcL8ef4GfjZj1a4fePvt5iD88cc5oX8Gz547lt4J0Ty3fDNXvrbEPEYVWIcf14V77sH/8MPQK5VQ7xwzJCwuDmbPhqeewjf5WMLbO1Rr3nyz+b/wuOPM/4+H+Bf6HtXXw4IF5r1ITISEBLznnkNO0XoenzYGv9fCY1lYwLqqBu6dt55VFfWmWvdHt5v3aX8EWU8+CVdfTV56Il8tSGfaoCym5PbCv4vqlJDt8Nu5a7ln3nrspCTsxCQoLGRibhoPnzmS0Vk7Q4znlm/myteXdDuJyNQBWbxy4VG7HDa3pqKeIf/X1r9x+nSs88/j/6aO4JsT8r/0S96fXNfl9TXbSYmOYkpur26rkVzXJey4u3yPDwXLSmoY+9BMAGpu/wpJ0bs+NiisbqTgftNPtOknZxPjN8FM2HF4bvkW7p67nqLKOqzzzsUdNx7Pr37FsLR4/p+98w6L4mr78L2N3jsoggIq9q6x18QSa2ISo+ndqMn7pvdm2pe8aaYXTYxJLImxxh57FxVsKAhIr0tdWHZ3Zr4/DlVAUEFR976uuZadOTN7dtlyzu88z+9ZNqUH7cvE1HyjmTVn0nGx1eLvbIe/kx0+jrboNGqMFokd53JYF5PBqvhs4jLzmd4lkHmjO6MvMaMvMZFTYiK72MTUDgGNWqWyyGTh3R2nq41t7u0ayKncEo6k5GKRJDQuzsj9B6D07i0EqqwsyMxEm5mJKisTWa8XRvnnoXF2Qu3qCu7uyB6eSB4eIpps2rRG63+zwCpg3VBYBSwrTco1LWDFxkJkJBw/DlFR6KIiMceKFX8nBzvsdRrsbbTYazX08XHkke5BDGzliaQo6N5ZBcD8Cd2xyArzDidyAsrO+QAAIABJREFULFWUFi73bajg/feFmOHtXenzUNft9WDuGBMjJiVz5ojomYY8p/R0sbVr17BBuMEAI4bD/gMX1TUbnZYAF3taOdnQwtme1m4OvDAw7LJTu/Ym6fnjeDJbk/M4kZaLoihofbyxDBkqBK3Bg4Ug11B/ji++gKeeAqCjryvHHx9Wo4lJkvls31ne2HEGi4cHls+/EIOWqhM8gwHVAw+gLFtG/0AP7urYgqHBXqQUGjmRWcDxrEJs1Go+urkjLrY6kgtK+PloIs8PCKsInzdaJAwmCU8Hmzq7uy4mg1mbTpCoL2Lu0PY82z+sQWkCsqKw81wONwV6YKNRV6RS1odKq0Ed1hbphx+uvh8MiEjM843862D3g4PoH+jZxB268qyMTuPhdcfILigWK8KDBokiAuW8+KJIhT17VgzM/f2F4PfSSzja6ghwsScms9L/RePijLT2H7EybeXaQZZFEYsWLURFunJMJlQPP4zy66882K0VJRaZP44nVztVHR6OV2oimfmVVWUDPZ1J1heJ71QvTyw9egqR+K23xO/m9cz+/aiHDkU21owoqcHHH8MzzzR+H8oELNOrEy5aUEnIM9Dx220U//dZuOUWNI89ihITy5q7+laLjC4oNZOUX0JyQQkphUaSC8TfpZLM12O71llNr7DUjEvVaKaEBAgO5sfx3XjoBvUgbE5YZJlNZ7MYHepT68KhoihMWLyPNWcyahxL+s8ttHSpPha0yDKLopJ4Y1csiTmF/KdfCO+P6HDJQlNSfjHejrbYNaJQVRVZUfghIoHH10bWOLZmWj/GlRXWKTZbOJiSx87EHHYk6TmcWYijrQ4fex1+dlp8HGzwdrTFy8EGbwdbvB1tsNNqyDOayS0xkWs0k1tiFrdGE4kFRvYk5sDMmfDpp9W/h69lrALWDYVVwLLSpFyTAlZqKqonZ6KsWAmAm5M9Xbydaetmz49HzvHW0Pa8PqT9BS9hkuRq+fGKolBikbDVaNCoVSTmFzN9eQQZRgtpRUaKiuuuzFYVlUaDykaH2tYWla2tELXKBC7Fzg7Fzh7Zzg7F3h5cXaFzZ1HBq1s3kXp2pdDrhQHzpk1oN23E0j5cpBmUm7RWnXT+9BPcc0/1NLAVK1B99x3K339f3iRk714hEEZFQWmpWLUqv23gV9+LA8J4f2TjGWnmGU3sSdKz41wOW5NyOVy2uqZ2dkL+dZGobFgbZnP11yg1FVVwMK/3b8ObQ8NrPcVgstD9h+3EZJeZnU6bBr//Xr2RosAnn6D95H9YUqt4XalU6MJCkdPS6ORiw397B+Og02Cn1WCv1WCnVWOv0zDq193oS8zVLtnT341hwV74Otni42jLfeVRM2WD1IFBXvw2qTsOOg2xekNFCkx9rIvJ4PP9Z9lQJR2kPlSTJ6HMngPDaop8V4yICFi0CO3GDVhOiugjJ1sdnnZaEvNLOP+duOuBQQxodX2JWG9uO8XCk+nEZ9VfKUqtUiHX8/lUjR6N8uabIgLTSvOmPKXFwwNefRU++wwAbceOWLp3hy5dUK9Zg3rPbhZO6M5dnVqgfntlxend/FyJzCggzMeVr2/uyMhfd1ccs9WqGRIk0suTCkoqH/PQIfHbFxsrFoiaW5pxY5GbKyI8ZVlsilL5d/l9RRELJBd6DRTl0qLX/vwTpk5F//xY3O0vbiJstEg4vLcG5ccfhWfXv//CiBFsvW8AQ4PrSbdvAKUWiTnrjvH94QTo2VNMcNu3Z+GkHtzTtdVlX99K06EoCu2+3EyMvlKsHhPqy0PdWzG+nf8F/afMkkxWcSkBzk2YOtsIfHkgjtnrKv0gPx/dmSd6tW7yyDpFUfg+IoFZ64+j9OmD9NdfYsGoKZFleOcdyM4W6f9t2kDr1mI7PzugKpIkfGLt7etPhbQKWDcUVgHLSpNyTQlYigI//ojm2WdwVSx8NiKcm0N8qlWnSys04utk26AqKReDvsSEvsSE0SJTapExWiRKpbJbiyz2S1K142Jf1Tbl54i26SUSxzPzMZYKcUHr443UvQdKt25C0OrWTaRcNDQ/XpZh3z5YvVpE8lT9gTAahTC1aZOYpB85Wl0gGjECnJ3R7tiORZ+LRqNGp1LhoNOgLzGhbRWI5ZVXRTntJUtQPXA/iiTDgQPCw+n4cThyBA4fRhNxCHVeHuaevUQfevQQKSTu7rV2WzVoEMquXeg0ajoFeOCqU+Nmo8HZRis227pvJVmhX0uPixpQWGS5zkpH8bkGvjwQR6iHE2GejqyPzWRJdDrJ5Ua1s2bBvHk1T/z5Z1SPPoKmXTss9z8Ad98Nv/4KL7xARz93+vg5V6RGdvR2JqAsFXL0H/vZcCZNDBbi4kRq1uOPg69vzUg2RYHoaFEiOjRUvO5OTsJHYvQtSBkNF43K0Tg5IhUZqu+cPRvt8r/QZWdTUiqMW18f3A5HGy2P9wpuULTbicwCOn3zL0/0as1Hozoy4+8IVkTXNJqvRlqaMPm/2qSlwZYtsHkzum1bxWcHABXmDLHS/HTfED4d3fnq9bGJkBWF4M83kpRfUm1/vyBvBga4clOgB/1auuPraEd2cSmphUYiM/L56mA8h1LLzJnValQzZqD88stVeAZWGszixbB8uTBBLkPr54slvTKaooe/KxqdjmMZ+TjotKyc2ouBrTwpMUt0+uZfbmrpzi+TeqJSlYkdVTwGk/KLafXZxtofe8YM6NUL1UsvopRUiU5aurTCiNlKGStWoHnvXZSoY2haB2NuHy4ipMu3sDDxe1HXmGfDBhg9mn/uvokWLnbYaNSEuDs26DfzZFYBHb/+V/iHDh4M06cTvHENcTOHNVoqv1mSeWr9MRYcS64YC3k52JBdbKpo42Sr49ObO3Jf11bXfFre9cKA+TvYkySyFsyvTbgmq0fWx/ObjvPRnljWTb+J0aGX7sV6qexL1jPxzwhybB2Qlv9dGa2ekiIWOo1GMQZsyKbXw4oVIrV/1ixheVGV999H9corhPq4kpRrwGiqXPTUenpAqyCQZVSGIiguRikuRi4xVlSu1jg6oPTthzxwIPTvD/36iUX6qlgFrBsKq4BlpUm5ZgSs2FjUDz2EvGMH93VrxSc3d8LjIlcTmyOyohCXa+Boej6R6fkcziggIrOIjDwhmKjt7FB36oilew8haHXtKoSLqisicXHw5ZdolyzGkpomfDaCg5DuvAvS01EnxMPefcilpbg72TM62BOdRsXCyKSKS+h0Gvq28GB4Kw8GB3nRr6V7Rdj/sYx85u6MYdnJFNTe3kiZmdzTNZBFUcmo/P1QMjNRLBJqlYoQH1f6+DjhaqvjUGYhUen5FT+EulaBmHv1Fiut5aKWry8UFqKaORNl0SK6tvCgk4cDoR6OhLg7EuLhSKiHE94ONpc8YFYUhaiMAv6OTmXZmUyiM/IY386fJ3sGV5jRlrMrMYdBC3bWvMjChah+/BHlsceEOFWVzz+Hp5/m7s4tMcsKK85kYJFkGDwIJaAFqFRoT55APhVdLZXERqNmUGsfjmYWkltYXDOiZcYMIYKtXi3KS/fpU7eYWVqKuk9v5KhjPN4zGIuskGc0sTk+izxjFWPtzp3B0xN27xZi5Pffi9WzrCzhH5eUJKr8mM3w4YfwwQcA6Hx9kfLyaOlkw+qpveo1cj2fu/86VCPdqAZ9+wpPsaY0NL4cytJC23o68fnozgxv7V1vlaNrGZMkk1ZoxN/ZrsbzzC4u5e9TafxxKo3t8VnIgHrIEOQ774TJk69sNKmVhhMXh+amfqicnLDExdc4fEfHlrwyKIzI9Hy+PhTPl2O60jPADVlRkBXloiepsqKw+Hgy7+2No4WjDSODvTiVXcifZzIwlJgIdLHnXP55BSHs7ODppyujlx0cxG9f377Xf8rh+WRkgJ8fGrWKVwa2JafERLTewKncEtJyRVomiIUIVViYiKQOCxMLHBoNDB0qIiq6dq122Vaezrw9MIzpXVpe8H+66nQaExfvh9RUsLND7efHtHY+3NWpJQaThSKTBYNZwsfRlj4t3Gnt5nDJv9NFJgt/nUxlbUw6URkFnM6pvbrh9exBeK0wcfG+iqrEpa9OuG5/B5/ZcIxP9p29qhHX6UVGbvszgr0pepRXXkV1LApWrsJGo8bJzoZik5kSo6n+CwFqtZoWLvakGCXkBQuEx6+neF7qLp3RRkczd0g7ZvdtQ77RTFxuMXG5BuJyDZzLL0GrVuGo0+BoI4oIlf9tr9VwLr+YXcm57ErOI99QIsa94eFYBg0Sglb//sIj0Cpg3TBYBSwrTUqFgPXww8IwuuXFGT83KunpsGCBCLkvLISiIigsRJ2fD3v3EuCoY/7YLowKuf4nRznFJiIzhKh1NCOfQ1kGTmfkIUmiyo8uOAhzuZfIvHmQlUXfFu7836iOeNrbMG7ZISQF/B1tCHTU0b+lB6NCfOjk44JapeKPY8ksjEpiYKAHQ4K96B3gVq8PwamsQj7YHUMrFzveHhbOS1tOoi8x0d3Pje7+rnTxdalR5U+SFc7kFHE4LY/DaXkczCjkSHo+RSVi1Ubr54vUsxdK167CW+f0aVQ5Oaj0emRDZWSQva0NvQM9mD+mc73ltRVFodBk4VhGAX9Hp7HsTCaJOQVonJyQBg0SESJ79qDk5hLs5cLEEC9Rza8sSu63Y7UILevXC2HnfL76CmbNoqO3Mxtm9CfA2Y48o5llJ1OZH5XM/sRsNM5OSHfcKVa9yozdQZi7b7tvIBq1CklWOJCSS//5O8RBPz+xWnbkiCjRDmg93LFMmCgEMxeXmn3Zvh3VqJHM6BDAwkk9Kl6Lv6PTSMgrJiItj9/Ln5uHh0hraSjLl1crZvDF6M7c0zUQN7uGiciSrLDsZArHMwt4d+eZuhsuWCCEtebIeROz5Xf0YXJ4wFXqzJWnXLRaciqNrfFZKIBq8GDku+6yilbXCKrJk/DZupmpbX1YHZvJuVzxHatWwe4HBzc4VfhyMUkyhaUWXO20fLgrhjyjmY/3xlYcD/RyodQiY7JIFJeaMZktqG1sUPXpgzR8OAwZIlb4m1MhiPMpKBDRtH/8Ie7/+KOoTlsXxcWwcyds3IgqLg7lvfeEEPXZZ/DCC7TxcmbV7b3o6CO++40WibN6A2dyiogpuz2VW8xpfTE5BVWiakeNEl6WZjNYLFBQgOqrL1FWrKS1lwtr7uhFB+9afk+AT/bG8szmk8IXs7yoTT2MDvNjTIg3s/u0uewoLUVRSC00cjqniBELRVqqVcC6ujy48jALjiYC1Y3ar0de33qKd3ac5uAjQ+gVUHsGQWOz41w2uSVmuvi60MLFHhuNGrMk89ym43y+P462vm481bMVM7oEVkTDy4qoRl1kslBkkjCYLRV/F5UJzVq1iptDfHDUabl1yQH+PSsibXXBQZhv6i+yAP7+G06epK23C9FPXFqUpaIoxOgN7E7MYU+Snu2p+cRkiOhsjZMTUlGRVcC6QbAKWFaalAoBqwxtxw6iPO3o0SJc9UqVwT5xAu3oW9BmZeLj4oCLjRZXnRoXnRoXGy3hXs482z+0TjPQGwGTJHMqq1BEa2XkE5FRyJGMAgqrlBz+994BBLraEzZvM0ceG0o3v4aXEb5SKIpCfF5xmaiVz6H0fKKyDZjKxDlFUVAAi0XCYDShbtECuV8/VOvX0cXVlqnt/MgzmoUBptFMTqmFnFKJ3FIzBSUmiopLK6KZNB7uSB07ib9PHEfS51bvTIdwdKWlwqPM3gHF3h65tBQlNVX4gNnbi0nSnDkiXeN8Zs6Eb76puGtvo8Pf0Ybufi60dLFnaXQ6afnFwgj/gQfghx8q2s7uG8IX56WhHU7LY9iivRjCOyI98yyqGTN4smcQ0zq3ZM2ZDD7eH4f53ffgueeq9+OVV+C99yruxsweSaiHU8X9Yxn5fBeRwFdVqm+SmytKONdHme9JOarx42HdP9iq1dzS2pMTeUYGBrjy3biu9a7Edv9uK0fTa/FYatdORBWuWSOi8q4mxcWwapWYeK5aVWuTZ28K5cNRHRs9VbmpKE/p/HpsVx7vFVxtYJqUX0xWsYnuZZXFMgylnMkpqthO5xg4mVdCXFZBpWh1550wZYpVtGruVKmGWs7XY7tWVHgrH142dmXXS2HKkv0cyywg+smR1QpISLLCscx8tifksK3MlzDfUIJKp0XdqzfSsGFC0OrfX6TK1Me331YsCvDwwyKytWNHsZ2f8tIQ9HpRTKZ88/YW3yFffVW93a+/igqFa9aI+yqV2NRq1DExKLt2oZjN+Lo5YqtWkWKmRsWy+7u1YsHE+id+WYZSRv26m8iMAoDKRZT77xfjurQ01COGozl7lu339OemwNqFy+0J2UxZHkFusQll+nS47z4ICIDwSk9HL1dH7NSqijR71c2jUDZu4v0RHXhxYC2/mZdIeYEQy2sTG1RgxErj8+zG4/yvTGgufOnWC1aXvB4oMUv8EpnIYz2Dm/w78t/4rAqRti7S/jsaXyfbRhGG43KL2Z+i50BKLrtTC4hMz8VslvBzc2ROjyBeGtR4n93cEhP7knNZH5vBFwfirALWDYJVwLLSpJQLWFvuHUCWoZT1ZzNZE5dNdkExagd7lOHDUcaMFYJWmzZN1g9Vz54ohw8zNNiL6Z1bMrKNN8FuF460sSJ+iJILSjicls+2hGyeGxDKkbR8bv1jH2NCffln+k1Xu4uXxIGUXB79J4pjaXmVqXVffIFm7juoJAmVmxuKuzuSuweKh4cQYuzsxApzeLiYRDz2GOTl1ftY6p49kTt2rDTT1Whg3DiYNKlhxsJVBhMqVS3e88OGQXg4mo0bkWLF4C/Iy4Xn+wQzs3fNz9SRtDyG/baPfIORce38WXlHn4oB+/TlESw1aLHExFZWRDxyBFXv3jzdO5ibQ3xwstEyINCj2iBn8pL9lR5Unp4wYQJ8913Dnl9hofCmmThRpDKC8In66Sc0a9citW2L+o8/GN7KgxV39L6gyFxiljiYmsvp7CJO5xRVDIYr6NpViHHDhonHKioSFXiuZBWeegaHw1t7seXea6uyXpahFJ+P1wEwuLU340J8KDZbKDHLfLIvFousEODuRF6JieLydAS1Gl1gSyzt26O0ay/ST8ePv/oCo5ULo9fDI4+gPnoEuZY0wVcHteWd4R2uQscaB1lROJlVyPaEbLady+HfpFz0hcWismn37kKomTOn7u+Ms2dFZFMt6Pz9sHTqhHJTf/E9VPUaFouIRIqMhKgoVEePoj16BHOaSKWy0WkxmUW6truTPblFZT5y9vbCb0arhb//poO/O/Y6DbICCgqKAi0cbLi5tRejQrwJ93KmoNTC6D/2sS8xh/kTutPZ1wVPextauthftAdUrL6IhZFJzD+WQkpuEdrWwSgGA16lxaya2os+LS4cWVJstnDnnwdFpbkXXoD330ft6MAbfYN5eVDbihTEZzce57OTWUipqTBnDqr58znw8OBGi1wpF7AKXhyH82VWHbZy8by38zSv/CsKnFxKQQAr1UkpKGH7uWz+OpXK8lOV/qAh7o7c360VEWl5HErNI7ms8MXg1t5sv7fpKjabJJn4XAOhHk5NJhAfTsuj5/fbrALWDYJVwLLSpJQLWBGPDqWHv4jGKPcMWh+bwdq4bPYkZiNJMtqQNiI66+67Rfh+Y3LsGCxdimbjBqRDESDLtPJyYUyQB6PaeDOxvf91aRLZFKyMTmPSkv3AtTvQWHI8mbv+OiTu6HTQq5dYKXd0FBFR5bfJyaiOHEF75DDmlFSgbLV5ym1iFfzoUTHpqMLsPm14ZVBbfJ3s2HEum3d2xVBklit0i0KTheOpuWj9/bA8MROCg4VBviRVrx4lSWAywX//W6P/TjZaikxl3lP+/tjrs7mjvR/Dgr0Z1tqLVq4XTn2JTM/n56OJzB0eXk0Q2nkum8E/7xIm48OHg8WCpk9v2qYlEPnw4DonN4WlZp7ZeJwfDp9DPXIk8vz5EBhY/z+ioWzZgmbiBHp42LN+Wt8G+9Mtikpi3oE4Al3s+etUat0Nz52DVlegKpWiVAqDF2BQK092PDCo6ftzmSiKwrKTqWyOy2T12SzSy/yGtK4uqOztwd4exc4Oy8hRQrj19xeRhu3aiQWLKxWBa6Vx+PVXuPfeGrtPzByOjUZNqUUm3Nv5mokcbAiKohCdXcT2c9lsTcjmz1NpqMLbI81fIH4z6mLtWrj1Vg4/OhS1SsXB1Fx+iUxiV2JZavXPP4uII71eeFF1qBT9fN2c6OnjRFcfF7r6utDVz5VQD0ciUvO4b8XhGv5N4b6u2NvoeLBTADN7t25QBIVZkonRF9WZ3nexyIrCjnPZ/Hw0kSJJ4ctbOuHndGFPMVlReH3rKd7deQbVnXeizJ8P9vboglrxdKAd/zeqU0Xbs3oDYV9upuqU5fSskbT1bEBUXAPw/L+16EvMpP53NP7ON5gX2lVmwZFzPLjqCAAZz47Bx9H6u3AxKIpCdrGJWL2BGL2IbD7fSqGVqz37Hx5S72fyWsYqYN1YWAUsK01KbQLW+RSUmtkan8362AxWxeeQVliCsmFj05W9z8sTVW82b0a3YQPmmBhmdGnFL5O6X1cD76Zie0I2Q3/ZVW+7QBd7nurbhkd6Nqyy3JWk1CIx658oUoqMFFkUCi0SBpNMsUWi2GShpNSM0WTGw9mBnr7O9PB1oZufK0GuDmw4m8HCE2nEZxeg8fBA0otKOUODvVk2tRdeDvUPvqIy8pm3P46Fx1MqVtXLUalUqFQqNGpx28Xfjdf7hzBh8f6KNidnjqDD11uECBAUhM+Rg2Q8NfL8h7loFEWh3bfbiB04AuXFF+GXX1B9/TV7HxxE3wb41/wTk86UZQcx29kjRx0T4lxjcfAgmltuIdRGYduMfhc9ENuXrOeJtZG1pxgCfPqp8O2aNEkUAmgKOnWCEyfqbbbizr5MbN/EZa0vE4ss8+TaKL4/nIC2Qwcs5ZWBZsywClPXIxs3woMPigpVZTzWMxg/J1veGNK+WaQJno+iKI3er6Ppedy/OorItFwRiTV3bu2phevWwdixbJzRn2f+jeZEeh6yLKN2sIdOnZC/mAedO6MObIlcJfX84e5B/DChe83rURklBGIR4+uxXZjeJfCaHLfkG83c/fdh/olJF8U8nntOVBl+6imk3bv5aFRHnu0fVu2cV7dG8+6O6Gr72nk6ET3r8n/7unzzL8cyCzgzayRhjSSKWamfUouE3burAfhmXFce79X6Kvfo2uLt7dG8sS267uND2zO7b5sG+4ley1gFrBsLq4BlpUlpiIBVFbMkM+aP/WwpMwDUenmilJai9vBA8fXF4ucvUkyCgmDatMZJO1y8GO6+G1cHO5zsdKTkCF+HAcHeTA7z4ZnzBlFWID7XwItbTrL0REr9jYH/3dyJOX3bNEqUm6Io6EvMxOiLiMkpKlt1MpBkKKWNix0h7o68MCCsXtP4hjxOXZMfRVFYeTqNyUsOVNsf7OlM/KwRtZ5TGxZZRpIVNGqVqO7Ihf1izuoNZBWX0tXXlde3nmJVXDZnMvLQqFUUvzy+Uar1fLYvlv9sOA6I6pGvDgjj9SHtKTZbWBSVTLHZgqyIKoczurTEzc4GRVFYEZ3GyzvOEJ2eh3rMaOSlyxrmGdNQoqNRPfAAyr59LJrck+ldLi3CK8tQiru9jnN5JYTO21R7o5UrUf3+O0pIiJhYNcTLqyFc4H87INCDga08aeVqzyM9gpt1Ofcik4Wpfx5iQ3wWyvc/CP81K9cnzz0HCxdCZma13Y/2CObLsV2a9fu05/dbOZwmBOvxbf3o4e9KmIcTYZ5OhHk4XnL0sEWWufPPgyw/lYZqyBCUbdtqNlq6FO68k8OPDuXOFUeIycwXkb4ffSSiawsLRbXWjz9m5V198XW0RaNW0cnHBbs6frtUb63AyUZL4Uu3XlK/rwQWWSbfaCHTUEobd4eK3+FSi0RqoZHkghIS80t4Y1csCaUy0uIlIrX75Zdh4ULa+bgyb1SHCxbTyS4uZemJFH46co7Zfdpwf7egy+73mN/2sD42k8OPDqV7A8aqVhqPcYv388/pNII8nImbNfyaFGSvFlEZ+dyx7CBt3B0J83AkzNOJUA9HQj0cCXSxv+xx8LWEVcC6sbAKWFaalPMFLFlR6p2k5xvNuH24FoCbQ3wY1cab7GITmYZS0g2lpJZYiMkupNhoQj1qFPLMmXDrrcIDoqEYjXDggKjK06aN8O05eFCkhVUxqwaY3rkljjotLV3seGFg2+u2pO+lkmkoJSGvGFdbLa52Olxtddhp1cToDTyxNpJ/47Mq2v5xWy/u7NiiQaviOcUmYvRlAlVZJaRT+SXE5hRRVFxa0U7j4oxUUFjt3C33DsAsyfx6LJlgd0fmDm3feE+4jIJSM31+3MHp7MrHvlgBqzFILzKSUVRKV79LMAiuhRKzxG/HkvB3suPPU6n0b+lBrwA3jBaZwT/vxCKXGTNrNHTzc+WV/iG8vecsUSl61MOHI8+dCzc1kjeaoojSyF99BYsWVex+bXA73h4WfoETRXrKQ6uOkFNswlarxkGn4YFurRga7F2RhvLtoQRm/hNZfz+OHRPRU5fL338Lc/J6+H1KL6Z1vjoVW/UlwqOqappmRpGRrGITgS72FJslxiw+wPGCUqS/lsPNN1+ZjiUni+qWl1MZrrAQfv9dRNmVe21JkkhvtFITWa722nT3cyXPaKaNuyNLp/ZucCrv1WLpiRTu/PNgncddHO0I83Ai3N2OUHcnwjwdywQux1ojFkySzJLjyXx0IIFjqXq0HcKxfPAhtG4Nhw/D4MGVUac//QQPP4z5tQni7uFzvLzjDPrCkmrXHNc+gDV3XiAVsQqqt1bgoNNgeHl8w16AJmZrfBbDL2AMHeruiIODHcmFJegLiqsd03bqiGXRb7B6NZr338NFDe8NacvDPYKuip3DQyvFjJEdAAAgAElEQVQPM/9oIg46Dc/3D2Na55aNlp5o5cLE6osIm7cZgFV39WV8u+YdfWyleWIVsG4srAKWlSalXMBq6eZIVnEppSYLz94Uykc3X3gyGJ1dSPhXW4DaS+kWmy0sPZHCl4cTiUjKQevni2X2HHjppdqjHIqKYO9e2LEDzbZtKAcOIJtM2NvaUFJqEtWCpk4VRqpmMzzzjDBjPY8/buvFXZ2uzsTyWiUu18DUZQc5nCYMzx/tEcx347vV2b6+QTEgUpQGDoTffhPRH+vWVTus02owWyQARoT4snlG05nN7ziXzZCfRUrlW0Pb8/qQxhfLmgKTJGOS5Dor/exP1tPvpx3V9lUzkbexER5dgGbAAKR33xXVuhqLdevQPvcslhMnaenhTJiLLdHZRaQVGVl7dz/GhvnVeaqiKOxPyeX2ZQdJKSgBrRZNSAjS6dOMbOPN5rgsvB1syCoW/V84qQfd/d3wtLch4JP1NS+Ymir8my6X48eFWXkthPu4clcHf25q6cHINt5XJSWr1CIROG8LWWWTzWNPDCfMw5HgzzeSXiREY7VKhdrXB8v6DSJy4krw+efw9NMAaDp1Qrr5ZvH5HzIE3N1hzx7hIeTuLt6Tn38uov8SE0X1SRcXcHFB9ftvKBs2ora1Re7ZU5wHsGmTMMK2Usny5XDbbdV2ya9PbJapgvWRXFBC4KcbKne8+64QneLiICYGzeloVLGxWLJzKpq4OtoT5ulIuJs9oR6OKAp8dSSRrIJi1KNvQZ4+AzIz0S78BUtkVMV52vD2WCZMBL0e218WYKwSLWUwWTiba8DJRouzjRZnWy22GnWDX1PVWyvQqFRYXp9Y63FFUfh4TyzPbxZpyidmDm80j6uqSLJC8OcbKwyga2NEa29k4HS+kfTcospiKYDG3x+5e3c0UZGQls5TfVrz6uC2VzXNaVtCFsN+qT7umBLuz1939AWaJh3VSiUvbznJ+7vO4OtsR9p/brG+1lYuGquAdWNhFbCsNCnlAhYgBKITJ5ii5FYMCi7Eoqgk7vk7gvRnRlMqyfx+LJlxYb6Eejix+kw630XE81TfEDbHZTHvQBwqZ2eUxMTKdJ8tW2D9erTbtiIdOYoiSbg72zOspTtDgjwZHORJZx9XFkYm8tg/URWCR22svbsfLZztGy3K5UakfJUtxN2RmNkj6xyg1CacdGrhwfEUfc3G330nVr0jI2HBAhGto9UKY/ZRo9CsXs1LnbybvCqWoihsOJtJdz9XfJuxSaaiKKjfXlltn1atYlbvNowO9WFQkCcOOiFoWWSZ93ee4fVyf4WQEDGhzclBHRuLKj4e6a67YMwYISQ09oDziSfg228Z3tqLddP7X1TkY1qhsaYQtW4dxMfDzJk12mc9N4aP9p7lz5OpxOmrGySzf/+FzZovhgtEYM3u0wYbjZqhwV7c2rZuca6xkRWFUouM0SLxd3QaD5WZ6Zaj0aiRJFnceeklIeRNmQItWjR9544ehTfegFWrqu32c3MiPa9IFEKY+y489BBqnQ5lwgTUyclI+yv94hztbDBJEmazhI1Ww8KJ3TmdU1TdNyQtDfyu3Gve7NmypYag92Tv1swb06VRJpbbErIwSwrR2YV8fjgJW60aO40aR60aB42KvgFuvD6kfaNWqxr/x15R6a4MtYM9qpv6I61YUZnqnJ8PsbFii4kR4taZ06hiYpCLDMgzZsDkyfD336h++RkNMCHMl3u7BNI/0INtCdmsjUln1dlscotK8HF1JOPpUY32HMo9sJQ3JlXbb5JkHlx5mN+OJdc4J+u5MQ3yZbwY/rcnhmc3CZEs+T+30MLFvuKYRZZrRFCVWiQS8oo5m2vgrN7A2VwDMfpiXO10vD20HaEezSfSqcQssS42g9uWHqj1+JRwf74Z181qNN7IGEwWnN5fA8D2+wcyOMjrKvfIyrWGVcC6sbAKWFaalHIBS6fVYH7pZTh0CI/tWwj2dKHYIkyzjWaJAQGufDe2C951DAqmLz/E77UMzspR3X03yv/9X+WkKjdXTEjKIkR0ahXj2/kxpX0A0zq3rJFjry8xUVhqQadRoVOrq9yq0Zb5E1m5PIpMFpzLBijlDAv24r83hXJziE81geKHiATUKujh70ZHHxcOpuQyYfH+ivQmNm8WqT+rVon0srffRv3PWpT9+/F1c6bEbKHUZEGWZTbPuIlB1sEQIASs5zad4H97Yy/Ybkq4P1HZBmKzCuCee6CoEP5egTY0BMu0u0Xkwu23C/HqUg27z5yBZ58V1QrLK9O1aiU+uxkZIurpgw8gJYX+wd5sm3FTg/12JFnB6cN/MJrMlTvj4kTURUQEDB0KRUUEuTvywfBwbgsPYPCivexLLxTpxa1awSefCHHU2/vSnl9d7NwprnsBrkR1z+jsQgYu3ENOYd1RFEyeLFIEu3YVkWON6WlWH7/9Jgzh66CiEqdazR3hAfRt4caC4ykYzDKLxndhwZFEfjxyjk339GdkGx9KLRKyQkU0r0WW+eZgPC9tP43R3gnp449FVbgbvRptfDyaPn2QsrMBKl6/xkBWFFafTufRdcfILE8pGzdOpN0ZjVBSAgYDqjVrGB/my+IpPWtEX18u+UYzL285ydeH4tH06oW0cyfYNWDRQZbho49QvfoK7vY2vNyvDQ92D6r1cyorCgdTclGpVPRp4d5ofa9q4l4Xj/YI5utxXfk+ojI9+nzBq7H6UfDiOJybWYGWxuJ4ZgGdv/m3zuPXajRic2bx8WSmlVWHLn11gtWuw8pFYRWwbiysApaVJqVcwFIHBCCvXy8mrcuXQ1mJdeztRXrPd9/hYTGyZFJ3hrWuOWEsNlt49d9TfLqvLK3vrbfgn39g+nQYMaJaCeoK0tJE2uDy5WIyVMYvk3pwb9dW9fa9sNSMAvVW0DNapDpNV61UZ2t8Fu/sOM3WhOxaj7vZ6Xh5YFvm9G1TYT55KDWX3j9sFw0cHeGVV1Bt24qysaYBt4+zPRn/vaXJ+n+9kVti4mh6PhFpefx2LLlmhb4HHoBvv0Xj5ck9IR6si88hu6iEEC9nzmTkC/+xyVPg7rth+PCG+9DJMprBg/GIOoyHox1xOQWYzTUjIL1cHPB3tqejuz2/Tu5xUd4ob22LJiG/mKFBXjy3NVqkxW3ZIqqbFhTAzp2o//c/5G3b8HNzxGK2kD11GvznP2Ky2q3uNNfLJj29zpTE1we34616/L0ulXN5xdy69AAtnWzJKCrlmMYRy1tvCxGyfOvdu3lEI+3bV6+XmoeTPU62Wo49MrjW7+mMIiM+jrb1FkaoMPPX6YSIciN6YmVlwezZsGRJtd2NKX5US+W77z7o2xceekikI1dl7VrUt99OX18ndt47oFEjsQBuX3aQ5fE5KCmpIu20nLNn0Ywdg+Lrh9ynjzBd79ev0tfqpZfggw/YMKM/N1/AZLypcH5/jRBta2HemC7M6lO9qM23h+JxtdNxVwN9JxvCnqQcBszfSRdfFyIfH94o12yOfHkgjtnrovhgRAdeGNgWEAtAk5bsZ9XpdN4dHs7Lg9pd5V5eX5wfIf5U3zY80as17bycr2KvrFwLFJSaeW/naT7cHWsVsG4QrAKWlSalIoXw55/FgLUuUlNRT5+Osn07A4K8GBHkwZAgL/q19GBtTDpTlwkjVpVWC48/jjJvXsM7YbGgmjEDZckSWjjb8fqQ9nja63C10+FWZjruaqejsNTC4uPJ3Ns1kC/2x/FlxLmKCI4hwd5su29AjUvftyKChZFJWF6b2OiD7OsdRVGI1Rv4+mA8n+2v6TcmvT4RtUpFVEY+L24+iY1WzclcIwk5BXQNcOdQYqUIdn+3Voxv68eoNt7X7YrwleJQai4jft2Lwc4Baf16ERE1ZgxRjw/Dy8EWg9lCqIcTJ7MKWHw8hV9PppGQXYDW0wPLHXcKASisnsqdZQbHa6b1q/B7SikoIbmgBE8HG0ySTPfvtgGw7b6BnMgqINjN4YK+Vxdi2YkU7igzc9aGhWKJPStSCT/4QHjdffaZ8EeaPQc+/viSHuOiURRRPCI3t8ah3i3cWX1X30ZPRzWYLPT7eTfH03JRubigfPutqObaXFm3DsaOrfXQywPbckuoD35Odpdltrw3SU//+VVSlmW58dNhmzs7dtTwr/tyTBeml1UZbUx6/LCdI6m5kJ0t3v/nc/w4qjdeR1n+N6E+rhx5aFCdPn2XypmcIjp+u1X4Zn74oRAuAfXIkchbhPemk50NRUZTxTmaPr2RQkLhzz9xs9EwOcyHmb1b09Pf7YaKxDmankf377bhbqdD/8K4q92dJsN27ipMkkzSf26hZZUUSbMkYzO3MqW5u58rrw1ux8T2/tZI/UYgIc/A8IV7iM81VOzr0dKD//RuzW3hAY0ekWmleVJstuD43poLtrEps7uQZBlJklHpdChms1XAukGwClhWmpQKAWvRIhEtdSEkCRYsQLV2Lept25Dy8tBqNVjO96b68EN4/vmL64iiwOefo3nzDaT8gnqba5wckcaOE6WwgQe7teKnidW/EEcv2sOGs6K0uPGV8TdUudqmothsYeD8nRxJz+fPqb25rUNNn51yM9WEPAPJBUZuaulhFQ+rEJ9rYEV0Gv1aetAzwK3OMPz4XAPbz2ULU26VCo1KRZ7RzPNbozEGBWNZs1b4Xj3yCEErlhI/c1iNiZqiKGyJzyKlwMixzAI+PxCH5a5p8MILohhC9+61igHqsDDk2JppjCqVCnVZyu75nnQ2Oi37Hhh4SSXOFUXhoz2x/HosmQAnWzaWfW7p109EaYKIyiqPQrpSzJkDFxDjU/57CwHO9nUevxiSC0ro+PUWCkpFBIfK2QklLV1ENTZXFAWOHBFbZCSawxEQGYlUJCY3t7b1Y/W0fhd5SYW43GL2JetZdzaT348nowkIEJFo9913Y0VfFRTAc8/B999X2537wtgmMdQuNluYsTyCv6PTICUFAgIqD546herNN1GWLaOluyNvDwxjRpfABqcNXyzv7TzNK/+eQuPogDx8OMroMRATg3bjBiwnT1Vr+86wcGL0RZzUlxCjN5BvqJl2a35twlWpnnc1KE8hTHtmNH7N2PPxUjFaJOzfXQ3UHoG4ITaD0b/trbG/sVM1bxRkRSEyPZ9jmQX0a+lBmIcjxzMLeHPHaZafTK3WtquvCwsn96SLr9WP9nrGLMmMWLibnYk5F27Yv7+wudDpwGCAp56yClg3CFYBy0qTclECVlVkWVTs2r5dRGft2Y3s5S1SDufOrQzpvxQsFjFwz8+HvDxxW/53UpKYwDz2mKhc9fTT8NVXDG3jy8a7+1YMprt9+y+RGUIIs+bqNz4GkwW1SmVdbbsEbv/zIH+dSKm2b3xbP+7u3JKJ7fyx12mIzi6k/y97yC2qORFTjx2L/Mcf4jPx1lvw00+Mb+vHwsk9Kia1sqKw6nQab+6KJTJFj6O9Daun9q5RPVLbpTOW114XfllVOXoUTp8WorUkic9k+d/lmyzDhAkilSw9Hc2vC/FLiOXlm9rQ2ceFTj4utfrPnMsrJi7XwJBgL/Yk6Ql0sSfIzaHieJ7RhN//1lNqEcbkmimTkf5afkmv9WWTnCw8wGrhwW6t+GJMFxwbKfqkWipuORbLtSXYvPcevPJKtV1j2voxONCDQa086RXgVmMhodhs4UBKLpvOZhGZVcie1Dxyy3y/tGGhWGbNFt/3V1K4bA5s2oT2wQfQZGbQ0dORw2kifXjzPQMY0aZxfd9kRWHT2UxmbjxBQkEp8kcfwaxZQtw+fRrVW2+hLF5MgJsjbw4I5b5urZr8N1VRFCLS8tgQm8k/8dnsT8pBkmS0rYOxdOoMa9fi7WRH1CODa4g0+UYzZ3IKeXrDcfYkieIiN5In0toz6dz6xz76tnBn38ONWHm2mbD6dBoTFu9nTt8QPh9de9XYctIKjfxvbyztPJ14pGfwlengNYi+xMS/8VlsjhPb2SoRVpfKf/uFMKKNN572Nng52OLlYIOLrfaG+RzeKGQUGck0lBLu7YxWrUZRFD7cHcNLW06KBqdPCx/VMt9Mq4B1Y2AVsKw0KZcsYF0tzGaYPx/NL7+ARo1s74Dq4AFaamSiHxuKnVaN3//Wk2kQJeWtqYNWmhvzj5zj58gkdp6r3WcMwMfFgZwWrZC27wBXVyEWSZKIeHFyElFJ/ftXO8fbxYGjDw9i57kc3tody6n0PNSDBiG/8AKauXOR9u2raBvi7ki+yUK2oRRVcDBKfPzlP7Fz59DeNgVLxOGKXe29nDj1ZPVqabct3c/yU2nV9g1t48NDXQOZEu6Pg07LjnPZDPl5FwAaRwekwqKrlzamKDWMw38Y342HewQ32kPoS0x0+eZfUgqNlTtvvx2WLWu0x7gidOwIJ8sGrWPGgK8v6uQkVHv3IhmKsdFp6d3CnaGB7pSYJbal5BGZmltRRVE9YjjygIEi8q5Pn9pT2K5nDh2ClSth4UJITKxx+J1h4bw6uPF8fTINpSw4co5vjiZzLqdApOH9shDatxeV/t5+G9Vvv+HrYs8bA0J5oFurOiOZP9sXy382HGfH/QObpChHQamZf+Oz2BCbydoEPUEudiyZ3P2CEZBPrDnKtxEJwI0VfdP3x+0cSMnl6f5hfDqq49XuTqPj9N5qDGaJLfcOYHgtnqxW6iffaMbtw7UNahvkas/INj508nFmX3IuG89mkmsU9h3Dgr34644+uNvboCgKWxOymbrsAPoScz1XrY6/kx0tXOz4YnQXbgr0uOjnY6X5kW8003P+LhLcfZAOHoLVq60C1g2EVcCy0qQ0awHLaERzzz2oD0dg7t4DwsPRLv4D6Wwc48J8cbPTUmKWcbLR8MHIjvg62lYzmLyRVlyvNgl5BgKc7a9apFtqYQlFJgn3Mt+0pkpraWwUReH5TSeI0RcR5uHEx1WrDyYlQcuWtZ+Yni5Si7p0EX5WLi5opt2FRq/HZJFQjxqF/NprMGiQaG8wiIqQZ87AmTNoT51A8fRCmj4Dpk5t3DS1Bx+EBQsAaOfpxNfjutIrwK3CxLug1Mytv++rFnquGTgQadcuHOxsuDvcnxldApn0VwR55RFoBQXgfBWNYjdtEtX+qvDSwLbMHR7eKL4qA+fvYHdZpAggKr8tWgRuF5+O2SyxWCAyUlR43LED7S5RWc4yaDAMHAgDBgjx61qKNmsM0tNh2zZRuGDVKlRffIHN6Wj6B3qwNS6zWtP7egSz4Naul/ybZpZk1sVmcHOID3uS9HwbkcDf0enIGg3y1Knw+OPi/xAfD++8g+rXX/FytOX1AaE83COo3kIoy0+lctvSAwCMDfPll0k98HK4ulFzsqKgqTImWD2tH7e2bQYFEJqQFzad4P/2xABXplrq1aBqtcezc0bRxr0Zp1k3UzINpfh+vK7i/rBgL0a18WFkG296+Ltd9sJvsdnCkuMpfLw/jpMZ+fWfUIV7uwYyvXMgw4K9rpmxnJXaOZ1dSK/5uygeNgJ52jS45x6rgHWDYBWwrDQpzVbAMhpRT5qIatMmQtwd8HVxJCqzkN7+rnw0oj3d/GpO7Pr9uJ39Kbl42OvIfm6sVby6QuQUm/D66B/mDgvnlcuMDihPo5rU3p+XB7alZ4BbnQKBvsTEm9uimXcgrs7r5b84rt4qlVebyUv2syJaRCQ5O9hSVGpBmTULPv304qKO9u2Db78V5ud9+lx+xzIzRSphWBgEBdWIQqpAUar3U1Hg55/R/PwzRBxCMhSjUqlo4+3KAH9nege406eFOw46Df/ddIJNsRmox45Bfvo/sHMn2gXzsSSLFEu1qwvysj9h1KjLfz6XS04ObN0qBL8yil8ef8lptBGpefT6YVvNA7NnwxdfXGInrVwTpKfD5s3CG6QWlDcmYZZk4nINtHCxbxST9IWRidy34jA2Oi0ms0WkZz4xE+69tzLSbd06VBPG42Fvy2v9Q3i0Z/BFvb93JeYwaMHOivsPdw/irWHtiUjNo19LD7wd6xe0Si0S+hIzG85m8sDKw0xq78/cYeF09HG56OcMIMkK2ndWVtsX4u7I8jv7XJc+PVXFnbeHtufVwe2uu7FQvtFM6883VkQBhXs5c/ixodZq082Uj3bH8PzmE3T2dyfykcG1vh8lWaHdl5vrTF1centvpnas6bl6o2O0SBxJy+dcfjHn8orJKTExsJUnI9t446Br3OIaDenLqaxCPOxtaOliXyGCrovJYOzve+GOO2DpUquAdYNgFbCsNCnNUsAqLUU9eRLazZvRKDIlFpnxbf34amwX/J3tajVirTpItaYNXlk+3HWGF7ecRK2Cxbf1ZkI7v0s2zE8pKKFleRl3wM3RjslhPtxaVsFQp1Gz5kw6C4+lsDo69QJXgts7BPD7lF7NdgUvt8TEX6dSeWT10cqdr70G998PbdrUeV6Tk5cHc+agXrwY2SwmCGo7O9Tt2wnvmQ4dxNaqFSxZgubbbyE8HOnHH0UUTVUkSfgfHDwIBw6g3b8PKSoKxWxBq9HQ0c+NjPwi0otEyi+vvy4M5vftg/nzUR86iBxxuHkZmZcNvr0dbZneqSUfjOxwSe/345kFdP7m38odw4aJlMEbLW3uRiE7W6QI2tmJ/3UdTOvUkt9v69XoD//EmqP8kCUh3f8ADB8OgwfXFMgPHIC+ffl5Yg/u69bqoh/j8TVH+a4sZa82vr+1W70+RF/sP8tT64/V2D+zTxu+GtPlovtUjr7ExONrjrLsPNPpMaG+LJjYvdEril4tSi0Sd/55kJWn0yv2zerdmk9Hd77uTOzLKy6WczkLClaajvtXRPBLZBIAK+7sy8T2/nW2lRWFI2n5/H4sid+OJZNRZgdip1VT8sqEK9Lfa4mZayP55lBNCwitWoX5tYlN9riKopCYX8LeZD17k/TsSssnKjUPiySK+2g0avzdnAhxtcNRo+KfmAyYMQMWLbIKWDcIVgHLSpPS7ASs0lLUU6ag2bSRtXf2YWiwV7WSyFXZdt9AbDRq3th2ik1xWRX7bySvi+bAnydTmLrsYK3HDC/fetGrQKUWiduXHWDNmQwAVE6OKEUGtBoNNjoNxUYTKjc3lLy8inMGB3kS6u7I4CAvbu8Q0GjG2k3F1D8P8eeJZFCpUA8Zgnz33XDbbeDRDLwf9uyBAQPo4O3M8jv6kJBXzMmsQk5mFRKlN3Ayq5CiYjGodLS35cHOLViXkMNZvQHlpZeEifeFDLdLSyEqSkyWDx5Et3cv5jNnqrfJygKvxvfRaRRiYuDLL6tFSf1xWy/u6lRHuucF+N+eGJ7ddELcef55UcHVyvXJww/DTz/VeqjgxXE4N3GkaOcfdnD8lokwf/4F26nHjSPowC7OPDH0ogWPU1mFvLPzDH8cS6r1+JLbezO1QwCyQp2LTDE5RbT9cnON/SqVitNPjiDM0+mi+lTXY9zx50GOplemNuW9MA5Xu+YdrXsxWGSZmWsj+eHwuYp9d3ZswYKJPa47kWf+kXNsisvk18k9rzuR7lonp9hEyJdbyC8pRaVW8eftvZkSHlD/iWX8G5/FiIW7eaJXa74e17UJe3r1scgyqYVGkvJLSMwvITG/mMT8EjKLS5k7LJx2XjVtFJ5cG8n3BVos4yeg++Jzxof6YKNR8UC3IG4O8Wm0vsmKwr5kPXuS9OxJzmVXaj5Z+SJaThcchHnAQLjpJujRQxQYio+v2LTnErDcd7+wRLB6YN0wWAUsK01KcxOwVFMmo12zhtV39OaWUF9ACBr/tzuG/Sm5HE7LJ63IWOf5c4eH88qgxjO5rYqiKJzKLiQhr5izegPfRSTw5tD23N7BGtYMwgfrl6NJ/HjkHMkFwruoPjFRUZQak5mvD8bx5D9RAKjsbFF++x26dYO1a4WPzqlTqPbvx8fJjjcHhvJg96BrqsqkoiiVXm3//CPMrpsbX38NTz7Jm0Pa88bQ9tUOKYpCelEpsfoiuvq54mKro9Qi8d7OM7y3OxYlwB+1pyeyjw/S+g0NS4MsKICICPj1VzhxAlasAP+6V2mvOllZ4FN9cPjBiA48NyCswZ5YSfnFtPpsY+WOn34S/mFWrk/qeF98f2s3VCq4t2vTVfYzmCy4fLAW+bvv4JFHLtz4yBHo0YMFE7tzf7egi3qc1/49ydydZxgQ6FHd0w0IcHfi/SFt+fTQOWJyDYxv48XcoeGEeNSMrpy9Loovy1PDn38eXn0VTVgo0/3s+GVS4058yiuvvTeiQ6Net7kgKwpvbD3F3J2ViwRDg734aUJ37LUatGoVOo0KnVpd9re6UXz9rNx4lEfl7EzMYVdiDv8m5xGTUbnQeCkVVG9feoC/TqVy8JEh9Apwb+wuX1VWnU5j8fEU4gpLOVdgJDOvCLnKlF/j5IhUZMDORkfko0No6+mESZL5+Wgi7++LI62gGLNFQh0YiNwmhNEp0ayd1rdR+2gwWfglMpGPDyQQn12A2s4OevVCHjBACFb9+oGvb8MuZq1CeENhFbCsNCnNSsCyWNC0bYtdWgqPdQtk/dlM5g4LZ3ItqzU/RCTw6Jqj3BLiw7P9Q+kd4N6kq6eR6fnM2XiCHfHVjXXHhPqy4q6+/BqZyMOrjxLgbMeme/ozb38cRknmx/HdremMF+CR1Uf4scoKcQX9+sHixeDtLfxiUlLgt99Q/fRjhT/LY72CrznPi1KLxONrI/n5aCLMmQOffNI8jatXrkR122083iOIr8c2PG3nRGYBn+07S0RaHkcyCoQnV+/e0KmT8MZasQJuvRUcHJqw81cIoxHsq1dAmxDegpV39CbPaOJUVhGnsguZf+Qcu5P01Tw8zvcKAoTReXN8L1hpHOoRBRZO6sE9XS8+ba8hbE/IZugvu0TkY+fOF25sNKLx9eGFLv68e5Giztb4LIYv3F1j/6LJPXlx+2mS9UWi0mRQMJp/1kJWFo/1COL1we2qpfApisLK02lMXnKg8iL332fTDfYAACAASURBVI964UIS5owk0PU6+P64wiiKwuf7z/KfDccb7ZrDW3vxUHcR6XG1DfutXHlkReFEZgG7EvWsOJ3GxrOZtbZr6erAvgcH0cKl7oqhdVHu6WZ6dUKztYO4WPQlJmavO8bvx5LQdO+O1KmTsGQo3wIDxfbDD/Dss8zq3Zo3h4bz58kU3t5zltQ8A6rbb0cZOFBcMDQU9W238eGgEJ7tH9YofUwpKOHLA3F8fSSJQqMJJk9GmTNHiFa6S5xrWQWsG4rmnQdjxUpjotUiRURQPHsWn/z2OwBTllYOYPsHerBhRn+cbLQ80jO4Xi+NxiC1sISZ/0Sxssxk+3zWxWZgWyXFMbXQSMevK31tfj6aaE1pvABP9w1hV2IO0dlF1Q/s2wfBwah1ugofJjdHO14e2p4n+7S+4uaUjUFaoZGJyw4SkVEICxfWaeB81dmzByZNQgFstRc3YOzo48IPE7qzPSGbmRtPEP3EE8iyjNrGBtlkEo22bBEePNc6dnYiHfLIEeH1tWsXq154Aa9Pc8kpKK7R/P/2xJBWZOSuTi35pGq1SRCh9lbx6oamb8umSx/el6wXAtrp08JP7kIee0uXIhUUcl+3i1/JHxLsxZpp/fj68Dn2JWajLzGz9PbeTGzvz7yIc6QUGpHvuRfuuw+puBjmzeO7999jftQWXuj3/+ydd3gU5deG7y2ppPcEQkIINUBC772DgA0UBRQLdrFg+fGJBbGgYkVURASpCiq9994hCZBGQkJ673V3Zr4/JiTEhJ6QBN77uvZy9512RjazM897znN8eL9vS7QaDRqNhmYO/ykVXLSINg0d7rrytzuFRqPhtW6+TO3alCVBsTyx5tRt73PXxTR2XUyrMNbZw47JAV7083ailXMtdo69R/lkXxgrz8UzwteV0S3c6NrI/obLKiVZYeXZOBaeiaGBiR5rMz3WpqWv0vcK8Ne5eI7GZ151P+Ymerp5OtDaoQEBbrY8GdD4tsWnu0W82hiexOSNQWSggz/+QJow4eqTG4nqc8fc4xeZe/wiaDRoxo2D999Had4cgoPVe+Xff0cuKqKf943ZLhgkmdSCYpLzipEUhY7udmXG+qcSs5hzOJI/z8eDhQXSlOdh6lTw9q6O0xfcQ4gMLEGNUqcysK4kI0NV6199tcJw4pvDcLMyJ7fYgJWpvsa66+SXGPnq0AU+PxxJUYkqoEzr7stYv4a4WZlxOjGbH45FcTA2nQZmpqTnl5Y1LlgAtrYVOpU1crJBUaC1gyU/D29bZctnRVEoMsqY6rT3fMZWRmEJYWl5bAhPws/FGtcG5rhbm9HErkG9fnhpM38vYYopxrXrqqdLYE1x6hRMmQI2Nuj27SX+tSG3bHBcYDByJimbEwlZLDwdQ2Byjloi2PoGMjtSUlRPKBcXeOEFsLm1LmR3DFlWTeg1GmjVSu3aOH789bd74w2YM6fm4xPULt7eEKNmm77cuQkNbSz4387zQM1nF8w9FsXUrcHIsqJOCnz/PTz3XNUPTs8+CwsW0MvbmQl+HmQXGzHTaZnarWnZKkZZJiqzgJBSb7yQtFwC0wsIT8uhqNhQYXcf9G3BY209aWxjzoubg/n9dIz6nZ89G0pK4Isv4KOP0Gk1XHhlEN525b+PFzPzicjIJywtFzcrcx5q7SHK26oJRVFYH57EmJVHAUiZNvyGukReRlYUorMKWB4cx4JT0cRkF1Zax9nSlKRpw8W/2R1gXVhi2b/l1Tj/4sBKomKJJPP5gXA+2BN6S8dtaG3OxHaetHe3o7ljA5o5WFWLB2loWi6tftwJgIVeR8H/jbrtfdYm2UUGXtsazKIzl9AOG4q84DdoeB37kYwMeO011Vph2DD1PkFR0L3+GsqBA8iFReh0Wtq623N/U2dm9G1R9rdmkGSWBcfy06lLTAnwZMOFVM5m5JOSV0ROfkUblhHN3fl5RFte3HKWDaEJ6D0bYXz9DXj66eq97xIZWPcUQsAS1Ch1VsC6zIwZ6D/7lM8GtCI6q4CgtHzOpuWSmVvIV4P9eLOa0mUvI8kKiwMv8e6eMNILDciPPw6LFvFcR2/+16s5XnZq6cLUzUF8fywKHxc7/OzMWR+ehOapp1CuNOnNyoJvvlFv0jUa9MuXoU9KpKWLLfklEvlGicISI4UlBopLjCiKgqO1Jc8HNOLZDt6Ep+cxZOkhbMz0/PtIVwY0uTnvAEHdocBgpMGnG+D339Uug/WBxETw8ODrIW14vbvvLe3in5AEHroiixJQ/a6srzMzf/Ei+sGDMEaW+uDMm6eKWPWNjAzIzFTT7lNTq16nLhvWC6qPUm+p//J0ey8WjG5/1c0UReGvc/GMbuF+WwK+rCikFZTw0Z5Q5p24CJMmqSW+/ymDJT8fVq9Gu2QJ8u7dIMvYWZgytUsTQtLyCEwvICotB4OxtNuUtTW0aonUpq0q3LZuDS1aqM0OqvD3e6uHL3OORKF07ow2MhIlI4PH2zbi/3o1q9KkWFCzvLIpkLnHL3L46T50u80sQElWCE3LZVtkCm9sKy9VzPvffXW+sUp95UqhB+CBlu4sfbAj+2LSWR+WxLrwpDJP0sscmNyb9eFJzD4YUeU+P+7fiuc6epNbYiSn2EBusZHcEiO5xUZKJJkBTZzxsDavsQlkgLSCYlrM3UFGoYH147txX3O3GjvWzWKQZPRazQ2f/57oVMavPUOqEaTvvofJk2/MGxTAYFA72Do7w5w5aGfMwMfekuf8G9G9kQMd3O1YEhTLouB4onOKcLcyY0IrN+YcjyY+M089jqKg93DHOHac6lfl6qpODLq6QnQ0+ldeRpOerl7Tf/tN/W3Q18DfqxCw7imEgCWoUeq8gJWZida3KUpODvqmvhjatlX9dMLCMF29inPP98P3v6UGt8iOqBSm7gjhfGImmnHjUD7/HPbsqWCsPHuQH7nFhnJD1FdfRRsYiOLvj3I9P6PcXHXWOTVV9QCytFTLOS7/18ICDh9G98dipLz8SpunvjX8mj4TBy+l31S6uODOEZScjf/Pu+HgQejRo7bDuT4FBWhHjcLkwD52PN6dXo0db2k3JxOy6PTrnoqDN/CTpu3eHfnIEV7s1IR5Jy6ia+iB9NPPMKqezsLGxakZZUePwogRYG8PM2eCv3/dLSUVVC8lJZW6c+6f3Pu6f1t7olPpv/ggP4/057lOTW47jNXn43lnxzmiMgtg2jT48surr5yRgbZbV+SIC+idHJGbNUfWaqGgQL1G5Oejc7DH0MQHmjRRs8y8vODPP1UPwyr4Z1wXbMxMeHpTEIO9HPlfr2ZVZiULapa/z8fz8BXdg/c+2Ys+XtUnpCuKwqAlB8tKDL8e0oZH2zTC3frWsnkFFckpNuD7/XZSC9TSfCdLUy68MviqXrDBydm0+3l3lcu+H9aWFzv7EJtTwK8nY3isbSP8XOp4xnM1oSgKuSVGMgpLyCw00NShAVlFBkLT8nCzMsPNyhwnS9OyzKZ/QhIY/+8pGpib0MHFhvYu1vi72eLvakNLJ+tKmbSKoqD7eK162zNrFrz4ovr7fzOEhaGbOAH5xEmmdW/KzP6tyvxflwfH8vg/J9X7inbt0C9fhhQXD488gjJ9OtrRo9C4uiGtWXN1s/WsLHjnHbQlJci//36z/wtvHCFg3VMIAUtQo9R5AQsgL0+98b/SODA/H33rVvTQFbNnYnficgoJT8+nt5djWSen0LRcUvOL6V16U1YiySTkFlYoUbjMZVNlXZcuSN99p5qIlx4Hq4oCmd7eDmNTX7UE45lnauZ816xRHwA2bgTAx96SXZN6lWWAXS7N6tbIgaDkbFo5WWP+yXr6eDmy98ne1R+T4LZYfT6esauOqyKGcx3PpMvLQztiBKbHjrD50S70866eeD2/2UpcTiG63r2Q9u2/+oqHDkHPngAM83XhxxH+9P/jIJeyCtRZw9DQm78BFAhqm5iYSj4i7/dpwUf9W1VaNaOwhKVBsVjodawOSWBbZAojW7iz4dFb7zCVkFvIh3tC+fXKphkxMapp8LXIzITwcLVs5fQZ5KIiNBoNvi62dHO1xkKvIyq7kKjcYuIy8ygxGAG1dHBiu8Y4WppgY2YiysjqEBHpeTSfu6Ps858Pd2acX810U565N7RSedoQXxcGeTszuX1jYf5+CyTkFtLw661ln6sqDbwagUnZvLI5iEn+njzV3uue+btMzC3ik/1hRGUVkFIskV5kJKugmJyCYmRZLlvP1daS7EJDmXUIgFarxdHaAjcrc0KSspDuuw8lIABOn8bk9GkMsbEVjvXvI13o5+1Ecl4xsTmFDF5yqHxfnTshHzvODSFJ8P33aP/3P7yszVg62p8enuUTHvtj0hiw9DDGxyeo2f0ajXq9zs0tv65nZKhlgDWRUXWzCAHrnqIOfOMEglrGqooMq7NnMV6KZR/g8s020nLVFGlX2wa807UJz3Tw4sG/TxKZnscPQ9uw42Iqq87FA5A//b5KJuDxpSnWypkz6Ka+irR0GTRrpvraODqqPySffQZ9+mBs2VL1t6nJ850wQX2FhcG8ecQs+p0mP2xnRDM3XunkTb5BqlCatfExVXDbF5NOVlEJduamNRef4KYpkUpvkL74Qs3EsLRUbyomTFC7zdQVcnLQDR2K2ZlTbHusGz1vMfPqvzzw59GyMgZp/wHVFNTKCt55p9xjISgIXnkF9u0r2+7HEf542Vqq4hVASgq6Lp2RTp6q+55YgvqBwaBeZyVJvd5ffnl4XN+j5Gbw8oJvv1U9TUqJzKycaRuYlM2oVSeIyylAkWQ1Y7FFC3ZejKLIKN1U59Xj8ZmEp+eRWWRg0ZlLnEwsb2nPhg3XF69AFYsLCpAOH2FqVx8eauVBgJst1maVMz0URSElv5jEvCLaudreMw/H9Y3L4lXQ8/1p62pbo8d6v29LpvXw5YejUbxb6vm27UIK2y6k8PaOc3zQtwVvdPfFporvk6BqTLRaOnnY8X+9m3N/y8pduq+Fv5st+ybfO5OciqLwR2Asr2w/R6GlFcZevcHBofxlb1/+3tyctPdnIDVvoWanpqdDYiJyYiKpSUmkJiaq5f4ffVQ2oW4A1dP0eLkoVaF76n/Q3Mg1F+DCBXRPPIF06BCvdPXh04GtKzy3hKfnMWrVCeRevWH+/PKSRHv7ihN8DjXXHEQguBYiA0tQo9SLDKyq6NZNLccxMVG9cfr2VYWAuXPRLF+GhU5LQbEBrYMDckZG2Wb/17s5swZUNpCWZIVXNwcx78RF9F6NMe4/ULeEhfx8WLYM/Q/fYzx7Dm8nG6LTcsoW25ubYKbXkpRXzGNtG/FQKw8e+usYax/tyugW7rUYuADU79fLmwL5+WQ0AA0dbUjPLcTQvgPS4cM37odQ02zaBCNH4m7bgLe7NeEJ/8bYW9yeGKooCoOWHmZXlNpi26GBWkKScdlI9MgRWL8ezezPUUp9dV7u3IRpPZqVZRyeT83h5xPR/HAsqnzHRUWVSrIEgpvmo4/gww8rDWv8WqOcPVe9xzp+vKyBQ0snKw491afC39fSoFie2RiIsVVrpDVr1d+gnBxISIA2bRja1AUHC1N+H9Mes+sIWbnFBmw+31j2WWdvh+TZGAYOhBkzbi6LsagIrZ0dY32d6OvlRHdPewLc7G7u3AV1gsCkbAJ+UUvJaqNDcnRWPovPxPLlkUjyrzD8f6NbU2YNaF2vG7UI6haXsgt4dkMQ2y4koZkwAeXbb9UJ6erm4kXVEsDMTM0Sv+wvdeV/7exubOJblmHePLRvv0VDCxOWjPKn73+6C6bmF9P594PEObkhHTmq7rs+IDKw7imEgCWoUeqtgJWZWZ4d9V9iYuCrr9Dk56N89hkUFKBp0YIZ3X0qlGvklRg5FJvBvpg0dl3K5HBMKpoHH0D5bWHd/UFQFDh0CM3cubB6NYrRWGkVnaUFUoGa7fKIX0M+7NeSlsIct9ZRFIWvD19Ap1Xbme+ISlFTy//9F+6/8w8SVaIosH8/mnnz4O+/MdXCcwGN+WZY22rNptB8tAYAe0szMosM6DUa3uvVjMFNnem5cD8bxndj5H9MWy0+WUeRsTzVn82b1c48AsGtYDBAeDh88AFtDu3i9/vacSIhi1e3BKO4uGBctx46dareYyoK/PAD+m++xhgdg5+7Pf0b2ZGYV0xkbjFn4tKrNldXFHQDByDt3gNA4PP9aXcDmTNPrjnJ4sBYaN9eLc01v3X/Ie3kyWhWr0LKL6CftxO7J/W85X0Jao8xK4+wLiyJyFcH16r3mKwo7IlOY+a+MPZGp5WNfzawNdN6+AovT8EtoygK809G88bOEErsHTD+ugBGjqztsKqmsBCio9VXTAzalSuR9+7lxU5NmD3YD6v/ND+QFYUeiw5yNC4D1q6FoUMr2qvUZYSAdU8hBCxBjVJvBaybxKR5M150kPl2WDtyig18tj+cr49dpMRgRO/kiLFvP1VEePzxupMNcz2Sk+HSJfXhRKdT/ZUAbG3h9dfVh6BSrmcAL6gdBi09zF6dDcZz5+uGR8GVJCerXTRnz+b4s33p5FF9vlMT/jlBC0crBvo489XhSD7u17LMNLbQIFU5C38+NQe/ebsqDv78s+pFJxDcLB9+qGZfAeP8GjKquRtPbQjEoDeB995TS1xzc1VPQk9P1Xy3upBl2L4dzbwf0YeGIjVujOzZGAYMKP8NSktTMyLXrUOblIi8/0DZDH7xe6PLvB6vxaXsAry+3ab6KT7yyI3Ht3w5bN6MyeFDyL6+SIsWg5sqKOvbtOEps3x+GRVwS6d+p1kWFIsCNLQ2p4mdJUuD4zgYm463rSU/3Vc/zqE6ic8pJLWguE5l0GUXGfhwTyjfHo0sG4t7fSgNbSyusZVAUJmozHye2hDI3qgU1aP2q6/Ue+K6yIkTaPv3Qy5t2qTVamnmbMPcIa0Z5ONS5Sa5xQY6LDzAhZTssjHNE0+gLFp0JyK+PYSAdU8hBCxBjXJXC1iSBNu2oflpHmzcxONtPOjp6cj0veFkGxXkadPUc27Rov6IVjfDY4/BihUAvN2jGbMH+9VyQIL/crnDGLNmQdOmcOIEuuPHkV1dUZ58EoYMqV1hy2hE5+jA+x0a8n7flrUXxxUk5RXhPmdL+cC2bTB4cO0FJKifBAejCQhgXCt3vhrShhZzd1BgkMoWm5uaYGaiJzu/EF3LlkghITUfU2IiLF6Mbu1apKNHyzp26rp2RTpyBNauRfPwQwzzcWb1w50qeTn+lxJJxuXrbWQ/9wJ8/fWNxbBqFYwbR0AjB3q42fJXeDJZFlYY/1oFsoxmyGB+GNSal7r43O7Z1jjH4jPpumBvlcue6+jNz/eggFWXScgtpPOCfSSU+iWGvzyIZo7V02VacHcjKwpzj0Xxzq5QjG5uGH9bCIMG1XZYVyc9HX37APyVQr4e1ApvO0s8rM1vOPMwJqsA7++2qR9++QWmTKnBYKsJIWDdUwgBS1Cj3JUCVnIyLFyI/uefMF6Kxc/dnqY2ZpxMziU+u0BtW//JJ9CoUW1HWrOsWKGKWMDMfi15uYvPbfsZCaqXdj/vJji5fCatoYM1XV2tCcksJCQpE72LM8ZJT8ATT0CbNrUT5LhxdDyymxNP9aqd4/8HSVZ4cWMg26JSSC8ykFtkUB/83dyuv7FAABAfD/36wYUL6sc3hmKq01IiyViZ6mlgoken1fDlwQje3nke9uyBPn1qPq4JEzD960+GNXVhTHNXDJLM8xsDYedONTsLYNs2tA/cT0dHSzY/2hVHy6tf0z/aE8pHByNQTp6Cdu2uf/zERHR+foxxt2T1w53QaDQk5hbx8N8nORSTCkATJxv2TOhGY1vL6jjjGqXYKLHlQgqxOYXE5RSSmFvIH0Fx2JrpiXhlMM4NRFZyXUNRFB766xj/hiYS4GbL6ef613ZIgjpOWFouT24I5EhMGrz0Enz+edXNn+oKsox25Ahs9u8l8Nk+t3QtNUgyzX/ew6XWAch79tSPSXghYN1T1LGaEoGgDrN3L5off4R//8VEA4/5edCjXQArQxJZF5aErk8ftSTqXrlwjh+vlhfOmcOHf/zBp4cjeS7Ak9e6NcXbrva8LwTlvNDRm+CUHMa0cKOjh11ZmaeiKJxJymbRmUv88fOPZH31Fbr2AUiTn1L/XZ2crrPnamTkSE6tXk1qfnGdeOBLLyxh/qno8gE3NyFeCW6OOXPKxCuACf+eYlepp1OBwcjj/5xgfXiSmpH15pt3RrwC9KEhTPDz4Lcx6m/Uc+vPqONvvI7xnXfVv/0hQ5BX/snx0aN5ePUJdk/qUeW+zqXkMOtABMo779yYeAVoX38NO2Mxv4zshqb0gcjd2pw9E7uz4mwcTe0b0MPToWxZXcdMr2NMy/ImJtsjU/gjKI7sYiMuX23mt9Hteaq9V9ny+JxC/g1NZF9MGn29nHiglTse1qKM7U6i0Wj4NzQRgDWPdK3laAR1mQKDke+ORPHh/nBkT0/Y9w/0rgcdFv/+G3nLVlY+3v2WJwJMdFrmDfFjxPJ9ZVmzAkFdQmRgCWqUep2BlZqqGvE6OUFUFLRqhbeTDVM7NmZIUxe+PhzJwsBL6Hx8MM75GkaNqh+zFDVBcjL8+CPar75CLizkgZbu/K9Xczo3tOd8ag6tnKzrzUPJvUaJJLMpIomFgXFsikhC1mph5H0okyfD8OE1a+ApyzBlCpqFCwl/eSC+DnVjVnPXxVQG/nHwioFdakaN+A4LbgRJgqQk9XszaRIA97d058VOTRiy9FDFdY8dg86d70hYens7PurgwfTeLVAUhbVhiUz49xT5JUY1s2DuXHXFhx/GbN1aFo0O4NE2aiZxfomRh/45RWJ+MW7mei5k5nPJwQ1jUPANm7frevbg4exLrHz4zpzvnUZWFP4JSWD+yWi2R6Xe1LYhLw0UzVDuEJqP1tDa2ZpzLw6s7VAEdZACg5GfT0TzyeFIMgtLUF6dCh9/DJZ1PysUgEmTaL1jA+em9L2lzdeEJvDLyRhSiiXOxKWjadYMKSysmoOsAUQG1j2FaMMhEPwXSYJPP1Vb0zZsqLaubaV2F4xOy2F9eBIdf9vPougclO++x3g+BEaPvrcfbl1d4dIl5ELVW2JNTCYDlx/h3R3n8Ju3i/D0vFoOUHA1THVa7m/pwbpHupD4+lC+GdCKNsf2wZgx6N3dVcP+wMDqP/AV4tXC0QF1RrwCGNDEmRUPXdEhbsAA0GrR1DcRXlA76HRq1l6peAWwJjSRoCvKecvo0gUWL675mLKyMGZl42PfgCKjxMBlR3jgz2MUdegEu3eXi1cAgwZRYpTo3bi8C+/MvWFsj04naPiDbGvbg+gO3TEuX3FTnQelQ4f581x8dZ5VnUKr0fBw64Zsm9iTwv8bxdCmFY2ShzZ14Zf7Agh9aSA/j/Sn3xXt61v9uBPHLzaSVVRyp8O+54h/YyhnXxhQ22HUKgtPx2Dy8VrmHY+q7VDqDIUGiW+PXMBr7i6m7QwhY+x4lPAINaO2vohXsox+8yZG+dx6Fv2f5+LZkiVxavBo5GnTkD7+uBoDFAiqB5GBJahR6l0G1oUL0KzZ1ZcPGYJm7x6Ul19RO0nZ1Z1OO7VO48YQGwsbNqjmwKNGlS0yzhiDTnsPC3z1kKDkbBafucSic4lk5Baga9sG6eGxascdc3NV2DUzK39vZQXdu18/Y0uS4PBh+P57NKtXs2hMeyb5N74zJ3WT5BQbiMrM5/MDEeUP3vb28OSTEBBQQaAQ3KPk5sKaNXDhApoVK1Ceflr9DfnzT/jrLwDsrCw4OKk7LZ2s0ZZOdCiKQnaxgZc3B7MyKgMp+Cx4e9dcnKdOQceOHHumLwUGiX6LD6i/y489VnnyJScHrZsbzqZaGpiZgAaiU3OQP/4Ypk+/teP/9FNZp8WS90ZjcgNdDu8Vzqbk0PYntQPqC52aMG+kfy1HJLibOXgpnUErjlFUVIyviy0RL9zbPmBFRon5J6OZdSiStPxilIkTYcYM8Kn7jSQqcfIkdOrE7id60s/b+ZZ28cy60yzWOWM8fryag6thRAbWPYXwwBIILvP007BwYdlHjU6H8vnnapvzBx5QfT40GhSDoWbLquorly6Vv58zp8KiV7YEM2/EjfmkCOoG7VxtmTO0LZ8P8mNrZAq/n7nEzi8+p9hgpMRgRK5q7mPZsjJj/wrk5sLWrbBuHboNG5AyM7G3smDuAx14rK1nzZ/MLWJjZkKAmx33t3QvF7AyM1WvO4B//oHjx2HMGJg3r/YCFdQOq1ahe+UVpORkABSAd98tX+7vj9bCgqwjR/jhaBRZxQbSCw1sj0zh9W6+fD20DT8Ob8fu+XtJmjRJNcu9wS5RN01kJABH4jIw0WnV37exY6vOHLaxQV68mOTDh9XPGo2aZfvaa1fff0YG7NunTur061c+fugQuremIR06XB5KZr4ol7uCNi42KB/cT1habplPoUBQE2QXGXh07RlKAtqjT05ioENtR1S77I1OY9ya06TmFqJMmKAKV76+tR3WrXP+PAD+rra3vAsLvRZNnqiaENRthIAlEFxmzRr1vxMnwvPPozg5QfPmldcT4tX1+c+PX1M7YVR7OxhlmUOxGfRu7HjHvcRMdFrua+7Gfc0rGpkbZZkio0yxUabQKOH5zVYoLSGtwJ49aIYOQSkx0MLVjgf9XBjVvC1dGtrXm6y8Du52fDHIjwsZ+RUM3q22bSavsETNLvnpJ1WkGzKk9gIV3DlOn4Zx45CABiY6xvk1RFIUHmrlQZeG9nx7JJLZBwORXdQysl9CU9B06oy8dy8ANmY6AGzNTVg6yp8Bf+xXf3veekvN7qtuiosBeHVLMD08HVAkCc0TT6BMn64KzIoCPXqoYlVhIbi7Q6dOqjjboIqmHBkZsH8/7N6NftdOjGfPqfsAtEOHID87BbZsgQULkEo3GdrUhca2FjS0vvGyw3uJFkLU+7fNKQAAIABJREFUE9QwL20JJrFERp49G7lvXwZ1ujv96G6U1IJi0nIL0Tg5oj96BKVHd5SOHZE2b1GvgxYWqt1BQYGaPa7RgI1N5R3JMpw4oW7T99a8p6qFLl0AOBqfyTBf1xvaxCDJHI3PZFtkChuj0jgdn4G2bS11pRYIbhAhYAkEl0lPr+0I7h7ee08tWVm3DoBp288xpaM3cTlFNHVogKkoH7kpziRl03fRASb5e7L4/o61HQ4Aeq0WK1MtVqZUnY11mdat0fTshbJ7N8N9nPh0YOs7F2Q10dzRird6NsMgybzQ2Zv2v+wBUMWrKykquvPBCe4cX38Nb76JxswUvZMThtLh2YP8eKmLWm6iKArLg+NYFZ6iLpw8GQICUMaNQwH07QMwDw9j9sELtHO15cFWHvRv4szPI/15f+NaUpYvR9e5E9KixdC6Gv9WHnsMjhyBH38ks9DA8gc7MWXtv+StXFm+zvDh6FNTkAIDUQxGAHQuzkgffgTPPKN64S1bpgpWwWdBUfBwsGZIY3v6jW5PX29HTidm89rOw1zauq3C4T/u34r3+rSovvMRCAQ3xcqzcSwLvAR//AG7d6PRaOh/i2VmdwsPt27IcfsG/HziIpYmRo7kSZw4eUqdvI6IgOhotA89hHzyZNk2mtGjUL77vmLJ99y5MHWq+r6w8Ka8AauV5s3Ru7my62LqdQUsWVGYuOYUayNSyC8sRmdnhzRkCAwdinTffXcoYIHg1hAeWIIapd55YAmqj+Ji6NkTTp7EydKUt3s04+0d55g7vB0vdm4iuhLeAB/sCeG7E5fwtjUnMCETgItTB+NtV0VGRC0iKwq6mWvht9/gqacqr6Ao8P77aD/9lJQ3h+FoaXrng6wG4nMKafTN1krjvbydORKbgVGS4IUXwNpaLUWwqjvG9IJq4OhR6NYNgFe7+GCm1xLgZluhDDY5rwi3OVvQDByolqB36lRxHxkZ4Kiao2+b0IPBVxh9H7yUTq/f96sfJkyAJUtuL16jEbZvh9BQyM5WO+teUeq678leALy4KYizKTk0crShr4cNPTwd6N7IAStTPTP3hbMsOBZdE2/klBScdTDM24F+3k7083aq8lpUbJSIzy3iaFwmJZLMJH9Pcb0XCGqRpUGxPLspiKJWfmjt7JD37GFKpyb8IvzWKvD8hjP8cjK67LPezRVjUjJP+Hsyspkb6YUlfHjgAqlFRuTp0+Htt1WxKiKivGLjxAnoWIsTjRMm4L9nC2ee6X3N1fJLjFh9tkF9Nps6FTp0UBuQ1FeEB9Y9hcjAEggENYOZGWzejHbSRNK2bOXtHecAeHlzEAtOx3D6uXvbOPR6xGQV8OnBCxgD2hPo64v2zGnk0DBm7gtn4ej2tR1eBcqmQa72kKrRwEsvIX/yCevDE3kywOuOxVYdnE7MosP8PRXGnmnvxbfD2tLAVP0Z1XykliC7LP+DnMISjCtXYNyytayDqeAuYMWKsretna0Z6ONcqXvm5exS5YUXKopXeXlqt7/ExLKh8PS8CgLW8VKRGoC//755ASs/H778UvVl8/RUPalCQgCwMDOlsLgEX0crLpR2hR2x/Ai5/7uPA5N7U2SUcLWqnDWw5IEOvNWjKe/uCmFHUSH7nx9AM8drC7Nmeh0+9g3wsa9bQrtAcK+RV2LkpU1B/BF4SW2ss349MjD/vgCe7ehd2+HVOR5u7UFaQQl/hyRg28CcxxtZMnFkH7o1KjcLm9DOk5l7Q/nygw/QzZ+PNHo0upUry0qlOXasdgWsgQMJWr6czMIS7C2uPlloaaJDp9Mi9ewJne/tUlJB/UMIWAKBoOZwdkbeuEmd9T9wQO3MBbg0MMMoy+hryrD4LqDIKKEFOHECfYf2GENC4dtvWfzmm0zv1azSg3Od4FrGn25u6Lp3Y1VIdL0TsP4OSQBAq4H9k3vTw9Ox0jq/jgrA2lTPQ609+GRfOB/uDVUbGwgB6+7B31/1gyou5vmNgXT0sOPEs/0qrHJZ0CQ3t3xw61YYNqzso1ajQVYU8g1ShW1f6+bLa9186bFwH4djM+D999WyVCcneP31q/sv7tsHgYHofv0Vzp9jUBNn4gOPEpWWQwHwWNtGfDesLZ/uD2dMC3f6ejsRlpZb5kFna26CLVf3dmznasum8d0oNEhYmNTjGXqB4B7iTFIWD/1zmqjUbPDzQx9yHmPpsj5elX/DBDDIx4WBTZw5kZCFv5ttBbuLIqOExSfrK6wvxcejXbyIoQ1t+OjhvoxefYrEmJg7HXZF+vdHURT2xaQzpqV72bCsKEz49xTh2YVkl0jkFBmQJPna920CQR1FCFgCgaBm0Wrh5ZfV1x9/QP/+bDt0iMlrT7E0KI4vBvnxVs9mtR1lnaOFkzXfDPHjpU1BGM+rWRQ8/zya2Z/zwd4wlj1QN7ywQBV2uns7c+SNN1AKC+HNN6tMRZceHsu2t98ip9iAjVn9aYYwa0BrZg24th/RMx28Afjm8AVVvAJ1Jnbo0BqOTnDHGD8ezbx5KCdOAHAyIYtzKTn4uZSb+prqtJjodRiufCiYNKns7bdD2zK1W9NrHqaflxOnknKwn/stpnot8Rl5yIcOovz9T+W/q9hYdKNHI2VnI1lbgyQz3q8hTwQ0BqDQIGGq06LTavh6aNuyzW7FMFyIVwJB3afAYOTjvWF8fjCibMw0PIyHW7rzzKSe9PV2QitKeq+KRqOhc0P7SuNX8/qUCwp5xK8VnTzsae/cgKTgYGrVm8fbG71XY3ZdTK0gYBkkmT/PxSN36qQ27LCxUbvGjh9fi8EKBLeGSH8QCAR3joQEOHQIgKVBcYCaxiyommc7eDO6lQfaY8fU7LXFi5GeeJIVwXGcT82p7fDK0Gg07H68G291aYLm3XfRDhigZh/9l169MBoltlxIufNB3iEqZNW8/37tBSKoXuLjwcKiTLy6jKuVGQBZRSVsvZDMB7tD1AedywJWXp4qYGm16HU6XBqYXfdQnw5sTdH0+0h8dSDRL/RjiI8TyvoN6vXzSiQJ7eOP44SRie08ITcXc9OKwrCFia7edPsUCAS3jqIo/BuSgM+Pu8rEq5audvw4oh3Jbwxh2YMd6d/EWYhXt4iliZ7kacPLPs8d0Q5daRWBY2mpXhsna/RBgbUS35UYBw5i66XMCmMZhQaszU2gVy/45hv46CM1s9fN7Sp7EQjqLiIDSyAQ3Dnc3VWPlrfeAuCNbk3LuncJKmOi0/LXgx0Z9ddxtj/6qDo4YQIaa2tm7Anj77F1x7fATK9j9mA/hvm68Ni6k6S2bYP0xxIYM0ZtP71gAbr/+z/sbSxp5VQHyx+riYdbe7AmNJGTiVnw5JO1HY6guoiMrPBx16SexOcW8d6uEE6mF3AyJhVFUdA72CMPHwEjR0JICLpePZEyMmnlZM2qsZ3LsrWis/J5fetZnu/ozdCrdIuSFYW3t59jc0QyLFqk+lpdRlFgyRLk/ftJBt7t1ZVhvi4Mbepab5skCASCG6dEkvnqUASx2YUk5BdzIiWPhIzy0uUdE3sy0Ofe7jJYnWQUljD/CoP37o3s8XZoQFROEXNPRDOyuRttXKwxHIqAnBw1w6m2GDiQsIULSc4rwtXKnD3RqTz8z2nyrGzUBiECQT1HdCEU1CiiC6GgSuzs1K5YqDdZA5o4iS5V16DIKLE9MoVtkSn8eOoSiqRm+Zx5rj/+bra1HF1lMgtLuG/FUY5pG2A8dVqd6fv+ewDiXh9KQxuLWo7w9jFIMnui04jLKSQpr5ikvCKisgrYEJEEGi3IsupZlJUFlpa1Ha7gdomJqdg2vRR9i+YY/QNgxAi1LMPXt7yZQXIyvPkm+p07MCYlA+DjZI2dmZ5T8ers+JeD/ZjWo3IJtcecLSTmFZUPJCSoEwCX8fOD8+fLPn4ztA2vdfO9/fMUCAT1gg3hSYxacaTSuFar5ZP+LXm3V/NaiOruIzApm2HLDpGUV1xpmdbCHHnmx/DWW+yf3JsGJjq14cvOnTBgwJ0P9jKJieDhwfIHOxGdVcD/7QlB07sP8sqVd2/GlehCeE8hMrAEAsGdRZbLxCuAQUsOAvDD8HZsjEjih+HtiM4qoKeno/BcKcVcr2NUC3faudpSYJBYejaeEqPEsuDYOilg2VuY0r2RPYcOXwBH1SzWpYEZKfnFxOcW1XsBK62gmAdXn2T/RbUUUm9nC87OSEYLNDo9irHUKtdggIwMIWDdDXh5qf+WX3yhtkl/9VXo0QOj4zXMkF1dYelSjAkJaDp3QklIJCqtPEOiKtFJkhUKjRJOlqYVBayvvgKdDk3gGXSBgRiTy8tw5w5vJzJZBYJ7jPuauxH8wgCCk3M4k5SNjZmeno0d6OxhX95MQnBLSLLCzycu8vLmoArjnRra06+xI1GZ+fwTmoj86wIYPx7dH4uZdfACGx/pQgtXOyJmzkTu3//qnZlrGnd39C2a89zGM+QWG2H6dJSZM6v0JhUI6iMiA0tQo4gMLEEFjh+HLl1uaNWP+rXkpc4+ohymCjQfrQFg75O96OPlVMvRVI1RlglJzSUkLQ9zvZZRzd04FJtBl4b2mOjqr/3i2ZQcRvx5nARMkP78E3r3Bo0GfedOKOfOMa1bUzxtLNQb37/+grFjaztkQW2yYwe6Rx/F0VjEF/1a8Nf5eDZFqNlYjZxsKDZIlEgyxQYjBqOkdoUCNFoNGnNzlL79UHJz4cABGjpY08HZCn8Xa9q52tLO1QZfByvhcSUQCATVgKwofLw3rLwRC2BnbsL2iT3o5KEau8dkFeD7406Mz05RO2wDPPUUnXau5/jkXqwLS2TMyqOwZUvtNnF59110839BWrpMzRC+2xEZWPcUQqIXCAR3jrZtwdxcbQ1/HT7YE0pyXjGPtW1Ez8ai5XNV1FXxCkCv1dLW1Za2ruUZYrX573g+NYf/2xVCoVGutOxqj/9VTZ7uuZRJSbNmSBs2qlk5AIcPYwwKZuuEHnjaWNB63k4YNEiIV/cykgQffwwzZ2JuouPZrj5EZuZzPDkXOneGXr2IMzNTr4dmZurriveKnx+Kn59ahvrmm7icPUPcKwNr+6wEAoHgrmV5cFyZeNW1oT3bJ/bA+j8dky9k5GM0Smq35cvk5mJbWjEwqrkb3bycOP72W0iDB6uduGuDWbOQPvxQ/V0RCO4yhIAlEAjuHObmalcuffmlx7aBOd8Nao21mZ71YYksO5eAwah6PP0eHMf80zEsf6AjI5u7YmkiLlkA4S8Pwtbc5PorCgAIT8+j79IjZDi5Ire/YmbuvwnIVSUk/3dshBfMmgVWVxjRHziAuakJ3RvZY/P5RnVsxw5VATt7VvUrEtxb7Nuner8B+SVGPjsWg87BHsWnGcyfDwEB6npxcRAVBe3bg7V1xX2cPYvm/Rko/67B07PuitUCgUBQnyk2Sjy97jTLgtXu2M2drPlmaNtK4hVAcakH6ZXCkCY3FxsTVajSaDR8OaAVvX/fr3aPHj++5k+gKvT6CvfaAsHdhPhmCwSCO4tOp2ZgyTLk5ZE7dixPb9jPt0PasHBMB6Z2a0qP3w9QJENhsQGAcauP817v5nw8oHUtB183aOZ493bxq27C0nLpt+wIWe6NkPftBxeX6tu5JMEvv8Avv9CtkT3Pb6zcPlvTvx9Kx05oZAnl2+9UQaxly9qblRXcGfr2VU3WrazA0RHZ0pLKuX/AZ5+pZSgaDSbNfDF06w7+/miOHkVZtYpG9lZ8PKYDj7drdKfPQCAQCO4JDLJSJl5NDmjMwjFXL0ErKS3zxsysbEybk421WfkjdQ9PB7o3duT49P9hfOghMBVWGAJBdSIELIFAcOe5/MNvYYG8fTtMm8arc3/g9a3BmOi0FBrUGS6NmRmKqyvaokIiMvIxSHK99k+qyxQZJZYFxWJlqsfLzhIvW0tcrczQ1sPukJKssOVCMvNOxrApPFEdHNYBfZ/eSFEX0dlYo7GxQbGzxzhiOMz65OYPYjTC//6nmmsDL4/tTCMbC0Y1dyMsLa+sDEFJTYMtW1AAWpcKsNu2weDBt3+igrqLVgutWlW9LCdHfaAxN4fnn4effmKIjzNNbYwc3rWRs8uW4WRtzkcj/Zkc0Fhc8wQCgaCGSC8oYeyqY2Wffxvd/prrF1+2IbhClNLm5GBtqWfOoQi+PnmJ5Oz8Uj/DdPjhh4rlhgKB4LYRApZAIKhdTEzgu+9QunVD/+svFO7eC8CzHbxYfjaOgoR4lK7d+PPgQXbHZXFwUnd8HUQGUnUhyQo5xQYcvthUaZmJiY6hvm78+3BH9PUgYygxt4iFp2OYdyaWhMy8CstcNq9nlI8T7Qa2JK/ESFaRgYiMJNZ88imMf+zmyvySktCOG4e8f3/Z0KgW7pjqtHRt5ADAB/1a8vrWYOJzCvlmaFsOXEpn0trTGH2aIickQHp6WYdGwV1OTAxs2gQnT6I/eBBjWBg6ZyekRYuhsBBatOBUwiX+faQLliZ6SiQZnUYjzNkFAoGgBpBkhe1RKUzdEkx4evm9QvF7o9FcY9LOKMssCIxF5+CAdGV34bw8zG1M+fhQJNk9+8CYMeok19SpMG2aOlHRoEFNnpJAcE8hBCyBQFA3GD+eovHjYckSNNOnsyAoHqXUC4uDB2HKFFLmz+fv8wm806t57cZ6l7AzKpWXt58jNCmrfHDfPrCxgZgYDKGhbJw+nQ/3hDKrDpdvpuYX88KmINaEJZZ1cQPo7uXEGF8Xhjdzpa2LTYUb0/wSIwtOxbAmNBGWL4dPbiIL6+mnK4hXBdNHYVpFlsw3Q9uWvV91PoESowTh4fDkkzBunOqPIbj78fYue/tUB2+63OfPl8eiCSvtDGWi1+HkZE2RUcbShCq/SwKBQCC4PaIy83l9azDrwpIqjI9p4cbCMR2ue+19Y+tZdkanoWzdVsFfSsnL43iChuz8Ivj8c9XTEKBhQ9ULsbhYCFgCQTUiBCyBQFC3mDgRZft2NEuX0L+JCxeyC0nKKcAwfz4A+2IzeKeWQ6zvRGXm88b2c6wNSUDXvTu8PxECA2HGDPWGC8DfH0aPRjEY+HTGDP6KSMVCr6W7uy0/j2hXuyfwH04nZfP3+fiyz95ONvw01I9hvq6AatCqnbm2ym01w4ejPPHEjR+ssBBNZCSXrd2f8PckJrsAX4cG6LVaDJLMv6GJvLvjHL+Oas9AH2ckWcHZ8j8eGH/9pQpnOt3NnKqgPvLKK2oZCfBur2Y0trXksbaeRGTk4WFtjqOF6TVn/QUCgUBw48RmF7DzYipmOh2mOg3J+cW8tCmowjptXGz4crAfA5s431CZ9s8nLvLDsSj46ScYMKDCMjkvn33pxeib+mC83KAD4KGH1JdAIKhWhIAlEAjqHk8/jbJkCR/2bU4fLyeeXnuKhWcuAbApPAlFUcQD3y2QW2zgk/3hzDkaheLiAitWID3yiNot72q8+y5KgwZExMRAeDhBmzbxaf+WOFjUDVPSzMIShi49VPZ5Zr+WvNWzGeb6cmFIr9XyYCt3/glJrLS9Mn06NL+JjD6jUe0aV8riwFgWB8ZiaqKnpYstiblFpObkAzBoycFr7+u332DKlBs/tqB+Mns2+q1bMIZH4PP9dkz0OrwcrWllZ8E7PXzp2ViUkgoEAkF14fP9doxyFV2FgVVjOzO6tOT/Rtl1MZWXNgfDyy+r5YBXYjQiFxcDIFtaQklJBYN3gUBQ/QgBSyAQ1D369EHfxJvvjkbSxM6Sk4nlJW5e9iIN+2aRFYUlgbG8sDmYwhKDaj7+3nuqifTevbB4Mbojh5F27FS79Jlc0Tpap4PXXlPfR0bCpk0cictgRDO32jmZK1geHMvj/5ws+xz56mB8qvh+6LQa/h7XFYC8EiNPrDlZLmY1a3ZjBzt8GBwcoEULlB07YPNm6N9f9c4KD6ckKIigwEC1TODiRdi4seL2Y8fCqlUVxwyGGz5XQT3GwgLjufNw6RJERGAID+dCRASR27dzcs1pLrzQHwsTkYlX3SiK+gB7s5MdWUUlBCfnEJicQ1ByNsvPxpNfYixbfr0uZTdKUl4RFnodtuYmVS6Pzspn64UUTiVmY29hgmsDM1ytzHCzMqenpwNmevGdEQiupNgoMftgRCXxqomdJTsn9aTJLdw/hqfn8cDqk2rW1TffVF4hT/XQertHM74+FoL8xhvw44+3FL9AILgxhIAlEAjqHhoNxmen8M/06ZxJyeXw5N64frWZEc1cWfdoN5F9dRMYJBnTWesqDkZFweefo1/0O8bYOBo72ZCUXYDi54eck6N2zJk8GWJj1delSxAbiyY8HAU4HFu7Ata5lBz6LNpPRqEqAH03rC2vdPG5oe+FlameEb6u5QLWX3+pJV7X4pdf4MUX4YknYOFC6NNHfV2mYUNVzLrMpk0VBazVq9XyzFLcrS1IcW+E9Oyz141XcJeg14OPj/oaOhQAJSKCxNat+frwBf6vT4taDvDuILvIwIbwJJYExbI1MgV7SzOOPNWb5o5VN/4oNkpczCpgaVAsgck5nErLJyEj95rHeLCVR7XE2vv3/VzIyCfn3ZFYm6ki1p7oVNaGJrH+YjqRKVlodDp0rVqiSctBSo1FLiwCoFcTZ3Y81u22RCyDJDNrXxhedpb083bih6NR5JUY+WVUQK11n80tNvDrqRjmHI8ua8Th69CA/t5O9PR0xMfeEi87SzyszcktNvLXuXhKJJlXujatlXgFdQvzT9ZX+Dy1qw/PdWxCK2frW9pfZmEJw/88RkHDRsirVlXwvSqjVMA6lZSFq4UJ8fPmQUAAiN93gaDG0CiXp6gEghrg1KlTdOzYEZYuhccfr+1wBPWJvDywVm86tjzenaGlfkaCm0NWFCb+e5L4nEIe8WvEi5sCAWhgYcb4Vm484d+Ynp4OzD8ZTXh6HqY6LbMPX0CRy7MXnGws8bSx4FRsWoV9j23tQTMHK5o5NsDXwYpmDg1waWB2Q0JSZEY+jWzMb+oB7GhcBt1+21f2+Yl2nnw3vN1VMxiuR+MfdxE7eKRaymdhUXkFWYbp02H27PKx/Hy4svtQVSgKhIWp2VjOzmqm27ZtcPQomk8/RaPTIm/YCP363VLcgruIN99E++23dPF0ZIp/Iya396rtiOolsdkFDFt2mOQCA+n5RZWWb5/YAztzE7ztLHGyNKPIKGFR+rCr1+nA1gapUycU/wDV/2/ChLJth7fwYMX97W/5OnM1Zu4N5YM9oQAoH9zPiuA4HvvnBHoPd4wj74Nhw2DgQLC1Ld8oL0/14Hn7bYJfGEAbF5ubPq6sKHx3JJKE3CK+OnxBLSG/4lFAen9MrQhY/4Qk8NBfx25p26L/GyUy0gT8eCyKEknmmQ5eZaLwrWKQZIauOMq+tCKkEyfA17fqFUNCoLXa5EZnbYWUW9rVMCoKmjS5rRgEN8GyZTBhAidPnqRDh9vPkBXUbUQGlkAgqJuklYslL24KJPLVIbUYTP1Fq9Gw7MFOZZ8fb9eI5LxiGtlYVChbeq5TkyvW8WT2wXAe8WuEk6Up3x6NYnVIQqV9r843QZ+Vi+FAeNmYpbkpPo5WtHOwZGa/VjR1qJyyb5BkfH/YDsAz7b2YPyrgmqLX9sgUhlzhcwUQ9vKgq2ZV3CgPN3PlmxUrYMUKeOed8hnTixchOhp27VKXXYHphMcpWf03aK/hn6HRQMuWFceGDIEhQ1BmzECR5WtvL7h3+PRT5KZNOfLll5SculSnBCxFUQhPz8PbzrJOiwMp+cXMPxnN+dTSzKmjR8HDAzw9y9YZvES9fjQwMyHpjaHYzS7PkDS+9x68+64qNF9m2DBwclKXGwzVLl4BvNrVh7icQvJLJNaEJvDclmA048ZhXLny6r6EVlZot2+jXSNH/G4hq2RHVAqRGfm8se2sOjB5spoR+Oij9PFyZOuEHndcvFIUhQ/3hjJzb1jZ2OhWHnw5sDXedpZcyi4gKrOAoORsdkensSc6jQKD2qH41S4+fDqwdZ3+fgruHC918amW/RQYjDy06gR7LqWrHQevJl4BZJVaXPi3Qzp9Rl03Kura3qICgeC2EAKWQCComySpbY5PPNuPDu6211lZcKPYmJlgc52ZyU0RySwNimPluUSMkoTeqzHSezPUdtBXoCxfjqFHDygoUG/YIiIoiIjg7IULhGzZwvbFB9kzoRutnStmCZjotCwYFcAz68+w4HQMC07H0NnDDhOdFg3lnjVZRQbOpuSUbWdlqif4hf542926D5qiKJxMzGLBqRh+ORldvmD27AqZVhqNhqoSlEsk+ZaPXYYQrwSXMTODF19Ev+BXbEtLpmqTEklmY3gSGyOSWReZRmpOPh/0bcGH/VrVdmhXxfvbbRQaVUGDKVOgSxf1vaKAJMFnn5WV8JZIMtFZBUhXeuQ89hgUFanl0p6eoChoJ03EwsKU5wMac39L92qP+WxKDp1/209RiVoGvfxsHHpvL5Sffqr84JufrwrqZmYQE4O8fQf39W5+06X0O6NSy4Q8QDWk/vRT2LIFgFe6+GB2E8bW1UV4ep4qXrm6QnIyq8d25qHWDcuW+zpY4etgxZCmLkzrcYOehQLBLZJZWMKIP49xLDUfZeOmivYAVWFnp2ZqT52q/u3++adqu+DtfUfiFQjuRYSAJRAI6iYhIWg0Glo7WwvPqzvImtAE3t15Ht54A6NOB126YLSyguHDAfi4fyu2RadzMCYNuWdPmDlTfThs00Z9WHzkETh8GOnjj8kYNJCeiw+x8/FudHC3q3Ccpzt481R7L6ZtO8vXRyI5npBVVTgANLKx4PDTfWhkU0WZ33UoMBh5eNVxzHRauja0Z8n5RM4nZl51/e0Te2Blqic1v5gvDkVw4FKGumDOHNUry6T6MzEEAqO9A9lpcbUdBt8fjeSt7efQN2+G8ZnnICSE348dwMpUz6+BsWx+tGuVjRJqA0VRkBUw0WkoNAL79kHv3hVXOnWqgv/LNg5XAAAgAElEQVRc1CuDaGRjwbYJPcqzOltU9B/T6HQgy/z9WLcaKV1XFIUpm4IxeHnBosVgbw92dhidnCpfX5KT0XfrijE6psLwrP3hDGnqQm8vpxs+5ox94eg6tEfauk0dLM0wY/hwtEMGM3bVdvo3deWX4W1pdpvZrTdDc0crXuzsw7zjanfXvt43dk4CQXWTmFvEwOVHCC8Ceddu6Nr1+hv99hvMmYP26FHklSuhUyf1JRAIagwhYAkEgrpJSAgNHaxFd647yNmUHB74s9SDZPx49SZsxgyYNQuAYb4uvNenBe/1gYzCEsasPMqBI0fKd2Bjo3bW69QJ9uxB2r2HnAH96bvkEJdeGYS9hWmF42k0GuYMbctXQ9pQIsnE5xbR9PvtFda5WmfBq2GQZM4kZdPK2RoLvY70ghI2RyQDsDYyFaVdO1DMyjL8/suE9UEkZ6mZMDpra7TduyM/8IA6u6oT30VBzaCPCKePR+1nmnrZqv5uxn371YyYXbu4NHAzb20/h9bOjvtXneDo5F514ro8pTSDs7GtJTmDhlYWr0C9Fp0+rXrSPfooOcUGwILGthY80NKdf0MTK22iSBIT2nnSw9OhRuL+IzCWwzGpsGMF9OhR9Urp6XDiBDz1FMaEBFaP7YyDhSnFkkxeiZHU/BI6edjf8DEPxWaox/zx93Lh6jJWVshbtsK0aez++mvmHLbg5/sCbuMMbw6NRsN3w9pwIauA/TFpOPznd0IguBNcyMhjwLKjJJo1QDq4s8zX6nroDh7A392Wi0cPkRvgj/Gff8uzQAUCQY0gBCyBQFAn0Zw/T1uH65hlC6qV4OTycj2OHVPLaWbNYnJAY7KLDcwb4V+22MHClCZ2lhzOzEC6PNikiVqWMncu9OuHpjSboKOnfZVli+kFJRyJy+BQbAafXuGjBXD2hQH43YJB8X0rjrAtMgUAnVaDRqtFa2GO/MGHKH36oOnbB3tzE94f2pZRLdwY+ddxQpNKs7/s7Eh+7jno0AE6dkRq0kSU+wlqnthYjLFx9Olecw89iqKwLiyJlefi6OnpyIOt3PGwrpzR2KVhqShy7BiMGgV9+6rdN0eMQG7enHPduvHipkAWjm5f65mxC06rWUlx7btcvZOoRqN2BGvSBI2pKQOXH8W9gRmn4zPQ2fw/e/cdFsX1NXD8O7tL7ygdBERFRSxgjRp7iRpbYtToT021pTeNJrEkb0w1xhRjEnuPxq6x94rYRRRBEERp0vvuzrx/jAGJDRHEcj/PwwM7e2fmLgnrzplzz7FVlxwOGwbNm6tj4+NhyhQW/f4766KS+biFH6Ob+GJlWn4fl1eeT0Dj64vcvv3tB330kdrx9Lrnlx+5r+Lq6fnqUkXq17/5SVlW37dnzOCNptX5qkPpLtzLk06jYc0LTYhKzam0DojCk+tEQjodF4eQ4eKGYdt28C5lLcKCAuSjxxjWoTZ96rjTd0UooS1bokyfDiNGFC8H3r1b/d6mTcW8AEF4wogAliAIDyXdmdPUdX9wyxgEGBjoSUpuAW9vO4vSr596YQP0ru1GT/+SdWD2XEphwak4IE4tfv7dd2Bnh3QhggYejnzV1p+Ia9nk6I281aw6uXoDF1JzMMoKBlnh1XXHi4suX+dpa86Kfk1p5nnvmQ/vbQnjeEIGu6LV4BUtWqCkp2F8+RV45RV1mc7UqZhpJC690YFruYW0WXiIeHNr+Ha8Wrj900/B1bVMvzvhCaYoYDCUfXnp3r0AtKpWpRwnVWx/7DXe3x7O4dgUtP7+LNsaxpv/nKJZtaq839SXfgHF9Yaq2Vng7mBN0hujMWRmqpmYc+cWPS/PnMncYcN4ytOR14J9KmS+paE3ypjotOi/n4r81lt338HODmX/fhLmziUhIQH698f47LMlC7cDeHjAzz8jjxlD+v/9H2NnzeLrwxcZ38KPEY19sDS5/4/Nbzf1Ze38/ervNTj41kGl6sXFqF8M9KR7TZf7CuwUNdMID1e7+xoMxZlYY8ci/fYbfzzbkFeCfMp8jvtlrtOW6aaFINyPPZdS6LYshPzaddXltU5Opd/52DEUvZ4WXo542lqwb2hLPthyhp9GjUL3808YGgWp/y7MnQvdu4sAliCUExHAEgTh4ZOXhz42jjr1G9x9rFCu/jgVD917qB/iUtX6Twa5ZDHzzAI9bebuK3oszZ6F0qAB9OkDW7cxqlt9utRwKaofc+hyKr1WHCUpI+fWJ+3bF8uN64l8s9M9d5PKyNfTYfFhjsapXSu1detg3LsPHB25qdx6djaFeiOf7Qxn6blEku2rYNi1u/R3WwXhRno9LFuG9puvkc9HoLz2mlorTqtVM/c0mtL9vH49fs72OFmZlfrUiqJwIiGDHdHJNHC14ykvx5uCK2eTMxmzPZz156+ibVAf/lyMsVMnSEuDdesImT2bgav2Ut/FFv+qakc7SZLY/mIzPtoezrrBg9F9NQXDbzOhZUv1oEOHwoEDjJo9CwsTLQFONvg5Wt21MUR5O5eShd5gVLOrSuteatN4ecFvv6GMHUvqF1/wwdy5TDl0kU+f8uP1YB/M76PrXXtfJ/oHerHs5ZfVDVeugNt/CsWPHw/vvouutj+mWg0vBnrdfKB74GtviVYjYezSpXjjpEnq7+Pbb1GA7rVE8F54csiKwvKweIasPYGhZSvktWvV4O69OHAAM1MdDVzU5d+mWg3Tn6lPp+pObLiQyPG9m4nNzCfdREu+m5saONaJS29BuF+Scqs2S4JQTo4dO0ZwcDAsXAiDBlX2dIRHxcmT0LAh+19uzVNeFZOVINzsTFImgTN2wOrV0KsXZGWBrS1Ln2tM/3qeReMURWHeyVjcbSxo61OV51eEshEbZDd3TPbtJem9LkVt5w/EXaPNvP0YjLL6wc3cHMnMFMzMUMzM0JqbYww/h29VW06/9vQ9L9V5d9Nppp++gjz5c+jbV13GeDsZGfD112in/wgeHhh37FQzLgThXuTmwm+/oZv6PYb4K3Su6UpjF1t+OR5LRk5+mQ45qrEvv3QvXcA+NiOXHn+FcvpKKpJOh2IwoNNpaebpSCfvKrTwcuSvsHhmn4xF6+WF4cspMGDAzcth8/LQ1fang5meTS82v+k8B+NSeWvLGY5n6tX28P9mBRUUoG3fDuOBgwBoNBJftqvD+0/VQPcAltxeyy2k5/IjHErKQb56Va29V9GiouDzz5EWLMDJxoIJLf14pZH3PQfc/3U1Kx/3qWr3P8LDoXbtWw/88ktMJ05g95CnaOrhcF9ZWFujkrianY+liZZ/IpOYfX0JplaroZG7A+teaIKrtfldjiIIj4YfD0Ux+/RlxrXwo1+AR9HfztWsfOacuMRvJy4Tl5qF1LcPyqLFN2dj3s7WrdC5MzoHe+T8Alq4WLNvaMtbDo1Oy2FXTAovrz2ubtBq1SCWUP4WLYLBgzl69ChBQUGVPRuhgokAllChRABLKJOlS2HgQFI/6nZT4W+h4hyJT6Ppn7th1y411T0lBZycOD2yPfXusLTjt9BoRm44SXUnO37oULtouWFMeg5LTl9m1vFYotLU7Kvn6rhjYaLBICsYZQUTrYYX6nrQo5YrWs29XZydScqkwcxdyFOmqDVjSiszUw2mWYoaa0IZTJ0K779Pe18nfuwaWPS3kW8wkpanR1YUjIqifpfVO/3F27i+vfhnWVGo52xbquCtrCjU/2MP502sMcz4DTp1gogI2LEDaft2NDt3YszMROvoiHHCBBg+HMzukNm1ciU89xzrBza/ZQZORr6ehrP2EufujfHQYbC4XjdLliExEeLiSnTqWvlCU7rVdClzYOduIlOz6bwkhFhZh3H9emjRokLOc1sREUiTJ8OSJbjaWvJV21oMaVCtTIcqer89fvz2mWRJSWgbNcJ45QpVbS3p6efEoEBP2vvewzKnW9AbZXbGpFCrihXedpaVXs9MEMqDrChcuJZNWr6eVnP3Ifv6okRGEeDmwBtB1fgnKpn1EQlgaor8wgtqDbynniquVXU3WVnwzjswezatq1Whg68TzTwd6OznXCK4HJ2WQ+elIUQmZajHVhSwtob589VMdaH8iQDWE0XkMQqC8PC5nsZ9OTNPBLAeoGB3e1zsrUhctUoNYK1fD4Cd2e3/qVh97gojN5zEztyEt4Kq8eW+C3xx8CJx6TkkZOSWGGtlqmN5vyblcrGkKAqjNp1B41cd+Z137m3nB5GxITy+XnoJ7cIFHIs4V2KzuU6Lm03FdufLNxg5l5SB8dtPoVs3dWNAAAQEoLz5JkajEcLDMXp7l245TJ8+aNq1442tR2nkZndTYXc7cxNWPxdM09l7MY4eXVxYXKNRl725ucGMGTByJAB9/wrB3MyEgXXdmd41EOtyLH5+7Go6wb/vUh9ERoKfX7kdu9Rq1UJZuBA++YSEceMYumoVQW72dwzw346DxfVll7t23T6A5eyM8dIlOHCAlHXrmDtrFkvCDpMztvt9vY+aaDV09nMu8/6C8DDaH3uNp6+XN9AG1kMJPQohIYSPG8fIDXvRBdZDnj5OvaFub3/Px9f07Yu8bRsA1R0sOZWcxcTd5/CpassbjbwY1tAbCxMNPZeHEmNhB2vmq91RHUrfMVQQhLsT7ZUEQXj4dOqE1sHhepFw4UHRSBLP13RGt2I5GI1o5s7h6erOeNndOlMpPjOPPstCADVT453Npwlp0YEjbbuR4F+vaJxOp2VQfS9OjWhXbnf6DbLCmaRMFK1OTelftKhcjisId+XggHH7DrKs7ZhxJPqBntrSREdTzypIe/bceoBWC/Xqlb6WiyQh//wzcUYtvj9t5/3Np0nKKSgxpIGrHTO7BcKcOWrHvq+/hgULIDRUHTBihJphIMtw6hT5n01kfkQyzebuJzrtNnXvyuBIfFrxg+3b723ns2dh3Di14cSLL0KvXmg6doApU6Cg4O77/1ft2ihLl6J1dCxainev/ByseLOZH9L776uZcLej08HTT8NnnyEVFtDA2YaRG07SePY+5p+MLdO5BeFxsyM6mZGbwtQHn36Kcc1aMDWFVq2Qd++GxEQMJ0/B6NFlCl4ByBbFAf55J+NYFZcJ06YR06k7H+2KwG3aFqy+XM/ZtDwMa9ZCz54ieCUIFUAEsARBePiYmmIcOJD5Z69ilMUq5wfpuTruGOKvoHV1Qd69hxENb7885vWNp4sfuLrCzJkozzyD9swZCAnB3cGaKR3qEv9OZxb2Caa6g1W5zFFRFNynbqalhx3Gc+egRw8YPFitTSQID4KDAxoTXVGtt4qmKAqHLqfy2trjnEhIRxMeXn4Hr1sXY3Q0heM/4cczCXj/tI3x28+SlldYNGRYQ28mtqlNzU1rsZ48AYYMgSZNID29+DiSBIGBMG4cxsMhRJjZ0mlJSLlNc3hjX+TPevFGE1+kkSNh7do77yDLsHEjmo4dISAAh5+n0Wjzap4+tJ0e5w7T4/JZtJ9+gi6w3r0HxED9d6pJEzZGXyvT65EkiWld6vF8XXekAQPUTKy7UGSZQ5fT+PNKPkf96jF09TFmHYsp0/kF4XEx9WAkHebv51y1mnDoEEyeXLIepiSBs3PplwreTu3aaDUSJtfLHSimpjBqFCxejBwfj/7zL9A93Vota9BANCEShIoiamAJFUrUwBLKbNs26NSJo6+3JcitbHfLhHtnkGWeWxGKl7UZgwK9aOHleNuxv4VGsyYikQuZBcSlZlGoV4uTdqzpylvB3nSree91rf5LURSuZOUTcS2b89eyibiWTVhKNlsiE0uM0wTURT4SWlyjRxAqkqKgsbBgattavN284payJeUUsOBkLL+fiiciMR2dpweGV16FV15RO+Xdi8JC2LMHduyAl16CmjVvHnPtGnz7LZrpP2KJwkfNfHm7ud9NXQZf/DuUpRGJKD9Oh5dfVjMd/uv11/Fft4Jzw8u3dbxRVuj3dyhrLl5DHjtWLb5sbw92duqXvT0cO4Zu2g8YIqNo6OHIB0196Rfggam25H3bM0mZDP/nNAdikuG556BrVzWDrW7d2y81NhhgyxZ1OeXff/Nb9wYMb3yH5hF3UWAw8szSEPYk5WDcs/fOnRVHj4Zff4VPPlEv0kePhhkz+PPZhrwS5FPmOQjCg2SUFTQS5ZaR3XfZYVY511SDwBVZz23NGqR+/cDODiXleufjTh0xbtlacecUSkfUwHqiiACWUKFEAEsosylTMJ84gZT3u9xzZzrhwVMUhcScAoyygodt+QSRErPzGbj6ODuj1GCVpNWi866GoU5dFD+/4otND4+bO6wJQkW63qFzcd/GDAz0vPv4MtgUmUjPZSEYJQ1Knz4or74K7durywTv1c8/ox03DmNWFlqtBsnbG8ORUHC8TYA6MRGmTEEzYwa2JhrGtfBjdFNfLE3U9+KY9BzG7TjH0jOX0VbzwjD5c/Xf+BvmpgsIYJhZDn/0bHTX6V3OzGPNuaucTMzgaHI2Uam51K1qTUt3O1p4OdLc04EL13J4a9tZknL15OsNpGfn3fZ4Go2G5+q48U6z6rTwdLzjhbKiKMw/GcfnB6K4mJLJvx+LTTw8MNSpo2ZZyDKSLINsRHvyJIbkFGq72vN2sDcj7iN49a+sAj2tFxzkjF6H8eDB4o6P/3X+fHHHwnXr1OVJvXrBtWtEvdWp3LJcBaG8ZRXo+f5gJNsupRJyOZXRwT780DXwvo9rkGVazd3P4ebt4a+/ymGmd5CSgjawHsaEG26gSRLEx6v1AIXKIwJYTxRxVSgIwkNJt2ghvWq5iODVI0KSpHJtwX7hWjYt5x8gzcxS/WDSuDGKry96kwezZEsQ7igpCQBnqzt0+LsPR+LT6LMiFGPnLsjz50OVKvd3wMOHcdfKrB3eFhtTE4Jn7yVr2DDk2y3Dc3GBadOQP/iA9C++YMysP/kmJJoJLWvwWpA3PvZWLO4bzKjGPrSesxeGDlWzupYsgeefh+xsDOHhtHj29tlEGyISGLk5jEYuNkSmZHE2OQuNuxtyx+5QvToHw8I4cmA/3x2MLLljrVpqB9HTp8FoLNr8bacABtTzJCNfj6OFKW42pXs/kiSJoQ2rMbRhNfL0Rs6lZHEmKZOw5CwiLochKwoaSUIjSUgSePnZMbhPPRq52pVbBomNmQlbBjaj+bz9xDaoj7FBQ/jqK2jVquTA66/Xr4oNUc8+C4BPVVve7lIPH3vRVVV4OEWn5dDtryNcyCzA2KUrtLFl2rx59K7tRhufqmU6pkGWWXgqjkn7o4hJyYQx5ZvpeSvS++9jk5XBnhHt+Hr/BSQJloRdwbh6dVEjC0EQKp64MhQE4eGUlEQV71IWIhYeOzHpuSRn5sLezTdfxAlCZUtIAMDZqvy7pEamZtNlaQj6Bo2Qly9XgzX3q0YNcowKDV3V5dhDAtz57cxp5Lvt5+kJv/2G8tFHpEyaxFsLF/LlwYt83742AwM9mXVjAXNZhv790QbUxbh2HRpTU/4+l8Dg+l43Ld0D2ByVRFxqFnGZeeqyPEC+chUmTCjKQDKEhqq1tm4UEVHi4dxeQdiZ63i2lhtajYTnfWSAWphoaeRmT6NKWLbubGXGK/U8+GRnOOzfr9YZu3ix5KBDhwAYEVSNrAIDrb2r0N7XCU1FLpsShPuw51IKvVccJcvJBeOOjVCnDnzzDQDxWWoWpd4oczEtB09bi7vetNQbZRacimPS/khir2Uh9eoJEyZCo7tnet4XRUGZPx9fVzvqOduysG9jAK7mHGTn8uXIIoAlCA+MCGAJgvBQMowYyexvvuKL9nVwsCj/i0Th4VJgMLIpMokTCRl81safJh7XLyDPnBEBLOHhM3s2DtYW+DmW75KtXL2BjotDyHLzwLhxY/kErwBq1CA1K5fMAj22ZiacT81BH9Dk7vv9q3p1mDcP5eOPSfjoIwavWo+ZTsPcE7Hw449q/agdO2DIEIxhZ8HeHnn1ajb17MkLf4ey/LnGmPwniDW+dS1mn7pMTrceakF2gwE6dACrG36nQ4YA0NTDgZUvNKWKpSl6o4xeVig0yljotA+skP6DsDoqGZo1g88+g9atbx7wzDMAfLhV7ba2aVALEbwSHlqzjsUwYuNp5FatkP/+W80k/fVXGDOGz57257k67vx+NIYvDkQRl5oFQFU7K2o5WOJvb0EHXycG1S+u9XcmKZNuy44Ql5qF1Kc3fDYB5U4148pTjtpR9XhCBkeupNPUQ+0u+HxtV3Zs2qPWD7zfTFlBEEpFBLAEQXg4jRpF4Vdf8fvRGMa0qlXZsxEqSGpeIZ/uCOfX0OiibYVGmci0XDQmJsiiloHwsDl/HmnuXD7rVLeoJlR5OZ2YyaVrmbB6Q/leDF0v2H4qMZNcvZGjiVnQt+69H6d2bZSlS9F4efHHsRhsLc3JWbgA47Bh8L//gY+P2pnQ0RG6dkVeuZK1ffowaNVRFvcNRndDrToXa3OqmmnJWbkS9u1TlwY6OZU4nVStGkp4OCHXl1SGvNwac10ZaoA9ArIK9ITGpsDI96Fbt1sPcnOD776DDz4AYFlYPF1quDzAWQrCrf1bBzM1r5DUPD3Lw+KZHnIRhg+Hn34CExPYvFltPAD8dTae309dJiEjF+n559VmEMnJpERGkhIZyYEVKzickFkigPX70RiumFjCyX0o9es/2BdobQ3Tp8Nbb2GuK34fa+bhgGI0wtGj0Lnzg52TIDyhRNVbQRAeTq6uyIMHMzX0Enl6493HC4+kvZeuFQWvXgvyBuDLfREsD7+CvHQpNG1amdMThJv1fBZFltEby78HTp7h+nvdkSNQnj12/NROia3n7KXLwgNkmFtC9+5lO5alJca332ZnbCqv1PfAeCQU6eWX1edat4brtZkA6NEDZflylofFY/L5Wl5YHlL01NaoJC5lXC/EvmnTTcErAOX772H5cjSeHgRUeXwLlGcW6Hl64UHs27dRL/jvpFevoh83Xkwhs0BfwbMThLv79kAkbt9vIuDXHbSes5efjl5SA1czZqjBKyhRs+5cSjaJPfpAWBjKX3+pTVn+9z+YNEn9GygsZFyLkh1ek3MLkVNS1OPGxz/IlweAdtkyWng7Ud/FrmjbkjOX0draQsuWD3w+gvCkEgEsQRAeXmPGkJJv4O1Npyp7JkI5UxSFDgsPsjTsctG2MS1r0el6NoGyaBH07VtZ0xOEWzMYIOICAF/tjyj34Lqv/fUgzXvvQVhY+R24ShV4/30YNw7CwjAkJsHTT5f9eK6uFBQa+OFQFLr6gSgDBtx+bO/eRX/LskJRl78fDkcVjwkOVmto/VedOmi++xb5cjwH41If22BNSHwaJy6nkv7BGLWz4J3UqAH5+XDkCImZuRyJT38wkxSEO4hJz0Xr6Qnbt0N4OEpKCrzxhtql71/ffad+r1cPIiNRFixQa2LdyGAoykAcvOooRrk4kD+nVyO+71AH+yUL0dSsCace4GfD0FCM+/fzQbPirqO5egMzT1zG+OqrJZc+C4JQocQSQkEQHl7+/si//MIfr75KDUdrqjtY4mZtTstqos7Aoy42I48dUYkltj2zLIRgZ2s0FhbI/ftX0swE4Q50Oli9Gnr3JjVPz/yTsQxv7Hv3/Uoh32AkaNZetFWqYJwwAQICyuW4Rf69eLyb9HTYuRNSUiA5uei7lJyMLjEBJSERw/Ui9prWrTHs3l3yIvVWFi9G27Ilfx89imbympuf79MHXQ0/DIuXlCzavmcP8mE1a+v8tWw2RybRL8CjdK/jEdLUwwGdVoshKurugwHMzMDVFQD9rQJ/gvCAmWoljJcvQ8eOmHh5oh8zFkaNKjlowQLQ69WlxrczbVpRvakOvk5kFuiL6qCa67S826IGLzfypvm8/VwYOgRjyJHiDK+KUlAAEyfi5WhDL383FEXhpXUn2HYplcy8AjVQJwjCAyMysARBeLi9/DIMG8aYbWH0W36EVnP2ci23sLJnJdwnb3tLFvYJLrHtQlIGS8/EI0+efPcLYkGoLL16wUsvAfB6sE+5HFJWFNaeTyA1Ow/jrl3w5puV9zcweTL07Ys0fDh2X35B9UVzaLF3M70vneJ/pBUFrwDkGTNKN08zM4xDh95xiCEySs3euFHDhvD220UPj119PLONbM1MaO1TFc26taXf6fpFe6FRBLCEyvd1xwD2DGvFnz0a0M6kAO348Wo2laLA7t1I/Z5HGjUKli5VA+RZWbc+0A1Lp7dHJ+P0/SbaLThAZGp20XY7cxPm92iAfOpU6QPzZXXkCNpGDdFu+odv2/mj1ajvdwtPxREf1AzWrQPf8rmJIQhC6YgAliAIDzdJgtmzS7ROL9G6XXhkDajneesn3n33wU5EEO6VXk8LHyckSSKzQM/JhAzWnLvKmnNXi5bIldbM0GisvtpI/xVH0FX3Lf/MqxspitrZ84cfYOPGW4/p0gWA+u4O/N/TNQkZ+hQHhrVkZf9m9K7tpo6ZMwcOHry3udarB8Divo2RP+vFgv8EsAF1KeGN7O3VjIydOwHYFZtKfGZe6c/5CHne3wV5y1Y07drCvHmQnX3nHUzVrBS9CGAJDwEznZbW3lV5JciH/2tfB2N6OowfjzaoEbRtS82922lz5hCWkyZA+/Zgb4+uXoAaALrRhx9CaCh8+y0sXYpx+k/szZX4cm9EiWFNPBz4sHkNNBMmwNmz5fMiNm9WP3NKEly6BGPGIDVvTkBmEsdea0P/659ZJEnCytwUOnYsey1BQRDKTCwhFATh4SdJULMmOh9vDDGX6Faz4rsurQy/UuHF4y1MtPSt416h53iY3XhHtcjFi6B9PLuMCY8PzeXLnIhPw/bbTWTl5pd47p1mfkztUg+pFJlJq8KvMHLjKZQhQ2DAAAyNG985o0lRICEBzp9Xv3Q6CApSA0mmphAVBTNnolu7BqOXF0pAPahbFywtYds2dJv+wZCYhFarwWiU1eyFnTvVFvAHD6rn6IjIo0YAACAASURBVNIFVq/m1J9/8OY/m3hnSxjda7nwUn0vph2JRhscpHYdvFft2iH16sl7O7azPTqZtj5V1e1WVmrNr0mTbv/a27aFl1/m0OzZeP6wGYD5vYP4X4NqJYaFxKdxLbeQuk42eNtb3nYqBlnGKCuYXe9oeOFaNl52FpXa4XB4sC9WJjpmnw5nz7BhaEaNRO73AgwdCm3awA0dHJFlyMgAoLACmgkIwv0IdrPH09GGy998Q7sarnw4+Ck6VXdCVmD3pRQ+33OeXTEpGMLOqgH1Gxs/gBrI/jeYffYsxtGjmZMAM7o3KPqbBZjYtjZ/X0giZsRwjHv23t+kDQa1kPx12o4dkGJimNTWnw+fqomJtmTOh5WpCZmZmfd3TkEQykQEsARBeGQYZvyG1KMHvx+NYfozFdtCOU9vJFGvJYeKqa1ghR4Xnuzuiv5VbVjdvxn9Vxyh4N8sApGKLzwC5JdeIq9mTfX/Vx+f4u8rVzJt9GjMdBqmdKgLwOLTlxm35wIpOfkogCIrKCjIioJeb0Tq10/NMtX8JyleUWDHDjWwdP48urNhKBcuYMxSA78ajQYU9TiSiQ6try+GC5HYWpjxfC1nrl0+y6lToVxKzkRWFOq4OtC9ehU6d6pBq2pVmLArnG8/+ODWL7BXL5RevSApCcOSJWyYM5s1yw6rz835usy/N+X7qSQGBDDr1OXiTNqcHJgw4e5LEc3MSjwcsvoYBy+n8X/t6+BgYUpkajbN/twNgFar4aX6XnzytP9NgazQK2l0W3aEPL2R52o5czwlh1PxqfzarQEjm1Te+49WIzG0YTWGNqzGpfRcFpyKY9aGVcTMm4fOyxNDy1ZoLl9GG3sJw9UEFL1a0N7CRCymEB4ukiSxdWBTZEWhrpMtAHOOX+LDnee5lpWLzsMdbXAQSmws8osv3v5AioKmfXv+zTE8kZBBM0/HoqctTLS838SH0ZsPqrW17qcW1oYNAGgkCVlRaJCfzvzX2hDgbHvT0ANx17ialgX+/mU/nyAIZSYp95rrLgj34NixYwQHB8PChTBoUGVPR3gczJgBo0YxvWsgbzbzu/v4Mlp0Ko6LenOSJWvMyrlAaIFej5OSTXWTfAbV9yrXYz9qFEXhj2OXGL7+hLph0SK40wdaQXjYTZsG777Lm02rcywpi/0xyUh9+6C0bKUGqf5doqLRgI0NDBhwU3CGyEg0b76BvGkztlbm+Fexpp6jJf5VrPGvak3tqjZUd7BCb5Q5mZjBsasZnEnKpJmHA/3reWBpUnx/ssBgJLvQSBVL05um2mjmTk4kZMC5c3e/GDt9Wg02NW16c7DtXly9ComJ0KhR8bYLF9TueneSlAQDB0LjxjBkCGzbhvaT8dhJMqMaehFyJZ3tCdkYT56CNWvQfvklUno6rzb0ol+AB5GpOZxJyuT3E7EYGjTC2LkzuhXLMRQUQkwMZ0d1oI6TTdlfVwVQFIUDcanMPRnL2dQ8fGxM8bSxwMvOAi9bC7ztLWjgYleqbD9BqAxxGbmM3xHOtphrXK0TqL4/3st7yEcfqcsJgbQx3bA3L/k+tv1iMh0X7FfLTNSsWeZ5ap7pSoMzoRwe1pK9sdd42rsKutvMsdX8Axyyc8MYelRkjD8sFi2CwYM5evQoQUFBlT0boYKJDCxBEB4tI0fChQu8/eM0fB2s6FHLtUJPZ2ZiQrv65VuTZuepMBB16AH4at8Fxu24oX7FoEEigCU82t55B/bs4adVq5DsbGHjRpRnnrnzPno9/PUXhIfDxYtoVqzA1dqMX/o3pZe/220DFKZaDU95VeEpr9t3ZjXTaUssu7mRm60FpyULjC6lWJYdGHj3MaXh5qZ+nT6tXnBmZoKT0933c3YuWeQ9IABjv36kvfceX23ZjOTsjHH8O+DnB++9h3H4cPj5Z/746it+OxoDGg0mvj7oX31dXTppYYHhiy+Q+vUjoDDjoQtegZrJ0rJaFdF5V3hkbY9OZsGpOPXB8OHQvPm9HWDKlKIA1unETFp7Vy3xtJXp9fe2K1fuHMDKylLfa/R69ctgKP45JQV58xZG92iAiVZDe99bvx/FpOdgZaKjirkOKTNTXcorAliC8MCJAJYgCI+eb7+FqEj6rdzEgaEtaeRmX9kzEsogNiO3ZPAKyu8iWRAqy7FjsGoVTT0cOJqQifLTdGQfH4iNhchItU6VoqhBFK0WQkPRvvwS8pkwnO2s8LWzoOtTfnzYskaJTKqK8EvXQOr/sYecl4ahrFz1YDsfXi/qXqrg1e24u6MsXYrhVs9ZWcGYMRhHjVILMteogd7cvOQYRUFav54XmvuUfQ6CINzS5shERm0KQ9uoEcYtW6Bq1bvv9F+5uejc3WhvqdDqhkCuoijICnx/MEpdYtuixa33z8yEiRORfpqOYrh92QY7S7PbNpbRG2WuZufjN30bsqLgam2GIbsAoqOhVq17f02CINwXEcASBOHRo9WiLF6CvnVruv8VStybHYpaGwuPsLFj4YsvKnsWgnBfpIkT8Klqy/6XW7MzOoWey7eTX1eth6XTanF3sCI2JRPt9m0oNrYohw5R18WOOa+2Idj9wQbjfR2seDPYmymr18CePWqx8MeNjU1xsOy/JAmNdzXiHtPOhoJQWf4Ki2fgyqPQtQvyX8vVgHJZfPUVJCYy840OKMAfR2OwNzdhXUQiqy8kkp1XAH/+WdSVs4gsw8KFaD/4AJOMdMa1qkmwuz0mGg0mWun6dw0mGgmdRsLV2pylZy5zIiGDsa1q4WFrgaIofLHnPJ/tOlfi0AnZBWrGrAheCUKlEAEsQRAeTVZWGD/6iKsDBxKekkWAk42oA/KIiUrNKX7Qp4+6VEAQHmXHj6OsW8/E3kHoNBo6+TlzdnhbotJyqOFohZetJVqNxG+h0YReSScnM42mHevyRtPqN3W5ehD+OBrDVwcuqDW67nVpz2PC0Kkzm5bMr+xpCMJjZdqRGGRZhnHj1S6oZWVigsEo8/q6E2y9mFzyuU6dwMtLrYl3o2PH0I4ahfHwYZ4L8OS7Qe3wsrPkwrVsfguNZvXFFIwKaCWJGvYWbBrQlKi0HF5dp9bi/PlINK8H+VAoy8w9Ease86WX1Hq+ej0cPw4NG5b9NQmCcF9EAEsQhEeXtzdotQTO2IGLvTWdqtnT1rsqbX2c8HMs490+ocKFxKfxzYFIVoZfQVfFEcPQYTB+fGVPSxDumzRpIt5VbXkxsHgpiq+DFb4OJd+PRjSu/G6bX+49z/gd4TBqFEyf/uTWcrGyIjEjB6OslGsmb06hAStT8TFbeDINqedOZFouya1aofP1wbDibyhLcW03N4CSwauBA6FtW7VeprV1yfGTJ8PEidR0sePXIS2ZfiSG4etPkFpg4HBcKmg0SI6OKNWrQ2oqeckJABjlkj3NZkWlIVmYw9ChcP48TJ0KM2eqy6x14u9aECqT+AsUBOHR1aIFpKTAvn0k7trF0h3bWbjhFMgyPWu7M+vZBlS1NLv7cYQHYtvFJCbuvcD+mGR01X1Rfv0Vw9ChYGFR2VMThPuTlQWTJ6OsWcuEXo1u273qYfLr8Ti1o9/UqU9u8OrqVTTTf+SdptXLNXiVlleI4zcbAVAm9C634wrCo2JEY19eC/Jh96UUXl5/ikvffQeLF9/7gV59Va1h16wZ1K+v1tGyuU3DhawspAUL0KAQ6GjJH8cusTo8vsSQHjVdcDDTsSAkBI2tDV2qO5JRoGfK/gsAaNu3w7hlK8Yn9T1REB4BD/8nLEEQhDuxt4cePeC77zAcOw7XrsH8+WxIyKXuzN1sjUqq7Bk+8WRFYeKucDotOMAhJ2/4+28MERdgxAgRvBIebYoCS5eiq1UT0x+n8Xm7OgxpUK2yZ1Uqk1rVgNBQdN7V4JtvICOjsqf04E2YgI0GPm59h+5lZVBglMv1eILwKNJqJNr7OvFqA0+0a9dAXhlqzWm18OWX0KsX+PreOni1c6eajWVrixIZiVGBFYkFLEst/jt8tpYrNmY6/B2tqHk9Q19xc2fuiVjq/76Heafj4fffMW7d9uQG9AXhESECWIIgPF7s7eF//8MYFsa1Ji3ovPCACGJVouxCA88tP8Kk3efhiy8wHg6Bvn3FB0Th0RcWhqZdOxg4kG72Ws6PascnT/ujeURq8b0S5MPZUR0Y6m6Bbvw4tJ4e8MEHcPmyeqGZmKh+lbfz5yEhofyPe6/Cw5FmzWJiqxrYm5veffw9cLU2p5mHA6BmngrCk6xfXXeMObmwaVP5Hzw7G9q3hyVLABhc35MV/Zpglp2JnJ4OgH9VG9L1Mjk6U6adSVCLso8dixIWBjNmEF+rLpw+Da+9Bo9A9qwgPOnEX6kgCI8nd3fkLVvQNmvGuN3nURTl7vsI5UZvlIlJz6H5nP2si02H1avVOlePyMW9INxWdja8/z5SwwZ4hx3nn0EtWNO/KT72j17dvTpONvzZsxGX3urIBw3csf71Z7UosqUluLqCqys6/1rw3nuwdSvk55ftRIoCW7agbdMGatcGNzdMqlWDAQNg6dLyfVGlpPnoIzztrRhZQfXIpnRQO092WnAAadJqvt1/gT2XUghPzqqQ8wnCwyQ+M4/ph6NQFAX/qjbUdXMoCjKVq//UwFoTkUTfOu4cfqkVZoUFEBzM+ZQs9kYnIW/egvFSLGzZomZ1abUwYgTyocNQp075z00QhAohamAJgvD40mgwTppEaNeubIlKoksNl8qe0RMhq0CP7VcbANB5V8O4ZTcEBlbyrAShnIwejdnSJUx42p/3Wvhhpnv0swndbSz4qmMA41rXYs25q0iShK2ZjnyDzNaoJNbN+Z3EH35AY2GOPPZj+Oyz0h983Tq0n32K8cRJAj0c+fj5JkjAocup7Ny3lePLloGjIzz11M0FmSvKnj3I69fzzXONK+y/XztfJ5I+eIYWs/YQlZbDR9vCip6r6WhFxJudKuS8glDZ1p2/yk+HL7I1OpmU3EImt6vD8AaevL18OYwdqwaPyjHTSRo0CGXRIgCy8guRFcgqMFBgMKrB9/Pn4eWX1cY/oHYvFAThkSUCWIIgPN46d0bbpDGf7b1AZz9npOsZQAfirnExLZfetd2wFp2iytWZpOIMA0PoUbXoqiA8Di5eRFq0iG861eWtZn6VPZtyZ2tmwv/+U8PrhQAPFEUhLDmLX0IuMnPSJJTnn4e6de9+wORk6N2bpl6OTP7fU3TwdSp6D+4X4IFBlqk1YxfRXboAoLWxQePhjuHFF1E+vYcg2b1QFLTvvUt9D0deCPComHNc52RlRuRbncgq0PPnsUtcysjlx8MXuZCaU6HnFYTKEp6cRc+lh4se+zlYIk1aXTzg66+RzoahLFp8+2Ls90iZNw9++AFtzZq8WbsqWo3El/sj0dX2xzBggFgWKAiPGXHVJgjC402SME6aTEi3bmy7mEwnP2cAfjgUxYqzVzA3NeG52q4Mre9Fe1+ncu1E9SQ6k5RJ16UhaFu2xLhli7oUSRAeF1Om4GBpyqtB3pU9kwdKkiTqOdsyrWsgG6KvEf/+e8hLlqo1B+8kPR1kmSlta9PG5+ZAtk6j4fgrrTmZmMHlzDwuZ+YTeiWN5Z9NgKsJ6vGtrNTMLDc36NABqlS59bkyM2HxYrRLlqBoNMheXmqjiKeeUp9XFLW21/LlGI8eY+rQlg+sXpmNmQnvtqgBwHstarAjOvmBnFcQHrS6v24HYHX/ZvhXtSazQH/TGGXdevjxR/jkk/I5qVYLS5dizMhg2uEMrEy1bIy4CvO/FsErQXgMiQCWIAiPv65d0QYH8dneCDpWVzMAUnIKAMgv1LPoVByLTsXhbGfFxheaEOxuz8yjMeyNvQZAXkEh3Zo0KnHIaWs2svX46aLHg9q25MW2rW469dRVG9h+8kzR404NA2lQveTF77Izlxnwd2jRYxcrMxI+eOb+X/cDZpBlOiw+TE6Nmhg3bBDBK+Gxo/t7Ba/X98TS5Mn8+GSm0/JDh9o8v3wzODhgUtsf/VMt1SBRixZqHZkbg0LXa2aZ625/EWlnbsLT3sXBrUKjjKQ9zsnVy8jRG8gpMJBXoCe/UA8aDdoWzTH27KV2n61TBw4fht9/R7N0CUp+AR1ruGBvqmXr4QOkLliA1tUVjSJjTEtHLiwEoFstN9r6OFXML+kuqtlZMqzhkxUAFR5/iqLw4srizzG9arsVPzehN0ZZYfyOs3y9/4JaUmDEiPKdwKFDRT/+394IdN7V1OwrQRAeO0/mJzBBEJ4s17OwDvXowY7oFDpUd8LD1qLkGD8/UiSJiXvOs25AszseLr9Qz76w8yW2bTtxhoFtWhYtj7md3WfCqeXhhu0Nw34KuXhPL6eibL+YzKnEDN5u7sfZ5CzqOtncU4aCUVbILTSoF5d2dhU4U0GoHJKrK1mFBZU9jUr1XF0PIt+0Z3/cNQ7EpbLnn1WcmzMHRVHQNm6Mcfp0NZiVnw/LlgFgYVL6OlOmWg3L+gbftP1KVh4bIhJZeyGarZ+Op2DMGLT2dhjTM/BwsGZEc19ealit6L1dURRcvt9ERnIS41rVwtHCBUcLUxwtTGl7i2wwQRBuTVEUQq+kk11oINjdHlszkxLPp+YVUuWbjUWPr7zX9aZjaDUSQxtUY0tUEsdPn4ZZs2DMmPKb5B9/qI0npk6FZ5/F8MsvYGJy9/0EQXjkiACWIAhPhm7d0AY14rO9EbT3rYq7jXnJ56OikF96iQ1z53IpPfeOhzoQfp6863fyJUABEtMzOHMpjkCfanfct9Bg4FRMLJ181WUwJxLS2R+XWtZXVSapeYVsikzEykRHjt5AdqGRnEID721RM8X+/f4v/yrWvNvcj+F36dZlptPygr8L8xcuwDB5sug4KDx29DVrEXH28N0HPub8HK3wc7RiyPV6WZkFenbHpDB+dwSnn3oKevdGF3oE+cpVRjXxpZ6z7X2f093GgteCfXgt2Ic8vZFdMSnsi73G09516Vjd+abl35IkUd/Zlu3RyXzydC20D/FSIr1RZuy2MHr6u9HGpyrJOQU4WZlV9rQEAYCDl1NpOXtv0eOzozpQx0mtX7XibDz9lh8BIMjNjiOvtS1x40tRFP5vbwSf7gwvPuCbb8Jrr5XvJC0t4fvv4bvvxGcPQXjMiQCWIAhPBknCOHESB3r2ZFdMCpY3ZgRotWA0wq5dSFaWzDwac8dDbTtRHOB5pnEjNoYev7799B0DWC72diSmZ3Di4iU6+DgCMP2wmn3la29J9F0CZ6WxKyaZy5n5DK7vVbQtT28kOj2Huk7qReQHW84w50Rsif20lv/JSLvBBY05IzacxMXajH2xqfxxMo6qVuaMbebLq0HeJbLOBtf3Yvb8/Wo6f4sW9/16BOGh4uxM1KEnOwPrVmzNTHjW341uNV2Ze+ISn+/bQZCzDVN6tcO/avkUar6RhYmWZ2q68EzNO3eWbeJuz/boZLZdTH4ou9AuOhXHp/siMddqCE9IY+qhKDwdrLmcls3ivo0ZGOhZ2VMUBFp4OvJj10A+3BpGoVGm7q/bMdNq8LS1ICpNbUhwu/9fD8enlQheSZKEZt48jG5uakfC8g42ieCVIDz2Ht7bUYIgCOWtRw+0DRvw8sZTJOfccBFaowaYmUF0NHLjJvx2Ig5ZUW55iKT0TE7HqMGfKjbWvNSpDWY69V7A/rMR5F/PzLqVzo3qY6rTkZWXx7mEVLIKDCw5cxmAUU3unN10J/NOxCJNWo00aTXt5u3nf6uO0mzufl5YHsI7m07h/9suAn7dwdhtYRhkme8618PqxgDeJ59gzMlVg3j5+Wqx4xu+5MvxaO3t6LMshGnhKWQOH0V02868vv4EE3adQ7nhd9XGpyou9lawcGGZX48gPJSOH0czbx69q9+miLiAViPxSpAPMaPbs7JfkwoJXt2LQBc1aD9pT8RN7+k7o5OJzbj/mwb3IzI1h+jkDMIbNIVXXoFffuHyC4OQ2rblne3hZBcaKnV+ggBq0OmtZn4UfNKTzYPVpggFRrkoeJX84TO3DbY283AgfHQH0sd0R5nQm9eDvDFmZsK4cZCVdct9BEEQ7kQEsARBeHJIEsa/lnPZyYPfj9+QgXT+PPheDyCdPUtadh7JubfOsth+8nTRhVCruv5YmpnRuGZ1APIKC9l39vwt9wOwtbTg6Xq1ATgUc4WdMSnkG2Q8bS3ofUPB03u1+nxCyQ3+/oS0eYa/Xfz5NVVDfLNWMGEC3xy6SKt5B6jyzUZy9Mai4dKaNZCbq3brMbvFshVTU4wLFsK8eRivXIGpU1H++gu+/prP95wvEcTSSBL/q+OGbukS0N/cfUgQHklhYWj79CagqjVfdqhb2bMRSqmphwMAB+Ou8d2ByKLtV7PyaT9/Px/8Z7n0gxSVmsPE3efUB6+8An/+CaNGwW+/ocyeTUqenq/3RVTa/AThVjr7OZP1cY+ix191qIu16e0X9EiSRO2qNtiZm6AoSlGGu2RjDbb3v7RYEIQnjwhgCYLwZKlZE0PIEQy16xRt6lHTBW1EhLqUMCkJyc+PSxl5t9x9x8mwop9b16tT4juUXF54Kz2bNQYg5lomGy+ogaeRjX3QaUqf9h56JY0/j8Xw46Eoeiw9zOpzV2DAADh9Ws2aOncO5s1D3rEDfcQF5I0bYeJElJ07CdWboOnQHqpVg06dAFBOn4bs7DuftEcPGDIELG5YavjRR0VBrNnHLxVtHlTfE0NqGmzdWurXJAgPrUWL0DRpTM2CTNb0a4yZrvQFyYXK5WNviamJDoKC+HhHOHsvpQAwdPVRAIYHlz3z9X75Oliy9LnGWJmbwp49/3nSF/nDD/n60EVi0nMqZ4KCcBs3Zl2P3X6W+Mz8Uu1nvGE/5fMvyn1egiA8GUQASxCEJ4+1NTz3XNHDMynZ/PNic3SoH66UlBQKpJvfHs9ciuNKapp6CHNzTHU6oq4mUsXGuqhA8JmYWBLTMm57aj83FzyqqFkB2XojZloNrwX5lHrqGfl6mvyxm9fWneCdzafZcP4qLFigLtmrV+/OO7dujfHyZeRt2+HSJVi/HubNg7Q0cHYu9RxK+PBDtHZ2xGUWB/wauNjh72KvzksQHkWKAtHRakbM4MEMrOlE6Eut8HWwquyZCfdAp9HwTfs6cOwYSvXqPL/qOFez8tl6MRmA9r6V141QI0n0r+fJ24190M6dc/NyqrFjUapU4f2tZytngvdJURSiUkXw7XFkY2ZC9sc9eLOZH+89VRM/x9K9Lxb9/9CzJ7z9dgXOUBCEx5kIYAmC8GS6odBnrsFIJz9n5vdqpG7IyACjXPT8hSsJxCansO3E6aJt2fn5vDVzLm/NnMuHsxdhlNXxCuoywztp5Fd8139APY9Sd5uKz8zDa/q24g1du6o1qwYPVrPHSuPGTlympmpWlb196fa9lYgIjBkZxKTnFi2tlCSJoQHuaNasvntmlyA8TLZuhSFD0Hl5QvXqmPzxOzO6N2BB7yCs7rBMRnh4vdWsOqMa+0J0NCmKluazi7Odhq8/QU4l15ka2cQXJTdPvZlwI2trDN9+x8qz8Sw9cxn9Df8mPexmhkajmbyGGj+JLNzHlZWpjuldA/m+U8Bdx17LLcT5+03U/mU7AJKofSUIwn0QASxBEJ5My5YV/ZiUlU92oYEetVwpCmvJxRcLW46fYuQvs9gXdvv6VjfaduJMiRT7/6rl7kqge1WC3ex4t3mNUk95c1QSWfmFEBmpZoj888+ta1Y9SPHxAMw7GVeiMP6LgZ7IefmwenVlzUwQ7k10NFL37vhvWcebXhasGdCMxPe6MKKxb4lOm8KjRZIkfnwmkI6+VQGF2H+Xhw8cyKyzibxfiXWwADxtLehb2w3dj9Mg5z8ZS4MGoW3bhoF/h2L37SaeXXqYkwm3z/CtbGeSMpEmrWbEhpMAvNrI+47/FgpPBmtTLcnZ15cZbt+OsmpV5U5IEIRHmghgCYLwZPItzoKyNdOhKAo2ZiZ83KrmTUMtnukNqEXaAfxcXdgwcUyJr7WffUgVG2sAEtMzOHMp7ran1mg09Avy593mNWjgaleq6f59Np5X1h5XA1d+fqV+mRWufXskBwc6VnfCxdq8aLO3vSUtvJ3QLBTLCIVHg/TRhzhZmnL05VZM7RJIT383HCxMK3taQjnQaTTM7FYfsnPg9dfhzBlYvBh52jRmHo1h7fmrlTq/sS1roouNRRvUCE6eLH5CkjBu2w5HjpA3YSL/YEuT2Xv5JeTiHQNDJxLS+SXkIoUPMGtLURQCZ+wA4GnvKhR80pM/ejYSwV+Bw/Fq6QXmzIH27cGudJ97BEEQbkUEsARBeDI1bVr0Y55B5uPtZ3GbtoVGbvb0qOVSYqiuek0k0+IL2Y6NAm86nFajoUPD4u03LjcsDxYmD2/haGX8eLZHp1Bt+rYSNU+G1nNH2bYdEhMrcXaCUAr79qGs+Jtv2/mLpYKPKV8HK/oHeKDbuAFq1VI3vv46Uo/uDFt/ioTs0hWirgjB7vYcf+1pameloGnaFH75Rb1ZAery8MaN4eOPMZ44gf714bzxzyl6/3WEqNScokBWUk4BPxyMJOD33TSauYs3/jnFolO3v5FS3r7cq3ZM7B/gwe5hrTHVikuMJ92681f581gMIzeHoW3aVC1ZIAiCcJ8kReT2ChXo2LFjBAcHqwWmBw2q7OkIws0yMpBefx1WrkRp2ADNseMs6hPEyvArLD97BYuuvXD8v+nIWZlkfDuB3A0raRlQmze7d8bG0uLux7+FnafCsC1Mo7pJPoPqe5V6v+8PXOCjvVHIWVmge4gusvV6GDMGfviBaV0Cebu5miG251IKbebug9BQCA6u5EkKwi0YjTBrFtpx46hnrnDsldZoRMbIY+tkQgYNZ+5UG0wMHqxuTEpCGxBARwcd/wxsVqkZQ/kGIx9sOcMvR6Lv/LlpzRq0w4ZhTE/HxtKcmo5WnLyaTLCXcwAAIABJREFUhqLRovTsidK+Pfz8E7XTEjj7epsH8pr+Coun/4oj9A/wYOnzTSr8fMLDT5p0QwmBI0fUQKwgVIRFi2DwYI4ePUpQUFBlz0aoYOL2iCAITzY7O5Rly1DS0uDQYeRBg3hx1VE8bSwI8nKmcN8OFKMRjY0tDpN/wPGrX9kfHsHc7bsf+FSbeToi5+dDWNgDP/cdmZjA1KloWrdm5/U29QBbopLQOdhDw4aVODlBuD1t3z4wfDgDPCz5p39TEbx6zDVwtaNzDVe0X00pznBydsY4bx6bLyTw65HoSp2fuU7L68E+6gN3dzh+HFatggsXSg7s1QvjxYuwfj1Z4z7hWJuuGKf/hJyQgPLuuzB6NISf41xCelHHxYr2QoAHAMvC4h/I+SpDSm4B0qTVSJNWk1iJGXuPnA4dRPBKEIRyIwJYgiAIANbW6lKNuXOR6gUSciWNoGouGLOzKDweUjRMsrUDWaaul+cDn6K9uYn6Q/zDeYEgd+/O2vMJDPg7lMjUbNZGpWB4plvpOyQKwoOUkoJx3Xp+eqY+C/sE42Zjfvd9hEfexy39MIadVZtg/KtbNxg5kve2neVscmblTQ5IzVNrLZKXh+7556BvX6hTB67XYCzi4ADdu8P48Wq21qhREBICrVqpz//wA9qGDRiy9gSDV4by9b4INkQkEJuRe1+F1TPy9ZxISGdV+BX+OBpDgcFY9Fw7n6oAbLuYVObjP6x2RCfj9K36/4yNqQ7nUnYPflJlFujVH55/Xu3uKgiCUE4eojUogiAIDwGNBtnDg/zkS3jZ22BjZUnuP6sxa9wCAEmnQ2ttw7S1/3A0Kpq+LZpQw921wqe1KyaZdvP2qw/at6/w85XJe++h2NuzfOwYQhYcIDo9V73AEoSH0ebNoCg8V8e9smciPEBtvKsS7FmFE1OmYOzWrfiJ777DuH0b/VcdJ/TlVpjpKifw3sa7Kq19nTkwejSGmBg8bS1IMLXEYHqXhgLLliENHoy7rQXxmXnQsCHGTotInD6dpSdPsPRwGMZstUahtYUZ9ZxtaVDVikBnWwJdbKnnbIujhSkFBiOXMvKITsshOj2Xi9e/R2QUEJOeQ2ZOycwjSxNt0VL4IDd7dsakEJ6cRcfqzhXy+6ksH1zvVrmqf1N61/5/9u47PIqqe+D4d3Y3vfcEkpBAqAk1oXekI0JAulRBQVSU96WIviL8ULFSVESa0ouoiBTpLYSOhFBDQguEFEjvW+b3x4RASAJJSAG8n+fJ4+7M3Zk7CJvdM+eeI94zHufy3RSm7M7JFN+1Cx7ObP39d+Um3FtviZtbgiCUiAhgCYIgPMrKijSdjCRJ1HGvxMndW5GnzEQyNsHEvxnO24+R/ucGjqxaxIFFy5k1dAANq3mV6ZSm7g978MT0Gc0UMTKCN9+ElSu5djgn2NalS8XOSRAKs2UL9Srbi8yrfxlJkviwRTX6bAiCo0ehWTNlh7k5+jVrORcQwJawaPrWqVxh81vYzY96P+0HQC1JGPzyNw7J46efYNw4Btd1Z9krDak0fzf3tm6Fr76Cn35CD8qSyZs3ITSU1HPnOBoayqkz/6DbfQFZqwPAytyU1Iys3AwtSa1GU7kS+mo1MbSoBunpYGsLzs7g5IT601l8cfgKp+8k4udszTdHwgElW7g8C8g/DTMjNX0eCWIbZJlu647TyMmSzzv6ApCYqWQU9azhVu5zfJ5EJqVT64c9DzYsWPDg8d9/I/Xvr5RlOHoUw+rV5T9BQRCeeyKAJQiC8ChfXy5t2MC2c1ep7l2NY5fDyQzah1mHrgCozC2wHDQSi35Die0SwI7TIdTz9kStKrtV2TEZ2eDlpdREecYZ/vgD9u2DyEhwcKjo6QhCfocPo/5rM738i95EQXhx9KrlRjUnG65+8gnytm1w/73b3x8jTw+CbsZXWAALoI6TNRObVmXe8WtkSyoM9eoVPFCWYfZsmDaNd5pUZW7XuqgkiT4+Tvz820Z0s2c/yHKRJKhSRfl5+WUAtKA04QgLg9BQUiIiwNUVvL2halVkd3e0DzcMWb0azb1E1Fk6SNOiq9uQ0B3bCI1NppGHknFVxd6a67qSNTgpbxZocUGfb7vOILMz7A47wyAuPZtFPRvkBrDUKlEnryCRSemM+PM0e68pdTAlLy/ky5fhfuZgSAjqV/vSuZoT/8SmEP2kjEJBEIRCiACWIAjCoz76CK5c4di6dVy8mwJAwtS3yGjaCothYzFp3AJQlhNavvcRQTMnkbl+E1P7voxpGX0oS8/Ww7jhyt3vZ52TE/TvX9GzEISCzZ2LNHkyzSvbMrF5tYqejVABVJLEV+1r0mfDDqROnZC3b8/9oq3t3IXvf/kZE42KD1vXwMrEqELm+PlLvoxp5EWdH/eiCgrCsGULbN6MJuQMemtrZGsbyMiA7dv5pG0tPm5bM7fb4IgGniz95TDSkCHIK1cq2bGFMTICX1/lpwjUWTrMkjKRTE2hVWfkFh1JW/odp28qBfDbNqhPsrHNU19/WcvSakFOhQICWMZqFRtebUz/jSdY+s8Nlv5zQxQNfgyDLHMzKSM3eMWwYcjfffcgeHX7NppuXfG1MeUtfy96rj0Ko0ZV3IQFQXiuiQCWIAjCo1Qq6NoVjasH6WtXQ2oqpmo19lfOEf3fN3D++zgqM3MALHq+itrBkdOTxzF5+XpmDOqDnaVFqU9JZzCARrxlC8JTmTIFvvwSW1Mjdg9pVmF1joSKF1i7Et625lzbuxe+/x4mTlR2zJuHzt2dr2bPZsnZ2+wY2AT/SuV/40CtkqjuYMnGVxvz4cEwzvfsiY2FKb18nEiPuk3ydT0pWgPDe9TnzQDvPK9t4eHAhr7+DNj4K2zbiqFtW+SOnZT6iX5+eWsSlYBkaop598Dc57pr4Wh/UZaKrdh7CIAl776Bm73dU52nLO07ex6yC9/fz7cy0VUcaLLkADeTMuhYzZmdES9ecfqnlaHV88n+S3wZnNMp88cfYezYBwNSU1F364pTRirbR7Vi6p7zaKp6o7vfbEAQBKGYxLchQRCEQqicXTAbMwHD3VhSF36Lu70dUWERZGz7A4u+Q3LHmbZoh/2SX7n57nDeW7qa/xvcB08nx1Kdi8EgPx8FTxMT4fJlqFwZ3Mu/U6MgFEqWYcUKACLf7yKCVwJjGnkxbe8FGDbswUZzc5g+HcOoUSR27cr7uy9wcFiLCptjr1puvFLTlRNRiVSzs8DBvGhZvn3rVOYfB0v+vBzNzvMnOPL33+h0eqV49g8/lOocrUaMQ+1aicw928g6EQyAo7VVqZ6jIrhYmnLjvS5cuZeKtYmmyH/2z4NsvQGTWZvzbDNRq9g5tAV6g4yLpQm1Ha1ys/oKMnFHKHOORjzYsGgRjBmTd9CaNcjnL7DzzXZYGqvZcDEa3cfTnzqIKgjCv5cIYAmCIDyGpFZjNfItZL2OU4vnoVKryDoRnCeABWBcyw/75ZtJfGcYE5etYcbAPvhWKb0Ajs5geLYCWKmpcOECnDsH588jhZ5Fc+4c2jvRuUM0ldzQtWgJXbsqXxAft4xFEMra5s0QHc2fA5tiYSw+/gjQyC1nqVtkJDg+ctPBwwP9Z59xqHdvDly/S1uv0r0pURySJNGkcvGzmeq62FDXxYaP2kC6VsfCk9f5z4IFUK+e0nCjlKisrLHsNxSL3gNI+mYmab+uZO7mv/H1qMzd5BRuxt2lf+vm1Kj8fBZAr+5gmed5araOe+nZGKklKlk9H/W+HqWSlL//p+8k5W7L0hto+0tQ7vMGrjbYWZjyx6sBWJloOHE7gTStHnMjNfZmxvwVlvP7/vvvlayrgj6jXLyIo6UptR2tWB5yk0ytLm/AWBAEoZjEJzhBEIQisBwwnOzd29AENMN6zHsFjtG4Vcb+599JmDCKz3/fwtK3X8eklII2z1QG1q5dSN27I+t0uZtkcgoCAyfHtONGUjpHIuMJOnGAY7/9hurzz9B//Q306iXuvArlLyMDzYR36eDjSs8arhU9G+EZ0cLDHk8HK263bYP+p0UwaFDeAa+8grpeXT4+GMaBCgxglQZzIw0Tm/twNSGNBW+PR/b1hVJexiUZGWM7dRbG9QPY/9EE9p89n7vvpfp+8JwGsO5LzMzmXroWn+925W77rls93m5StQJnVTIalYpTb7TPfS7LMotOXSciIQ21JDH78BXORCcBSdh+sRUHC1PupWXmOYbKxAQ++ADGjy/8RL17Ezd/PtP3X2TvzQRUHTpg8BDNMwRBKDkRwBIEQSgClZUNjuv+LtI4mxnfENu3A38ePUn/1s1L5fxOlqbcuHGjVI71VAwGpLlzkXU6NCoJnUGGESNg2zaIVeqDnIhKoJm7HT2qu2CiURMSncR/dl9gT2Ag6hYt0M+ZA02aVOx1CP8u33wDt24zf2y7xy6JEf5drEyMODu6DWO3hrBu8GCk7duRFy5UlhECSBL6Dz/i4IABRMSnUc2+9Osblrc5XeoSEpfKkcBA9GFhYFf6daqyQ07lPjY2NqZ93To0q1U9d1uWVssbPyzjbmIivZoF8EbXl0p9Dk9rzpFw3K3NcLU0QS/LqCQpT3YSlpbQvTv/27qZ4fU9KqzYf2mRJIk3A7yRZZl7GdnMPnwlz/57aZnQtCl07gwuLuDhgaFjxwf/VgrTti3yp5/y6QcfKM8/E8XbBUF4OiKAJQiCUMo0Hl6Y9xvKuj/W0qVRfWwsnvABrwg6e9rx868b0H3+OViUwZcoWYaICKXL4aNLae777DP48EPk+y+pWRMWL4GWLSElBcaMQRN0iHFbQwBQqVRUdbKmkaMF7TztqWFnzvbLoVxv2hRpwADkzz9X2rULQlm6fRvVp5/yflNvajo+/3V5hNJlY2rEmj7+dPdxZvS6tWR7e8OMGQ8GVFcCLwmZ2cDzH8BSqyRMNSpQld2ydNM2L5GxeQNOFmZ8OWJQvnpY16JjuZuYCORkFz9jIuLTmLjz3GPHSK1aIX/9Ncl//MH8Y1f5sE3NcppdyaRm62iz/DCv+VXmlZqubAmLZmyAN6Y5tQANssyHey4QFBlP0M17D17YqRN89x3s3v34TKvHmTIFaeUKNNnZaAMDnzxeEAThMURXWEEQhDJgNXoCOrWG34OPl8rxPmhVA+nePfjyy1I5HgDR0bBqFYwYgaaSm/JFzckJI28vZSnN77/nHd+0qdIWu00bWLwY/ZkQJXgFYGUF69ahu3UbkpLg8GEMCxYQ/uoQfrPz5pPTUfx48hqe1qYserkBjtv/QlWzJvznP3DwoDIX+dn7IiO8AA4cwJCZyZSWNSp6JsIzSpIkhtb3ZHR9D6Qvv4SsrAc7c24YpGXrK2h2pWv+sQh2h8egX7kKrK3L5BymLdrhsHQj8SoNE5et4XpMXJ794Xdich9fjLxdJnMoidCYJHquO0b173c/2Fg1Z3lgtWrw+uswcCCcPYu8dauShfTmm3xx7CqJmY9paVhOTkYlkJylzbPtakIaVX/Yi83srfwTlcB/dp7D98d9vL/jHPV+2s/4rSEsPX2dbquPMPvwlQfBq0mTIDQUdu6EmjVLHrwCkCTkkLNoQ86C2fNZM0wQhGeHyMASBEEoCzotslaLmXHpdC3ytrPgv02r8sUXX2B4/XXw9Cz5wc6dQzNoILpzSn2SOm72dPe2p30Hb5KzdBy7lcAPv25Af/kShj59HrzupZfyfrErjLU1tGih/AB6UIJT27dzsEcP+tZ05dr4DnxzJJzZP3xHxrffAqC2tUG/+S9o3brk1yYIj9ql1Ks5eOMugbUrVfBkhGeZjakRcmYm/PorvPaasjEngHXpbkqFFnIvDWdjkpi05yK8956yFKwMGdeui8OKv0iYMIKJy1bzYb9XcLW1Zcc/Z9lx5kF2U/eABmU6j+JYHhLJ1og45AULYPBgpaOuvz9cuaIEcQoybRppixcz50gEM9rXLt8JP0RvkGm8+AAAURO7MjsojMv3UglLzCDS2gHDrC/BwwNiYsjevx/V5s1cuZvIlbspAKgD/GH6OJg6FUxNS3+CGo3yIwiC8JTEO4kgCEIZSFm+EIM2mwZVq5TaMT9oVZ1FIbeInzoVec2akh9owQLsb15jTh9/XvJ2wsUy74dVK2MNc49FwPRPnm7CD5Mk6N4d3n6b9xb8wJcnblDFypS9rzXH2kTD+dgU+m88AV98oWRwtWun1BgRhKeVE3Qd8Pspzo+1ztdRTBDuq+uck5FU5aH37UqVkAJ7M+7PP8nWG3inabWKmdxTuJ6YxvIzkay9FI1cqxZ8/nm5nFft4ob90t9I/GA801dvRJZlNFbWmLzSH5eBo0j88B12hJyji3/9cpnPk1S3t1Cak/Tpo9yIadxY2VFY8ArAzQ3D+PF8veB7qtlb0MDVhnouNuUz4YeoVRKfdqjNh3svUunbB/U61R3ao//+B6j9UHCtfXsMK1bgY29BeHwa3LuH3t6+3OcsCIJQEmIJoSCUhSVLYNYs0GqfPFZ4IaVtWAHAvZTUUjumlYkRX7avibx2LRw5UuLjaHbvIrC6M4PreuQLXmn1Bt7dfQFVu3bwyitPN+GCfP018sKfuD14OMHXY/kqOJw6Tta8WqcSk1r4UPnIQejZE8neDlX79kpdLkF4GsuWwY0byFWqEPjbKWSxVFUoRHWHnBpXDy9zkiTkXzciT3iPd/8O5Z1tIegMhoqZYAkkZ2lpu+oonxy4xJXEDPTr1pdNhk0hVBaW2H27FOvJM7H7v7k47ziB7X8/QePuiSRJ2D2pCHg5uRiXwpT9l1E3b154HcjCTJ1KpkrN8E2nee/v0Ap7j5nWuiaLXn4oo23MGPR79uYNXgF4eaGp60d4fBoaP1+lNIAgCMJzQmRgCUJZ+PNP2LIF9V9/oV+79kENBeG5I2dmkr7tj2K/ztivPtLFUK7FxJKt0+XZl/UUgc3h9T2Ze/I6Fya8i/7oMVAV8z7E7dvoroTT4dXGBe7+/vhVrsYlw7x5StZUaTMxUZZm5GRXbb8SQ/c1R8jQy2TqZZwsjLkdD7JWh/rmDQzZ2bBuHarFi1FfCUN2c0PnVgkqVQJX1wc/tWpBDVHjSCiAqSl4eqLrP4CIb79Ga5AxVotOhEJ+3rY5Aaxr1yAg4MEOtRq+/RZq1eKHt97iSmIGv/b1fy46z4XGJHPzXgps24bByyt/MKMcSBoNlv2H5dmmT4gn89wZmvbsWu7zeVhylpbZQWF8dfwaqVW80W/dWvzfq05OGL75FsaNY9/1u3h+v5ct/QKo71r+mVjXkzIAUAUEYJg/P/+AU6dQT3gXOSYWSa1Gd/6CUsPy55+VjsKCIAjPOBHAEoSyYG2Np605yedCSK5fD8PJU49PQReeSXoTDRk2JbxTHdgHXVI86w8dpW99H+pWdsqz24KSBbHUKonvO/sq7bzXrHlQp6Wo9u0DoF0htVx+PH1DefBI0K1UZWYi1a6NfO8eGY0asd3UVLkDbGKi/FSrBi1aoGvdGq5fh0GDMAAGYLi9RPT5m9w6oSU6NYuElHQMsqx84Vi+XPl3FhBQNsE34fml1aJZtpQRfpUxVovkc6Fg9mZGmJsak37tWsED3ngD2dub3X0CeffvUH7u1ah8J1gCublAFRS8KoycmgKyjL1VxXR2TMnIYFfoFc5F3UXWaDAMGqQsrbSzK9kBx45VAkBz53Lrgw9o8NM+DB/3QirH30XpWh1fHQ2H99/H8PXX+QNxp0+jfqkDdczVdPNxxK6uI7amRkzbd4mE/ftFAEsQhOeCCGAJQllQq7mZmK48bFIfRG2B54+ZGToHKHkYxxGmfwyLF/NrcDBkpfJKDdc8H2bNjErWwrxNFUf61KnM5smT0AUG5hYZfqKoKDTTPqChpyPOFib5dsuyzJsNPfnvrvNl+3fWwQH5woWijfX2huPHYdo0jA/sZ1HPhnkCEHqDTFx6FrV+2EvS0KHKxtu3lQwtQbgvPh5dTCwtW/hX9EyEZ5gkSVSxs+RiYQEsgE6d0M+Zyy9jxvBaXQ9equpU+NgKlqHVcy42WXnyjAX11e6eaKysCbsdTUD18q0rlp6Zxa/BJ0jUGzD07w/ffw8ODk9/YFNTOHEi9+lfYdG8UtPt6Y9bRPuu3UWr1cMbbxSYRaYaM5qqRnBoWAtsTJXswYUnr5GQniWCV4IgPDdEAEsQysKIEWjS09ANG46+Z89n7oOjUAQPd997GsOHw4wZ/DpjBubGGha93KBUMkC+7liHzQv2omreHFxdMPznv9Cly4MBej0cPQrbtikfZDt1Qj3+LRySE9g4smW+4+kMBuovOsCFmCQ0vnXQeXk99RyfSkwMzJ6t/NtxdISEBLK1OuYdjWBSy+q5w9QqCVdLU/YMbUHA4v0AaBo2QDdsOMycKVp2CwoXFzS+ddgREcNr9TwqejbCM6yuvRlhv21E368fdOhQ8KDXX0e1YgWvbwvhwpttMDd6tj5OG2SZwZv+4bcLt9Hp9KidndA7O1fonBJmTiL9zw25z63efB+Nb30uR0Xlbvv2j63sCVE6FA5u25Ih7VsBsHpfEGsOHM5zPJUkYWVmRvVKrvRqFkAjH+8izUNvMPDF71tIzMxC/fb7GBr6lU7w6r4FC+D33wE4cP1uuQawzsUmI2k0yDYFL100tO9A7MKLmGiUzyCn7yTynz0XYfRopXFKWTp2TOlG7OamLPs3yX8TTRAEoShEHr0glIUOHdBt/E0pgi2CV/9ukgSffAKrVrHy/B1a/hLEN8FXCI68R6ZOX+LDettZsKpXQ/rL8TS+eBqpe3eYP19p/z50KGonJ2jVCtv5c7Ce8zW0bYvF1Qj2DG6Kp03+orlLTt/gQkwSALqXOpZ4Xk80YwZGNapj5OGOxtEBtZ0dTJ+er+GBNHQozJ2LzU8L4MMP4dQpACbvPs/ea3EA7L4ai+O3O3CYs5NR20PpWdOVppXtMMTFwddfQ1hY2V2H8NzRBfZhc/hdtPrnpwC3UP7mdPGjpaUKOnaESZMgOzv/IEnCsGQJkSmZzNh/ufwn+QS/nr/N+rM30c2YCSEh6O9EV2gmuCEjg4zd2/JsS9+yEY1vAy5FRZeo6LlBlklKT+dk+FU+XrWB45fDn/garU7HD1t2cDL8KuYDRqBycS32eZ/IxQXu3oUOHdhy7V7pHx/ou+E40oxNSDM28crao7nbRzWsgqO5MaohQ6CgRgNvvEG6pOaVtUcZu+UMAUsOkFXNB776qkzmmSs6Gpo1g+bNlaWspqZo7O1g4cKyPa8gCC+kZ+uWkSAIwotqyBAMVarwz4cfcvrQcQyZ59Fo1LSu4siSHvWoalf8OiAD/NwZ4OeO3iDzn52hzJswAYA6bnb09nXi5Rp1aVLZDhmZI5HxOFuYUNPRqsBj5amJNXx4iS6xSNzd0UVcRTYYUElgkIGZM1H/vR39gYO53bHkCRNQHTlCUmr+Lo4dVwUzsWk15p24hqFdOwyt2xB/6xahkZFobt5AlSkpGWn1n43W7MIzolcvkmfNIujmPdp7F3/Z1+8Xo8jQKkHn2LQsNl26w/m4FBIztRipJSyM1DhbmOBhY85A3+LX2roQl8JnQUrQtbWnA2/6exV7joWJS8vi/Z1KZkstR0s+av2gJqOZkZo+tcWS2/sqWZmxb2hzvgkOZ9qcOejj4pB/+SX/wBo1MEyfztf/+x8D/SrT0M223Of6sMTMbJaevsHNpAzWX4pG1b07hmnTKnRO92Xu3Y6clvNeLkkgy+hvRyKZmpOSmkZsYjIudkUreP5SfT8mBvYgITWNOZu2cir8GjKw+dgpmtT0KfR116Jj+WLTVm7fTcD2o9lIRsYlrERZBA4OMHYsYf37E5mUjkcBN41KKkun5/eLD7LW/gqL5s2/zvBTzwY4WZiwtldDOq3aD19+CVOn5n1xjRpo353AvtWr2HM5Dvnrb9C//TYYlXEzgtu3AVjTJwB7MyOuJaYzbmsIxMeX7XkFQXghiQCWIAhCeWnVCv2BA0q20dmz6IKDOTTnWxouOcT6wIZ09XEp0WHVKom5XesxyM8dV0tTqtg++mFZonWVx7cFr+VohZmJMRmffQ6NyrAw8euvI7u5oZn4PlJaGubVqpKZnIzeyztvtmKPHhgiImDTJnB2Bk9P8PAAe3vk11/nm+XLUbVtg2Hb9twP3zKU3RcS4fnXqBGSsTEnohJLFMDK0OqJ0aqJTNPzU9AlMrQPKuTpdTKZOgP3MrRcvJtKw2peWBgX70vhHV1W7uMUg5qr2hI2kChAwkPF/DINqtxjW6DFhZJngr6oVJKUu1R56po1yN98U/Ays0mTkNasZuTWs5wc1QpNcbvXlaJ3/w5l9YVo1FW90bVuhzyvgA50FST9r19zH1v0HULaxlUA6K4otRAv344qcgDrPjtLC7oHNORUuFKvLDYpucBxBoPMH0eOs3xfEJoqVXGcuwKj6rVL1F24WDp2BJWKHRGxjG7klbtZlmVmHbzMyIZVcLcu/hJ3E42a+MndsTYxwiDLGM/azKLT16nvas1bjavyUlUnpraszuyPPkJu107JfHrYp5+imzVLydBSl6wOZ7HFKVnTLT3t8bQxJzw+J5j5DDUVEATh+SECWIIgCOXNyAj8/cHfH91rr5E6ZDDd1+ygfVVnhtetTGAttxK1Z2/qXvIlIulaHRlZ2UqwqKx1746ue3fgCQEnZ2elGO2jli6F1q0xvPxy2d85Fl4c588jZ2fj/xSZMmkYsfdadG7wqmlNH/x9qmKsUZOcnsGdhEQu34oizdgWvbFxkY4ZGXePczciyXxoGa1WZUyycQm7oRUgVZue+1in0pBsbEeWVgtyKogAVqGGN/Dkg30XYfVqePfd/AOMjNAv+5mQZs2YdzSC/7Sonn9MGdMZDATdvMeqs7eQ583D8M475T6Hx9HduU3WKWWZm8rJBet3PyD9r43IWZlkBu3FyNmVsNt3aONX/GBwnd2wAAAgAElEQVTGwwsPbS3yZzklpaXz2cbNnLt+E8sho7F+679IJqUXGH4sTcFfsTJ0ej7ef4mvgsNJ/uDlEh3azkx5b1EjET+5O/ZfbmP8trO81bgqADPa1WL3jXv8M6A/urOh8GhNLEkqv+AV5AawnMyVulfV7Cyo5mRDxMaNEBhYfvMQBOGFIAJYgiAIFcnODsOWrbB8OQd+/pm9mw7xhrGGwBquDK3nTqeqzhiVQtH3J9lzVfmASZUqZX6up6ZWw+uvV/QshOfN3r2o1SqO3opn65VoolOziE7NpIWHPf/XvnaR290np2fkPn61ZVPqeLoXOvZGbByr9x/mekwciWlpZGRlY2pshCxDRkG1lXK42NliamTE2oPBRMbdw9Haiu6NG9K7WUCeeSamprHx8DFOhEUQm5SMJEl4OjnQpVF9uvrXzx0bk5DE4h17AbCzsKB9PV/2nT0PhU9BAJwtTOhVw5XNi35C9847Bde0bNIE3nmHDxcuYICfe4myaoojNi2Lo7fiORIZT9DtRE5GJZKZrUVT1RvdmDFleu6SSN+yMbcek1nHHqgsLDFp1Z7MPduR09PAy4eLUdHFPm5CahrbTvyT+7x9Pd98Yw6EXuD8zVs4/rgGk8YtSn4RJXHiBBgMNH/oxtKg305gplECRynZOg7duEvjynaYakoeTLofzHqYkVrF+sBG1F10AEPXLhgWLYa6dUt8jqcWG4u5qXFu52VJkuhcxZ7Ff29/ik7PgiD8W4kAliAIQkVTqWDkSPQjR8LNm2StWcPG5b+wbs1R7CzNGFrHjdfqeRBQyfaxX7JTs3WYG6lRFbNxQEJGNqO3n0PVqROGVq2e9moE4dn02Wfo9QY+2ncxz+Z91+/y6aEwToxpS0ClJ2c9WZk/yOD438oN+FevSm33StTyqEz1Sq5oHspsiLqXwOELeYt8p2fljRp1aliX/q2acychgY9XKUutgi9cZm9ONzaAqPgEluzYi52lBe3q1gHgTnwik5etJv6ROnFXoqK5EhXN2es3mfLqK0+8HuHxxjSqwu+rj8DJk9C4ccGD3nmHrPnzuRiXUmYBLJ3BQNtVRwm+FguAxsUZXYtWML4FNGuGzt8/t4bgsyR96++5j806KxlH5p16krlnOwCG5EQiYqLR6YuWCbgn5Fxup0IAM2Nj+rVqRreABoDSZfC3w8c4EnaV8NtRqO0cyj94BXDkCABWJhoMsszmy3dYd06pBaXyqYYhPII2vwTxYesazOpQp1ROGR6fio+9JaA0evl7UFNGbDnL1YYNkcePhxkzwLYca7UZDDByJJw9i4Plg7+bF+KSWRoSie6NN8tvLoIgvDBEAEsQBOFZ4ukJU6eimzIFQkJIWLWKBatWMv/4Aao62TDC140h9TzwsjXnYlyKcif+VgKH7iRzJSaRGs42bOzTCD9n6yKf8r0d54hNzYS5c5WOW9HRcOfOg5+oKOW/MTHQsiW8+WaFdrQShGLT6ZAS4jFSq1jbNwBXSxNcLExxtjCm6ZKDXLybQuPFBzg8qjUtPAqodfSQRtW8uRQZhVavJ1Or5fCFy7lBKmszMwJbNKZfq2ZIkoSXixOfDH6Vqq7OWJmZEvjptwAYadRodXqszcyY8Eo3JEnibnJK7jkytVr6t25Gv5bN2BNyjoXbdwOw58y53ADWor93E5+ailqlYnLfnjSuUY2MrGx+3LaLoAuXOXjuIu3r+dKkRrWy+BP91+hU1Rk3W0vuLF5ceAArWam/ZF9ANkxp2XftrhK8+uEHePlldB4ez3yX46x/jqOPvA6AZG2DZGxC9uXzqJxdQK0BvQ797ZvoZZnwOzElOofBYCDzoWzG3f+EsnzPQcxe6ob1a+Mwadm+NC6l+D76CIAqc3dib2FCfFoWal9f9LVrY1i5Eq5eBV9f7qY/fRrkpx1q8+Hei1T/bjfn3+pAHSfl938rTwcuvNmWuUcjmP7Tj2gP7Ed//AQUcXnzUzt5ElaswEijxienDmeWTs+AP/7BULVq2Xc/FAThhSQCWIIgCM8iSYIGDaBBA3RffAH79nF15Upm/LaRj/dfUgquZ2WDSoWmTm10r3SBhg0Jnz8P/yUHmdfZlzf9vYq0LOpmahbo9eDnB4+0M1erVThameNmaYKTiZr9O3eg/7+ZGEa9Du+/D9XEl2PhObB6NbJWx/5RbWjukTf4ev6tDkzZfYGvgq/Qctkhkqf2eGwNOicba+a/OYJV+4M4HX4tz1LA5IwM5cuzsTE9m/pjZ2nB7jPnWL7nAHfiE3PHaXX63PGJaenYWebvQuruYI+5qQkdG9TNDWDFJiYBkK3V5Rav1hsMfP7rnwXO9VT4VRHAekpqlcSYepWZuXgxNG8OI0bkDxwlJABgb1b6Nfmy9QZ2RsTy6aHLyjLBceOe+cDVfQ8Xb5eTk4gb0iP/IFlGbWnFpiMnMS7CUrqX6vsxoVc3Lt+K4tP1m0hMS2ND0FEuR93h4q07ZGdnY96lF3afVXAR+44dYbfy7zY+LQtNrZroQkIe1J6qUwdN0yZkZRV/+eSjprWuibWJEe9sP4vvgr3I03vn7jNWq5jcsjodqzrRZOlBJQvr00+f+pxFklPXb/ugZjSurGR+fbzvEufjUpC37gGzsl1uKwjCi0kEsARBEJ51arXyYbhjR/Q//gh//knGjRtK7ZXGjdFZWeUO1Q8fjn7iRMYtXMiOq3Es7dngiVkBe4c042pCOgdu3EUlgZulKW5WprhZmuJgbpxnSWJMaiYLTlxj/vJlJP34I/JXX8HEiWV26YLw1NavRxo1iiH1PGnmnn+JoCRJfNnJl6RMLYtOX6fytzueWFzZ09mRaf17o9XpCL8TQ+j1m2w7eYa4nE5oB89dpGdTf77YuJnjYRGPPVa2Nn8VmDa+tfh20zZ8Krni6fSgg2i2ThmbnJGBPqeu0OM8XK9LKLmRDT2ZefAyjBoFFhbQv3/eAfHxANiYlk4AS6s3sPdaHOvP32ZjWAwp6TkBkK+/eW6CV4aMDDJ2byvSWFmj4dD5izSrVbQi+GqVijqe7rz9cmdmrVe6CYZcvYFpm07YduiK2UvdSjzvUrNrl7KELjwcLCzQqdX5CqfLJqZkpT3533FRWBk/+Ep3IzE9XzfiRm62fNKmJh/Pno08cGD51MRq2hS1lRWHI+/xUlUn4tKy+OpIOPL06dCwYdmfXxCEF5IIYAmCIDxPzM1h0KDC95uZwY8/QufO/DVyJH6LDrK+dwNaV3Es9CWSJFHN3oJq9vmzQB7lYmnKjPa1mdqqBoN+O8HWn5ehEwEs4Vn1559IgwczxM+dX3o1fGxG4k89G2CklpjaqsZjD5n1ULdAI42G2h6Vqe1RGb8qHkxathpQAkypGZm5wSsjtRqtXk8dj8p89fprDPxiHikZmYWewying9meM+cY0bFdvv3WZmaoVSr0BgNmxsasnfwuRgVkr8iPZFQKJeNla8GwBlVYceYGqmHDkNevR+7fH/r0UTqh5mSinopKpFO1kndyPXzzHitCIll/OZqktEw01aqimzgJBgxA5+dXWpdTLjL3bkdOU+qzGdX0xXlN3mCWrNcT/XILDLHRGBITUNvYcS0mrljnaF67BnW9PAm9flPZoFFj0fPVUpl/qVCpoEbh7ycGU1MydKXTBbSuizV2FqYkpGXyxeErLOhRP9+YKS2r8+nhcDJ37iyfAJZGg75TJxbu3s7le6n0q1MJKzMTknWidLsgCCVX9q2tBEEQhPIXGIg+NJRY3/q0XXGYGfsvoStCxkZRmRmp6V7dFf3FS5CeXmrHFYRSdfo0ssFADXtzVEVIXPm+e/0nFuHeE3KOj1dtYG/IeWITk9Dp9SSmprE/9ELumCpOjqhVKh49Ze/mjVm179Bjg1f3fTywD78FH2fzsZP59hkbafD38QaUboZz/9xGTIIyl7ikZHafCeW/S1dx7kbkky9aKJLlvRqSOKUHn7f2of7x/TBwIKper0BWFjRsiMbbi/Xnb5f4+F8evkKrnw+x7K6epLcnwOnT6K6Ew//9n7K8+zmTvmVj7mPzXv3z7ZfUasxf7pv7XOVRhZiExHzjnmR05/a5/84y9+9Eey282MeoKHKdOhyLSSmVQHMjN1tOj24NwOk7Bf85GqlVNHCzVToklpdx47iTnMGa0FsErj9Oy0o2qDesh7Nn4ZdfYN++8puLIAgvBJGBJQiC8KLy8EB/4AB8+ikzZsxg5/V7fNiyGu28HDE3evq3fwczI2S9XilgbG7+5BcIQnn75BOQJD6eMYMrCeks7dkAI/XT3buTZTgVfi23BtWjTDQa+rVuzq2797j/tVSb02Htsw2bsLUwx8LUhLTMrMeep2mt6kzq25O6VTxYvGNvvv1vdutIxJ0Y7qWksj/0Qp4A2sNzLanIpHRWhETSyM2WbtVdSn6gF4iNqRGTW1Zncsvq7AiPoeeGXRDYG8Mfm9ANHMSv8+bwo95QpL9jeoNMaGwSwZHx7Loax6ZLd+Cjj9DNnPncLBN8HMcf1zxxjM34ydiMnwyAnJlJXM+WtKvixnu9uucZN6R9K4a0L7hDrk8lV7Z8MoXX5ixE2+c1jLx9nn7y5aV9e+7MncvcoxG83/zp5+2a0+nvWmLhN5Waulpx6vgxtIWOKGUdO8K2bdC9O009HRkb4MX2dceg/oMMMal6deQBA2DSJLAuegMaQRD+nUQASxAE4UWmVsPHHyN36MDxkSPoseYoGo2aNlUc6VbVkS7VnPFzts5dWqXVG4jPyMbZwuSJBeCP3U7AqHIltK6u5XElglB8kqQEsZydWTl+PC3c7YhNy2JwXffcdvPF5e/jTV0vT87fiCQ2KZnk9Az0ej12lhbU8XTHxNiI9xYtz/MaM2NjDLJMHY/KvNHtJaav+vWJASwgt+NgQVztbPlu7Eh+Cz7OibBwohOSkAA7K0s8nRxpXL0qPm4lDzxN3n2ededu42hlxh+vBtDK8/HdGf9tuvi4sGVAU15evxv6BGL4ZAbJn3/O7qtxBQb8krO0HL2VQHDkPQ7dSuTIrQQysrKRNGpUDRrA4pkwenQFXMmzQTI1xWz4WPbM+4xBbVriYmdTrNd7OTlwMeJyGc2ujLRpA8DEnecY2dATW9MH9SqTs7ScjUnG2kRDPZei/VmY5iwjjk3LIjIpHQ+b/DeWAirZoT12ChITwda2FC6iCNq3B5WK8IQ03tx+Lt9u+coVmDUL6dQp5G1Fq5smCMK/lwhgCYIg/Bu0aoUu7Apcvoxuxw72b9/G/v0HmLTrfJ5hKknCIMv81r8JfWpXeuwhD91OQltRLcoFoThOKsvwxm0NASA6NavAGjFF4WpnS/t6vnm2aXV63lqwlAPnLuZuc3e0Z9bQATjZ5M8o+Pn9cfm21fP2ZOsnUwo8Z2HbbSzMGdWpHaM6tXvsnF3sbAo9RmHG+nuz7txt7qZk0PrnQ0xpWZ2uPs40d7fHpAjd4v4NOldz5q/+jem5YRcyEqpq1Vh//laeAJYsy0zedZ5vj0ZgkGU0drboW7ZEHt0KWrZEDghAL7qxAWDRdwjpy77n16CjvN2zS7Fe6+loz4XnLYBlawutW8GhIJb9c5OJzX1IytTSbPlhLkUrywBruNhyeWy7Yh86MVOLRwFxr4BKOUGr06ehQ4enmHwxmJrC4cPcW7sW6U4UDB+Bevhw9Pfu5Rkm168POh1oxNdTQRAKJ94hBEEQ/i0kCWrVglq1MEyYABkZcOiQUvR90yZwdMRgbAxRUQRHxj82gJWtN3AqKh5atCjHCxCEEsr5olTb0YpZHWrTu5ZbiQ+VpdWy7+yDwG9aZhbZOh1R8QkAtKxTk2Y1fZAk6ZmuQfVwMfqCtPVy5JXaldh8MQqALw5f4YvDVzg5ph3+lcopc+M50MXHhc39G/PKhp1ovbzZeDmGQeExpGbrSMnWsedaHKvO3oKZM6F/f3Q1arwQSwTLgsrMHPNhY9n549cMbNMcxwKCv4W5FnsXybVyGc6ujBw8BEOGMG/HX7zXrBpJWVoleDV5Mhw6iPn1S+yKiMXG1IgmlfN3US1M3UKytmo45GSenjxZfgEsgGbNoFmz3GXV+qAgpGHDkN3d4Q+lkySzZ0PNmjBiRPnNSxCE544IYAmCIPxbmZlB587Kz33LlsHrr7P7ahzax9Ry+edOIlqtvvwDWAYD/PADJCXBlClKBzBBeJK//wbg4t0UGleyRVXCAIIFWpBTIVt5ficplR8PhWCkUjGjR4sHy261xS9GXREsnlAJ55uOddgWFoNOr8dIo2Z4XXdqOpZs6eWLrGtOEKvnumOk6Q10XX0kd5/Kwlx5Xx05sgJn+Pyw6DeU9F8WsPHwccZ271ik19xNSubstRvYDh1fxrMrIy1bcmvdOnQGGTvTnN9pDRuiDgrizJ1EOq8KBqBPncrM7+JH5YcaTYTGJNFi2SEi3+9Mpu7JjVpWhuQE1a9fL+2rKJ5atZCPH1cK9e3bB2PGwNWryr+TkSPR1KyBbvcecHev2HkKgvDMEQEsQRAE4YFRo8DMjLPDhtJrw3E2vhpQYMH34Mh4VCYmGOqXbBlWicTEoBo+DMOOnahUKqTt29DvPwAbNyJNfB/50mWwKV7dFOFfIjAQ1q8HoNvqI8zqUJsD1+8xo30trE2KFgQ1M1Ljgh5QCrLfTc/i40NKPZfJLX2oZvzkmlbPIjOjwpcD+thbsqxnfe6mZzO6URWsivhn9W/U1ceFaS2rM+v4dQyXLoOVFVhaKlmtJXH1KuzdC23bQvXqpTvZZ5jKwhKzIaPZvmQ+/Vs3w97qyQHTfaEXUBkZYdahWznMsAycPUt1ZxuM1Sr0hpwcpeRk9L//Drdvg50dBAfz53vvsXPhfi6NbZcbxLqWmE5qto6ea48RdPPeY06i+Cc6UbnxM3t2WV7R48XGKssKra2VbMQOHeDiRZg2DdX8+TibqCDmNnED+qM/HFxx8xQE4ZkkAliCIAhCXoMGIdvbsyOwNx1WHWX7wCbYmeX9EhZ8KwEpwB9K+uWsuHbtQj1kCEZJCbjamnMjOQNVQgJkZ8PgwcqyhG7dIFh82BUKsG4dvPYa9OzJ+bgUAtcfB2BUQ89Cl9o86uEltbIso5r5p3LovgEM8CvfLIE9V+OYuuc8S3o2pL5r2QZth9b3LNPjvwiSs7Q0+mk/EQlpygZPz5IvEzx7Funzz2HDBmRDTkbNwYPQunXpTPY5YDlwBOkrfuL34OOM7vLkZW57Qi9i2r4rKkurcphd6ZMiI7mVmMahG3cJjU1GUqmQO3QAFxflB8DbG32XLqR7eLAiJJIPWtcAoGcNpYnK/eBVPVcbdr9WeGZ0eEI6UqdOyBXY7U/drSuEh6N/d4JS4N3aGgIC4OuvMTRvTnS/fvjYaYg5dhzS0sDCosLmKgjCs+fpekkLgiAIL6YuXTDs28/JZB0tVgRzOzkjz+5DUUnom5fR8sG4OLh+HVVgIOqWLZS7s1260NZaxbcdfbmemI48aTK6VatR9e//4HVHjqCpXAkGDoTly5WlCYJw38svw/HjUOdBZ7+Hl+IUVUJGNqqZf+JsYcw3nf3KPXgFoFFJnIxKLFLGhVD2Vp2NzA1eScZGSsDpcXQ6+P13+OorZSn066/DK6+gDvCH+vVx27GF+V382Da4uTLe6vkMzJSUysoG80Gj2HIqhKS09CeOj0tKRlPL94njnlXyxImkZWYTlZLJ50evQb9+4OOTf6CjI4bAQJadu83pO4kkZWqRJInq9kqAp6GrDWfeaIeThQkGWUZnyLuk8NiteI7eSUIu6NhlQaVSamw+QlKpcJG1mH75Bbz0EtKrrz7Y2bcvRn6+hMenIev18M8/5TNXQRCeGyKAJQiCIBSsaVP027ZxKTqRpksO5NlV1dYMzW8bITW1dM+5YQMqryrg7Y1h0yYCE2/QK+oiczr7smtIM0Y08EStkuCLLyAgAI9jQaztG0DQyNYs6dmA96pY0OjwbqUI7K5deY+t1+cPasky3Lmj1AO5eFH5sHzkiLLcLCKidK9NqHiNG8Mvv+Q+dfhyG1k6fbEOkZqtA+CzDnWY2Lycvgg+oq2XI/L03oxvUrVCzi/kNS7Am/jJ3Umc0oO27nZInTrCmjXKTlmGo0dh2jRl28qVaGrWgL59sZz+PzyWLcR/12Z6XD7Ba7o4VvRuxPXxHXi7SVUiEtKQjDR5gq7/FhaDX0cvqdhx+uwTx1pbWmBIiC+HWZWRdetwtrEgXavnVnwK8rRphY8dMYLw2CT8F+1n0q5zyLLMz70aAfBPdFLusN7rjmH0f5sBuJaQxsDfTtJs6UESq1SFt94q08sB4Ntvlb/7BZxL7+RMXWdrhvrlZLUmJ8Pu3bn7tUuXKbXjAC5cKPu5CoLwXBFLCAVBEITCeXsDcCc1b32fFT3rU2/RAXTvvAM//1w65zpzBmnIYF6t6cZrdSuTptUzwLfyg8LYKPV67j+b2sKHme1r5xaab+npACjLu2r9dICwt99GVbkS6uho5Lg4dPEJaLy90H08HYYMUVp1f/CBEgwriKcn3LhROtcmPDvuB7HmzIGQEIIj42nv7VTkl3vYmHPnP11xtTQtuzkKzxVJknKXWe8Y3Iwxf51hxZAhsHcvmmNH0Z07j7W5Ccnpyvto11puzHyjHQ3dHt/N8beLUchanRJcL896g88Ata0dJi3acuTKefq3blbouGytDisTE1Lu3S3H2ZUu9Yb1vFLNkdnHrqHq3g1DvXqFD37pJeX31+rVLD59g/Px6czr9CDAqZr5J92ruxCdkgnAhO1nWXD6Bjg4wLJl6IcNA3Xhde9KzaJFhe6SLS3ZERGLpNGgcnbCEBuH9H8zkTvmFO1v3BhD3F2lBlyzwv/fC4Lw7yQysARBEITCubrC+PEYZBlpxiZmB4UhyzI+9pb80MVPCQT8+mupnEozaiS1naxZGdiInjXdGOjnnid4BXA+NhldTpHbsIT0ArskSpLEZ22q006XRL+4cMZZa/mkngsLu9ejh0kWjBiBpkZ1pB498gSvFvds8OAg774L27crXQ+FF8/w4XD6NBonR6btu8iB63eRi7HkVASvhMIYq1X80qsh09vWxHTlCnroE9g+pDnx/+nKrfe7cGn8S/w1oOkTg1fpWh37r+cEZQ4dKoeZP3tM2nQiLPI2CalpBe6/HhPHoG9+IOJ2FGQ+eanhs0qfnMKSf24QFpOI4d0Jjx+sVsOqVbB4MQwbxnFTe5osOUh7L8fcIduuxHA6Jxvr+3PR6D76H7qInA5/5RG8+vpruHwZANXAgfn3d+2KVL8+8rx5GGLjAJBHjso7xswMevRQAm+CIAgPERlYgiAIwuM9VED1gz0X+Cc6mZ97NWBEA0+2RsSyacxo9M2agYdH/tfKMvz9N2RlgZeXkkVQSHFjOTyCoU08MC4gKHXfRwcuo/byQj91Kr+PHcuZ6Oo0cM3/RbBvncr0rVM53/Y3A7w5E53IrKBw4i6epFdnP3rWcKW6g9LpytnChMD1xzF8/z3Mn4+6QX30C36E5s2f8IckPHdUKnQrVnJy4vu0Wx5E91qV2DqgSUXPSngBSJLEJ+1qM71trTxB+OLUXIu5n/W6fTt07VraU3wumLZWCrifCIugc6P8WUkr9gVhcHDCqnsfUhbPI37KW9h/saC8p1m6itoYZfRoGD0anU4Hc+awb/JkXqvrzqrQWw/GtGiBISio5A0FSuKnn2DSJOXxH39g6N07/5hRo5AzMmD8eAAkjRp5wIC8Y6ZMQRUWhmHBAnBzK+NJC4LwPBEZWIIgCMLjTZ6MNHiw8rh5czZevUvL5cFEpWSyuEd9nCQ9qiFDlJpR8Q/VIQkLgwYNoHt3CAyEhg3R1K8HCxdCSkrec4SGIqsk7qZnP3YqPjZmEBerZIYBF+OKX4OrgastG18N4MCwFkxs7pMbvAJ4paYbBlkGg4EVvRvhGxcJLVrAH38U+zzCc6BrV3TnlRor2y5FcfTW81dHJ+jmPZy+2sbea3EVPRXhEY9mkBbHzaScxhk573X/Rmo7B0zrNuRoWHi+fTfj7nLsUhiyjV3utozdW0ndsLw8p1g6evWiplNOV8CFC5XsqqLSaKBuXQD+17YWL1d3ebBv27byDV7t2AFjxyqPY2KgoODVfY0bI2k01HCwRNbp4e4jS0Bv3MCwaRPq2rXz1McSBEEQASxBEATh8RwckFevVj6QBgdjOBzMOdmERksPYaRWsbZXA+SgIKVrkoMDBAYide8ONWvCWaUAr525Ce7WZnTKuov01lto/HwhKkrpxjV7Nip/f3xMJd7w93rsVD5oXQML2QC9e+PpYEVbr9JfXuCQU8umb51KnB7VGhsLM1FI9kUmSXDqFCqvKvx48lpFz6bYlpy+zt30bF5acRhpxiYmbD9brOWQwrNHlmU+ORSGpqr3v7KA+8OM23XhdMR1UjMyc7f99Pdexv+o1F7U2NmjdlEydLycnUj+6hMyg/dXwExLSJbRHAmmV3UX/NzssNm6Gd54Q/l9W1QHD2Jhasya0Ei2X41DXdcPrlwBG5uym/ejDhx4kCm4ezc4Oz9+fJMmyAsWEHYvFbWDA1jnBPDOnEHdqiXSwQM4WJlhqc2ErVvLdu6CIDxXRABLEARBKJr7H0gbNkS3dBmxyelYfb6FJpXt+KVXQ+q5WONmaYrH4f34nD7C+82q5b40oVlLbqdnY2tixKKX62OXeA91q1ao6vohTZvGfxt7ETK6DTUeyoYqiL2ZMX8PbMK2wc25+lYHKlkVfUnOk8iyzOk7idzLULLALD7bQnDkPQyyAdW8eWjq+sHKlaIu1ouoUSMM7h6sCIlkw/nbFT2bYvmltz9xk7rR3N0egPnHr9Lv1xPcSHx+awL92/15+Q77r8aimze/6EvKXlBmnV/GYGzCxJ/XcCc+kdSMTLYcP4VZv6G4bAnGfv5ydJE3cLCzY/7YEfj7VCVxys5WVbgAACAASURBVDi0EWEVPfWiuXEDXWwcnjZmhL7Rlstj2ynbi5N1dOcOaZnZzAwKRz/tQ/QnTyk3lMrLmjXQrp3yePFipdB8UYwcCYMGoU9JVrK4Fy6Ehg3RHw5mgIOa8Q09SUrPguDg/B2EBUH41xIBLEEQBKH4atXKfWjx2RZGbwkhQQ+v1ffkxri2HBjSjGWht9F4uMOJE7BnD/KatawNjWTMX2eY1aYGhuvXMFy6zP9a1+CLTr6YaopWXLa5hz3dqrugVpVsaYRBlvNkqJyNScJ/0T5UM//Ef9H+3O0mGhXu1mZ81MKHNzwt6KqNh2HDUDdvDsePl+jcwjPszBmA5y6ABeBobkLw620wfNyL3/s34beLUTRZcqCipyWUQKZOz4TdF1F16awUsf6X07i547D8T+KMzZiwdCUfrNyALElYDR+Hxq0yslZL6vIfkQx61CoVU/v2xNHMlNQl8yt66kVz7BgAb28/y8moBFwsTfF1s4OdO4t+jEWL4MIF5IgImDmz/IOeQ4Yo//3jD6U2V1FcuIC6eXOk9esYWssVw9atMG4cNZysGdHIi7V9GzO9XS1GNfBUft+KLGhBEHKIIu6CIAhC8Xl5KXWs/vc/VL9tRDtpMpGnTvHV8uWsv3SH7l4OGKtVpPj6gr+/8pp+/cDMDFtZx5hGVWjgakPTJQc4eSexzKcryzLT91/i/w5ezt1mrFaRrc+bTeXnbM2cLn60reKY2+Fwcsvqufv3X49j/M4LXGjWDNatg/79y3zuQjmJiEDVrx9/BAWxNvQWg+q6V/SMik2SJAJrVwIgNi0LacamfGPaVHHgwIjW5T01oYjmHIkgMikdee688q1f9Awz8vbBYcVfJE57h6iUJBxmfpe7bFDWKhmzd5OSATAzMaZrg7qsPLATQ1oqKovHZ/VWuAYN4L//Rb13D702niJkdGu6eztw+e/t6GS5aH8HjIygdu2yn2thrl4FR0ewsira+KQkVM2aok9J5b2m1Wjlac/Ks5G4W5txcVx7VDnXrJIkvursx7IzNyE0FHx9y/AiBEF4XogMLEEQBKFkLC1hzhwM167DO+/A0qWoO3XkpoUdW67d+3/27ju8qbJ94Pj3JOneiwJtaSl7Q9mjbJApQ7YgCCIviij+fFUUQUXE/aqIskSRDbJk71H2hrJnW0r3nmmTnPP740ChtECh6UCez3XlIj3jOXdKmyZ3nue+6VXJA3nLVti16945X3xBkt7AsnO3aeLlwvk32jOzW97uUuYUm56F9/+25kpeATnJq0blnQke2x5lSm+Cx7ano3+ZnOTVg9r6eXD2tdYMquWFZuhQOHCgSGMXilGZMsg7d0K1asw8doP0bGNJR/TU7CwePptxeL0KxRiJ8CQiUjP5/MBVlHFv5ZrlKoDGyRnXmQtx++sfrBo0vrfd1g4LLx8aVbm3ZL1tnZrIWVnod28tiVCfTLVq8O23mNauI1qyZODqk7Sv6IExJhbOnSvp6AqmYsWCJ68Ali9HTlUbsPx45DrD1p4CIFZvyGlGoSgK26/HYGuhxcPJ7tn5XgiCUOTEDCxBEAShcLTanH9N27bDunWE9+7NvIRUpJdfRmna9N6xEyYgnTzJqyuXU83dnoByzkUamsEk4/fzdjLuJCOyJr2I5Z3kVJbRhFUBly3eT6uRWNA7gGVf/AMTJ8K+fWaNWShBOh1y714c/OZbvH7ewdsNfRnXxB8PO6uSjuyJpBtMAChTHtEFTCh1PthxEaO9I0yZUtKhPJKi15OxqfR0ZtVWqsa5o/vZdeZcTufH8u5uxC2aA5r8P4xQ9Hqwsi7OMB/NxwfTypXs7tSJuu722FpZkN2pI8Zu3aFrV+jVq/TVQ8vMhNGjIT0dPvoIGjd+/DmAtGQJCqBp3x7500/Rf/01vPYahpGvsuVaDB39y7DuciR9lh+lorMtCWl6tduiIAgCYgaWIAiCYG4vvqjWq4iIQFm0SJ2pdZckocydi7F2HXqsOE7inYLpRWXDlaic5NXtd1/ISV4BT5W8uismPUu9ExSkJrFEgdl/jy+no1y7RvLI0XxxLJTKv+5iy7Un6AhWhKLT9Gy7HsOY9afRfLaW/WHxouPgv8Th8AQWnQ3DOH06OBdtYr8wTFY6Mp2sybCi1NxMVaug1+vJSojAMTsRUqKIS07B5OT00HMynawxWZWypEj79ihffcWPR67z32b+jK/oQJVNa2DAADQ9ekBGKWvMMH06LF4Ma9eibd8ODh8u0GnK+PFoKldC/uEHCAxE2bABWrdGTkwioJzaOfGLgzcAuJmUgalVIEyaVGQPQxCEZ0spe+YWBEEQnnmS9Oh6HDY2mOb9TmRAACcik+jo/5h224XwxqazAOwd0cqsHQtP3anb1blSGbZ99RXSrVso8+eXvk/Ihafj5wc//4w8eTJprwyj25KtTG1bnYmBVXPqsxSH4Ohklp67zfGoZE7GpBGfkp5rf+AfQbjYW7O2XyNa+7oXW1yCecmKwptbz6OtVxfTyJElHc7D2dhgdINSt7jWzQF+lwgOCaOqmz17QuMx2tggjxqB6XFL22zM93fBLN57D2nDBvbdusSuYS34Hth5I5YeK/Zg6NQJ06ZN4ORU0lHCtWtovv4aGfiqQ00WnrvN+U6dIDIy94dW+enbF7lv39zbLl0CYPuNWDpU9CA1Q49ka4OSkQmJiWIGliAIOcSzgSAIglD89HoAytoX7RKOX3vU48TtRLO/ue9S2ZMz/2lHXU8nlp8LZ+jyZZiCg1F8fcFgQDIakAxGJEM2ktEIBgPGho3U2Vr+/maNRShC7u7IGzbCp58yaepUjkQms7BXA5ysLYrskkZZZt2lSH46HkrQzRh0bq6YmrdAGVRfLfhcrx5kZcGZM6AoJM+bS5s/1Y6Df/RqwIj6vkUWm1A0Fp65xcnweFiy5t6S7NLowaRDKaJdsZy9W7exNywBXSV/5N9mQceOJR2WqqDF2EGdpdyxI8e/OoqiKEiSRAd/D3YPbU7npUfIaNcW0/Yd4OZWtDE/iqKgeeMNyttbcfk/nbG10PHhzjtdAh0cYMECtTPhk/wsN20KX33Fwmlf8OfpLfe2T5oEvcVSaEEQ7pEUMfdcKEInT56kYcOGsGjRvTa7giAIq1ZBv37E/bcbbrbP/qyloNA4vj10DRTQaSQstBp0Gkm9SRKSJLH2WiwJGVkow4apL8orVXr8wELpsX492peH4GutYX3/RtT0cCzwqSlZBm6n6PF1tsHWIv/PDmPSs5h3MoQZJ8OISkpH26I5pvFvQ58+j57Zp9fnmkVy8c321Ji5i6ZeLhx+rU2BYxRKRmqWAf9fdxPfpQfK8uUlHc6zy2SCs2ehSpXHzwAqTleuIAUEoHN2xlS1KnK1amqMVapAQAB4eeU9Z9Mm6N6dG+M7UdHFLmfz6agk2i8+QoqPL6bde8DTs/geR04Qp5G6dkWJiuKfQU3pWU3tBjn/VCij/jmVc5iuahWMv8yETp2ebPzYWDU5f/e8zEywLkW1yoTSafFiGDqUEydOEBAQUNLRCEVMzMASBEEQil9EBBY6La42RTeTpTgF+roT+JhZXj8bjMw5EcK01SuIX7gQZehQ+OorKFu2mKIUCsVgwDTlU0J++IH6c/YyNsCXJl4ueQ67Ep/GgbB4LsenEZtpIMtoyrXf3kpHFRc7Olb0oJq7PbdT9Gy7Ecvh24nIGg1Ky5bQqRMmPz8wGmHlyryxyDIcPQqHDqkt7HU69Vig/4pj+DnZ0qVSGRafvQVAapaRlCwDXo55l0vZWGjpW6N84b8/wlOZFnSFhGwZ5dtvSzqUZ5tWCw0alHQUeXl4QHYW9ZV0KkRd5sKlM9yMT0WfbUBjZYW8dSu0eSDRfOcN+InIpFwJrPplnTk0vAXNFhwkacoUmDWrOB+JmiRcsgQlKorBtb1zklcAIxv40rdGORacvsW0A9eIvXJV/fD6SRNYHh7qzLm9e9XZyiJ5JQjCA0QCSxAEQSh+ERF4ONrmdIx6Htha6HinWWXGNKzInBMhfLpqBamXL2MKChL1PZ4FmZnoLKzRjH0b08ol/Hz0DN6ujjTw8qBWOTfCE1PZeyOCW/HJ6nKhh0xwT8sycioqmVNRyTmHaZ2doWsPLBo3RbK984Y1Ii7f85XUFAx/zUcJDcl3/7nYVAA+23eZqmVc6Fjdl83nQ7gZn4yDtSUDAqrh66rOHrPDgCemfMcRit61hDS+P3IDedInUKFCSYcjFAUXF6ROncg6dZgFvQOws9ShKAq3U/UMW3eKoO7dMO3cpS6hu6tsWXRlPTkZmUy/mrlnaFVzd+CtgAp8uWghpm+/VZfsFaWsLPj2WzS7diEdO4opLZ0Kbg7M6lEvz6Erz0fwztZgaN0aPvssb2LuSbRuXYigBUH4NxOvmAVBEITiFxmJm7Uup8bH88TGQsvbzSrRqLwzrf4IAgsLpEGDUJYsKXidFKFEaLOM2OgV6DcCQ/VTRJ88yvpzl1kffB0AXdnyYJEJBrW7ps6vEtbtu6LzqgCShJyUgPHmNbJOHcWmSy/kmCgkRycsqtRA0tzpkJn18OsrJhOp8+agRIYDoHF2wabzi+gqVQWtjrQ5/0OTEIfhzmysKzGJXIlJzDk/VZ/Npkvh9G7WEFlR8NICIoFVIlKyDAxYfVKdgfnf/5Z0OEIRkv/7Pue6daXevCBW9mlAg3LOeDvasGFgE1otOEhw//6YwsJynWNq1JhD54/mO96QOt5M3XdZnYHZuXPRBv/FF2inf0n3yp40a+JLM28Xmnq75FoKnZpl4I/TYRy9rT7XaNLTkdu2Ldq4BEF4bokEliAIglD8vL0Jjkik+/JjbBrUpKSjKREtK7jxVhN/Zhy9gbJsGUydCpUrl3RYwmNI1tbYdusD3dWC1qa4GPR7t6Pzq0T6mmUYN68BwKJWPTx+X4Vk8fhlslnHDpK25Heyg08hpySjcXDEonZ9HF5+DasmLXOOS1+7DNOd5JVk54DHoo3oyt2boWHdtCVpC2ZhqUDGptU4f/gFWh9ftO5l0Ng7oj8SROTEcfy2aQde7m6MaVbdnN8aoYDSs410WXqEs2lGTLvXg61tSYckFKW2bZFPnSZkQH+azA/i2w41eLtpJewsdVR0tOJsaBzMmQOjRuUUPld69WLvxo2ci0mhdpnc9fZsLYqp0P+ZM0hfTWdSqyp82vbhnYU3XY3m7S3BaMp4wMCByF26FE98giA8lzQlHYAgCILwHJo6FdzcuJGUUdKRlKifutThzH/aoZEk2LOnpMMRnoLWvQx2L72MZYMm6IN25my3Hzq6QMmrtGV/EDd2CPp9O5AT48FkRE5KIGv/LuLeeJm05X/mHKvfsy3nvm2XXrmSVwC68j44T5yG80fTKL//IrY9XsKqXiN0XhXQODlj07E79sPHAnA7Lr6Qj1x4GnqjiV4rjnEkNh3Tlq2ls26TYH7VqmE6egzjm+OYsPUcM47eAGBG17oMruIOY8agrVcXduxQj3/lFbTeXny+73KeoUzyneXJRdmx0mhEO2I41dwd+Ciw2kMPOxeTwtgt5wBQXN1g2TIYMaLo4hIE4bknEliCIAhC8Vu6FOLj+apt1ZKOpERJkkRdTyfqernC7t0lHY5QCHJyIkpaSs7XFlXuzW5KX7OU2w19c92Sf/4KU3QkyT9+eacQlg7Xb36jXNAFXL/5TX1zqigk/28appgoAIy37y0z0t03vvFWSJ7xY4bnbT0vaTQ4jf8Qu8GvotPpSNVnF8W3QngIg0mm/9/H2R2ehLxxEzRrVtIhCcXJygp+/BHGjuXD3ZcJT8nEy9GGRX0acuS1NjRKjYFOnZBGvgo6HcZPJvP3hQjOxaTkGsakFGEC6/ZtmDcPqVs35LNn+atHPSy1D3+7WN7BGjsrC7CxQZk71/zxCIIgPEAksARBEITik5oK69ahHTeOAbW86V1ddD8D6Ojjgm73rocW/haeAQ/83ylZjyhmdYf+4J6celnWrTtg06EbGls7bDp0w7pVB/UgQ7Z63IPXyH78+A9j3aItRqOR9GzDU48hPBmTrDBs7Uk2Xo9FXrMGRI2g59f06WQ7OTFuS3DOpiZeLhwa0ZJ5PevDnwtg0iQYPhyttxdD153iekJ6zrE5TwPp6ZjNpk3o6tQGb2+k11+nyeVTLOwVQON8Oq3ez9XGks0DG2OrmJC+/krtVCgIglCERAJLEARBKB5HjiC5u0Hv3lSzhhld65R0RKVGGz93jJFRcONGSYciPCWNsyuS3b2OYMYbV3Pu2/UZjNeJUBxefyfXOXLCvU6D2nLeufZpy3vnOU7n7ZuzzXDf+DofP7xOhOI+e1mBYs3ctQUHOzs8Hcxbe8lx+gaWnQt/6P4Mg5FbyRnsD4vnj1Oh6I3Px5vd+Ixs+q48xoqLESjLl0PXriUdklCSnJwwzfiFdRcjmHcyBOVORkqSJEYF+PFNx5owfTr89BPG3n04Z+FAnTl7+etMGIqi4O9iR/WyzminT3/6Dz0eOE83ZTK148JZ+lIj4v7blcOvtuLluj4FGqp2GUd+714XZcNG+Pzzp4unoLKyYPPmor2GIAilmkhgCYIgCMUjMhIl28DR19pw/vU2lLGzKumISo3ACm5Y6LRo+/WD1atBlks6JOEJSRoN1q075Hyd+tdslMfMRtC4uufcv1ucPefriPA8x1m36ZSzLXPzWoyRt584TsVoJHvXZqp7lTVrB9DQpAxSs40sCb4X98nIJF5Yehjps7VIn63F7ssNVPhxG4F/BDHyn1PYTFvPzhuxZouhNNp6LZoas/ewMSoDZdVq6Nu3pEMSSoP+/dEMGcLo9adpNH8/O27E5Oz6v+aVGdPQD95/H2bMQG7QgMz+Axi+9iQDVx0nJcvATx1rYjpwANasefJrL1mC5OkJ58+rXxsMyGeDGVGvAoNqe+NqY/nEQ0an3ZkRWtQzsF57Dbp1g/CHJ8oFQfh3EwksQRAEoegtWYI0cACSBL7OouPWg5ysLdj+cnOaJ92Gl16CmTNLOiThKTiOmYBkZw+A8epF4ieMIvvCWZTsLOTUFEzRkbmOt27RFizUN4v6oF1k7t6KnJlB5q4t6PfvUg+ysMS6eRsAbHv0Q1dF7QamZOmJf3MYmft2IqenoWTpMd4KeWyMWScPY0xOoppXOfM86Dv+vqAm0/rVLM/pqCSkz9bScM4etl2JynWct6MNrwf4MbJ+BQA6LjxAs3l7kf9ly2czDEbe2nSGLosPEd+kBabz56FXr5IOSygtJAl58WLYuZMz5SvRaeFBgkLj7uyS+KVbXQL9PLDWaeCff8DBAZYuZXV4KjXn7CU2/U7C6KWXQK8v+HVPnUJ65RWU2Fi0TZsgde8OkyYhZ2cTUM7pqR9OtyqeWFtaoF29Ci5dynuALMP165D9mLp7iYlIQ4ciNWyYd59eD4sWqfdnzoSxY8WHPYLwHNKVdACCIAjCv5zBAKdOgcHAubHtxcyrh2jj584UWaZTSKz6Ql945uh8/HD7cT4JH7yBnBBH1oHdxB54eHF+rWc5nMZ/SPL3n4PRQMJ7r+c5xmn8RLSearJJsrDA/ec/iZ8wCsOlcxhDr5MwYeQTxajftQUAC50OMF8NrBUXIgD4ZPdFwpIzc7ZPbVeDlj6uNCrvjINV7q6Mn7atToUft3HkdiLaz9dx8vW2NCjnbLaYSsrJyCQGrj3FjWQ9/Pwz8ptvgkZ8Zizko317TIcPo3N3Y/uNWAJ91dmWOo2GfcNboigKv58KZfRvv4GnJ6azwcQMHcrQNUH3xjhxAlq2fPy1MjLQ9XqRWmWd+LtvACvPR7Dt0nEObt+GxkJH/bJPn8Dyd7FjSM1yzD99CU3DAOTf58OgQerOW7fUxi0ffICk06KrVAlD3XpQu7Z6q1ULKlWCPXvQvTJMXU7/9tt5L/Lnn/fuf/WV+u8336jJPUEQnhsigSUIgiAUjbg4NMOGIe3biykjE1d7G/zE7KuHSs828t72C+oXnTo9+mCh1LIKaEqZlTvIWL0YfdBODDevoWRmonFyRuvugUXVWli37ohV89YA2A8Zha5SNdKW/I7h3Gnk1GQ09o5Y1K6P/ZBRWDcLzDW+tkxZPP5cS8bmtWRuX4/h0nnklGQkOzu0bh7ofCpi3ap9ruWM97Os35iMNUs5ezOUimZsonD0diJATvLq/Bvtqenh+MhzfJxskSf34j8bzjDnZAgBc/YwpU01Pm1bw2xxFbfvD17lg10XoXZt5N1LoWbNkg5JKO0kCVPLVuw7fySfXRKvBfgRk57Fx59+CqdOIY8dC+PGQfv2IEng5law69y8ifFWOD8Ob0llV3smBlZlYmBV9EYTiZmGPAnmJ2GUZeafVrukyhmZSKNfQ+nTBw4fVuOUZfrVLE97Pw/Ox6Zw5tgezm3eQFKa+nyhsbREzs7GCGgr+WP68su8F9m2LdeXukr+GG3FawpBeN6IBJYgCIJQNGJikLdsYVQDX0YH+BJQzhmLR7Tjfp7FZWTRddlRglOyYOtW6Ny5pEMSCkHr7ILDyHE4jBxXoOOtm7bCummrAo8vWVhg92J/7F7s/8SxJX0zGcVoJDQmDoqoC6jxk15oNQWrryVJErN71mdC80rUmLmToXUrmC0Ok6yw+Vo0Jlnhg10XGVijHB39PXJmuZjbvJMhvLf9PPzf/8GXX4Llk9cSEp5PSqtWHNm2BaMso8tntt7EVlWx0Wl5d906WLdO3bh4MQwZUvCL3Kl5p3mg9p21Tks5B+1Txw6w9G7zBn9/eP11lF69wMoK6bvvUO4s8zselUJ4ugFJUmvY1PawJ97Wkkuxych3lxZKEqYFf0F+iakGDXLV/DJevwHJyeDqWqjYBUF4togEliAIglA0stQaHQ3LOdPUu3S8wDSYZNKyjVhqNVhqNeg0klkLWT+NiNRMWi88TIisQ/7+B3W5xcaNUK6cevPwAJ34c11aKHo9GZueonByKaEkJwEQl5LKrcRU/Ms8/ayLu4wP1KFRUIAn+72q7u6AMqV3oWO563xMCi+tPsnl6KScbZ/HpjDtwFU2DmqKpVZDu4oeZrvenpBY/rPpLIwZA99+m5MsEIQC6dQJ/QcfMHr9aeb2rJ8niSVJEmMa+fHutnMAeNhZkfD555ieJIHl7Y3WzY0RG85y+rVAHAsx4+p+UWl6Xt94FkaNgrlz7/3sL1uGsmGDer9DB0K8vQlRFLVulaLkf3vhhYcvh2zcOO+2uXPhgw/M8jgEQXg2iFfEgiAIgvnduoWmZUsqeTgyuI5XSUcDwIvLDrP+ctRD99cp40jQq4E4WZvnRX1BTdt3hRCTFtOc2TBgQN6itFotrFihdi9LSAAXF/HmuISYrHRkOlmXdBhPTTEaAbC11NGjdiWqOlsBhS+CfCkuLed+4wruaEvBz+ePh69zTWcLQevVmnLNm0NGBqYGDeiy+BAAmR/3xFpXuJknANcS0uj99wmU1m1gxgzx+yk8uQYNYNEiFgwfTlKWkWV9G2L1wM+mrYWOrEkvEp2mp+KMHZjGjHmyazg6Ypo4kdD338ckm7dpgsFoUrsD3v+zv2XLvfuzZ6t1rgrj/gTW2rXq77TzQ2rmGQzwzz9o5s1DsdChtGkLbdpA/friAyFBeMaJ32BBEATB/A4eRM7MpENNT5ytS8cyGnvLR//JC45JwfnrjbxYrSwr+jXO8+ahKCTrDcwPDsf09gS0Uz/HJMtkfNSThMxsItP0rL8cxef7LqN5/XUY/xby7Qg0tWoi//QzZGZCjx5FHqNwh40NRjcwlnQcTyskBCZNAuCD5pWp5GoHyNhYFO7nPD3bSJ3fduV8vX1w0xKf1QhwKDoVU9c+0KqVegPYsSNn/xftamBphiXNiZnZdFl2jPRyXsirVoFF8SbAhX+Rl19GcXTkn/796brsKJsGNcmTYLXUaph/KgyTSYbwcLXGVJMmBW8ScPAgsizj+s0ms814dLDUYW2pQx8crH7QcldCwr37dxNNQUFqMis7G4xGyM5GMplQ3n338bUf3dxg/nwYORJ694b4+PyX6c6ciW7q5xijY2hUwR0bnYbDW7eQlW1Ea2+HacYvMGJEoR+3IAglQySwBEEQBPM6eBAGDaJOORfeaupf0tHkWNK3EUv6Nnro/gWnwxix7iT/XI7Cetp6xjfx539d6uSpF2JO0/dfQZ9lgB9/xHSnBohGAi9HG7wcbZhx5AaSgwPWaSkM9CnHqjgdblG3uNmxIwBS5coob7wB48erb2BKQeLgX+v+N2bPouhomDQJC43EpDbVzPJzbTDJuH27CQBHKwtuv/vCYxPFxSHTYOJSdBI0euD3/eZNNJKE/uOeZqnHZzDJ9Ft1gpBsMG3arM6OFITC6NkTecsW9nTsyC9Hb/Beiyp5DulVvSwX4lLZPOtXUn/4ASZPhs8+K9j4ixeDjQ0AA1afYEXfhk8d6oXYFHovP0ZoUjpGC8vcv29nzsD69TlfagYORP76a7TduuJvraWCkzWnIpJIyMxGY2+H6b33CnbRV19VZ1eNGQNXr0LTprn3X7wIb71F/1pefNinHXU91c6K2SaZ4xGJvL7hLOc3bRIJLEF4holquoIgCIJ5Xb8OwOFXWz62C1lpMrx+BeTJvZjWXu2A9vPRG2g/X5envk9hbb0WjevXG5E+W8vXB64C0N5bfZFtoYHY9CzWXoyg34ojLAy+hZKaSkaWgc/aVif5wx5ce7M9M7rWBUC5dg3efRd0OqRRI80ap/Av4+kJkyah0WmJStMXejhFUfD6YStZRhmtRiLq/7qUiuQVwNnoZHWGyv1vqI1G2LsXV0dbszWTeGdLMLtD4zCtWQNV8iYaBOGptG2LMmoUUw9cI0mfnWd3/bLOLO/XmIT/60ygnzsEB0N6OvzwA7z3Hvz++8PHtraGgQMB+PtcOBmGp5tTmmEw0nfVSa7Gp2Jq1gz5zBno3v3eAceO80WqxgAAIABJREFUAaD/uCfbh7WAXbugUSOqO1iy/eVmlLWzUpNXXV7AdOEidMi/a2q+Xn9dXWr/YPIKYMECUBRWX4miw5IjbL4aDagz11r4uNGkvBO6kJuPeGAZMHcuuoYBaJs3g19+gZiYgscmCEKREwksQRAEwby0Rb/0rqhIksRHgdUwftKLqm72ADSeuxdFKXi9kFUXbmMxdR3SZ2tpOX8fk3dfJDwlk0txqUifraXL4kMk6g25ztl1IxYAgww+P26jz4qjrLoYyf2XvdvVTSNJjGvijzy5F7O618vZr/zxZ86bBkHI13vvYbS1Z+rey4UeqvrMncRmqI0a0if2KPRSRHP6+0KEeqdOHfXfqCg0gYFIS5cwsWnFQo//5qaz1Ji5g1+P30T59Tdo167QYwpCLlOmkCZLfHPg2kMP0Wk0VHWxQ3PyBLzxhtr98vvvkcaOhdTUh4+9bBkcOoSiKFy+r37dk5h7IlRtkLBqFab9B6Bq1dwH3PnjJSvQ0b8Mx0a34a0m/pyPTMTvp20sC02GBQuQN20GH58nD+BhM0jHjYM5c8j6+lsS/Cox9cA1FEUhMTObM1HJXIxLRb50Kf9zExMhIABef50X0qPonBCK9p23kcqXR9O1CyxaBGlP9/0SBMF8SsdHZYIgCMK/x51aHFfi0/g06CpedlbM7Fa3REJJyTLw15lbRKTqiUzTE5ueRe0yjihA3TKPnh32UasqjFh3itNRyXRdfIhhdfN/kX0uJoW5J0NoWM4ZkwI7b8bm7Dt4K4GDtxKYuu9ewsBap+F/neswdtOZPGPVcLfH3daKoLB4AIbX86Gdnwc6jcTum3F5jre31DG1bXW+3H+FTKOsfrI+dixs2gQ1a6q1UR5VsNbG5tlfGicUnJMTpo8+Yu7ED3mnWSWquTs81TD7w+K5Eq++kcue9KLZZjSZi1rfC7QtW2KqWgWOn0C+qs529HIoXBH++Ixsfj12Q/3iu+9g9OhCjScI+SpfHnnCBH74/lveauJPuYf83PasWpbflx+Bv/7K2aYYDPDTT/DWW+DklP/4NdSZxhdiU2lQ7iGF0B9hYG0vfj0VxvUJEzA9+DckJQXd1M9pVtEjJ7EdUM4ZP2dbZhxVf3dM+4KgbhG8LvD2zvmdlH18ONSvH/bfbCbjwZlsx49Dw4Y5iTBp9GiUefMANeG2YZA6uysuI4uV5yNYeP4kh4ZtRWNtjdyrFwwdCp0751+DSxCEIiUSWIIgCIJ5tWmDrqIfAXPuzVz6vnMts3T7ehKJmdm4frMpz/aNd5YUdKvuTbPKvo8c4z+B9ZgVdIat12OQLWwIrOyda//BGxFsuaAuR9h2417iqmvNimy+kHeZwhut61PW0Y5YoH21Cuy6HEbbKj5oJIldV8LoVq86KfosgsLi0UhQyacCYSbA9PAY9VY6NXkFcOsW0scfYyWBfs8eNIsXI7VsjeTgoH4UntPCXEZ2dkJu1+aRj1/4Fxo3Dmn2LNotPsK+Yc2o7Gr/xEPcXYL4TcdapS55BeDrZAuA3cVzpJw4kWtfcx/Xpx532/UYBqw5idbBHtOPP6nFpAWhqLz/PsZff+XzvZf4rUf9fA/pVb1czv2q7g5cibsz8+qTT9AuX44pODj/sZ2csChXlqCweMraW3MrJYOY9GyG1/PB096abJNMltGEg1X+TQmyjDK3EtOQuwTm3fnee1jExPDXGPXvy5HwBN7afoGETAML+zTknR0XSRr5KqY9e8H+yZ9/ALh9G7Zvh9BQqFgRKleGatXUQu93XbwIkDd5BWpHw++/V5fgL1+OMm8eX7SrQZfKntQqcy+x725rxdjGFRnbuCIhSeksDb7Ngj1bubx8OToXZ4wDBqrJrBYtCl5IXxCEQhEJLEEQBMG8ypXDeP4CfPMNfPop1TydsSrkm9zdN2P54fA1ytvb8OeZMIJeDaSJV/4FkxVFIcNgyklevdXEn97Vy1HO3hoLrcSqCxF8uPMCmy6Fk2HhQKMqD2/tbe/hgqPtFVIyMtl+KZTtl0IB8HByIF2fRUaW+sL41Y5tSM3UcysunqbVKmOp0xF0I5I0vZ6X27aknOu9WFPu/FunuiO7LodxIymDAYHNqVujFpJWy/mIKwB0bdSAFMsCFIW2hJoVvLkQFg5GIzV9fehQrxZJaRkcv3aDi5s35FkCKUkSiqKg2bYFuWzZx3d/Ev49bGww7t1HTNs2tFhwkH3DmlP9CWdiOd55U2uOLn6FoSgKBlnJE0cLH1cqu9nzY+fabLgSxawTIXzYsgqT21R/6qWOBpPM6M3BpDRsgrJihVpTTBCKkrMzpkmTmPPBB4xvWokaHvn/nh4f3Zbq7vYogMf3W9Bnq3WtTL6P/oDGVK8es7dsZfaJkJxt6dlGKrva8d/dl4lLy6RrZU9+71kfOwstNhbanOYPnRYeINNggmGv5BlXd/Ag/at7UtHFjqvxabSYHwSVKyOHXSXDYGLb4Ca0WnCQrIEDkDdsfLLmI+npOUkvSZJwsrMmKS1T/dpCh7J1m7qkV1Hg889zTpvargbTgi6jN8q8Us+Hv87cQvf1VxhdXdG+8w59anrxUWDVR3ZQ9XO2Y2JgVSYGVuVsdDJLgsP5a/liImfPRufjjfHloTBkyL2ly4IgFAmRwBIEQRDMz9oaKlZEY2HBqDpej3xR+DhGWab9XwdybWs6by+3330BNxtLrO7M7Oq+5BCb7syuumtQbS9+7pp7mcIHrapy5HYiay5Fsif4IkcuX2fm2JF4uqhLLUKiY7GztsLDyZHrkdGkZGTmiSk2+V59kWUfvI2DTd7lHd+t3gDA4DYtH/r4vd1ccXd0pIzzveWMUYlJHLx4hUaV/WlSrfJDvy/3O3DhMlZWVrzVvRPt6tbK2T6wdXOMJhOKotbO0mgkJEli99nzpESHsevyTa517oymywvI3/+gLjsU/v28vDAF7SehfTta/nWQPS83o47nQ5Ya5aOjvwczutZldMCj3yAXtUm7LvLl/iuYJvfK1VXRydqCq+PUTp21yjjQv5YX7fzcC/U89NeZMMLiU2HGDJG8EorPuHFoZs+i9aJDbB3UhIB8lvs1LH9v2/vNKvHFiXDkRYugWbNHDi3P+x0uX1ZrUHl7w5AhfLFuHbKiIL3UF6VBABsmTcLzciQAbzSqyM9d6/LtwatcTUhXB+nRI8+4xqZN2bZqGf+3NZgeVcsiKwoMGADTptGovDMB5Zxp7uXM3uMnwGR69DL3By1alHNXI0HKnTp8AIrBiHbcm5jOnFXHzMiA335D+9FEbiVnor8zU3lB74Z82qY6VWfuhFdfpW3lsszqXu+Jnh/qejpR19OJLzvU5EBYPIuDw1k640dSvvoKXa2aGIe9AoMHQ4UKBX9sgiAUiEhgCYIgCOaVnIz0n/+gLFvG0HoVGNfEv1DDaSWJ/7aozM2kDN5oVJG1lyL5+egNvH7YmnNMh4oeObWnJNRkzWsBvsx6yLKLnlXLcjoug5txyWRmZzPyp1mPjMHV0YFX2rWiVc3q6LQawmLjSUxLp4G/H9qHzELxK+NBbV+fR74orlnBO882mzs1NWysCl5b4/UuHdBIEu5Oeet66R5SVN/bxYEprapga6nj3Z2HuBUQgLx2LXTpUuDrCs+wsmUx7QsiuUN7AhceYtfLzfJ9c5yfu40EStqX+9XZiudiUqj7kAScn7Mdfs52hbpOtknm0wPXkV56CaUo6vYIwsNYW2Pcf4DE7t1pueAAq19qRNcqD0+gxmdmo63gg9y79+PH9vJSb3eNHo2Sng6ffIISeGdpoKUlZGXBP/+w+lIwJ2NTORwWD++/r85wsrLKO+6gQcTtD+KHw1cpf7d2V0ICGktLBq87zfLe9TkTk4pSs7a6pP1JNG4MDRrAsGGY0tLAwwPKlIHoaLRTpqgdDZcsgVdeUZNYb72Fac8etu3akjNEyz8PcDE6iXa+bszqUR9/l6d/ftBIEoG+7gT6uvNzV5mt16JZFHybdZMnkfXhh0hDBqPMmQt2hXsOQlFAr1frVgrCc04ksARBEATziY5G16QxVrHRzHupEYNq503QPClJkvimU+2cr9tV9KB2GUfWXIrkXEwKt1IycxVOl6c8/oW7pVbDq81qk2Lpgre7G+/MWZDvcd7urkzs3xs/T49c2yuVe/wMjJlvPF19nB5NAnC0taW2b8E7M5VxLvjsmftJkkTfGuXpVsWT/n8fZ2PPnigrV0JB3vwIzz53d0x79pLWqSNtFh5ix5CmNPV++hpRxUlvvFcYbtfN2IcmsMzhz9NhhCemwaefFtk1BOGhPD0x7d2LPGggPZZtZnb3urwW4JfvoVcTMzDUfMolbN26oXTrlnvbf/+r/hsVRdSxY8TYOMDevRCYT+2ruzp1wnj5CpJOh72lDmd7G5LKl0c+eZJrvXvx5tYLfNWuGqPXH1Objvz+e8FjDAiAkyfz3WUaOhRmzYJatXLv8PcndF0WUr+XUAIacjAoCEI3s/1GLCa54B2GH8dSq6FntXL0rFaO1CwDS4LDeWfV3xiCgzH9sx78/J5qXM3w4bB8OXJWFnz9tZo8FITnmKg2JwiCIJiPXo8x7Ba/dK5lluTVw4xu6Meml5sTNuEFTo1pm7M9+r2uTzxWlfJlqV3RD4ApQ/qx8dMPcm6zx43Ok7wqajqtlvb1ahVqudOTstZpWd2/Mf2qeSL16wdLlxbbtYUS5uKCadduMuvUY9C603nqpZVW1jotVd3UWjjbb8YX2XUMJpnPDlxD6t8fatd+/AmCUBTs7FDWrkMeM4bR60/zya4L+f6uXknWqwXNze3jj2H7duTw249OXt1lMqGYTFhoNXg52qhF12vVQq7fgGO3Yhm9/jQAmk0b1WWE5uDgoCbcGjbMvf2LL1BiY1FW/g0TJ6pdehcuROvhQdVfdlBrzl6m7L7I6agksz3/OVhZMKZRRY6+2oryt0PRNmyoJv6eghIfh4OkzlTT7N1jlvgE4VkmEliCIAiC+fj6oqtWlaDQontD+aD6ZZ1RpvRGmdKbMnb5LGcogCmDerP643dpUvXhBd3/7Sy0Gpb2bcSw2l7w8stY+FdE26I5vPQSvPMOREWVdIhCUXF0xDRtGiFxKRyPSCrpaArsbgfFPWHxGJ90KVIB7QuNJyIxDeXuTBRBKClaLcycCd98wxdBV3hl7SmyTfd+7k2yQnhCGlQqgr9j5cpBx45gkX9Xwjyy1QYnVVzt8LWzhFu31O1eXhhMCroKPhAaihx2S31cRcnKClweaIgydCimmzfh77+50K4r005H0GD2Hir8sosJW4LZFxpnltlZdTydODUqkEZ2EroRwwt20pIlMHCgej8uDik+nmS9AY2NNfKMXwodkyA868QSQkEQBMGsjD1f5J85v6IoSrHOIioM2/zqeDyHtBqJP3o1oI2vG5fiUolOv03k2Zsc25pM6pbNmI6fePq250Lp1q4dOg93lp0Lp/FDOnyWNlmyAt7eZISHcyIiqUiWP669FIHO2wvjg7M6BKEkSJI6y8jHhyXDh3MpPohX6nhTxc2eledvYzSZwL/k69ORrhZ533wtBpMsY3ErDAPAjz/Cu+9ihJIvcG5np35A89JLmLKzYe9ewlev5pc1q/nxyHUcrC0JHtMWX2fbQl3GzdaSQG8Xjl+Oh+PH1Rli97822rwZrl5Va1xlZcHkyep2Dw9069ZimxCHzsaCJJOs1vsShOecSGAJgiAI5mVlRVxKBvGZ2bjbisTQs0YjSYxskLu73LmYFOr8tgs2brz3ybDw76LVYhwwkF/mzMbHyYa3m1Yq9QnoLFmBFi3QrF/PnpA4syewFEXh76uxGF8ZmfsNpyCUtEGDkN3cON65M8dvJ+bet3w53LwJNWqotzJliv/nV6tFsrZi+p1GC9ra9y3FL+nEVX4sLaFTJ7V+18yZ8NtvpI4bR4dFh7g2rkOhh2/h48q84NskNW6Mzs8X46DB6t/SevWQxr+Fcu06AE521iTfOcd7yQLCE9OQrSxIyDbCyJFqh2dBeM6JJYSCIAiCWWlWLMfaQseBsISSDkUwk9plHKnm6Qxbtjz+YOHZNW4c2QYjE7aeIyw5s6SjeSyNBKxejZyZiY+T+btzxWZkE5WUBuXLm31sQSi0Tp1gzhy1M92nn8KHH4KzMzZLFqF9axy0awdly6JzdVGXg8+Zk/84yckQEWHe2FxcUOLi1aXnYWGYDh027/hFSaOBESOgShUSsoxmGbJPjfLETujEtqEtGOECjjN+VLspTpyIcvQYvPsukk6HjYWW/jXLU8HdkfDENGycHUl3dlFnbs2bp3ZWFITnnEhgCYIgCGYl795DdqfO9F5+hMGrjpOkzy7pkAQz6F7RDd2WzWo7b+Hfyd8fXXm1i1Zhl80Uh0ktKoNRfYP5/dEQIlP1Zh3fw9aS0QG+aD75BA4/Q2/AhefH6NGQkQHDhqm1k5KSmN2tLpkTe3DxzQ6sGtCETxuUp3tCCIwZoya6EhLgbs24w4fRVqoEXl7oatWE996DHTtyfq8Kxc4OPD3Bx+fZW3puZwdTppCYlsnk3RfNUtxdp9HQqVIZpravwcfNK1HR2RbNjJ/VpNT336NcukR0lx6sdq1I2NCRsHAhmYeOoERGqd0XBUEARAJLEARBMDcvL+QNG2DhQlaGJjFy/ZlnprOZ8HBdKntijIqGc+dKOhShqFhaYvx4EhuuRnEpLrWko3msTpXK8FWHmgCcDI8nYH4QCZnmS5hLksQv3erRuJwTut691ESBIJRG8+dDWBgAozac4YWlR6jmZk/fGuX5uHU11g1qxrT2NeCzz8DNDSws0Lm6IAUG0theYnHfhgyzTMdj3izo1AlpyGDxYcWAAQBM3XeZiTsvmG3YZefC+WDHecId3JBatry3o1IllKXLMAXth//9D4YOherVxfJlQXiASGAJgiAI5idJapef+X+w5sJtlgSHl3REQiE1uVvY++zZkg1EKFqjRqH19GTqvislHUmBvN+yCn1reQEQlZTOyvO3zTq+pVbDwOplMcXHq0WWBaE0mjpV7fS3dSuGdu3ZcyOamcduci4mBflOImpcE3/WDWrK3/0bM7tbXT5vUJ5v21Vj99DmDKnjw/xeAUS/3ZE/ejVAWfk3rFhRwg+qhB04kHP36wNXC9yVcNq+yyw4HcaELcG8suZEnlno7Suq9cAM332Hadt2cHAwX8yC8BwQC2kFQRCEotOvH9KgQYz9Zw1t/dzxcjR/nRqheESnZ6l3RD2gfzcrK4wfT2Lp+LeY3Loq1dxL95srSZL4rkNNVt9JXC2+EMmYRhXNeo13t92Zdehq/i6HgmAWkgTe3urNwgJNairjdxxHMRhxtFMLf6ekqwlYfw8nBlQtQ98a5WlU3jlXswZJkhhR35cN12JYO2ok0nffodjaYrK3h+nToW7dEnl4xW7dOujdO+dLVxtLAFKzDDhYWTz0tPCUTCbtvphrW1q2kWF1fWjj546rjSV1yjjSqmIZ9g8aBPv3w7RpIoklCE9AzMASBEEQipQycyaZDk6M2nCmpEMRCiE06c7yqdLYQUowr7uzsIKejVlYFV3s8HFzBDs79ofEmr0WFiCKJwvPjnbtMB06hJKUDDt2kPLfD0n56BO1Rtbq1dzo+RLfXYyjyby9eM3Yych1J5m69xILToex+2YsNxLT+aVLHf6vnhevGGMYmHgD253b4e+/879eSAjs2IFka4v00kuwe3fu5Yc7dqhL4m7dyn3evHlq97+4uMc/JqMRYmKKZ1ljcnJO8qqDvzpbKtNoxOm7LTh/s4lVF3LP8lx5/ja9lh1m8Kpj+Pxv670dFSqAszMb9Jb0XXEU928385+N6uug3UOb8V3HmljPnoWuWVPz1BwThOeE+GssCIIgFC1XV4y/zGRr//4cvZ14bynaMyoyIYnl+w5y+mYoialpWOh02FtbUdbVhYqeHozo2AYri9yf0C7de4BFu/fnfN2xfm0m9O6eZ+zFu/ezZO+9ZQt1/SowfcTgXMdcDo/g3XkLc21b8/H/YWlRtH/SV1+MQGNtjezjU6TXEUoBa2uMg4ew4uefWNSnYUlHUyAv+Lrw+/koFEVh5YXbjG9ayWxjl3d1IGLoq2YbTxCKha0tdOig3u7Xpw/G2bNh/34iV61i4cEDcC4MY1x8ziGSJOHmaIufkw1Da5RjV0gcGefP573Ghx/C118DoACsXg2rV6OrVhXjb7Pg4EGYNEk99t130bRpg+zhkTsZZmmZe8yjR2HlSggLQxcaghR2C0N0tFp4fu1a6NWr8N+bR/nnn5y7e23LIFVyRF/JH6VNW6Tjxxm8dj277K1pVcENAJOisDM0gfT7lwrOnQuvvQaAASA0FGXpUmZPnEhVVzvebV6Z/2tRhVYV3Gj2+z5YtQoGDizaxyUI/xIigSUIgiAUvT590PlW4KcjN1jc99l4Q5yfyIQkJsxdQGrmvRkexuxsMrOziU1JJTgkjEGtW+RJYO06k/uF/4ELVxjbrRPWD75wf8DZkDBComPx8/TI2fbPkRNmeCRPZt2lSGadCIGZM/O+2RD+fZKS0P7xB0Nqe5V0JAX2UauqxGYa2HQ1muCYFLOO3bq8IysPHsBk1lEFoQTpdNC2LbRtS87cn8xMdZZUWBhKWBhxoaHEhYVxfNEiJBQ0ycnI94+hKGjnzc3/9yI+HoKD4ZNPcm2W9+7NfdyBA+DoqN7X62HKFKTvvsPT0ZbKzjacvJ1AhsGExsYa+cOJ0KWLOR79ow0ZArVrQ4UKGN3ccu1SsrIwde5M9+VH2PVyc3QaCZ1GYl3/xvx6/AarL0bC8OE5yascvr5qsi8hgfe+/47aZRzpXKkMTb1daetfhqApUzCdPg1Nm+ZauigIQl4igSUIgiAUPa0W4/i3WfH++3zXqRblHKxLOqKnsvbwsZzk1YDA5vRu1ggbS0tikpO5cjuSoPOX0Ghyr84/F3qLiIREACTUT6kzs7PZf+EyHevXeew1Nxw9ybieLwCQmJbO/guXzfqYHic8JZPhG84gvdgTZezYYr22UELOnsWUmMjQHjVKOpICq+hix9oBTUjPNmKly79ChsEkczwiiWbeLrnq/jxOez8Plm06pS4tcnIyV8iCULrY2EDVqurtfn/8gZKejqLV5t4uSZj+WY/Uri3aOnUwtmgJzZpBo0YYT56EffvQ1aiOMaChOmsqNhaiosDCQk3y3D+b9/hxdMOGwrVrTG1XnQZlnZiw8yIZBhPSsGHI06eDVzEl1LVaaNAg/31WVsjr1pHRsgWN5u7JtUuj0aBt0QLTtGkPH3v6dKTgs/RbvYeTowKp7GrPZ62r8sLiw2i++wZT7TrIgYFqp0hBEPIlamAJgiAIxWPkSGQrS2Ydv1nSkTy1iPiEnPuNq/jjZGeLpYUOb3c32terzZQh/XCwyZ2c23E6OOd+10YN7tt+7pHX8nRW3yjvPnuetDtJs83HT2M0mXL2FTWTrDB4zUnSHZ1R5v8h2nk/L1q0QOdbgd9PhZV0JE/MzlKHTpP/y9s3Np6hxfx9TN//ZLW9Ovh7qMuX9u0zR4iC8OyxswPrfD54atECRZ+F8fgJ+PlndfbS1asweDD89hveEaFISxYj/bUAhg2Dzz5TlxQ+kLySmjWjVkosK/o2ZH94Il0WH+KKX3U4ehTlr7+KL3lVEM7OGPfug+XL4dAhtTbXnDnIU6di2rPn0bFqtchLl5FZ3ptuy4+RkmWgta87GRO780ZDP+TTZ8DdHd55p9gejiA8a8QMLEEQBKF4ODsjDx/BL4v+5KPAqljptI8/p5TxcHLMuf/JwhU0rOJPDe/yVPfxokr5suge+IRan21g/3l1xpSFVsvwDq05fvU6MckpnAsJIzoxGU+X/JNRLWpUZW/wRRLS0th+6iw9mzZky4nTAHRv3ID52/cUzYO8z1f7r7A/NE4tyis+EX5+6HQY3/0/VkyYwNcdM6jgZFvSEZmFh50VAB/vukhrX/ecGjaPU9HZFi9XByK++w6laVMoU6YowxSEZ8uDH2x06wZr16Kd/AkhZ+98gLN+A3TsCG+9lff8JUvQomCjUej39zFwdoFx4zA1bQpXrqi30ur6dfVma6suE1yxokCnGV8fw/XJk6n12y6quNjhbmuJi7UFjcs7cywiCX76SX3cY8dCz55F/CAE4dkiEliCIAhC8Rk/noTffmPF+dsMq/fsdbN7sWkjdp05j8FkQm8wcODCZQ7cWdLnaGNDnxaN6d+qWc7ypIMXL5OZrRZ2bVjZH3sba1rWrMaaQ8dQgJ1nghnStlW+19JqNHRtVI/Few6w4dgpXOztiU9Nw8rCgs4B9Yo8gXXwVjyT916Gjz+GNm2K9FpCKTRyJNLkT/jp8HW+f+HxS12fBU28nHPur7oQUeAEliRJ/N61NoPXHSOlVi1Mf/4J3fM2YRAEATWh1asXpp49YeJENHPnoqSno61RF21E3o6DhstXMJpkjqeYkDp3QxvYBsnCEiLj8xm8dFISE8DOHqnANSItkUeMJmLfbiITE1CiE5EzM3MfsnkzUlwcikhgCUIuIoElCIIgFJ/q1dF06sT3x04wtK7PE9WhKQ38PD34ecwIFu3Zz8lrN3OSUwApmZks2LkPG0tLejZVC9Xfv0wwsHZ1AFrXrsGaQ8dy9g9u0/Kh34eujRqwPOgwUYlJzN68A4C2dWrmWaZobkn6bAasOYXUpAlMmVKk1xJKKXt7TG+8yaz/fc/kNtVxsrZ4/DmlXOPydzqgenqy+nosPyhKgZ+DXqjsyYUxbei06BAXhg1DTkh4/EmC8DzTaKBuXXT//Rjr2GS0rm6Qlfcwuc/LyOlpaD3KIllYgEy+xz0pRa8HS0ukhywpNhf9ob1kbl6LZb2G2L40tOAnelWCwfe6pSrZWcjJSegP7SX72EFo2RJl48YiiFgQnm0igSUIgiAUK/mddzjTvTsPAHZxAAAgAElEQVT7QuNp4+de0uE8sQpl3PloQG8MRiPXIqMJDglj0/HTxCarnc/2nbtIz6YNiUlKIThErSGkkSQ8HB25HhmNVqPB0daGlIxMopOSORd6izp++c9Gc7G3o1XNauwJvkDKnU9nezYJKNLHpygKYzacJcokYVq6VO1WJTyf+vYlY/p0zsem0MLn2V9C6uVog4eTHbFlyxJ25gyX4tKo4eFQ4PPtLXWEpOiRX/9PEUYpCP8ukk6H1tUN2259iu2a2ZfPEzukGwAun/8Pmy69kB4sQm8mad9/jruDPfFnT2L5xU/oynkXajythyd07Up21YqiaYQg5EMUcRcEQRCKV5cuaBsGMHLTWTIMxscfX4qk6+99LGyh01HDx4sBgc15/6V7U/zvJpp2nglGVhQAZEXh/T8WM372n4yf/ScpGfeWCtxf5D0/L96ZzQVQx9eHimWLtv7OH6fDWHE+HNO838HPr0ivJZRyN24AUNXNvoQDMZ/Gng7qLA/g6O3EJzo3PdtIWmYWtGhRFKHBnecLQRAKR8nS59xPnDyBiCb+pK9aTOr8XzBG3Mr3HFNczFNdy5SRRvfGAdjaWJO2cO5TjfEgyb7giXVBeN6IBJYgCIJQvDQaTIsWE5KSxQfbz5d0NE9k1qbtTF60gl1nzhOTlIzRZCIpLZ09wRdyjvH1UGeV7TpTsMd24MIV9PctRXxQNe/ydG/cgGbVqjCwdfPCPYDHuBSXyptbzsGoUdC/f5FeS3gGnD+Pq4Mt7rZWJR2JWcSmZ7EnLAElNRWAJl4uT3S+p7015Vwc4OhR8wc3ebK65EosTRSEp6Zk6Un+/nP0e7bhNmMBdgNeydmX9OVHpMz8lvg3hxHTuSEJE0aS/MNUbjf05XZDX6JeaEzqwjlPdD1jZDhydjauDnb0bhxA5tqlmBKfndpdgvAsEusCBEEQhOJXvTryt9/yy/jxvFitHJ0qPRtdvWRF4cS1m5y4djPf/VY6Hf0Dm3Mu9BYRCersDmc7Wxa8+0aeDoXvzv2Ly7f/n737jo6qzP84/p6STgKEnoQQQu9NQKqABQULKmIFd5W1d9R1dS1r+629V9YCLoogAhZAkd57Cy2QhAQCCUlIr1Pu749hgyhKm+TOJJ/XOTlMufc+n/GcODPfPM/3OURpRQXLd+zmgu5/3Cj7rpEXee9FnMCKtBw6Ngrnmm834oiL8+yAJLVbaiq2/0ykb1TNWcIyd28mJWUV0KkTzQ6n077h6c8sGxQVwYxVK3F5M9inn8Jzz3lub98OgwZ58+oiNVbus49QMvvEO/8VTfoQALvdjtPpme09qFN7dh/K5Jz4OJZsWEXR0gXHnVPw5gsEDzqfgLhWGA4HRVM/o3TuLJxpKRhOJ9aIutgaNsLeuj2hl44m584bAOjTtjUA01eupfirz4i46+GqeskitZ4KWCIiYo6778Y6axZjv1/DztvPo37Iqe7eY55R/XrTuF5dtqfu53B+AQUlpbhcLurXCaNTi+aMHtCXlk0b89bsuZXnDO3a6XfFK4CLenZld/ohwNPM/c8KWFVp1f4jDPxsGVaLBcNux5i7CMLCTMkiPuLQIexDh9CsrIiJ11bRcjkTnBsT6bmxZw8lFS7cBthOcx+JjKIyjJQt3g22Zg3R9cKIrRvC2pEjcP08H84917tjiNQw7tJSSn+Zc8LnPrx7PEEBdurXCeOd739iwRbPhirNGzbgsWuuAGDc+YPZnLyPf0+fXXle6IWXYo/29KQ88tjdlC3+6fgxc7Jw52Th2L0DW5Nmx84LCsRuszGiZ1e+//pz6vz1LqwhoV59vSLioQKWiIiYw2rFPWkS2Z07cdecrXx19TlmJzqpNlFNaRPV9KTH3X/FJdx/xSV/eszFvbpzca/uxz1249CB3Dh04Cll+fGZv5/ScSezJt2zZMmoUwfj22+hWzevXFf8VE4OtvOH0eBIFktu7k90RIjZibymbYM6xDeuS3J5OfnFpWw8lEfv01xGuD6zEPd5Q70brFkzyg346fq+XPDlajbeeAPOpGTvjiFSw5QtnItRXOS5Y7FU9pD757VX0rzRyTedCA8Jpm7or4tMFur937tYLBYqdm6rLF4FtOtE/RffwR7dHHfuERz79lK2+GfssfEEtWxNz2Bb5R+phnbtxKzV63EmJRLYufsJRhWRs6UeWCIiYp6YGFwPPsTX29OpcLnNTlMr5Zc5CWjSGCMnBy64wOw4YranniIsbR+LbzqXlvVr3ky8q1s3wpZ1GFtYKD8lnX7T5n7R9bHYvbSb2Ysvwrhx2CdPok6AjfCgACb0iceZnAIZGd4ZQ6QGKF26AMe+pOMeK/l++rE7v9oAYfXuPWc0hiUsDIvFMyXTmXqsgBzQoQsBca2wBARia9yU4D4Dqffos9hjYilP2cvIc44VqqIaeArizjQVoEWqigpYIiJiKsvGjXRtWo9Am96SzJBX5oCICDi6M5vUYi4X9m+mc2uXaNo3rJm7YF3erhmu3DxcQcHMSc4+7fMHN6+PdfkKcHuh4D5pEnzxBW3L8llwQ18A+sUcnRG2atXZX1/Ej5VvWV/ZYP3Ig7dw+Oph5D7wV9ylpTgPpVO+YXXlscN7diXQ7llYdLKNUX7N4FjhyxpRr/K2rWlU5e2SWVPJ+uuV5L/7MqWLf8aV5+lvWbpwHvXrRtCtZYvKY0ODgogID8e5L4mKbZtw5WSd2YsXkT+kbwsiImIqY+RIthzKZUGyPuiZIb/cgVH/9JZRSQ21ciXOw1mM7hh18mP9VL+YSLpERcKRI6zZn01hueO0zh8Y2wBXfj7s2HHyg/9MaiokJgKw6dZBxB+d7da8biiN64WpgCW1WsF7r5B9y9XHPfbIVZfhXLOc3HvHUjzzy+OKyBd070LvNvEAlRujnIq96See6RjYtReB3XtX3q/YupGiz97jyIS/kXFRL3Ie+huWoGBKysqx/KaPXnRkPQo/eZesv4wi+9rhOPbsPKUsInJqVMASERFzjR+PbfBgbvhuM3tyisxOU+vklztw1VMBS4AZM2hcN+xYs/MayGa1sOnWQXw7pg93n9PytGd+9o2uj9VqheXLzzxEVhbExQGw9C8Df5dhUFRdbCvO4voifqz0lx8p/PTdyvsf3HUrXz16H0O6duTFsWNwJWym6JN3jzvn759/RZvoY03Vf9mccNJxDMNg3uZtJ3zOYrXS8L3/Ej7+PmxHm7pXcrkoW/IzpQvmUF5ezuG8guOevqZ/H8YMPJcXxl1LTHAAOeOvoWLbppPmEZFTowKWiIiYy2rFNXUqOU2iGDB5JTuzCs1OVKvklLsw6tU7+YFSs7nd2KdPY0zbxlh/O6WghrFZLVzZIYq3L+lK0Gn2s1qTnovb7YYznbW4eTM0blx5d1CLhsc97TYMzo2uj7FhI5ziMiiRmqJ45lcc+ftdAPRu24q3bruZ2MYNiQj1bCbRoXk0DsfvZ02Gh4bSskljbFbPV9uEfWlk5uYDVC4tBCj/1bkl5RVkHsmtvG8JCjrumpbgYCLunEDT75bRZNZS6j3zGkH9z6t83pWWAsCh3NzjzuvbrjU3X3Ae3ePjePnm64gJC6Ho3ZdP/z+GiJyQClgiImK+Zs1wLV3GkZgW9PjPEv4+fzvZJeVmp6oVcitcoAKWrFuH8+AhRneMNjuJzyp3urhtbgK2/v3hmmtO7+TkZHjiCejRo/Kh1AcuOu6QnVmFNH79Z55Zsht3eTns3euN2CJ+wZGcSN7zj1XeP6d1PK1/s+tvUWnZCc/NLyri6SnTcR1dVmgAC7Z4Zlc1rhdReVxK5rGNG8KCg7i457Fddy2hxzatcJeWYLhclfftzVsQdtloGr4zGVvzuMrHAwICaPurmV+/FRYcRIeYZhiF+X94jIicHhWwRETENzRpgmvlKsoffYzXtqQT+/YCnlq0k7wyzUKoSrllDqhb1+wYYrY5c6gbFsLA2JNvP19bvbpyL8m5Rbg++gisJ/kIXV4OP/4I996LvVU8tGrl2XUQGNmmCfPH9ie2buhxp2SVlJNTVEpxhRN7u7bQtm1VvRQRn2FUlOMuzKdi68bKxwZ37sCFPbr87libzUrAKc6a/GVzAoZh0Kdt68rHNiXtY/KCpWxJTmXu+s0sSTjWn8qxcxt5Lz6OIymRiq0bybxyCIWfvEPFzm2eglZZGaVLF+A6fKjynKGd2xP6m5lbvxVkt0P5iQtvInL67Cc/REREpJrUrQvPPYfr/vspfeklXnj3Xd5cv4+/943nvr7xhAdppzxvK1QBSwDKy4kICcRmrdnLB8/U6gNHeHb5HowHHoTOnU96vOXWWzCmfEl0ZDiXtWzA8Gv7YLVYmLnrEJ9c3uOEyzQ7Njq682NsLM7PJ4FdH9Ol5nLlHqH4689xFxZQ8s0XWOod6713/eD+BJ1gZ9xVOxNxOD0zo1o1bcLbd/zl+Gu63fz1jQ/IKSwiMy+fhNT9dImL5ar+ffh25VoM4Otlq/h62fGbJHRoHk2v1vF8//N3HJ4xhYBW7XClp1Hw/qvw/qt/+BquOLf3Hz73P0EBAbhLijEMA0sNX54tUh30zigiIr6nYUN45RXcEyZQ+OKLPPXhh7y6bh9P9Ivnrt4tCQ3Q25c3GIZBUWm5lhAKBAZS4XSd/Dg/ZhgGzy/fw1MLdzB5VE/Gdos96TnLUrN5dvleftmbgb1zJ3j66ZMPlJUFX0/jpQs68Uj/1sd9ab283R8vN2oYGkT98BBy//pXOPfcU3pNIv7IKC8j76HxlG3dcOyx7GPL+8pP0OcKjm/OfsIZWlYr53fvwrSjBapfNm+jS1wst140lLbRzfhpwxaSDmVSVFZGUEAAzRs2YGCndlzetxcBdjujB/Rl1a5EZq7eQCJgCQyEkDBwuzBKirGE1SGgdXvcOVm0MiqIa9LopK+1dVRTKpavJu/JB6j39CtYAgJP9T+TiJyAvgGIiIjvatoU3n4b9yOPkPf88zz66Se8tCaFpwe05s5zWmq2yFmqcBk4XW7NwBIICqLC5T75cX7MYrGwMi0bgHGzNrI9q5B/X9Dpd8cZhsFPSYd5dvkeVqVmY+vYAb58Hec115zarKgvvsCGwa09WpzWjItJm9PIKyrT76PUeHnPPopz51b6tG3N2kRPrzeLxcLEe2+jaf26f/h78+LN15302jefP5ibzx/8u8cHdWrPoE7t//TcALuNwZ07MLhzB1IyDvPjuk0s2LYDS/M4Ij/5Bmt4XRwpezg8+gIuv/qyU3ilMKBjOx69+jJenjGLoMEXEnrRpad0nvyBigpITYU2bcxOIiZRDywREfF9zZvDRx9h7E4ke9Ro7vspgbGzNuJ01+wv3FWt5H8zbjQDSwIDK5fm1GRzb+xPyeOeL54vrdjDgYLSyufchsG3Ow/S45NlXDJlFWsbxcHs2bi2JcD115/ykj77Z59yVbtmNAg9vZkWb25IxRg+HO6//7TOE/En7tISSubN5sbB/Xlw1IjKx8/r2olmkfV8Zpldy6aNueey4bw5/iasB/eTM34MuS8+Tt6LTxBeJ4wBHU69R915XToSHh6OM2VPFSauBbZtw9arJ7RrB8uXm51GTKICloiI+I/4eJg0CePrr5m68yA3fLsBRw2fNVKV1hw44rkRE2NuEDFfUBAVTheGYZidpMqFBNhYdPMAAJq/8RMAeWUVdJ24lKunrSWhVWeYPx/X2rVw+eUnb9j+W04n9YNPf5GDw214/h93uuOJ+BFrSCiBUTHkFRURERrCtYP6MbBTBx65cqTZ0U6oReNGPH/D1XSmgsarFhKesptrB/Ql4DR71DVvUB9ninYWPWNTpmDt1Ys22emE2q3Yrh0DTqfZqcQEWkIoIiL+Z/RoDNt0vhkzBseM9UwffQ52fek7LcnZeUxJSIeHHoLu3c2OI2Zr354Kh5MfEjO47E/6NNUUQ+IacVvPOHKP7nL67+V72JlXCsuW4Ro48Kyu7ew/gKVzZ572eQXlTjjJjmYi/s5dXIRhtXEorwCAcSdY7udr2jeP5rmbrjmra8Q2qE/yPhWwztj+/bidTvbnlVDicGHJy4eCAoiMPPm5UqPo076IiPinK6/E+OorZu08yLLUHLPT+J0tB7KwNGsKL79sdhTxBRdeiPWCC7hn/g7KasFSQoCPLuvOtGv6cKCglDfWpuB++BE4y+IVAP37sysjj8LyEzeiPpEdWQXszymAIUPOfnwRH2U4HOT9/U6sWRmMHeqF3zU/EtMgkoq0fRhqfXBmHnsMduyg+MEJ8M03GDk5Kl7VUipgiYiI/7rM08tmX16JyUH8T2G5A3ezKLDZzI4ivsBiwf3uu+zPL+XVlbVnlsCy1Gz6T1qJq159ePhh71y0Xz8Mw2Btet4pn/J1Qjq2iHAYPtw7GUR8jGEY5L/4OOVrlvPkmFHEN21sdqRq1S4mCnd5GUf+ehXlm9eZHcc/tW8PL74IV18NwcFmpxGTqIAlIiL+KygIe+NGpOWXnvxYOU5BhVO7ncnx2rXDeOABnl+xh9QaXBROLygls6iMh39O4LxJKzjYvjOuVasgIsI7A7Rvjy0iglX/6zF3EoZh8N+dGbiuvEpLCKXGMYqLcezZSd7zj1H83TQevOISerSKMztWtesYG8ML466l2ZEMsm8dzZEJf8OxL8nsWCJ+Rz2wRETEv8XGkpafdUanljscLNq63cuBfN+hI7lkFxZDs5rf60hO01NP4fpiMg/O38631/Q2O02VGDx5Bck5RVgDAjBefhnXgw96dyai1Yr73L6sSNl2SodvycwnOSsfrrvOexlEzFJQAJMnw7Jl2BYuoCI7hwogMDCQIV06YrFYauX77v9c1bcnuw4cZMna5RwefT5B5/QjeOjFWMM9BXSjrAyCfGh2UUkJBAR4fkR8gApYIiLi15zNYzmw7cBpnxeGA4wiqKiCUD7M5TZYtHkbNGgI559vdhzxNeHhOF9/g5k33sgvyS24IL7mLfMpc3p60Lg3bYJOnapggDKs6ekUOk+t183XCenY69fDqd9H8WfZ2fDWW9jefgtLcQm9YyKpW9dGg+ataFivLpGhwVgsFqjINTup6fo2CaVnw26sTT3E4i3rKNi8DtsNN2Pr1BmCgnEF+dBX9CuvhJ9/hg0boGdPs9OIqIAlIiJ+LjycfMfpNUUNCbDRBBdQO5pV/9r3iRkczC+CpydoCaGc2PXXY3v/fe78KYHttzUk0FazOk60bVCHgwOHVk3xCuDBB7EmJvL+rYNOeuj/lg86R1+nGQ7iPwwDpk7F/o/HMJo2w9WjB9ZJnxPocnFXz1ge6tea6IgQvt15kFLH/95ny02N7HMCoF27BlzVsi6vr0lmz5L5OC8ccuz5kBDToh3nhhs8BaxeveDjj2H8eLBYzE4ltZgKWCIi4t/q1KHIcXqFqKs6RFVRGN+2I6uAv3y/GSZMgKefNjuO+CqLBdd775HUsyfvrEliQv82ZifyqqvbNWXJ3LkY27ZBly7evfj06fDhh7wzshtdm5y8QLzuYB4HjhRq+aD4j127sN55J+7FixnRPoojmcnsmLKNe3q34N6+8TQMPdbHrba+156uhmFBXD1trWeGU4cOZsc53s03Q2Kip3n6bbdhWbwY46OPoE4ds5NJLVWz/qQmIiK1T506nobk8qcMw2Dcd1ugZUt49lmz44iv69YN4847eWrZHg4Vlpmdxqtu6xVHi8g6WP/+qHcvXFSEbfytjOkUw2294k7plK8TDmBv1BDOO8+7WUS8raQEHn8cS5cuNN+2gbk39mP2tX1YdvMAch66iH8N7XBc8UpO3cg2TYgIDYYvvjA7yok9+yzWIUMAML78ElvnzpCQYGokqb1UwBIREf+WlETT0ECzU/i8wgonGw7k4HzkUd9ZmiC+7bnnKA+tw6O/7DA7iVcF2qy8MrQd7rnzYOFC71146VJcBYU8O6Sdp9fPSbgNgyk7M3COuda7TeRFvMXlgjfegGXLsLdvR8Crr/D0gNbsumMIF7duYna6GiPIbuP6Dk2xT54E7tNriVAtbDbcU6diGT0aAFdqqmf26nvvmRxMaiMVsERExH85ndjmz2dEywZmJ/FpBwpKeWDe0b+WlpSYG0b8R/36uF56if9uTWNFWo7Zabzq6g5RnNO8AbZ/POa9iy5YQJN6dWjb4NSW1qzcf4TM/GItHxTftXo1PPQQDB5Mi9ICdtwxhKeHtCfYroKrt43r1hxn+kHo3x/LgAGwZAmUlpod65gmTTCmT4edO+GaazyP3XOP5w9ihmFuNqlVVMASERH/tW4droIChrfSX4J/Laekgunb0zEMgzUHjtDq3QVMTiuEt9+Gu+4yO574k1tuwdazB/f/stPsJF5lsVgY1boxlqQk71103z5aRgSf0uwrOLp8sFlT6N/fexlEvGnFisqbzw5uQ+tI9T2qKv1iIj031qzBWLkShgyBO+4wNdMJtW8P06ZBSgqEh0NZmZq6S7VSE3cREfFfP/9MeGgQvaPrmZ3EVE63m38u3MmaQ/l0jAzj/fUpAPRoWheH28AVEoorJQUiIkxOKn7HasX1t9vYdPfduNwGNmvN+aLicLuxeHPnvwsuYN3sWeSVVVAv+M+XNbvcBl/tysQ5/naw6u/J4pssy5ZybmxD7usdxzUdo82OU6NZLBbm3NCP++ZtpUXdUBakZEFBgdmx/lhcnCefLy55lBpNBSwREfFbtrlzuCiuIfZa/AWwuMLJmBkbmJt0GOOSS1iRtBdb58646tZlU2QkOByeGR4qXsmZatECt9vNwcJSmtcNNTuN1zhcBnizgDVyJK677uLnpCzGdPrzL/tLUrPJKSzR8kHxXW431uUrGN6tKdd1jjE7Ta1wSZsm7GlzIQD9P1/BquBgkxOdglr8+UvMoQKWiIj4r4QE+vRraXaKarctM59VB3LJLiln+u5MtuWVYfz4IwwfjsPscFLzxMYCkJZfswpYFS43BHpxA4jYWOydO/FDYsZJC1hfJ6RjbxGLs3dv740v4k27duHKy2NgbCezk9RK5zaLYNXUqVjKyzCefwE6djQ7kohPUMlURET8ljUyktzSCrNjVJtSh4tH5yfQ7ePF3D5nK09vziChcSyupctg+HCz40lN1bw54Clg1RSF5Q42Z+Z7t4AFOC+/gu+SsnG5/7ipscPl5uvdGTivu169Y8R3rViB1Wqlb0x9s5PUSq9c2JlJo3oSvWSBZ8e/H34wO5KIT1ABS0RE/JYRFcWhojKzY1SLVfuP0OnjJby2Pg3jhRehrAxnzhGcGzdBz55mx5OaLCICW0QEafn+v4OlYRjM2JFOmw8Ws/BQIY7H/uHdAS69lPziUlYfOPKHhyxIySK/uAyuvda7Y4t406ZNxEbWoU6gFuyYwWa1MK5bLEl3DWVkmybYxo6F/fvNjiViOhWwRETEbzmjY0gvqvkzsLZl5nP+lFWkxbfHvWULPPaYd3v3iJyEtXmM38/ASsktZsRXaxg9fR2HBw/FvXMXjBvn3UH69MHeIJLPN6fh/E1z4zKni2Wp2by2ai/21q2ge3fvji3iTUOGsC+7gC0Z+WYnqdUCbVYmX9GDxjixjRnj6WspUouppC4iIv6rWTPSV9XcD3M/JGbw6so97C0op6JtO1wLF0JYmNmxpBZyxLVkX+IGs2OckQqXm1dX7uFfy/bgbtwYZs3CuOKKqhnMZsN5733855lnWHggj791jSavzMGi/blsPJiL0+nCVicM13uvavmg+LZRoyAggLfWJPHpFZrla6bIkEC+uaoHgz5fAU8+Cf/+t9mRREyjGVgiIuK/MjIIs9fct7Jvdx5kSWoO6blFuL77XsUrMU+LFiT74WzHJfuy6fzxEv65JJGK+x/AuWs3VFXx6n+efhrWr2dfn4E8vmQ3ryUVsPbcYTjfeBM2bcKVl+/9mV8i3jZ1KjgcfLY5jcPF5WanqfX6N2/A/w3rAC+9BPPmmR1HxDSagSUiIv6pogLbT/O4ones2UmqTPuG4Z5ZGmvWQFyc2XGkNmvRggN5xWanOC27swsZMmm5587cuXDxxdU3eK9euH/4AYqKcIaFabaV+JeCAvjxx8q7t8zeyA839DMxkAA83L81c5OyWP7Iwzir8/9nIj6k5v7ZWkREarYlS3AVFXNZ26ZmJ6kyb6zfBzfcAL17mx1Farv4eIpKy0k4XGB2klPWKjKMusFHe8WFh5sTok4dFa/E/+TmwrRplXd/3JNpYhj5H6vFQlzdYAgNNTuKiGlUwBIREf/03Xc0q1+Hrk0izE5SZc6PjcS+Yjn8phm0SLW77DJsreK5Y+42DMMwO80psVutPNq/tedO377mhhHxJy1aVO6S2TcmkkMTNNvHVyTll+GMb2V2DBHTaAmhiIj4H8PAPnsWV7VuhMWE2Q3bDxdwz9ytLE/LISIogPrBAdQPCaBesOcnrm4ozwxpT9hZbj9+W88WTPl8uWcJYT8t3xATBQXh+uBDVlx0EVO2HeCmrs3NTnRKlu3PxXrhBbjt+sgrclreew/bvHl0aRRO0zrBZqeRo5ILyjwFRpFaSjOwRETE/yQk4Nx/wJTlg27DoPMHC1m8Lxun2+BIaQVJucWsP5jHL8lZfLPjIK+u2ovTffazVEocLs+NRo3O+loiZ+3CC7GMHs0Dv+wkr8z3G7q7DYPlB3JxDz7P7Cgi/qdBA1zPP88nm9PYeCjP7DRyVNPQQKzr1pkdQ8Q0+nOUiIj4n+++IyQokCFxDat96Clb9wNwRbumPDOkPXarFZvFgs1qwW61YAEMONZ75yysOZCLrV49XK20XEB8g/HGG+S2+5GnFu3i7Uu6mh3nT20/XEBRaTkMHGh2FBH/dMcd2N5/j3t+SmDFzQNMmfEsx3u4TxzXz1gImzZBjx5mxxGpdpqBJSIifsc2exYXxzckyG6r9rHHzdoIwBdX9qJ703p0bhxBh0bhtG1Qh/j6YbSsH0yIVTIAACAASURBVEZ8/TCvjLUiPRd33z5qAi2+IyYG97PP8e76FJ+flbE0NQeL3QZ9+pgdRcQ/2e04336HVanZTN9x0Ow0AozuGEVMZDiWV14xO4qIKVTAEhER/5KRgWv9Bq4wYfmg81fN1MODzn6G1Z+N8+C8bczfm4lx+RVVNo7IGbnvPqzt2nH73G24fbSh++xdh3hk4S6s55+vHbtEzsYFF2C5/DIeXLCTEofT7DS1nt1q5W9do2HGN+Cj//8VqUoqYImIiH85eBAMg1aR3pnldDru+GELAP8+v2OVjVFU4eSiL9fw1vp98O67cOedVTaWyBkJCMD14Ues35/Dp5tSzU5zHMMweG7JLkZ9vYayESNwfTPD7Egifs94/Q0yisr5eMM+s6MIkJpXgq1tW83OllpJBSwREfEvXbpgDQlm5f4j1T70J0e/rD/cv02VjfHM4l0sSc/H+PlnuPtufUAV3zR4MJabbuLhhbvILik3O02lfy3ZxVOLd8G//oXxzQyoU8fsSCL+r1UrrD17sCkj3+wkAixKz8d53hCzY4iYQgUsERHxLwEB0Lkzq9NzTYtgs3qvqJSSW8yN364nJbeYHVkFvLk2GfeTT8KwYV4bQ6QqGK++SpEtgH/8ssPsKACsTc/luWV74Omn4amnwKqPuSLe4mzdhj15ZWbHqPUyi8pIycrX5hRSa+mdXURE/MvixbjXrefClo3MTuIV+eUOvtx2gPi359Pp/YVYWrSACRPMjiVyck2a4Hrx//jPplRWH6j+GZG/VupwccPszVi6d4MnnjA1i0iNFB/P3rwSs1PUesvTcjw3Bg0yN4iISVTAEhERv2J9/nl6Rkdy+zlx1Tpuhct98oPOwIzf7OzkfPc9CAqqkrFEvO6OO7B178Ztc7cdt8lBdfvHgu2kFJTh+u8UzyxNEfGubt3Iyi82vVhd2y1PO0JAbCxER5sdRcQUKmCJiIhfsTgctI8MxVqNvaFcboOg578DYEK/1l677pSt+3l+WWLlfcs558All3jt+iJVzmbD9eFHbDuUxwfrUkyJ8EvyYd5ak4z73/+GDh1MySBS440aha1rF+79eTuGdr8zhdPt5vvkbBznnWd2FBHT2M0OICIicjrcoaGUHnZV33iGgf252QD0i4nk1Ys6e+W6q/Yf4aaZG457zJihHdPED/XtC+PH84//TuKaTtE0rRNcLcMahsF/NqZyz08JWIcNw33ffdUyrkitZLPheutt1g8dylcJB7ihS3NT47jcBqn5JezMKmRXdiE7s4vYllNMSn4p/aPqcl3HKC5t25Q6gTXn6+7ba5JJyi6Ae+81O4qIaWrOb7SIiNQKRkgIpc7qW6o07miRqU6gnRW3eK/nxHWzNx27ExkJSUlQr57Xri9Srf7v/yidPJmvth3gQS/OUvwjRRVO7vhxC1O27ofbboO33lLTdpGqNmQIlitHMWHhfEZ3jCbQVvW/c6UOF4k5RUeLVEcLVUdKScouoMLhBMAaEoy1XTucgwZCTAw/LPiF2TPWExRo59LWTbi2YxQj2jQhzI+LWal5JTyxeLdnd+Levc2OI2Ia//0tFhGR2ikkhGJX9S1fWLHf0+8j7YGLsHhp2eK+vGLScgo9d3r0gPXr9eVb/FuDBtjatGZ3TlGVD7X9cAFXzthAUlEFTJkCN9xQ5WOKiIdxzRgyZs6iqMJJZEhglYyRnFvM++tSmJZ4mANHCiuXLNobNsDdoSPuQZ2gfXvPkuH27XHHxOD+1XuoCyAlhfLp05k99StmfLOO4MAALm/ThL90a84lbZr86fiLUrI4L65htbYqOJlXVu6hrMIBzzxjdhQRU6mAJSIi/iU4mJIqaqh+Inf0iuOxBTuYvfsQf+newivXXLwv23Njwwbo2dMr1xQx1ddf405LIzs6vEqHmbwljdvnbMPRqhXuJTM9X2JFpPqkpBAeGuz14pXbMJifdJi31qUwb08m1ogIXDeN9fyR52ihyhkZeeoXbNkSHn0U56OPQlISZdOnM2Pix0z7chWlT1xGsN12wtNS80oYNnkFTw5ux7NDfaOn3sHCUj7dnAY2G5SVmR1HxFT6c6+IiPiXal5CeEsPT9Hq/d80qH5x2W5eW7nntK/nNgym7TiIvWsXFa+kxrC9/DLxAQbvj+xWJdcvdbi49btN3DxrI2XX34Br/QYVr0TMsHcv8ZFhXr1kudPFwMkruXjKKn4OaogxcSKugwfh3Xfh1luhf3/PUvsz1aoVPPYYrjHXAnDNN+tJyS0+4aFbMvMBmL370JmP50XL03LoOnEZjoaNYOVK7T4otZ4KWCIi4l+Cg6u1gNUoLIiezer+bvfBJxbu5OH520/rWoZhcM+crczdexjnP5/0ZkwRU7nGjCG1oIwgL/fEyS9zMH17Oud8tpzPd2bCp5/C559DaKhXxxGRk1i7Flvvc+Czz+jXxLszLR+Yt401B/Nh3jxcW7Z6ilZV8Tv+5JPw4YfMLYC//rDluN0UDcPgrdVJjJq2FoA6QVWzPPJ0TN+ezpDJK8jt1hPnps3Qp4/ZkURMpyWEIiLiVyzJyYQHVO/fXzbcNvSsr2EYBhN+TuCD9SnwySdwzTVeSCbiI266CcfjjzN5SxpjOkXT5E92IswpqeC73YcorHDSrE4wUeHBNAsPplmdYILtVhJzivghMYPv9maxIi0bl8uNvWcP3D9Ngi5dqvFFiUilRYswNmzkv1f24qoOUSc9vKDcwZurkzhY+Pslb7/uLFVQ4eTLbQfg449h+HAvBj6B0FC4/XZc0dEsuewyvk/M4PJ2zahwublnzhYmbkyF88/HunIlsfXMLZI73W4eWLAT14iRMGMGBASYmkfEV6iAJSIi/mPfPpg9mzsu9p0vsc8t2cVjA9sScJKZJ/9cuJM3Vid5lkTccks1pROpJtHRWIYN4755v3D/Twnc27slzw7tQN1gz5euI6UVzNp1iK92HGJh8mEMwGK3466oOO4yIUGBlJZXYA0KgmFDcT98GYwcibOFd/rPicgZatMGt2FwTlQ9QgJO3D8KPH+smbY9nXvn7yDH4cZ6dKmv5dgBx59gAx4fC+PHV0nsExo5EuuwYTzwy3p6R9VnzLcbWHEgFz79FPurr+AsLWXmjgOs7h3HuTFnsXTxLHy78xAHc4vguedqZvGqpAS+/x5at4ZevcxOI35EBSwREfEfb79NeHAg47o1NzWGYRg0rRdGRl4xTy3exb9XJzOsRQOGxzfiwvhGBNttJOcWk5JXQnJuMVszC/g+MQNee82zBbZIDeR+5hlo0QKjZUveffEFvtyVwQO9WrDsQC6/JB/G5TawDRqE+6Gn4KqrMBo3htxcOHQIDh6EQ4cozciAjh1xDxumZYIivqRfP2yR9en84WJu7BLNI/1a06lxxHGHJOYUcdfcbSxIysQy6gqMt9/B3dzc9+sTslhwp6SQkl1A1OvzsEVGYixaBB07wsMTACh3urlh9ma2/W0wYYHV/5X51TXJWM87D3e3qukraLoZM2DcOM/tlSuhXz9z84jfUAFLRET8Q2Ehtv9M5M4ezU35MPlrFouFtX8ZwO1ztjI3MYOSsgrmEMGPv+zAcDh/fSABTZvibtUKHngK7rzTvNAiVW3AAM8P4B43jpwH7uefM2dhGzgQ1/3/hKuvxtW06fHnREZ6fjp1MiGwiJyyZs1wpeyDiROZ8vprTPpgIQNaNKR5eBDhgXZcboPJCekQFQU//IAxcqTZif/cAw/A/fcD4Bo2DNq1gwYNqHwHb9OGlD17WLn/CBe2alyt0Y6UVrBufw60qtZhq9eYMccKWP37w1NPwaBBcMEF5uYSn6cCloiI+IfPPoOSEu7pE292EgCa1w3lx+v6MjUhnbt+SqAwLAz3kVxYvtxzQHw8tGiBIyjI3KAiZmjeHGPGt+Bw4KqJy19EaqOICJgwAed998HUqayYORNrbi7WggIspUU4H/07PPGEf8yevO8+uP12mDoVOneGRYsqn7JFReHOOkxIgI2EwwX0jq5HveDqa+o+NeEAAJau3TBOcqzfCgqCzZuhe3fP/Wef9fybmgqxseblEp+nApaIiPg+lwv7G68zukMUMREhZqepZLFYuL5LDG+s38e6uDioUwcuvtjsWCK+Q8UrkZonIADGjoWxY3ED1bcvsJcFBcHNN3tud+sGmzZBq1a4cnOhZUtK3G4mLNzJS2tS+OqK7gxt2ajKI63cn8Pdc7bC/fdjvP56lY9nqm7d4OWX4dFHCQ2wUeJwQX6+2anEx1XvNk4iIiJn4vvvce5L5cFzfXM+/ZGSCmw/zYOa/mFTRESkJrLbPbOBwsM9M4CysqCsDCMpmUy3lWGTV5CaV1LlMXZkFYLFAq++CtZa8FX9oYcAPMUrgK5dIT3dxEDi62rBb4WIiPg762uv0Te2IX2i65sd5YTW3TKQv7RtBBMmwIEDZscRERGRsxEZ6ZmhFRsLb78NQHJucZUPe6iwDHuDSE9BrTaw2WDHjuMfe+EFTxFv2zZzMolPUwFLRER82/z5uJcv5+G+Lc1O8ofqhwRyTccoz52MDHPDiIiIiPcc3SHPYqn6oTKKyrE0aVL1A/mSDh1g4sRj9z/4wPPvLbeYk0d8mgpYIiLisyzjx8NFF9GpWX1GtW9mdpw/VFju4I6ftmPr2cPT00FERERqhhYtsIaE8OrqZCpc3u/4ZRgG2SXlrNyfw6aMfJzRMV4fw+eNH//7x9av9yzl/LUNGzy9ytx+23lNzlItmZsoIiL+yMjOpmuzemwYPwi7D/eCuGfuNtJKHLinfq2m1SIiIjVJcDDub75h7qhRXPPNer4ZfQ4Btj//TGIYBt/sOEhkSCDnx/+++ft/t+5n7MwNtIisw5EyJ4UlZceeHN/f26/AP2RlYWvditvaNGB0xygu/nI17vMG4xo7DoYOxfL66xjTpwNg69Ed18ZNJgcWM/jutwEREZFBg9idU4Tho/tI784u5NbZG5m8JQ33+x9AmzZmRxIRERFvGzEC97ff8n3SYZq8OZ8bv13P5C1pZBSV/e7QwnIHo6evY8w367jgixU8u2QXxtEPMgXlDh76aRtjZ24AIJVACp94EqZPhy1boLgYnn66Wl+az2jQAEtUFLllDoa1bMT8G/txlbWQ4Geehn79iJz3I5NH9aRTk7oY9XyzJ6pUPc3AEhER3zVgAOUVTjZl5FdbA/eiCicF5Q6a1QnG8quGF2VOFzuzCtmaWcC2wwWsz8hn6b5sbI0awptvwrhx1ZJPRERETHDppRhr15E7bRrT5s7hy1kbAegcVZ+RLRsyvFVjwgLtXDdrEynZBZWnPb14F5e1bcp3uzN4dW0KReUOT/Py2bNh5EizXo3v2bQJ585djL3hXADOi2vIeXENKXE4WX0gl57N6pJVXMH2zI3w+gmWHEqtoAKWiIj4rp49sQYFsSItp9oKWA/M28Ynm1KpHx5Cr8YR1AuysSm7hJTsAtxHey4ExDbH0e1c+OconDfe6NmpSERERGq27t2he3ecL74ImZkwfz4J8+ax66d5vLRiDwC2bl1h5TfQujWsWIHtumvp+fFiz/njx3tmWMXUwj5Xf8Qw4OefsT34IJERoVzUqvFxT4cG2OnWpC5p+aW8syYZW0QEriuvNCmsmE0FLBER8V2BgdC7N8v2J/Ngv+oZsszpAiD3nHNZUKcO1vx8XMO6Qpcu0LUrdOqEIzy8esKIiIiIb2rSBG66CW66Cafb7VkCuHs3rlGjIDjYc8zAgbiSU+DDD2H5cnj/ffXK/K1nnoFnnyWuQTjTruvzu56nPyZmcPnXa3C7j/aTeOwxCAmp/pziE1TAEhER32UYWMrLKXBU324zZc6jYz38MMaIEbiqbWQRERHxS1Yr9Ojh+fmtwEC47z7Pj/ze+edj/3IKSXuT+NfSRJ4f0o4uTeoC4HIbPLRwFwwYAC+/4ikaxsWZm1dMpSbuIiLiuxYuxLVuHQ/1iau2IUucLhg1CkaMqLYxRURERGqlwYNx7twFkybxY4mNcz9bXtn0/r9b95OYmYf71dfg3HOhZUv4VX9SqX1UwBIREZ9l/de/6BYdySWtm3j1uhUuNzklFSd8rtDphtBQr44nIiIitYjDAatWQWnpHx/jq1ssV4eVK6FuXZg3z3Pfbodx43DdcishQYFYLBbKnS6eWJqIZdQV0KePuXnFZ6iAJSIivmnZMtzLlvGvgW2O2w3QG15ankijV+cy7L+r+GJLGmn5JcxPOsxrK/eQmF0EYWFeHU9ERERqkV9+gf79sUZGYrnicvjsM8jKArcbli2De+/FHtUM61VXmZ20erlc2K643LMksKAAvv0WXC6YORM+/RSSkoiJ8PQP+3jDPg7ml2C88KLJocWXqAeWiIj4pp07Ac9M8R1ZBRgGbDyUx01dm591QSuzuBxLwwYsjWrLolnLKh+3hYZg6dwZatsHShEREfGeo03c7+kaxerNq1j3/Q8YgK1ePVy5uTSuG0aLsAA2/jLfU9Sy1pJ5JRMn4vrue94b0ZV3N6SROGsmrokTjzukWevGfJ1wgKeW7cEYOxY6djQprPgiFbBERMQ3jR8Pt9/OFVPXHPfwqPbNCA86ux18ypxurC3icC5dCvv2wdat0LEjrvj42vMhUkRERKpGq1ZY7DYqXG5W/2UAh4vL+SExg6TcEka26Uy/5pHMTzrMxVNWQVIStGljduKql5mJ7bG/c3OPFtzVO55L2zbljh+30CQ6ls83p1UeNm/vYebtPYx1+EXw73+bGFh8kT6li4iIb7JY4JxzPLfr1QPgus7RZ128Aih3uXAXFkB+PqxYAYsWgYpXIiIi4g2xsRgffsSHG/bx8M8JNKkTzK0943jx/I4MiG2A1WLB/b8WWF99ZWrU6mKZMIFwZwUvX9AJgNi6ocy5oR/39Ymnfp0Q7F06Q3ExTJ4Mq1fjnvcTNG1qcmrxNfqkLiIivsligXXrPE1OjzZVn5qQ7pVLX9MxGvfuRE9h7Kab4M03PYUsEREREW+46SYAXl+dxM6swt89vTkj33OjdevqTGWORYswpkzh9fM70CA0sPLhJfuyGfTFSgradcS5cJHn897YsdC3r4lhxZdpCaGIiPi+I0cAiIkI8crl8socv38wMREGDfLK9UVERKSWCwrC2qwp7kMZhAbYADAMg56fLKNRaCBBFoOAzp1w3HCDyUGrWHk59ttvo3eLhtzcPbby4e92H2L0jA24Bg7CPXs2hIebGFL8hWZgiYiIb8vNxeJw8N6IrqQ9cJFXLjmqfTNa1P1VMezbb+GWW7xybREREREA9+Il2KOjGPTFKr7ctp/laTlsTj/CgpxyfkjMxNGps9kRq9aWLVgvvBAjOZmPR3TFenQTnh1ZBVw5bR3OSy/FPXeuildyyjQDS0REfNuOHRguFxFBAWe9+yBAal4JQ6asZn+ZG15/He67D2w2LwQVERER+ZW2bXGuWMmhkSO48dsNBNis2KOjcO7cBe+8A4MHm52wamRmwj//CZ98QnyjCN6//lw6NAzH8q9ZAPx9QBvcbje88CIEBZkcVvyJClgiIuLbgoIgKIh/LNrFTV2bn/Xlpu9IJ624AveWLdCunRcCioiIiPyBFi1wbkuA1atxfPUVDBjgmXH0+ONmJ/Mew4BPPsE2eTLWwgLce/YQZrh5fnhn7jinJXarhb9+v7ny8JdW7PHcuPBCOHDApNDij1TAEhER3/bmm1BeTkyjUHJKKo5r/nkmEnOKsLZrh1vFKxEREakOFgv06+f5qWkqKuCee2DiRIa3aUJMeAjRvWO5u3d85We2hMMFTNqU6mls73BA+/bQsSP06mVyePE3KmCJiIhve+klWLSI1QcOsjQ1mys7RJ3xpbKKy1mfWYhzUA38ACkiIiJSnTIzsV15JZZ1a/no8h7c0qPFCQ/7bvchbGGhuP7zHy0ZlLOiApaIiPiuxESs5/bFnZvH6xd1PqPiVcLhAt5cncSi9DySDx/dsrp/fy8HFREREalFUlIgPp564SF8P24A/ZpH/uGh3+7Jwj38YhWv5KypgCUiIr7F4QC3G+x2WLAAd24eAK+t2suD/Vqf1qX25RVz3n9XkV+vIa7RN8LAgZ7eE7GxJz9ZRERERE7sxRcB6NGozp8WrzKKytiwPxuev6K6kkkNpgKWiIj4jiVLYMiQEz61/JZBp3Wpogonw6euo6BBY1xr10GjRl4IKCIiIiLWPXuoFxLAbT3jSM4tJr5+2O+O2ZlVyMPzt4PVCiNGmJBSahoVsERExHe43Sd8+JtrehNX7/cfjP5MZlE5SdkFuMZcAg0beiOdiIiIiACWzAyOlDoY8806ALpFR/K3rjFc1zmGbYfzeW99Kt/tycTduDFMmaLPYuIVKmCJiIhvOP98WLjwuIfqBNpp3TCCq86g91WryDA+vaw7N3/1FbRrB08/7a2kIiIiIrWaa9ZsSE2FsDDIyGDr5EncO2cO987bhmEY2Nu1xfn8C3Dffep9JV6jApaIiPiGuDjPv3Y79i6dce3YwfBWjfjqql5YLJYzuuS4brGk5Zfy5DPPYP/gfVy9zsG47DK44w7v5RYRERGpbdq18/wcZVx9NRw+DDNnQuvWOIcNgzP8/CbyR6xmBxAREQHgk08gKwuKinBu2oxRXsGMHemkF5ae1WWfGNSWH64/l0fb1KPThhXYHnnYS4FFREREpFLjxnD77Z5Z9SpeSRVQAUtERHxHw4bw6afHPdTyrfl8v/vQGV/SYrEwsm1TnhvWgX7R9bBoGruIiIiIiN9RAUtERHzLhRf+7qHPNqed1SUTDhfQ//MVTNyYinP8+LO6loiIiIiIVD8VsERExLe0bu1p+HnUJa2b8O6Irmd0qRKHk3/8sp3uHy9mQ1A9WLQI/v2St5KKiIiIiEg1UQFLRER8zyWXADC6YxRzbuxHVHjIaV8ir6yCTh8v5eV1qbiefgbntgQYMsTLQUVEREREpDpoF0IREfE9EycC8M2OgxwqLKNZePBpX2La9oOkHinC2LoVOnXydkIREREREalGKmCJiIjviY+vvPnKyj28PrzLKZ3mdLsJeO47BrdoQKkbLMOGYah4JSIiIiLi91TAEhER37JhA7z6auXdYS0bnfKpdqtnZfzS1BzPA2/f7dVoIiIiIiJiDvXAEhER39KkyXF3L/tqNQmHC07p1I837MNqtUJEBCQmwqhRVZFQRERERESqmQpYIiLiW2JiIDX1uId+TMwgu6T8T097Yelubv9hM+477oCcHGjTpipTioiIiIhINVIBS0REfE90NFx1VeXdxxbs4Ist+//wcMMw+OeinZ47110Hdq2QFxERERGpSVTAEhER32Oz/W7530M/J/DU/4pUv7E9q/DYncGDIS+vKtOJiIiIiEg1UwFLRER805gxv3so0Hbit60Aq4WrO0Rhs1gAsF55JTgcVRpPRERERESqj9ZYiIiIbwoKwh5ZH+eR3MqHpiceZlZSFjFhgbw9vDMfrd/HpIR00vOKsdjtGJGRWIqKcK9YAWlp0KqViS9ARERERES8RQUsERHxXVFR8KsC1tYRV0FxMRu+/JLZOw9iCQrEKK/AarUQXTeUtvXs7HYHcKhJNK7f7GYoIiIiIiL+S0sIRUTEZzmXLMVy+22eO3fcARMnwpdfVj5vXDICm83K2C4xjG7TiMcHtOan6/sQkJKM5W9/A8MwKbmIiIiIiHiTClgiIuK7IiMxPvzIU4jq1On3z995J+4LLmTSzkzeWJ3Ed7sP0bFRBJ9f2g1j6lT4+99h375qjy0iIiIiIt6lApaIiPiHe+6B7Gx48EHsLeOgfTsYPhwjNBQqKggLsHFfX0/Pq2s7x/DU4HbYX38dWrbE3qUzPPkkrFsHbrepL0NERERERE6fClgiIuI/LBb4/nucKftg127PYzNnAlDscNHq7fm8tToJgH8N7UDOIxczbXRvrrPmE/H6q9CnD/aoZnDbbZCcbNKLEBERERGR06Um7iIi4j+Sk2Hv3j895IGftvHOpv00DAmgcZCNBqGBpBeU0Sw0gIKSMpyZh+E//4F+/SA+vpqCi4iIiIjI2VABS0RE/Mc553j6YRkGFBbCkSOQk+P5NyMDcnOhoICknBySjj5nz84ibFgHChJ2wr0joX9/6NMHIiLMfjUiIiIiInKKVMASERH/Y7F4ClARERAX96eHOoH8agklIiIiIiJVRT2wRERERERERETEp6mAJSIiIiIiIiIiPk0FLBERERERERER8WkqYImIiIiIiIiIiE9TAUtERERERERERHyaClgiIiIiIiIiIuLTVMASERERERERERGfpgKWiIiIiIiIiIj4NBWwRERERERERETEp6mAJSIiIiIiIiIiPk0FLBERERERERER8WkqYImIiIiIiIiIiE9TAUtERERERERERHyaClgiIiIiIiIiIuLTVMASERERERERERGfpgKWiIiIiIiIiIj4NBWwRERERERERETEp6mAJSIiIiIiIiIiPk0FLBERkTNlGLBnD/z3v7Bpk9lpRERERERqLLvZAURERPxGcTGsWwerVmFZsRzjxznHP//MM/D006ZEExERERGpyVTAEhER+SNlZTBzJqxYgX35MlwJ2zFcLsJCgiguLf/d4ZaZMzFUwBIRERER8ToVsERERH7L5YIpU7A/8TjOA+m0bFSXLpEhZDaNICzQxt2947l1zjbyh13oKVg1aQKNGmEEBpqdXERERESkRlIBS0RE5H8MA+bMwfboI7h27OSyjtFcN7o3k7cdYM7ewzjdbuxNGrNw2lps9etjTJwIjRubnVpEREREpMZTAUtERGq3+fOxvPYaRqdOWNeuxb18OTH1wji3UzQHiiu49pt1xx3ufPMtiIvDVaeOilciIvLnKipg5kws06Zh27oF563j4a67ICLi9K+1ZQssXw5jxkCjRt7PKiLi47QLoYiI1G6LFmGdzjpVAgAAIABJREFU/zMxk/5D1307eWpwO1Lzivl6ezorHIFw441Y4+KOHX/dddCrF3TqZFpkERHxE++8A9ddR7e1ixkTUo79yX9iax4DTz4J2dknPmfLFiyjr8Y2cAC88opnt1vDwDZuLNxzD5aoKCxXXw07dlTvaxERMZlmYImISO1SUgJLlsC8edjnzsG5Zy/N6tdh/z3DACh3uggJsDFxazrJ6enYly7BOf5v8Mgj4HR6zrfr7VNEqlFhoaeIsWcPJCZ6/i0rg2bNICrq2L+9e0PdumanlV9zu6kTEsSmWwcD8HJBKa+t2ssHL79E2QsvYLHbfnWwBQDD4SC2QQSdG4Yx/4nHqXj0UWyxsbjS0vh2TB/S8kuZMGsmrvr14d13ITj4zPNlZnpmdu3b5/lJTcWWnIQ1MxPHTWPh0Uf5//buPD6uut7/+PucmcnMZJLJ2qxt031f0pYW2kLZFxGoKALei1ev21X5ca9X8Qr6++lVQUFUFOGiILhc9aq4IAoClxYKLQVLW5quadp0S5qmTbMns53l98dp08ZuKW2Saft6Ph7fx8yc2b4zSSbnvOf7/XyVlfXOH3+guK6USnl/F/G4lEgc+zSZ9P5mRo2SCgslwxjs3gPoI/bAAQDnjqVLZVxxhdxEQqV5Wbp+ZKGuvnmOLh95aCpG0O/TXReO0xfmj9Xru5r1k7d36uf3fF2p9nbp29+WsrMH8QUAOOvF49Jjj0lr18qsrpa5uVpW496eq3OzwhpXEFGmz1RdV1J7OmLq7PZWRTUCfhmXXy7nfTdJN9zANOdjcV1p924vuKmqkjIzpQkTvDZ0qGT2cZKK63qnRwtAXFf629+kl15SPJnq2VweDeu7V0/VFy8apz9talDSduXK7fVwRZGgbpxYKr9pqitp6X9r9+rpTQ0KF4/SjRPL5Liuvr6sRvufeELGz34q36RJsmbP8UYHz5olTZvWt1CrqUm+8eNkt7XLNAwV52ZpVE5Io3NCysg19bP7vinnRz+U/Y1vSrfdJgWDfXtfTpXrSuvWSb/9rdTa6v0uX3KJFAgcedtkUnroIfnu+brstvaTfipfJFPmiJFKjRkjjR7thVoH24gRA/eaAfSJ4boHPyqB02/VqlWaNWuW9ItfSP/4j4PdHQDnqqoq6cEHpV27pEWL9PpHFuiCoXky+vit6z2vVuvLr9XI3bhRGjOmnzsL4JzT2Snt2+cdMG/YIE2ZotKcTF08LE9j87M0rsBrY/MjygsfudppLGVrV3tML2xp1FPVjVq6fZ9cw5AefVT6xCcG/vWkq+9+V7rnHvnlympplSRFwkElLUuplC1JMkMhmWPHypo8+VCoNX68N3Ln4Ci4mhr5qzfJrdkiu6tL/uwsGTk5Um6u7Px8OXn58m/cIGtTtUpzs/TZ2RW6c97Y0/pSYilbVY1tWtXQppUNrXqjsUObGltl244Mn0++iRNknTdbOu88L9SaPt0LgN5+W3rtNenVV+V/dYl8nR1a9bEFGpufpYCvd3C3vbVLdy/aqF+vq5Ph88k/ZrRS06Z7AdmUKdLUqdLIkScO/FzX+z/8/PMyn31W5v4mWf/+WSkjQ1q3TkZVlfxrq+RmZMi6+hr5X3lZVvVmZWcGFQ0GVN/SKV80Kvv666X3vle6+movdHz2Wfk/829ytm3XJ2dW6PyheQr5fQr6TIX8poJ+UyG/zzvv8/Vs8xmGdnfEVdvSpdqWbtW2dGlrW0yb2+Kqb+6UZXu/CzIMBUpL5IwaLXvMmN7h1qhRXkB8+H6EZXmBW2Fh79efSEgPPSTl5kof//hp+Omjl1/+UrrtNq1cuVIzZ84c7N6gnxFgoV8RYAEYVD/4gbdDuX279NBDmlSWr4jP0JIPzlM44Dvh3Q9qjiU15IG/yrnnHumLX+y//gI4t7z4oncwfoA/P0/2hRfJXbJEozOkTZ+8WP6+jgY6zJOrd+ijz6yWPvIR6fbbpUmTTm2a2ZnGdb0gYedOaceOQ6ff/rYkaWRuph68eqqml0RVkZMpx5V2tnVrU1OnNjV1aFNTp9Y3d2nj/i41d3T3euiCaETj8zM1ITessQVZyg0F1BZPqTWeUlvCUms8pZZ4SnnhgD48fbguHzlEPnNgpqjFLVtrG9u1sqFVqxpa9UZjpzbuaZVl2zJ8PhkZATmxuAIBn+aU5+uSYXl638QyzSjNPe7jrtvbrmU792vt3nataepU1d4OtXfFJUlmOCRz0iQ50RwZ8ZiMeFzG303Xc7q7ZXd1K5QR0GUjCmQahv5S3SBJKs/PVmVhRFOHZKupO6nndzbrkvIc3Tp5qK4cXaSAaWhNY5v+uLFBT23eq417WmSGQtLYMXLWrtOlo4v1g6sma3LROyiKfxS246q+I9Yr3Kpt6dbmtrhqW7vVctjvgxkOyTdihFIjRspfVyenulpOMin/9Gmy3n+zNGeO9PTT0n/916En4ND79CPAOqcQYKFfEWABGEzGlVfIfWlRz+WWL1yr3NCRoxdOhBFYAE7ZAw/I/M+vyDdypFITJkrjxknr10vPPNNzky/MH6s3Gtr0Zl2L4smUln90gS4Ymn/ST/VczR59+sUN2rm/Q67reqNnxo5RqnKGVFDgTYsKBr1Q6/DTY50/3vUZGX2fcjcQ6uvlv/QSWTVbejYF/D6V5kY0PCuornhSP7yuUnPK8/r0cM2xpKqbOhXymxqTH1F28CjT2NJYwrK1bm+HVja0qi2e0rxh+TqvLFdBf9+/xPl7rutqT2dCa/e2a92B1p2yFfSbB0Y/eaOgDh8BNaMkVxcOz+953l1t3coJBRQ9yfdzS3On/rixQcvrW/Th6cN0/biSPo+mPh06Eilta+3uFXBtb4upNBLU1OKo8kIB/aVmr57Z0qh44tDUUaOsVO6GjdSo6w8EWOcUAiz0KwIsAINqxw75pk9TuSzdNX+sPnneiJPe0d3dEdPoRxYrfvsd0ne+008dBXDWOLy+0po10ttvK7B6layttbpqZKFG5UW0qblLG5q71dja2XO3W6eU6xc3niefaShlO9rW2q2x+ZFTOjjvTFpat7dda/a0qarRGz3TkrQVtx0lLEcJy1bSspVM2UqmLDnv8LDACPhlBoMyMjJkHAi33Lw8WT/8kTcKpT+5rtTQ4IWB69fL9/jjGrJ7h753+USNyM3U8JxMFWcFZVKoGwMolrJVvb9D975Wo99tqJe/tETWLbdKN98snX9+eoW+ZzoCrHMKRdwBAGevigrZTzypnTfdpKDffEcHgl9avFGpzCxvyXMAOFwiIW3c2BNWmatXy1zzdq/6StOLo5oxJEuV756m26YNU+iwkS9dSW/KWVl2qNfnU8BnalzBqa/8lpXh1wVD8/s8istyDgRbtqO4ZR9xPn7gcsKyj3r+8Ps8V7tdG2+4Xtaq1d4KiafT2rXSI4/IV1Ulbdggu61NkpQR8GtycY5+euscTStmpAsGTzjgU2VJrn5z03latnOkntqwW79+8nHt+9735C8r9cKsiy8+clXjw/dT8vKkCy44tM11pT17vJVIN2/2auZdcQWrKOKcQoAFADgzOY5X9DgUOv6Q/GuvlS83R2sbT351olUNrfrZml1yf/ADr/gqgDOLZXkHeqtXS21t0lVXvfNpwHv3egWwD4RVgVWrZNVslmt5BZ+HF0Y1a0iWKqeXaHrx+J76SscLziMZfkUy0md33G+a8meYipyGx/pMZ1yVP35NTQsXyv7Up7yw7/Bm29K73uUdoJ+Ml1+W74brVRIwtKA8V5Nnlmly0XhNHhLVqLzIgNWbAvrCNAxdVFGoiyoK9eDVrpbt2q+n1tfr10/8SE0PPnji+194oZxhw+TftFFuTY3szq5e1/vHj5P1mX+XPvhBKXI6/nKB9MYUQvQrphACOK2WLZPvrrtk7twhq2GP3FRKvkim7Pvulz796aMPyf/+92V+9rOqvv0yjcnv+4gG13W14Oev641gnqx164/8lhRAeuns9EbmvP22tHq1/KtWylm3Xk4iIUny+UzZtiP/2DGyblgoXXedNH++tzLbiXzzmz0LOISCAU0pytGsoixNL87R9JKophZFz7jaSAPhrd0tuuwXb6gjlpBpmsoI+JTh95plO2rtjMk3b67sL9zl/TyONa3KtqXqaumll2TeeacuHZ6vp2+eraw0Cv+Ak2E7rvZ1e59Nhx+Nuzp0YVVDm762bIsyTEMT8zJ7ViMdV5ClUXmZerO+RQ++Was/bWqQGY3KvuYab1XIESMOnVZUePXqzmZMITyn8KkPAEh/S5dK69ZJNTWyly7VB6YN1QWTJ2poNKwXtu7Vo3fcId8vfyn7G9/wVvzZvVu+PXtkNu6RvWOnbps69KTCK0n68+Y9Wrp9n/TczwivMHCSSe8gPp1+5+JxackS79v9+fPTY7pKY6M3qupAWBVYtVKprbWS68rnMzW+OFezh0Q045JxqizxQia/aWpR7T79efMe/enxR9X0ne/IF43Kfte7pOuvl665xgtKrr9e+tvfvJFW06ZJv/+99MUv6nNzx+hfZo3Q6PwI9ZT66LyyPDXfebUMGUeMjHJcV89UN+i+5TV6c+FCbyTJkleloiJv5dgVK6QVK2S++aaMVStld3mrv906bZievL7ylIqQA4PNZxoqyTr+yqBl2WFdN67kmNcvqCjUgopCbW/t0qMrtmv5315W7Ut/VUNLpxzH8W5kGAqUFMsZMUL26DGHwq1586QJE07jKwIGRhrtHQEAzmnPP+8djK5a5dVLuf12aexYaetW+a65uufgRZImFUZ1+5xRkqSFE0r1gSnl+vCzVaq97DJJUnk0rEsqClRUEFRpxVh9bGbFSXdnb5f3zajKy0/9tQHHkkh4B+qvvCJz0SJp+XLp0kvl/PSnXmg7dKg0fLgUDp/4sSxL8vmODJg6OqTFi71wLCurd8vO9k4zM3uPftm7V3r2WRnPPCPzxRdkd8ckSb4LL5R95ZXe9N29e+VraJDZuEfq6JB13my5V14pXXaZFzA984xUU+MdLI0a5bXRo73LWX0MlB1H2rKlJ6gyVq+Wb/UqWXv3SfJqTFUWRzWrKFuVkyo1ozRHEwuzjxluLJxQqoUTSvWY62pVQ6v+snmP/rj0f1X1m99479vhQyG6uqSVK2XedptumjxUD1w5eUBXOztb+I8xqso0DL1nQpmiwYAu/3mTrOrNMq67Tr7arbKaWyRJJXlZmlsS1fkXjNDs8jzNKs1VToiRbsDhRuRGdP+Vk3sup2xHde0xbW/t1rbW7gOndap5bau2/SWmfW1dkmHIveMO6etf9/4PAGcIphCiXzGFEECfbNokTZx4xGbz2nfJqKvXsN3bteKf52tnW0xrG9t1yYhCVeRm9rpt3LL19SXV+sbSzZIk9yvvOaUuJW1Hkx9bom1jJsteujQ9Rp3gzJdMeoHVyy/LXLxYWr5cTjyuSDioS4bna1hWUD9cuV2GzyfXtnvu5i8skCoqZI0c5U0JqajwCvxu3iytXatA1Rqltu+QL5Ipc/hwpUZ5QZGxrVbGCy/KSSZP2DVfZlhGJCIjFFKqrl6GpPOGFejGMUW6blyxdrTF9J9Lt2hba7eKskIqDftVGslQUWZQIb+ppfWteqOuWdaBmlDFuRHNHJKl2o6kdjR3Kp48tKS8v7BA7qhRsseO6x1uBYM9K/f5Vq2UW1Ul50B4VpybpVlFWZpVkqPKA21k7vFrTPVVfXtMz9U06o6/Vik7M6j9nXEd3EWeUZ6vZR+ar3CAET/9YVHtPl37q+WqLMtTUTigmSU5ml2ep9lluSo+wQgVACcvlrL18N9q9eVXN8sqKJD1rQekKVOkaPRQy8gY7G72HVMIzykEWOhXBFgA+mzRIunZZ2X+7KdyDnz7LkkBv0/LPnyhZpfn9elhlu7cr5W7W/VvF4w+9S7V7tMV/71M+vnPvQKpOLfFYtJbb3mjpFav9i6nUjIsS0YqJVmWDNuSYVk923Ww2bZkWbL37ZMT8wKri4fl67KKfF0yYogqS3LkMw25rqu7F23Q0GhYV4waoj2dce1ojWlHW7d2tHZrW3tctR0J7W7pVMqyVZgT0bTCLE0rzNKEwiy1Jyxtb+1WbVu3atoSKgj5dfP4Yt04sUwF4Qx1Jq0DzVZn0lJHz+Xe2ycUZunasSUqipxc7ZTulKXlu1qUFw5oRklOT7jkuq4auxKqbelSbUu3alu6tLWlSzWtcW1p7fZGBBxgGobGHJgCWFmSoxkluZpeElVh5sDVcWmLp7Rid4s2NXXq5snlJ/0+AEC629Harf/zwlr9ZVPDEdeZGRkysyIysrOlaFROTo7snFxv0Zxo1Bu1FY1KU6d6KyEOZgF5AqxzCgEW+hUBFoATeuYZ6e67pQ0bjnp1cTRT379ykm6ZMnSAO+a55Xdv6Q9747Jqthx/tUOcXVxX2rHDC6uWL5d/2VLZVVVyLVuhYEAzS3OVl+FTwDTkMwz5zcObKf8R271t+eGALh5RqMqSnGNOreoLx3XVlbTOmsLhsZSt7a3d6k7ZmjQkm9FOADBAtrV0aX8sqfaEpfZESu0JSx0Jq9fl9qR32pJ01Jq01Za01B5LqrUzJjMYlHvF5XLfc6NXQ7C4eGBfAAHWOYUaWACAwbVw4RGbzLFj5WRmSmvWqLG9W6v3tA1agPXdqybrmf9aLOvLX5a+//1B6QMGUFOTjDvukG/xop46SxWFUS0oy9Hcq6Zo7rA8TSmKnlL4dDqYhnHWhFeSFA74NHEIdVgAYKCNzItoZN47G0FVs79Tf6pu0B/Xr9Dy5/4qV5Jv9nmyb3yvdMMN3uqhGzdK//Ef6bU4Cc5Y/BYBQLro6pJ27erdGhq8Jd6zs49skyadHSvItLd79aUyM6Xf/U564QWZi16SU1MjwzA0vTz/uKvw9LfyaFhfu2icvvDww3I/8hFp+vRB6wv6WVubfFdeoZwtm/UvlcM097JRumBovoYwfQwAgCOMLcjSnfPG6s55Y7WvK6Hnahr1dHW9nv/KlxW/++6e25kvvCDn97+XCgsHsbc4GxBgAcBAWr1aWr/+UEC1Y4cCO7bLrauT1dbe66YF0YhKs0NKOa46kpa6Eil1x5NKWYcVdp4wXtYtt0o33SRNnpy+hcZdV9qzx9txCfzdqJGDq9+sWCHdcoskyTpw1aUjCnR+eb62NncpK8OnypLcgevzYf7tgtF6vKpOtZ/6lOxly9L3fcbxOY63ul59/RHNqNsl34YNCrc26+V/mqdpxUwXBQCgr4ZEgvpQ5XB9qHK44patry2p1jcPLKzjvPqqt9r0bbcNci9xpiPAAoCB0twsHZibH42ENDQnUyOzMjQ8GtawWUM1LCesYdGwhueEVR4NK8N39ClKSdtReyKl13c163cbdusP37pPXV/9qvzjxsq69t1SUZGUm+utUHZ4y831Wl2d9D//49X2GTfOG1E0bZq3CmCwn0aaPPmk9LGPSaapQGmpnJEjZY8aJY0Y0btt2SLV1Hgrq1VX65WNG/Va9SalDuwA/eHmObpxYln/9PE4MnymfnjNFF3+82XSr38tfeADA94H9MHevV5AfDCY2r1bqq+Xf9dOGXV1svbulXtYAGyapoZEMzU0O6SKrIDKh4b10esJrwAAOBUNHXHd//oW+UeNlPX+m6Ubb5TmzBnsbuEsQIAFAAMlO1syTT1yzRR9evaod/wwGT5ThZlB3TC+VDeML9Xjlq2XavfpqQ31euUXP1FrPKmO7oQcxznmY4QyApo3NFebl7+quv3eyC/D75N/7DilZs70Aq2DwVZJycmPONqyRXrtNWn2bGn4cPnuukt5mRkqyw6pvnmf9tfXS0uXqjAnoqbDVh/7+4DLuegiOR/8oDRkiIwvfUlfenWzFk4olTkII6CqGtu8Mz6KS6edlhbp3ntlPvSQnFRKkpQVDqo0mqnhWQENyw6pfHS2yiuLVB4NqSw7pPLssIoiQflMRtMBAHA6PfD6Fpl5ubLWrvNKRACnCQEWgMGRTEoPPOCdr6z0WlnZ2T01KxCQv7RE979Rq5r9Xbp4RIEWVBQqP5xxSg8b9Pv07nElevdhdaJc15t22BpPqSWWUks82XM+kuHXtWOLlZXh/QtoT6S0trFdVY3tWtPYplWvvaC1v/ut4gkvCPAX5MuZXimnsvLEo7UaGqSvflXGEz/uNdLFltQkqak72evmGz6+QNlBv3a1xbS9tftQa9uuLUuqte1P3dp3IOByJW2U9EZds+YNKzil9+xk/WXzHn32xfXSnXdKN988oM+N44jHpYcflu+erysQj+mueaP1galDVZ4dUiSDXRwAAAbKwRkC9e1x/XjNLllf+U/CK5x27N0BGHiJhMz3vU/G888rnOFXZywhSfLn5cqpnCFnxgwv0JoyRers9Ka8HawZ5TjeNLicnENT4o52PhTqW1/a2yXTlLKy+vEFH2L95KfaedVV+t6bnfrem1t7ti/6p/m6bOSQ0/Y8hmEoGgwoGgxo+AlmQ0WDAc0fXqD5ww+FQo7raltLt9Y0tqmqsU1v796oVWve0q5jjdaaNk1askTm976nLNPV/7t0gj4yo0KrG9q0ZEeTFu9s1pt1zbIsWxkBv3Iyg5pUEFFuKKCAz9TYgiyNLTj6zyBu2T0BV1N3UpUlAzu9q6qxTTf/YZV0/XXSffcN6HOf02zbq5tWVHRk3TTHkX71K/nvvkvO7gZ9YmaFvnzxeJVk9fHvHgAAvGP7u5N6/x9Xqaa1W10JS53xhFKpQ19c+nJzpNtvH8Qe4mxFgAVgYMViMm98j/yLF+uZW+foqtFF2tHWrTV72vX2nja93VCtt6pWqu67vQuaR8JBledkym8aak1Yao8l1RVLyHXdoz6NmZEhM5otIydHbl6e7NxcuXn5h0Kuzk75X10ia8NGSZIvKyKzpET20GFyhg6Vysu9EWFlZd75MWOkIachYLrySu8f+iOP9Nrcfdg//XRgGoZG50c0Oj+i9x5Wc6o9kdK6ve1as6ddVY1tWvnaC1r3u6cUSyQVygjoc+eP1J3zxig35I0qu3zUEF0+aoi+Ji+IshxXkYBPxkmMtAv5fccNuPrTns64rvn1CiXHj5f7y18xfbA/rV8vPfKIjK1b5a/ZLKuuTm7KkhkOSbPnyLnoImn+fEmS764vyK5aq3dPLNP9n7pU4wuzB7nzAACcvd6o8+quHvRmfYuWt6Vkf/JTUjR6RLMnTvT2uYHTjAALwPFZ1qGi2p2dUizmTduJxY7e4nGpu1tmd7eMmHd68Do3kZDT1aWAldKzt56vy0d5gdCI3IhG5Ea0cEJpz9O2xVPa2NSh7Ay/huWEFQ0Gjuia47rqPDBNri2eUuuB1pawDp2Pp9Qab1Lb7gY1b7O1P2mrNWEpYEgXl+Vo/sIZyvCZ2t0R1+6OuOr31WjntvWq60yosb2r59skw++T+4F/kO66S5o06dTe04cf9gqaz5jRs6m2pes4d0gf0WBA84YV9JrCd3C0Vm4ooILMY0+HDPnPrPAnlrJ13W9WaF8wU/azzw3YKL1z1vPPS48+qstHFWlacbZGT5ykYdGwNu/v1NJdW7TkoRVqufdeSdJ5wwv1nX++qNeoQQAAcHrFUrZ2tcf0y6pdenjFNq9W6cgRUmah7O/fJ73nPYPdRZxjCLAAeFzXm66zdq1UVSWtXSv/6tVyqqvlJHvXLQoEfAoGAgr6fQoHfAoFfMr0m8r0m4r4TEX8hkJ+n8J+U+GAT+FMn8L+iMKBqML+Yl0+aogqS47/rUxOKKALhuYf9zbmYdPk1A+zylzXVUs8pfr2mF6q3af7n/mDGv/7v2UsvEHuF790aDWV/fulF1+Unn9egddelcJh2YVD5BQVSQUFh1ph4aHzP/pRr+f6yZpd+tfzR5/+FzEADo7WOtt88rk1Wlm3X3roIe9nh/51yy0y/uM/9L6JpfrkeSN7XfU5eX+PW5q7tK87oblD809qFB8AAOi7Dfva9aO3tuvJtfU9pT4kSY6j1G+f6llVGxhoBFjAmSqV8mpC1dd79WHC4UMtFDp0/mhTnrq6vOk6B8Iqc80amWurZDW3SPJWqJtcnKMZhRFNu2y8phZHNaEwW9GgXyG/b1BWgBsMhmEoP5yh/HCGphbn6PY5o/SLql269/Ulqj3/GZkLFsiIx+S8tVKu42hSab6uHJ4ry4lrf/NW7auv1t64pabupFq64z1F0Y/mHyaXD+ArQ18EfD4FM/xK/Ou/yvzc52TMqJQ9/0Jp3jxp7lxvailOjetKO3ZIq1ZJq1fLjUb1k7X1RwRYkvf3OFhTSQEAOBfsaO3WP/5ptZZt3+dtGDZMev/7vS9f8/K8lamnTBncTuKcRoAFpLu9e6VXXpFqa6XaWplbtsi3dYus+t1y7RPXTTICfpnBoIxQSMaBwuap+t2S68o0DFUURjVrSERTpxVratFYTSvO0ci8zHMmpDoZGT5TH5lRoQ9NH64/btqth97apKJwQNdeN13XjClSWXb4uPdPWLb2x5La351UU3dS+2PeyoBXjS7S8BxWaUk3P75uuh5911RVNbbr9V37tbyuQUt+9mPtfvBBSVJgaLlS8+Z7dZnmzvUWHvj7YuM4uj//WeZ3viPz7dWy2rx6dwXRTM0qytYtk8pOcGcAANAf7l9Wcyi8krwvy7/73SNvuHYtQRYGBQEWkK527JC+9S2ZTzwhJ5FQVjiokflZGp8T1KihEY2eNlWj8jJVnh2W5TiKWY7ilq1YylbMshVLHbjcs827bDuuxs2s1NTiqCYNyVZmgI+Bk+UzDd00qVw3TTq5EThBv09l2eETBl1IHwGfqVlluZpVlqs7zve27e6IafmuZi2va9GrbyzW6j/8XpZlywyFZMyaJfvCC71Aa+5cbwU9HKmhQXr9dVmplOaU5+mp988mxAUAYJDtbI9JkydLH/qQt0q3bUutrVJLy6E2erS3uBEwCDjrSkt+AAAJwUlEQVRyBdLNhg3SfffJ+J9fKRoM6HNzR+oTs0aomOXhgbRQlh3W+yaV630HAsyEZWtVQ5uW1zVr2a5teu2Hb2vf/fdLkgIjKpS6aIEXZs2b531bea6tZJhMStXV0rp1Xlu7VoGqNUpZliRp9Z42tcVT/VLHDgAA9N26lpj0waulz39+sLsCHBUBFpAuVqyQ8Y175T79J5XkRnTX5ZP0sZkVimTwZwqks6Dfp7nD8jV3WL4+O9crNr6zLabldc1avqtZr778nNb+6peybUe+SKbcOefLmTfPq6GVm9u75eVJxcXSmTiF17alrVuPCKqs2lq5ljfduSg3S9MKIppWmqUp0ys1pSiqiUOylcXnHAAAgypu2drV1C5NnDjYXQGOiT1G4BSYH/uYfIsXSdnZcqJR2dEcKRqVsrKk7Ozjt4O32bRJ5r33ylm8WCMKo/q/N8zQbdOGKcNnDvbLA/AOGIahitxMVeRm6tYpQyVJ3SlLb+1u1fJdzVpWt0nLH/6bWjpjsm3niPv75syWffcXpRtu8Ibvp6NEQlq82FuxdN06+des6bViaU4krGlF2ZpeGNHkq6doSlFUk4dkKy+cMcgdBwAAR9PUnZTjujIff1zOxIlejc/jeewx6Y03eh/XHOv84dsy2BfAO0eABbxTy5bJeeIJfWDqUGUHOtTR1qKOfZZak47aLVvtCVudSUtdiZRice8fwrFMKs3Tl2+arfdOLJPPPANHXgA4rsyAXwsqCrWgorBnm+u66k7Zao2netqu9ph+sHK7Xr/xRvnGjfWCrIULpcxMb4dvsEdm1dRIjz0m/5NPyGpuUWYoQ5OLoqosjGjKZeN7gqqiSFDGYPcVAAD02dBoWM/9w1x9/uVNWn/hhTLfdY2cb3zTW6TmKHw/+YnCq1eqPC9LHSlbXYmUuuNJpazjLzJlBPzyRSIysrKkrCy50aic7Gw50Zy+BWB/fx7nFMN1j3NUDZyiVatWadasWfLn5sooLVFq4iSvBszkyV4bN+7MWLUrlfKmxmza1NPMRS9pkt2tNR9fcMIV+w4eqHYmLXUkLXUkDp1Gg35dOLyAgz0APZbt3K9vvr5Fz1Y3HNpomjJDQZnhsLeiaDgsZWbKycyUG4nIyYx4QdeB7b1Oj7bteKeHh2XJpPT00zIffVTOK68oGgnpo1PL9dEZFZo0JJvPLgAAziKO6+q36+t195LN2t7ULuOWW+TeeKNXwL2pyWv79klLlmh4okM7br+s1/2TtuMd8ySsXsc+JzrfnrTVZjlqT9rqSFrqTFjqTiSVSFrH77BhSK6rlStXaubMmf34ziAdEGChXx0MsD4+o0IBn6l1+7u0rqlTzR3dkiTD75N/9GhZwyvkBoPeQdPhLRAYmG1+v/fh19bmFRveuNELqjZuVGDDelnbtvXUcImEg5pQmK3J+WF9ft5YTSmKDuZbDOAstnFfh9bva1csZav7wAqj3Sn7sMuOulNWz2mn5arLctRtOeqybMVTjuIpS/GkpUTKUp//5RtGT1jmplKyOzo1t2KIPj1zuG6aVKaQ/xwrRA8AwDkmZTv66ds79f9eq1FjW5dM01ROJKTCSFDF4YCKQ35dODxfn7mgf1cktBxHXQdCraOFXxubOnTva5sJsM4RBFjoVwcDrJWfuEQzS3N7tjd1J7RhX4fW7/UOzvZ0JpRyHCVsV3HHVcJ2lXS8lrAdJW1Hqb9vli3Lso87Ne9kGIGA3FSq53JpXrYm52dqUkFEEwqzNaEwSxOHZKuYqTEAzkCu632eHjsMO/JyLOXIlauF40s1mbAeAIBzTsp21JG0lBsKnHDWyWBY1dCqWY+9QoB1jqAGFgZFYWZQCyqCverBvFO24yrleCHX4S1lu0duc46y7cDtEraj/HBAEwuzNa4gi9X/AJxVDMNQyO9TyO9TXniwewMAAM4EAZ+pfBZhQZrgCB1nPJ9pyGf6mNICAAAAAMBZKk3X5wYAAAAAAAA8BFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIawRYAAAAAAAASGsEWAAAAAAAAEhrBFgAAAAAAABIa/7B7gDObrFYTJK0saljkHsCAAAAADibHDzOPHjcibMbARb61fbt2yVJt/1h5eB2BAAAAABwVtq+fbvmz58/2N1APzNc13UHuxM4ezU1NemFF17QiBEjFA6HB7s7AAAAAICzRCwW0/bt23X11VersLBwsLuDfkaABQAAAAAAgLRGEXcAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKQ1AiwAAAAAAACkNQIsAAAAAAAApDUCLAAAAAAAAKS1/w+viglH3G3I2AAAAABJRU5ErkJggg==", "text/plain": [ "" ] @@ -222,7 +218,7 @@ "# OUTPUT OPTIONS\n", "update_json = False\n", "nc_out = False # Write output in NetCDF\n", - "plot = False # Create map graphics\n", + "plot = True # Create map graphics\n", "\n" ] } @@ -241,53 +237,66 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (2264871688.py, line 1)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m Cell \u001b[0;32mIn[7], line 1\u001b[0;36m\u001b[0m\n\u001b[0;31m driver_monsoon_sperber.py -p basic_monsoon_sperber_param.py\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ], + "source": [ + "%%bash\n", + "driver_monsoon_sperber.py -p basic_monsoon_sperber_param.py" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "modpath = \n", + "modpath_lf = \n", "models: ['GISS-E2-H']\n", + "list_monsoon_regions: ['AIR', 'AUS', 'Sahel', 'GoG', 'NAmo', 'SAmo']\n", + "number of models: 1\n", "realization: r1i1p1\n", - "demo_output/monsoon_sperber/Ex1\n", - "demo_output/monsoon_sperber/Ex1\n", - "demo_output/monsoon_sperber/Ex1\n", - "debug: False\n", - " ----- obs ---------------------\n", - "lf_path: demo_data/misc_demo_data/fx/sftlf.GPCP-IP.1x1.nc\n", - " --- obs ---\n", - "demo_data/obs4MIPs_PCMDI_daily/NASA-JPL/GPCP-1-3/day/pr/gn/latest/pr_day_GPCP-1-3_PCMDI_gn_19961002-20170101.nc\n", - "check: calendar: gregorian\n", - "check: year, d.shape: 1998 (365, 180, 360)\n", - "check: year, d.shape: 1999 (365, 180, 360)\n", - "timechk: obs obs 12.038519859313965\n", - " ----- GISS-E2-H ---------------------\n", - "lf_path: demo_data/CMIP5_demo_data/cmip5.historical.GISS-E2-H.sftlf.nc\n", - " --- r1i1p1 ---\n", - "demo_data/CMIP5_demo_timeseries/historical/atmos/day/pr/pr_day_GISS-E2-H_historical_r6i1p1_20000101-20051231.nc\n", - "check: calendar: 365_day\n", - "check: year, d.shape: 2000 (365, 90, 144)\n", - "check: year, d.shape: 2001 (365, 90, 144)\n", - "check: year, d.shape: 2002 (365, 90, 144)\n", - "check: year, d.shape: 2003 (365, 90, 144)\n", - "check: year, d.shape: 2004 (365, 90, 144)\n", - "check: year, d.shape: 2005 (365, 90, 144)\n", - "timechk: GISS-E2-H r1i1p1 9.416198253631592\n" + "output dir for graphics: demo_output/monsoon_sperber/Ex1\n", + "output dir for diagnostic_results: demo_output/monsoon_sperber/Ex1\n", + "output dir for metrics_results: demo_output/monsoon_sperber/Ex1\n", + "debug: True\n", + "models: ['obs', 'GISS-E2-H']\n", + "==== model: obs ======================================\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ - "INFO::2021-11-10 17:19::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20211109/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", - "INFO::2021-11-10 17:20::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20211109/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" + "2024-06-03 11:55:40,711 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", + "2024-06-03 11:55:40,711 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " --- obs ---\n", + "model_path = demo_data/obs4MIPs_PCMDI_daily/NASA-JPL/GPCP-1-3/day/pr/gn/latest/pr_day_GPCP-1-3_PCMDI_gn_19961002-20170101.nc\n" ] } ], "source": [ "%%bash\n", - "driver_monsoon_sperber.py -p basic_monsoon_sperber_param.py" + "driver_monsoon_sperber.py -p basic_monsoon_sperber_param.py --debug True" ] }, { @@ -303,62 +312,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "models: ['GISS-E2-H']\n", - "realization: r1i1p1\n", - "demo_output/monsoon_sperber/Ex2\n", - "demo_output/monsoon_sperber/Ex2\n", - "demo_output/monsoon_sperber/Ex2\n", - "debug: False\n", - " ----- obs ---------------------\n", - "lf_path: demo_data/misc_demo_data/fx/sftlf.GPCP-IP.1x1.nc\n", - " --- obs ---\n", - "demo_data/obs4MIPs_PCMDI_daily/NASA-JPL/GPCP-1-3/day/pr/gn/latest/pr_day_GPCP-1-3_PCMDI_gn_19961002-20170101.nc\n", - "check: calendar: gregorian\n", - "plot: region AIR nrows 3 ncols 2 index 1\n", - "plot: region AUS nrows 3 ncols 2 index 2\n", - "plot: region Sahel nrows 3 ncols 2 index 3\n", - "plot: region GoG nrows 3 ncols 2 index 4\n", - "plot: region NAmo nrows 3 ncols 2 index 5\n", - "plot: region SAmo nrows 3 ncols 2 index 6\n", - "check: year, d.shape: 1998 (365, 180, 360)\n", - "check: year, d.shape: 1999 (365, 180, 360)\n", - "timechk: obs obs 11.28656816482544\n", - " ----- GISS-E2-H ---------------------\n", - "lf_path: demo_data/CMIP5_demo_data/cmip5.historical.GISS-E2-H.sftlf.nc\n", - " --- r1i1p1 ---\n", - "demo_data/CMIP5_demo_timeseries/historical/atmos/day/pr/pr_day_GISS-E2-H_historical_r6i1p1_20000101-20051231.nc\n", - "check: calendar: 365_day\n", - "plot: region AIR nrows 3 ncols 2 index 1\n", - "plot: region AUS nrows 3 ncols 2 index 2\n", - "plot: region Sahel nrows 3 ncols 2 index 3\n", - "plot: region GoG nrows 3 ncols 2 index 4\n", - "plot: region NAmo nrows 3 ncols 2 index 5\n", - "plot: region SAmo nrows 3 ncols 2 index 6\n", - "check: year, d.shape: 2000 (365, 90, 144)\n", - "check: year, d.shape: 2001 (365, 90, 144)\n", - "check: year, d.shape: 2002 (365, 90, 144)\n", - "check: year, d.shape: 2003 (365, 90, 144)\n", - "check: year, d.shape: 2004 (365, 90, 144)\n", - "check: year, d.shape: 2005 (365, 90, 144)\n", - "timechk: GISS-E2-H r1i1p1 9.357002019882202\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "INFO::2021-11-10 17:20::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20211109/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", - "INFO::2021-11-10 17:20::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20211109/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" - ] - } - ], + "outputs": [], "source": [ "%%bash -s \"$demo_output_directory\"\n", "driver_monsoon_sperber.py -p basic_monsoon_sperber_param.py \\\n", @@ -381,21 +337,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cmip5_GISS-E2-H_historical_r1i1p1_monsoon_sperber_2000-2005.nc\n", - "cmip5_GISS-E2-H_historical_r1i1p1_monsoon_sperber_2000-2005.png\n", - "cmip5_obs_historical_obs_monsoon_sperber_1998-1999.nc\n", - "cmip5_obs_historical_obs_monsoon_sperber_1998-1999.png\n", - "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" - ] - } - ], + "outputs": [], "source": [ "! ls {demo_output_directory + \"/monsoon_sperber/Ex2\"}" ] @@ -409,58 +353,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\n", - " \"GISS-E2-H\": {\n", - " \"r1i1p1\": {\n", - " \"AIR\": {\n", - " \"decay_index\": 53,\n", - " \"duration\": 17,\n", - " \"onset_index\": 37,\n", - " \"slope\": 0.037490989405760906\n", - " },\n", - " \"AUS\": {\n", - " \"decay_index\": 52,\n", - " \"duration\": 22,\n", - " \"onset_index\": 31,\n", - " \"slope\": 0.028602770104420926\n", - " },\n", - " \"GoG\": {\n", - " \"decay_index\": 49,\n", - " \"duration\": 24,\n", - " \"onset_index\": 26,\n", - " \"slope\": 0.017398272573029495\n", - " },\n", - " \"NAmo\": {\n", - " \"decay_index\": 64,\n", - " \"duration\": 52,\n", - " \"onset_index\": 13,\n", - " \"slope\": 0.012011903431421198\n", - " },\n", - " \"SAmo\": {\n", - " \"decay_index\": 56,\n", - " \"duration\": 30,\n", - " \"onset_index\": 27,\n", - " \"slope\": 0.020883715095941786\n", - " },\n", - " \"Sahel\": {\n", - " \"decay_index\": 47,\n", - " \"duration\": 17,\n", - " \"onset_index\": 31,\n", - " \"slope\": 0.03490883309967567\n", - " }\n", - " }\n", - " }\n", - "}\n" - ] - } - ], + "outputs": [], "source": [ "import json\n", "metrics_file = demo_output_directory + \"/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\"\n", @@ -490,31 +385,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAKACAYAAAAMzckjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXgURx/A8e/FPSFCBEmCBYI7IQVCcYcWKxSCtcX6liLFrThUoBQtVrSB4u5aUqSFFKcUCRYiSEKMyLx/LDly3CUkIZ75PM89ududnZ29u938bnZEJYQQSJIkSZIkSQWGXk4XQJIkSZIkScpeMgCUJEmSJEkqYGQAKEmSJEmSVMDIAFCSJEmSJKmAkQGgJEmSJElSASMDQEmSJEmSpAJGBoCSJEmSJEkFjAwAJUmSJEmSChgZAEqSJEmSJBUwMgCUJEmSJEkqYGQAKEmSJEmSVMDIAFCSJEmSJKmAkQGgVKCsWrUKlUqlfhgYGFC0aFF69+7Nw4cPs708vXr1ws3NLUPbHjt2DJVKxbFjx9TL9uzZw6RJk96rTOvXr2fu3Lk616lUqvfOP6+Jiopi0qRJGu9zZtH1Gepy+vRpJk2axPPnz7XW+fj44OPjk+lly+2SzuW7d+/mdFEkKU+SAaBUIK1cuRJ/f38OHjzIZ599xoYNG6hXrx6RkZHZWo7x48ezdevWDG1brVo1/P39qVatmnrZnj17mDx58nuVKbUA0N/fn379+r1X/nlNVFQUkydPzpIAMK1Onz7N5MmTdQaACxcuZOHChdlfqBzWqlUr/P39cXZ2zumiSFKeZJDTBZCknFChQgVq1KgBQMOGDUlISGDKlCls27aN7t2769wmKioKMzOzTC1HyZIlM7ytlZUVderUycTSvFt27096N09Pz5wuQraKjo7GxMQEBwcHHBwccro4kpRnyRpASeJNYHPv3j1AuTVrYWHBpUuXaNq0KZaWljRq1AiAV69eMXXqVMqWLYuxsTEODg707t2bkJAQrXzXr1+Pl5cXFhYWWFhYUKVKFZYvX65er+sWsEqlYvDgwSxZsoQyZcpgbGyMp6cnv/32m0a6t28f9urViwULFqjzSHok3SJbsGAB9evXp3Dhwpibm1OxYkVmz55NXFycOk8fHx92797NvXv3NPJIXra3bwFfvnyZdu3aUahQIUxMTKhSpQq//vqrzrJu2LCBsWPH4uLigpWVFY0bN+bGjRupfTQATJo0CZVKxYULF/joo4+wsrLC2tqaTz/9VOf77ufnh5eXF+bm5lhYWNCsWTMuXLigkSbpM7516xYtW7bEwsKCYsWKMWzYMGJjYwG4e/euOsiYPHmy+v3o1asXALdu3aJ3796ULl0aMzMzihQpQps2bbh06ZJWma5fv07z5s0xMzPD3t6e/v37ExERkaZjHzFiBADu7u7qMiR97m/fAr579y4qlYo5c+Ywa9Ys3NzcMDU1xcfHh5s3bxIXF8eoUaNwcXHB2tqaDh06EBwcnKH3UJeoqCiGDx+Ou7s7JiYm2NraUqNGDTZs2KCR7vz587Rt2xZbW1tMTEyoWrUqGzdu1EiTdJv3wIED9OnTBwcHB8zMzIiNjU3xFvChQ4do1KgRVlZWmJmZ4e3tzeHDhzXShISE8Pnnn1OsWDH1Oezt7c2hQ4feeXySlF/IGkBJQvlHDmjUKLx69Yq2bdvyxRdfMGrUKOLj40lMTKRdu3acPHmSb775hrp163Lv3j0mTpyIj48P58+fx9TUFIAJEyYwZcoUPvroI4YNG4a1tTWXL19WB5mp2bFjB0ePHuXbb7/F3NychQsX8sknn2BgYEDHjh11bjN+/HgiIyP5/fff8ff3Vy9PukX233//0a1bN9zd3TEyMiIgIIBp06Zx/fp1VqxYASi3Ez///HP++++/NN2avnHjBnXr1qVw4cL89NNP2NnZsXbtWnr16sWTJ0/45ptvNNKPGTMGb29vli1bRnh4OCNHjqRNmzZcu3YNfX39d+6vQ4cOdO7cmf79+3PlyhXGjx/P1atXOXPmDIaGhgBMnz6dcePG0bt3b8aNG8erV6+YM2cO9erV4+zZsxo1ZnFxcbRt25a+ffsybNgwTpw4wZQpU7C2tmbChAk4Ozuzb98+mjdvTt++fdW3v5O+J48ePcLOzo6ZM2fi4ODA06dP+fXXX6lduzYXLlzAw8MDgCdPntCgQQMMDQ1ZuHAhjo6OrFu3jsGDB7/zmPv168fTp0+ZP38+W7ZsUX+e76r5W7BgAZUqVWLBggU8f/6cYcOG0aZNG2rXro2hoSErVqzg3r17DB8+nH79+rFjxw71tul5D982dOhQ1qxZw9SpU6latSqRkZFcvnyZsLAwdZqjR4/SvHlzateuzeLFi7G2tua3336jS5cuREVFqQPsJH369KFVq1asWbOGyMhI9Wf9trVr19KzZ0/atWvHr7/+iqGhIUuWLKFZs2bs379f/SOuR48e/P3330ybNo0yZcrw/Plz/v77b40ySlK+JySpAFm5cqUAxJ9//ini4uJERESE2LVrl3BwcBCWlpYiKChICCGEr6+vAMSKFSs0tt+wYYMAxObNmzWWnzt3TgBi4cKFQgghbt++LfT19UX37t1TLY+vr69wdXXVWAYIU1NTdVmEECI+Pl6ULVtWlCpVSr3s6NGjAhBHjx5VLxs0aJBIy2mdkJAg4uLixOrVq4W+vr54+vSpel2rVq20ypS8bBMnTlS/7tq1qzA2NhaBgYEa6Vq0aCHMzMzE8+fPNcrasmVLjXQbN24UgPD390+1vBMnThSA+PrrrzWWr1u3TgBi7dq1QgghAgMDhYGBgfjyyy810kVERAgnJyfRuXNn9bKkz3jjxo0aaVu2bCk8PDzUr0NCQrSOOyXx8fHi1atXonTp0hplHTlypFCpVOLixYsa6Zs0aaL1GeoyZ84cAYg7d+5orWvQoIFo0KCB+vWdO3cEICpXriwSEhLUy+fOnSsA0bZtW43thwwZIgDx4sULIUT63kNdKlSoINq3b59qmrJly4qqVauKuLg4jeWtW7cWzs7O6nInna89e/bUyiNpXdJ7EhkZKWxtbUWbNm000iUkJIjKlSuLWrVqqZdZWFiIIUOGpFpGScrv5C1gqUCqU6cOhoaGWFpa0rp1a5ycnNi7dy+Ojo4a6T7++GON17t27cLGxoY2bdoQHx+vflSpUgUnJyf1bbmDBw+SkJDAoEGDMlS+Ro0aaZRFX1+fLl26cOvWLR48eJChPC9cuEDbtm2xs7NDX18fQ0NDevbsSUJCAjdv3sxQnkeOHKFRo0YUK1ZMY3mvXr2IiorSqIkEaNu2rcbrSpUqAaSpVhTQap/ZuXNnDAwMOHr0KAD79+8nPj6enj17anw+JiYmNGjQQKsjh0qlok2bNlplSmt54uPjmT59Op6enhgZGWFgYICRkRH//vsv165dU6c7evQo5cuXp3Llyhrbd+vWLU37yYiWLVuip/fmEl+uXDlA6TyRXNLywMBAIP3v4dtq1arF3r17GTVqFMeOHSM6Olpj/a1bt7h+/br6s0y+j5YtW/L48WOtZgFvn4e6nD59mqdPn+Lr66uRZ2JiIs2bN+fcuXPqTl61atVi1apVTJ06lT///FOjGYQkFRTyFrBUIK1evZpy5cphYGCAo6Ojzp6EZmZmWFlZaSx78uQJz58/x8jISGe+oaGhAOp2aUWLFs1Q+ZycnFJcFhYWlu58AwMDqVevHh4eHsybNw83NzdMTEw4e/YsgwYN0vonnVZhYWE63zsXFxf1+uTs7Ow0XhsbGwOkef9vvy8GBgbY2dmp9/PkyRMAatasqXP75AERKJ+xiYmJVpliYmLSVJ6hQ4eyYMECRo4cSYMGDShUqBB6enr069dP45jCwsJwd3d/5/FkJltbW43XSd/ZlJYnHXN638O3/fTTTxQtWhQ/Pz9mzZqFiYkJzZo1Y86cOZQuXVqd//Dhwxk+fLjOPJLOoyRp6emblG9KTSQAnj59irm5OX5+fkydOpVly5Yxfvx4LCws6NChA7Nnz87Sz0SSchMZAEoFUrly5dS9gFOSvPNDEnt7e+zs7Ni3b5/ObSwtLYE3bcQePHigVTuWFkFBQSkuezuISott27YRGRnJli1bcHV1VS+/ePFiuvNKzs7OjsePH2stf/ToEaC8X5kpKCiIIkWKqF/Hx8cTFhamfk+S9vf7779rHGdWSWpzNn36dI3loaGh2NjYqF/b2dml+pnmJu/7HpqbmzN58mQmT57MkydP1LWBbdq04fr16+r8R48ezUcffaQzj6S2k0l0nYsplXv+/Pkp9lZPqlW3t7dn7ty5zJ07l8DAQHbs2MGoUaMIDg5O8dyWpPxGBoCSlA6tW7fmt99+IyEhgdq1a6eYrmnTpujr67No0SK8vLzSvZ/Dhw/z5MkT9T+shIQE/Pz8KFmyZKq1f8lr1JI6o8Cbf6BJ6wGEEPzyyy8680hrjVyjRo3YunUrjx49Utf6gVLDamZmlunDxqxbt47q1aurX2/cuJH4+Hh1L9hmzZphYGDAf//9l6bbhmmRWi2lSqXSeE8Bdu/ezcOHDylVqpR6WcOGDZk9ezYBAQEat4HXr1//3mXIbJn5Hjo6OtKrVy8CAgKYO3cuUVFReHh4ULp0aQICArQC5/fh7e2NjY0NV69eTVPnmiTFixdn8ODBHD58mD/++CPTyiNJuZ0MACUpHbp27cq6deto2bIlX331FbVq1cLQ0JAHDx5w9OhR2rVrR4cOHXBzc2PMmDFMmTKF6OhoPvnkE6ytrbl69SqhoaHvHKzZ3t6eDz/8kPHjx6t7AV+/fl1rKJi3VaxYEYBZs2bRokUL9PX1qVSpEk2aNMHIyIhPPvmEb775hpiYGBYtWsSzZ8905rFlyxYWLVpE9erV0dPTS7G2dOLEiezatYuGDRsyYcIEbG1tWbduHbt372b27NlYW1un8Z1Nmy1btmBgYECTJk3UvYArV65M586dAXBzc+Pbb79l7Nix3L59m+bNm1OoUCGePHnC2bNn1bVT6WFpaYmrqyvbt2+nUaNG2NraYm9vj5ubG61bt2bVqlWULVuWSpUq8ddffzFnzhytIH3IkCGsWLGCVq1aMXXqVHUv4OvXr6epDEmf67x58/D19cXQ0BAPDw91jXNmet/3sHbt2rRu3ZpKlSpRqFAhrl27xpo1a/Dy8lKPo7lkyRJatGhBs2bN6NWrF0WKFOHp06dcu3aNv//+m02bNqW73BYWFsyfPx9fX1+ePn1Kx44dKVy4MCEhIQQEBBASEsKiRYt48eIFDRs2pFu3bpQtWxZLS0vOnTvHvn37UqyRlKR8Kad7oUhSdkrqOXju3LlU0/n6+gpzc3Od6+Li4sR3330nKleuLExMTISFhYUoW7as+OKLL8S///6rkXb16tWiZs2a6nRVq1YVK1eu1NiPrl7AgwYNEgsXLhQlS5YUhoaGomzZsmLdunUa6XT1Ao6NjRX9+vUTDg4OQqVSafSS3Llzp7rMRYoUESNGjBB79+7VyuPp06eiY8eOwsbGRp1H8rK93Rv20qVLok2bNsLa2loYGRmJypUraxxj8rJu2rRJY3lSj9W3078tqRfwX3/9Jdq0aSMsLCyEpaWl+OSTT8STJ0+00m/btk00bNhQWFlZCWNjY+Hq6io6duwoDh06pE6T0mectK/kDh06JKpWrSqMjY0FIHx9fYUQQjx79kz07dtXFC5cWJiZmYkPPvhAnDx5UqtnrhBCXL16VTRp0kSYmJgIW1tb0bdvX7F9+/Y09QIWQojRo0cLFxcXoaenp7FNSr2A58yZo7F9Sp9BSudEWt5DXUaNGiVq1KghChUqJIyNjUWJEiXE119/LUJDQzXSBQQEiM6dO4vChQsLQ0ND4eTkJD788EOxePHid5Yt+bq3e0YfP35ctGrVStja2gpDQ0NRpEgR0apVK/Vxx8TEiP79+4tKlSoJKysrYWpqKjw8PMTEiRNFZGRkqscmSfmJSgghsjnmlCQpFSqVikGDBvHzzz/ndFFyjUmTJjF58mRCQkIyvV2hJElSQSSHgZEkSZIkSSpgZAAoSZIkSZJUwMhbwJIkSZIkSQWMrAGUJEmSJEkqYGQAKKXbqlWrUKlUqFQqndNCCSEoVaoUKpVKPT6b9G4+Pj65/v2aNGlSmgblldJHpVIxadIk9eurV68yadIk7t69m2Nlys+SrmEZeX9Pnz7NpEmTeP78uda6vHAOS1ISGQBKGWZpacny5cu1lh8/fpz//vsvS8Yok3JWv379tOb3ld6fv78//fr1U7++evUqkydPlgFgLnT69GkmT56sMwBcuHAhCxcuzP5CSVIGyABQyrAuXbqwefNmwsPDNZYvX74cLy8vihcvnkMlk7JK0aJFM312Dwnq1KmT4XmjpdzD09MTT0/PnC6GJKWJDAClDPvkk08A2LBhg3rZixcv2Lx5M3369NG5zdOnTxk4cCBFihTByMiIEiVKMHbsWGJjYzXSqVQqBg8ezJo1ayhXrhxmZmZUrlyZXbt2aaQLCQnh888/p1ixYhgbG+Pg4IC3tzeHDh3SSLdixQoqV66MiYkJtra2dOjQgWvXrmmVb8eOHeoZCywtLWnSpIlWjVfSbdArV66oZ/hwdHSkT58+vHjx4p3vmxCC2bNn4+rqiomJCdWqVWPv3r060wYGBvLpp59SuHBhjI2NKVeuHN9//z2JiYnqNHfv3kWlUjFnzhxmzZqFm5sbpqam+Pj4cPPmTeLi4hg1ahQuLi5YW1vToUMHgoODNfbj5+dH06ZNcXZ2xtTUlHLlyjFq1CgiIyN1HntySTNi7Nu3j2rVqmFqakrZsmVZsWLFO98LgNjYWL799lvKlSuHiYkJdnZ2NGzYkNOnT6vTxMTEMHr0aNzd3TEyMqJIkSIMGjRIqxYmqSy7du2iatWq6mNJ+t6sWrWKcuXKYW5uTq1atTh//rzG9r169cLCwoIrV67QqFEjzM3NcXBwYPDgwURFRWmkTWuZjhw5go+PD3Z2dpiamlK8eHE+/vhjjfyS3wJetWoVnTp1ApQp5JKaW6xatUqd/tChQzRq1AgrKyvMzMzw9vbm8OHD73yvY2JiGDZsGFWqVMHa2hpbW1u8vLzYvn27VtrExETmz59PlSpVMDU1xcbGhjp16rBjxw6NdOvXr8fLywsLCwssLCyoUqWKxp0BNzc3evXqpZX/27dLjx07hkqlYv369YwcORJnZ2csLCxo06YNT548ISIigs8//xx7e3vs7e3p3bs3L1++VG+fdB4kf590vb8pOXjwIO3ataNo0aKYmJhQqlQpvvjiC0JDQ9VpJk2axIgRIwBwd3fXagqj6xZwTl3zJOmdcnIUailvSj46f48ePUStWrXU6xYtWiTMzc1FeHi4KF++vMYMBdHR0aJSpUrC3NxcfPfdd+LAgQNi/PjxwsDAQLRs2VJjH4Bwc3MTtWrVEhs3bhR79uwRPj4+wsDAQPz333/qdM2aNRMODg5i6dKl4tixY2Lbtm1iwoQJ4rffflOnmT59ugDEJ598Inbv3i1Wr14tSpQoIaytrcXNmzfV6datWycA0bRpU7Ft2zbh5+cnqlevLoyMjMTJkyfV6ZJmivDw8BATJkwQBw8eFD/88IMwNjYWvXv3fuf7l7R93759xd69e8XSpUtFkSJFhJOTk8b7FRwcLIoUKSIcHBzE4sWLxb59+8TgwYMFIAYMGKBOlzTzg6urq2jTpo3YtWuXWLt2rXB0dBRlypQRPXr0EH369BF79+4VixcvFhYWFqJNmzYaZZoyZYr48ccfxe7du8WxY8fE4sWLhbu7u2jYsKHOsifn6uoqihYtKjw9PcXq1avF/v37RadOnQQgjh8/nup7ERcXJxo2bCgMDAzE8OHDxZ49e8SOHTvEmDFjxIYNG4QQQiQmJopmzZoJAwMDMX78eHHgwAHx3XffCXNzc1G1alURExOjVZYKFSqIDRs2iD179ojatWsLQ0NDMWHCBOHt7S22bNkitm7dKsqUKSMcHR1FVFSUentfX19hZGQkihcvLqZNmyYOHDggJk2aJAwMDETr1q3V6dJapjt37ggTExPRpEkTsW3bNnHs2DGxbt060aNHD/Hs2TN1fiSbYSU4OFj9nV2wYIHw9/cX/v7+Ijg4WAghxJo1a4RKpRLt27cXW7ZsETt37hStW7cW+vr675yl4/nz56JXr15izZo14siRI2Lfvn1i+PDhQk9PT/z6668aaXv06CFUKpXo16+f2L59u9i7d6+YNm2amDdvnjrN+PHjBSA++ugjsWnTJnHgwAHxww8/iPHjx2t8JkkzpyT39gwmSTOVuLq6il69eol9+/apv68NGzYUTZo0EcOHDxcHDhwQs2bNEvr6+uLLL79Ub5/arDK8NYONrllEFi1aJGbMmCF27Nghjh8/Ln799VdRuXJl4eHhIV69eiWEEOL+/fviyy+/FIDYsmWL+rN58eKFzmPKqWueJKWFDACldEseACZdtC9fviyEEKJmzZqiV69eQgihFQAuXrxYAGLjxo0a+c2aNUsA4sCBA+plgHB0dBTh4eHqZUFBQUJPT0/MmDFDvczCwkIMGTIkxbI+e/ZMmJqaal1sAwMDhbGxsejWrZsQQoiEhATh4uIiKlasKBISEtTpIiIiROHChUXdunXVy5KCoNmzZ2vkOXDgQGFiYiISExNTLY+JiYno0KGDxvI//vhDABrv16hRowQgzpw5o5F2wIABQqVSiRs3bggh3vzjq1y5skbZ586dKwDRtm1bje2HDBkiAPU/rbclJiaKuLg4cfz4cQGIgIAArWNPztXVVZiYmIh79+6pl0VHRwtbW1vxxRdfpPheCKFMlQeIX375JcU0+/bt0/l++/n5CUAsXbpUoyympqbiwYMH6mUXL14UgHB2dtaY6mvbtm0CEDt27FAv8/X1FYBGkCOEENOmTROAOHXqVLrK9PvvvwtAXLx4MdX34e0AZdOmTTqniIuMjBS2trZaAXxCQoKoXLmyxo+xtIiPjxdxcXGib9++omrVqurlJ06cEIAYO3Zsitvevn1b6Ovri+7du6e6j/QGgG8fW9L39X//+5/G8vbt2wtbW1v16/cNAJNLOgfu3bsnALF9+3b1ujlz5qS47dvHlBPXPElKK3kLWHovDRo0oGTJkqxYsYJLly5x7ty5FG//HjlyBHNzczp27KixPOn20Nu3sBo2bKjRkcTR0ZHChQtz79499bJatWqxatUqpk6dyp9//klcXJxGHv7+/kRHR2vdgipWrBgffvihep83btzg0aNH9OjRAz29N6eFhYUFH3/8MX/++afWLcC2bdtqvK5UqRIxMTFat1ffLk9MTAzdu3fXWF63bl1cXV01lh05cgRPT09q1aqlsbxXr14IIThy5IjG8pYtW2qUvVy5cgC0atVKI13S8sDAQPWy27dv061bN5ycnNDX18fQ0JAGDRoA6LxV/rYqVapotPk0MTGhTJkyGp+VLnv37sXExCTF7wygPs63P8NOnTphbm6u9b2pUqUKRYoUUb9OOl4fHx/MzMy0lusq49ufT7du3QA4evRouspUpUoVjIyM+Pzzz/n111+5fft2iseZFqdPn+bp06f4+voSHx+vfiQmJtK8eXPOnTunddv+bZs2bcLb2xsLCwsMDAwwNDRk+fLlGp9zUpOEQYMGpZjPwYMHSUhISDVNRrRu3VrjdWrf46dPn2rcBn4fwcHB9O/fn2LFiqnfl6RzMi3ngC45cc2TpLSSAaD0XlQqFb1792bt2rUsXryYMmXKUK9ePZ1pw8LCcHJy0mpDVrhwYQwMDAgLC9NYbmdnp5WHsbEx0dHR6td+fn74+vqybNkyvLy8sLW1pWfPngQFBan3CeDs7KyVl4uLi3r9u9IlJiby7NmzVMtnbGwMoFG+tyXtx8nJSWvd28vCwsJSLE/yvJLY2tpqvDYyMkp1eUxMDAAvX76kXr16nDlzhqlTp3Ls2DHOnTvHli1b3nk8SdLyWekSEhKCi4uLRuD6trCwMAwMDHBwcNBYrlKpcHJyyrT3IYmBgYHW8SR9Nsm/L2kpU8mSJTl06BCFCxdm0KBBlCxZkpIlSzJv3rwUjzc1T548AaBjx44YGhpqPGbNmoUQgqdPn6a4/ZYtW+jcuTNFihRh7dq1+Pv7q3+0JX8fQkJC0NfX1/k9TZ4GyPTOK+/7+WVEYmIiTZs2ZcuWLXzzzTccPnyYs2fP8ueffwJpOwd0yYlrniSllUFOF0DK+3r16sWECRNYvHgx06ZNSzGdnZ0dZ86cQQihcUEMDg4mPj4ee3v7dO/b3t6euXPnMnfuXAIDA9mxYwejRo0iODiYffv2qS+ojx8/1tr20aNH6n2+K52enh6FChVKd/nelrQfXRfroKAg3NzcNNKmVB4gQ++XLkeOHOHRo0ccO3ZMXesH6BzmIrM5ODhw6tQpEhMTUwwC7ezsiI+PJyQkRCPgEkIQFBREzZo1M7VM8fHxhIWFafwzTvq8kpalp0z16tWjXr16JCQkcP78eebPn8+QIUNwdHSka9eu6Spb0mc+f/78FHtjOzo6prj92rVrcXd3x8/PT+McfLtDgoODAwkJCQQFBen8EZKUBuDBgwcUK1YsxX2amJho5Q8QGhqaad/hpP2A9rG8HWTpcvnyZQICAli1ahW+vr7q5bdu3XqvMuXENU+S0krWAErvrUiRIowYMYI2bdpoXDzf1qhRI16+fMm2bds0lq9evVq9/n0UL16cwYMH06RJE/7++28AvLy8MDU1Ze3atRppHzx4wJEjR9T79PDwoEiRIqxfvx6RbHbEyMhINm/erO4Z/L7q1KmDiYkJ69at01h++vRprVuRjRo14urVq+pjSbJ69WpUKhUNGzZ87/IA6n9MSTWYSZYsWZIp+aemRYsWxMTE6Oy5mSTpM3r7M9y8eTORkZHv/b3R5e3PZ/369QDqHp4ZKZO+vj61a9dmwYIFAFqfa3Ip1SZ7e3tjY2PD1atXqVGjhs5HUs2YLiqVCiMjI41gJCgoSKsXcIsWLQBYtGhRink1bdoUfX39VNOA0gv4n3/+0Vh28+ZNbty4kep26eXo6IiJiYnWvnT1cH5bes6BtNT0J8mJa54kpZWsAZQyxcyZM9+ZpmfPnixYsABfX1/u3r1LxYoVOXXqFNOnT6dly5Y0btw4Xft88eIFDRs2pFu3bpQtWxZLS0vOnTvHvn37+OijjwCwsbFh/PjxjBkzhp49e/LJJ58QFhbG5MmTMTExYeLEiQDo6ekxe/ZsunfvTuvWrfniiy+IjY1lzpw5PH/+PE3HlxaFChVi+PDhTJ06lX79+tGpUyfu37/PpEmTtG63ff3116xevZpWrVrx7bff4urqyu7du1m4cCEDBgygTJkymVKmunXrUqhQIfr378/EiRMxNDRk3bp1BAQEZEr+qfnkk09YuXIl/fv358aNGzRs2JDExETOnDlDuXLl6Nq1K02aNKFZs2aMHDmS8PBwvL29+eeff5g4cSJVq1alR48emVomIyMjvv/+e16+fEnNmjU5ffo0U6dOpUWLFnzwwQcAaS7T4sWLOXLkCK1ataJ48eLExMSoh8dJ7fteoUIFAJYuXYqlpSUmJia4u7tjZ2fH/Pnz8fX15enTp3Ts2JHChQsTEhJCQEAAISEhqQZkrVu3ZsuWLQwcOJCOHTty//59pkyZgrOzM//++686Xb169ejRowdTp07lyZMntG7dGmNjYy5cuICZmRlffvklbm5ujBkzhilTphAdHa0eEunq1auEhoYyefJkAHr06MGnn37KwIED+fjjj7l37x6zZ8/Wun3+vlQqFZ9++ikrVqygZMmSVK5cmbNnz6qD99SULVuWkiVLMmrUKIQQ2NrasnPnTg4ePKiVtmLFigDMmzcPX19fDA0N8fDw0DnwfU5c8yQpzXKu/4mUVyXvBZyat3sBCyFEWFiY6N+/v3B2dhYGBgbC1dVVjB49WmMoDyGUHnGDBg3SyjN5j8KYmBjRv39/UalSJWFlZSVMTU2Fh4eHmDhxokZvTyGEWLZsmahUqZIwMjIS1tbWol27duLKlSta+W/btk3Url1bmJiYCHNzc9GoUSPxxx9/aKRJ6gkbEhKi831JqWdhksTERDFjxgxRrFgxYWRkJCpVqiR27typ1YNQCCHu3bsnunXrJuzs7IShoaHw8PAQc+bM0ejtm9T7cc6cORrbJvWq3LRpk85yJv/8Tp8+Lby8vISZmZlwcHAQ/fr1E3///bdWr8qUegG3atVK6zh1HY8u0dHRYsKECaJ06dLCyMhI2NnZiQ8//FCcPn1aI83IkSOFq6urMDQ0FM7OzmLAgAEaQ6mkVhZd3ydd75uvr68wNzcX//zzj/Dx8RGmpqbC1tZWDBgwQLx8+VKr3O8qk7+/v+jQoYNwdXUVxsbGws7OTjRo0ECj53FS+ZL3UhVC6cXt7u4u9PX1tT6H48ePi1atWglbW1thaGgoihQpIlq1aqX1Wesyc+ZM4ebmJoyNjUW5cuXEL7/8ovNzTUhIED/++KOoUKGC+rzx8vISO3fu1Ei3evVqUbNmTWFiYiIsLCxE1apVNcqamJgoZs+eLUqUKCFMTExEjRo1xJEjR1LsBZyW76sQus/DFy9eiH79+glHR0dhbm4u2rRpI+7evZumXsBXr14VTZo0EZaWlqJQoUKiU6dOIjAwUOdnM3r0aOHi4iL09PQ0emvr+s7n1DVPkt5FJUSy+12SJEkFWK9evfj9998zrWepJElSbiXbAEqSJEmSJBUwMgCUJEmSJEkqYOQtYEmSJEmSpAJG1gBKkiRJkiQVMDIAlCRJkiRJKmBkAFiA/PPPP/Tu3Rt3d3dMTEywsLCgWrVqzJ49W2P6KB8fH1QqFSVKlEBXC4ETJ06gUqlQqVQaA/iuWrUKlUrF+fPn1csmTZqkTps0CK27uztfffWVxkwTx44d00iX/JE0HVNGPXnyhDFjxlClShWsrKwwMjKiaNGifPTRR+zYsYOEhAStcvz+++8aeZw5c4YOHTpQvHhxjI2NcXR0xMvLi2HDhmmki4uLY8mSJdSsWRNbW1vMzMxwdXWlXbt2bN26NU3lTel9UKlUGnPPbtmyhU8++YRSpUphamqKm5sb3bt31xjP7V18fHzUY869LTQ0FJVKxaRJk9KcX1rzTu7u3bta36W0WL9+PXPnzs1Q2dLifY49Ldzc3LTmEs4MV65cYeDAgXh5eWFubo5KpeLYsWM60+o6xnHjxtG6dWuKFCmi9Z3LqNWrV9O1a1c8PDzQ09PTmPEmIxISEvjhhx9o3rw5RYsWxczMjHLlyjFq1KgUZ7CZP38+ZcuWxdjYGHd3dyZPnqxzHt3g4GB69eqFvb09ZmZmeHl5ac3Zm+TQoUPqQeLt7e3p1atXqnOBJ3fz5k2GDx9O9erVsbGxwdbWFm9vb61rT1aVK+m80/X47bff0nQMUt4mB4IuIH755RcGDhyIh4cHI0aMwNPTk7i4OM6fP8/ixYvx9/fXCFAsLS25c+eOxmwZSVasWIGVlRXh4eFp3v++ffuwtrYmIiKCPXv2MG/ePM6ePcvp06c1ZiWYPn261gwXaQkiUvLnn3/Stm1bhBAMGDCAOnXqYGFhQWBgIDt37uSjjz5iyZIl9O3bN8U8du/eTdu2bfHx8WH27Nk4Ozvz+PFjzp8/z2+//cb333+vTtujRw+2bNnCkCFDmDx5MsbGxty+fZt9+/axf/9+OnTokKZyd+zYUSu4BDQGz501axZOTk6MHTuWEiVKcP/+faZPn061atX4888/KV++fDreqZzj7OyMv78/JUuWTNd269ev5/LlywwZMiRLyuXv75/p89xmh/Pnz7Nt2zaqVq1Ko0aN2LlzZ4ppdR3jjz/+SKVKlWjbtq160Or3tWbNGoKCgqhVqxaJiYk6A6/0iI6OZtKkSXzyySf069cPe3t7/v77b6ZOncrOnTs5f/48pqam6vTTpk1j/PjxjBo1iqZNm3Lu3DnGjRvHw4cPWbp0qTpdbGwsjRo14vnz58ybN4/ChQuzYMECmjdvzqFDhzSmSjx+/DgtWrSgVatWbN++neDgYEaOHEmjRo04f/681qwibztw4AC7d++mR48e1KxZk/j4ePz8/OjUqROTJ09mwoQJ2VKuL7/8km7dumksK126dPo+EClvyslBCKXscfr0aaGvry+aN2+uNfioEELExsaK7du3q183aNBAlC9fXtSpU0d069ZNI214eLgwMzMTn332mdbgtLoGbE1p0OQePXoIQJw6dUoIkfIgsO/j2bNnwtHRUbi7u4tHjx7pTBMQECCOHDmifq2rHPXr1xclS5YUcXFxWtsnH5D59u3bAhATJkzQua/kaVNDCgPCvu3Jkydayx4+fCgMDQ1F375907SvpM9al5CQEJ2D4KZVanlnhlatWglXV9dMzTMxMVFERUVlap4pST7Ab2ZIGgg4+fds06ZNGgMVp0Xy7c3NzTOljMnzzIzPLT4+XoSGhmotTzreNWvWqJeFhoYKExMT8fnnn2uknTZtmlCpVBoDwi9YsEAAGoOQx8XFCU9PT1GrVi2N7WvWrCk8PT01rgt//PGHAMTChQvfeQwhISEiMTFRa3mrVq2EmZmZxrU6K8qV0gDyUsEhbwEXANOnT0elUrF06VKdv0qNjIxo27at1vI+ffqwZcsWjVsqSbcG0juJ/duSJrJ/e/7bzPTLL7/w5MkTda2dLpUqVXrnnLphYWHY29tjYKBdYa6np6eRDkhxX8nTZobChQtrLXNxcaFo0aLcv38/U/f1Ps6dO0e9evUwMzOjRIkSzJw5k8TERPV6XbeAQ0JC+PzzzylWrBjGxsY4ODjg7e3NoUOHAOX28u7du7l3757GraskT58+ZeDAgRQpUgQjIyNKlCjB2LFjiY2N1SibSqVi8ODBLF68mHLlymFsbMyvv/6qXvf27dGHDx+qy2VkZISLiwsdO3bkyZMnAMTExDBs2DCqVKmCtbU1tra2eHl5pWk+2vTo1asXFhYWXLp0iaZNm2JpaamuqU/P90zXMaZ1+6Rb/CdPnqROnTqYmppSpEgRxo8fr9GsIr1lSgt9fX3s7Oy0lteqVQtA4/u/b98+YmJi6N27t0ba3r17I4TQmKd369ateHh44OXlpV5mYGDAp59+ytmzZ3n48CGgfA/OnTtHjx49NK4LdevWpUyZMmlq7mFvb6/xnU1+DFFRURrNcrKzXFLBIQPAfC4hIYEjR45QvXp1ihUrlq5tu3btir6+Phs2bFAvW758OR07dsTKyuq9ynXr1i0ArflABw0ahIGBAVZWVjRr1oxTp05leB8HDx5EX1+fli1bvldZvby8OHPmDP/73/84c+ZMirevypUrh42NDZMnT2bp0qXcvXs3w/sUQhAfH6/1EO8Yten27dvcu3cv3bd/de3r7X/iGREUFET37t359NNP2bFjBy1atGD06NGsXbs21e169OjBtm3bmDBhAgcOHGDZsmU0btxYHWQvXLgQb29vnJyc8Pf3Vz9ACcIaNmzI6tWrGTp0KLt37+bTTz9l9uzZOudL3bZtG4sWLWLChAns37+fevXq6SzTw4cPqVmzJlu3bmXo0KHs3buXuXPnYm1tzbNnzwDlVt3Tp08ZPnw427ZtY8OGDXzwwQd89NFHrF69+n3eSi2vXr2ibdu2fPjhh2zfvl099252CgoKomvXrnTv3p3t27fTsWNHpk6dyldffZXtZQE4cuQIgMb3//Lly8CbOXyTODs7Y29vr16flLZSpUpa+SYtu3LlikaeKaVNnmd6HT16FAcHB40feFlZrpkzZ2JkZISZmRkffPABO3bsyHDZpbxFtgHM50JDQ4mKisLd3T3d21paWtKxY0dWrFjBgAEDuHr1KmfOnGHWrFnpzishIYH4+HhevnzJ7t27Wbx4McWKFVP/s7W2tuarr77Cx8cHOzs7bt26xZw5c9Q1Pc2aNUv3Pu/fv4+DgwNmZmYayxMTEzVqoPT09FKtoZg5cybXr19n/vz5zJ8/H0NDQ2rWrEmbNm0YPHgwFhYWAJibm7Nu3Tp8fX354osvALCzs+PDDz+kR48etGnTJs1lX7hwIQsXLtRavmbNGj799FOd28THx9O3b18sLCz4+uuv07yvK1euYGhomOb06REWFsaePXvUNTONGzfm2LFjrF+/np49e6a43R9//EG/fv347LPP1MvatWunfu7p6YmNjQ3Gxsbq2uQkv/76K//88w8bN26kU6dOADRp0gQLCwtGjhzJwYMHadKkiTr9y5cvuXTpEoUKFUr1WCZMmEBoaCgBAQGUK1dOvbxz587q59bW1qxcuVL9OiEhgUaNGvHs2TPmzp2b6jGnV1xcHBMmTNCq2cpOYWFhbN++XX0HoWnTpkRHR7No0SK++eYbihcvnm1lefjwIaNGjaJGjRq0bt1ao4zGxsaYm5trbWNra6v+UZGU1tbWVme6pPXJ/6aUNnme6bFs2TKOHTvGvHnz0NfXz9JyGRsb89lnn9GkSROcnZ0JDAxk/vz5tGvXjl9++YV+/fpl6BikvEMGgFKq+vTpQ4MGDbh06RKrVq2iZMmS1K9fn7/++itd+Tg5OWm89vb2ZunSpZiYmABQtWpVqlatql5fr149OnToQMWKFfnmm28yFACmZOjQocybN0/9ulWrVuzatSvF9HZ2dpw8eZLz589z+PBhzp8/z7Fjxxg9ejRLlizh3Llz2NvbA9CyZUsCAwPZv38/f/zxB2fPnmXbtm1s2rSJQYMG8fPPPwNKYJC8Nu/tILRz586MGDFCqywlSpTQWUYhBH379uXkyZNs3rxZo7b37YBXpVJp/HMpWbKkzl5/L168oHHjxim+L2nh5OSkDv6SVKpUiYsXL6a6Xa1atVi1ahV2dnY0btyY6tWrpzlIPXLkCObm5nTs2FFjea9evRg5ciSHDx/WCAA//PDDdwZ/AHv37qVhw4YawZ8umzZtYu7cuQQEBBAZGalenvRdz0wff/xxpueZHpaWllrNR7p168Yvv/zCiRMnUvyxktmePn1Ky5YtEULg5+en9YNO163WlNZlRtrky+Pj4zXW6evr69xu7969DBo0iI4dO/Lll1++c9/vWy5nZ2eNDjAAnTp1onbt2owaNYpevXrpbPYi5R/yFnA+lzRkwJ07dzK0ff369SldujRLlixhzZo19OnTJ9ULUUoOHTrEuXPnuHjxIqGhoZw6dQpPT89Ut7GxsaF169b8888/REdHp3ufxYsXJyQkhKioKI3lw4YN49y5c5w7dy7F9nq61KhRg5EjR7Jp0yYePXrE119/zd27d5k9e7ZGOlNTU9q3b8+cOXM4fvw4t27dwtPTkwULFqhv1ZQsWRJDQ0P149tvv9XIw8HBgRo1amg9dP2yF0LQr18/1q5dy6pVqzRqykAJ4pPv6+1e3SYmJjr3Vbly5TS/NynR1U7L2Nj4nZ+nn58fvr6+LFu2DC8vL2xtbenZsydBQUHv3GdYWBhOTk5a39PChQtjYGCgVTuT1u9ASEjIO3sFb9myhc6dO1OkSBHWrl2Lv78/586do0+fPsTExKRpP2llZmb23k0x3pejo6PWsqQfexmtBUuvZ8+e0aRJEx4+fMjBgwe1fiTZ2dkRExOjdR0AJXBMfk7Z2dnpLHdSe7yktEnf65TSJs8z+blnaGiobmOa3P79+/noo49o0qQJ69at0/ruZkW5dDE0NKRLly6EhYWlazgpKW+S4X0+p6+vT6NGjdi7dy8PHjzI0LAWvXv3Zty4cahUKnx9fTNUjsqVK6trydIjqZYsI0FnkyZNOHDgAHv27NGoDSpWrJi6hszIyCjd+YJyoZw4cSI//vjjO9v7FC9enM8//5whQ4Zw5coVypcvz86dOzU6JLi4uGSoHEnB38qVK1m+fLnOGpdJkyYxePBg9WtLS8sM7Ss72dvbM3fuXObOnUtgYCA7duxg1KhRBAcHs2/fvlS3tbOz48yZMwghNL43wcHBxMfHa30P0/rdcnBw4MGDB6mmWbt2Le7u7vj5+Wnk+3bnk8yQkXMisyV1fkkuKUjXFfxntmfPntG4cWPu3LnD4cOHdbZ9S2r7d+nSJWrXrq1RztDQUI1hpipWrMilS5e08khalpQ26e+lS5e02hhfunRJI89z585prH+7Oc7+/ftp3749DRo0YPPmzTqvSVlRrpQkXXMzu+OOlPvIT7gAGD16NEIIPvvsM169eqW1Pi4uLtWxwnx9fWnTpg0jRoygSJEiWVlUDc+ePWPXrl1UqVIlQ7fP+vXrh6OjI9988w2PHz/OcDlS2vbatWvAm+AtIiKCly9fpiltxYoVNWrbMhIAJn2mK1euZMmSJSm2BXNzc9PYl4eHR7r3lZOKFy/O4MGDadKkCX///bd6eUo1iY0aNeLly5cavTsBdSeMt2tA06pFixYcPXqUGzdupJgmabDz5MFZUFBQpvcCzi0iIiK0Og2sX78ePT096tevn6X7Tgr+bt++zYEDBzSakCTXvHlzTExMtAYaTxq4vn379uplHTp04Pr165w5c0a9LD4+nrVr11K7dm31eVqkSBFq1arF2rVrNTpL/fnnn9y4cUOjs9HbNevJA+MDBw7Qvn17PvjgA7Zt25bi2IFZUS5d4uLi8PPzw97enlKlSqWaVsr7ZA1gAeDl5cWiRYsYOHAg1atXZ8CAAZQvX564uDguXLjA0qVLqVChQoqdFFxcXLT+mWa2bt26Ubx4cWrUqIG9vT3//vsv33//PU+ePNF54e7duzcrV65MdZYCGxsbtm3bRps2bahcubLGQNBhYWGcOHGCoKAg6tatm2rZmjVrRtGiRWnTpg1ly5YlMTGRixcv8v3332NhYaHu8Xjjxg2aNWtG165dadCgAc7Ozjx79ozdu3ezdOlSfHx83rmvJE+ePNE5A4qVlZX61vn//vc/li9fTp8+fahYsaJGemNj4xT/Ib6vpFkc3qeXc2pevHhBw4YN6datG2XLlsXS0pJz586xb98+jX9gFStWZMuWLSxatIjq1aujp6dHjRo16NmzJwsWLMDX15e7d+9SsWJFTp06xfTp02nZsmWG2zV+++237N27l/r16zNmzBgqVqzI8+fP2bdvH0OHDqVs2bK0bt2aLVu2MHDgQDp27Mj9+/eZMmUKzs7Oabql5uPjw/Hjx9/Z2zs1UVFR7NmzB0D9nTh+/DihoaGYm5vTokWLVLc/fvw4ISEhgNJW9d69e+rZKRo0aKDRc9/Ozo4BAwYQGBhImTJl2LNnD7/88gsDBgzQ6ABy9epVrl69CigBcVRUlDpPT09PjeYgKpWKBg0apDh7CSgDQTdr1owLFy4wd+5c4uPjNb7/Dg4O6oHFbW1tGTduHOPHj8fW1lY9EPSkSZPo16+fxr779OnDggUL6NSpEzNnzqRw4cIsXLiQGzduqIcgSjJr1iyaNGlCp06dGDhwIMHBwYwaNYoKFSqkqWPOqVOnaN++PU5OTowZM0arXaynp6f6Fn9WlGvo0KHExcWpe9Pfv3+f+fPnc/HiRVauXKnRTljKp3Ji8EEpZ1y8eFH4+vqK4sWLCyMjI2Fubi6qVq0qJkyYIIKDg9Xp0jKA77lz595rIOi3zZgxQ1SpUkVYW1sLfX194eDgIDp06CDOnj2rlXb+/PkCEPv27UvTcQcFBYnRo0eLSpUqCXNzc2FoaChcXFxEmzZtxOrVqzUGTNU1ELSfn5/o1q2bKF26tLCwsBCGhoaiePHiokePHuLq1avqdM+ePRNTp04VH374oShSpIj6Pa5SpYqYOnVqmgcYBlJ8eHt7q9O5urqmmC6tA+1mZCBoe3t7UadOnQzn7evrq1G+pAFpk75LMTExon///qJSpUrCyspKmJqaCg8PDzFx4kT1YMdCCPH06VPRsWNHYWNjI1QqlUh+OQsLCxP9+/cXzs7OwsDAQLi6uorRo0drDYROKoNu6zr2+/fviz59+ggnJyf196hz584ag3LPnDlTuLm5CWNjY1GuXDnxyy+/qM+D5HQNBF29enXh5OSkszzJ+fr6CnNzc53rkt7PtHwvdB1jgwYNUtw++YDSSZ/vsWPHRI0aNYSxsbFwdnYWY8aM0Ro0Pen4dT2S7z8iIkIAomvXrqkef2rHCOgcvHrevHmiTJkywsjISBQvXlxMnDhRvHr1SitdUFCQ6Nmzp7C1tRUmJiaiTp064uDBgzrLceDAAVGnTh1hYmIibG1tRc+ePXUO0K5Lau/J2+91VpRr+fLlolatWsLW1lYYGBiIQoUKiWbNmon9+/enqfxS3qcS4j1+akpSDujcuTN37tzRalsjZb2rV69Svnx5du3aRatWrXK6OPlKREQEtra2zJ07l0GDBuV0cd7Jx8eH0NDQ9xrz7m179uyhdevWBAQEaI3bJ0lS5pK3gKU8RQjBsWPH3jmQsJQ1jh49ipeXlwz+ssCJEycoUqSIxtiHBc3Ro0fp2rWrDP4kKRvIGkBJkiQp3bKiBlCSpOwjA0BJkiRJkqQCRg4DI0mSJEmSVMDIAFCSJEmSJKmAkQGgJEmSJElSASMDQEmSJEmSpAJGBoCSJEmSJEkFjAwAJUmSJEmSChgZAEqSJEmSJBUwMgCUJEmSJEkqYGQAKEmSJEmSVMDIAFCSJEmSJKmAkQGgJEmSJElSASMDQEmSJEmSpAJGBoBSvvXTTz+hUqmoUKGCzvUqlYrBgwerX9+9exeVSqV+6OnpUahQIRo1asSBAweyq9iSJGWz1K4VSdeF7777Tue23333HSqVirt376qXxcXFsWTJEmrWrImtrS1mZma4urrSrl07tm7dmlWHIUnpIgNAKd9asWIFAFeuXOHMmTNp3u7LL7/E39+fkydP8t133/Hvv//SsmVLTpw4kVVFlSQpB2X0WpGSHj168OWXX9KwYUPWrl3Lzp07GTduHAYGBuzfv/+985ekzGCQ0wWQpKxw/vx5AgICaNWqFbt372b58uXUrl07TdsWL16cOnXqAODt7U3p0qVp0KABy5cvp379+llZbEmSstn7XCt0uXPnDn5+fkyYMIHJkyerlzdq1IjPPvuMxMTEzCi2JL03WQMo5UvLly8HYObMmdStW5fffvuNqKioDOVVo0YNAJ48eZJp5ZMkKXfIzGsFQFhYGADOzs461+vpyX+7Uu4gv4lSvhMdHc2GDRuoWbMmFSpUoE+fPkRERLBp06YM5Xfnzh0AypQpk5nFlCQph2X2tQKgXLly2NjYMHnyZJYuXarRNlCSchMZAEr5zu+//86LFy/o27cvAF26dMHCwkL9S/9dEhMTiY+PJzY2loCAAD777DOcnZ0ZOnRoVhZbkqRs9r7XCl3Mzc1Zt24d8fHxfPHFF7i7u2Nvb0/nzp3ZuXNnZhVdkt6bDAClfGf58uWYmprStWtXACwsLOjUqRMnT57k33//fef2I0eOxNDQEBMTE6pUqcLly5fZuXMnbm5uWVxySZKy0/teK1LSsmVLAgMD2bp1K8OHD6d8+fJs27aNtm3baow8IEk5SQaAUr5y69YtTpw4QatWrRBC8Pz5c54/f07Hjh2BN739UvPVV19x7tw5Tp06xXfffUdcXBzt2rVTt+2RJCnvS+u1wsBA6SuZkJCgM5/4+HgADA0NNZabmprSvn175syZw/Hjx7l16xaenp4sWLCAK1euZNVhSVKayQBQyldWrFiBEILff/+dQoUKqR+tWrUC4Ndff03xQp6kaNGi1KhRA29vb4YNG8ayZct4+PAhEydOzI5DkCQpG6T1WmFvb4++vj4PHz7Umc/Dhw/R19fHzs4u1f0VL16czz//HEAGgFKuIANAKd9ISEjg119/pWTJkhw9elTrMWzYMB4/fszevXvTlW/37t3x8fHhl19+4d69e1lUekmSskt6rhUmJiZ4e3uzY8cOYmJiNPKJiYlhx44dfPDBB5iYmAAQERHBy5cvde732rVrALi4uGTtAUpSGshxAKV8Y+/evTx69IhZs2bh4+Ojtb5ChQr8/PPPLF++nNatW6cr71mzZlG7dm2mTJnCsmXLMqnEkiTlhPReK2bOnEnDhg3x8vJiyJAhFC9enMDAQObOncuTJ0/47bff1NveuHGDZs2a0bVrVxo0aICzszPPnj1j9+7dLF26FB8fH+rWrZuNRytJuskaQCnfWL58OUZGRvTu3Vvnent7ezp06MCuXbvSPaZfrVq16NSpE7/++iv//fdfZhRXkqQckt5rhZeXF3/88Qfu7u4MHz6cJk2aMHz4cNzd3Tl9+jReXl7qbUuVKsXQoUO5fv06Q4cOpXHjxnTr1o2zZ88ydepU9uzZI8cClHIFlRBC5HQhJEmSJEmSpOwjf4ZIkiRJkiQVMDIAlCRJkiRJKmBkAChJkiRJklTA5IkA8MSJE7Rp0wYXFxdUKhXbtm175zbHjx+nevXqmJiYUKJECRYvXqyVZvPmzXh6emJsbIynpydbt27NgtJLkiRJkiTlLnkiAIyMjKRy5cr8/PPPaUp/584dWrZsSb169bhw4QJjxozhf//7H5s3b1an8ff3p0uXLvTo0YOAgAB69OhB586dOXPmTFYdhiRJkiRJUq6Q53oBq1Qqtm7dSvv27VNMM3LkSHbs2KEedBOgf//+BAQE4O/vDyiTfoeHh2sMCty8eXMKFSrEhg0bsqz8kiRJkiRJOS1fDgTt7+9P06ZNNZY1a9aM5cuXExcXh6GhIf7+/nz99ddaaebOnZtivrGxscTGxqpfJyYm8vTpU+zs7FCpVJl6DJIkvZsQgoiICFxcXHL12Gry2iFJuUteuXZkpXwZAAYFBeHo6KixzNHRkfj4eEJDQ3F2dk4xTVBQUIr5zpgxg8mTJ2dJmSVJyrj79+9TtGjRnC5GiuS1Q5Jyp9x+7chK+TIABLR+VSfd6U6+XFea1H6Njx49mqFDh6pfv3jxguLFi3P//n2srKwyo9iSlC9ER8ODB3D3Lty4Adevw7//wpMn8OSJICpK93mmTxxVuUBZruPBDVzs4zCytcTQ1hIDWyv07azRt7PByN4a6yIWGNipqNm2FpaWltl7gOkkrx1SfhUZCcuXw08/QUjIm+XW1mBnBxYWYG4OJiZgbKw89PVBpVIeenrKQ6VSlic9NzJStjEzAwMDzW2SqFRKfoaGyl8Tw3jMXoZgHPYQo8D/MPzvOgY3r2IedhdLIrDgJUa8gipViejeHY8Rg3L9tSMr5csA0MnJSasmLzg4GAMDA+zs7FJN83atYHLGxsYYGxtrLbeyspIXcanAun4d9u6Fa9fg6lUl0AsOfvd2eiRgzQusCKcKF/nYcAetKz+g0AfloUEDqPeJ8h8kFeHh4YD2j7ncRl47pPzi1SvlXL90CS5ehF9/hdBQZV2RItC5M3TsCHXqKMFclomMhAsXwN8fTvnDX3/B/fugq1uDgQHUqqVcV9q1g9q1MQ8PhxGDcv21IyvlywDQy8uLnTt3aiw7cOAANWrUwNDQUJ3m4MGDGu0ADxw4ICfplqQ0CguDiRNh0SJITNReb66KxE3coRzX8OQq5bhGUR7gyBMcrWKwrFwCVdUqULkyVK8OnkuUn/KSJOVKO3bAZ59p/8ArWRLGjoVPP82iU1gI5ZfmsWNw+jT8/bfyWteFx8wMSpSASpWU60r16lCjhlINKWnIEwHgy5cvuXXrlvr1nTt3uHjxIra2thQvXpzRo0fz8OFDVq9eDSg9fn/++WeGDh3KZ599hr+/P8uXL9fo3fvVV19Rv359Zs2aRbt27di+fTuHDh3i1KlT2X58kpSXxMbCkiUwaRI8e6Ysa+J8idrhB/GMPIcHN3DjLoXEM1T6+lCunBLkVa4OlXpDhQrg4qJ5L0eSpFwrKgqGD1d+7IFye7diReVRv75S42eQ2dHEixewbx/s2gWHDoGu9vnOzkpVo5cX1K4NZcuCg4O8tqSVyAOOHj0qAK2Hr6+vEEIIX19f0aBBA41tjh07JqpWrSqMjIyEm5ubWLRokVa+mzZtEh4eHsLQ0FCULVtWbN68OV3levHihQDEixcvMnpokpRnxMUJsWzRK1HcMUYoP8mFqMg/4gg+Qr3A3FyIli2FmDFDiOPHhYiMzNIy5dVzMK+WWyp4Hj0SwtPzzSk+bJgQMTFZtLPQUCGWLhWicWMhDAze7BSEMDER4sMPhZg0SYhdu5SCvQd5DgqR58YBzE3Cw8OxtrbmxYsXqbbjSUhIIC4uLhtLJmUlQ0ND9PX1c7oY2ePRIxJPnGLTmhgmHGnAzRhXAFx4yHim0I9lGHh6QJs20Lw51K2rtN7OJmk9B3ObvFpuqWCJjlaazZ07B05OSnu/t0ZYez9CKL3E9u9XGhIfPgzx8W/WlysHrVtDy5ZKTZ+JSabtWp6DeeQWcF4lhCAoKIjnz5/ndFGkTGZjY4OTk1P+bUCckEDC9FnsmXSW8YmTCKAKAPaEMNp8PgMaXsf0Qy9ocx1KlcrZskqSlOmEgL59leDP1hZOnVLa+mWaAwdg4ED47z/N5VWqQJcuyn1leW3JUjIAzEJJwV/hwoUxMzPLv8FCASKEICoqiuDXraCdnZ1zuESZ78rxUFb7HmLtPV8eMQYAK6Nohre5yZCx5lhWmSzb2EhSPjdjBmzYoLTt+/33TAz+4uNhwgRlB6DcMahfH5o1U2r7ypbNpB1J7yIDwCySkJCgDv7s3jGUhZS3mJqaAsqwQYULF877t4Pj4og6cZ6NyyNYcrAEf4aWAroCUMg8ls8GGfPNN6bY2VXO2XJKkpTl4uOV2GzCBOX1zz9Dw4aZkLEQSnXi0KHwxx/KsgEDYPZsZbBAKdvJADCLJLX5MzMzy+GSSFkh6XONi4vLmwHgq1dK77qtW9m5NZ6ekQt5TiEADIijldVJek4pQ6sviqJj+DpJkvKhGzegZ084e1Z5/fXX8MUX75lpVBT4+cGCBcpYfQBWVvDLL8qggVKOkQFgFpO3ffOnPP25/vef0r7m4kUuUpmu/EEU5ribBfGZ1xV69xI4daqHjPwkqeBYt04Z4y86GmxslHjtk08ymFlSbd+KFcp95NcDtmNsrAR9kyYpY/VJOUoGgJJUkGzfDr6+8OIFwYU8aBd/hKgIc5o2Eeze44SBgVNOl1CSpGwkhHLLd+xY5XXjxrByJWRoetyXL5VIctEiCAh4s9zdXalK7NsX7O0zpdzS+5MBoCQVFLNmwahRALyqXY+O4iCBZ40pXRp+81Nl/kCukiTlavHxMGgQLF2qvB4xAmbOzMAUbpGRMGUKLFwIERHKMmNj+PhjJejz8cnieeGkjJCfiKRTUFAQX331FaVKlcLExARHR0c++OADFi9eTFRUFABubm7MnTtXvc2FCxdo3bo1hQsXxsTEBDc3N7p06UJo0kSRwObNm6lduzbW1tZYWlpSvnx5hg0blmpZJk2ahEql0nqUfd1bLC4ujpEjR1KxYkXMzc1xcXGhZ8+ePHr06J3HqVKp2LZtm9byXr160b59+3e/UXnFmTMwRunRGzN4OD2KHePkWWOsrJTpnQoVyuHySZKUbaKjldl8KlRQgj+VSunsMXt2BuK0XbvA01P5gRkRAWXKwA8/wKNHSm3ghx/K4C+Xkr/5JS23b9/G29sbGxsbpk+fTsWKFYmPj+fmzZusWLECFxcX2rZtq7FNcHAwjRs3pk2bNuzfvx8bGxvu3LnDjh071AHjoUOH6Nq1K9OnT6dt27aoVCquXr3K4cOH31mm8uXLc+jQIY1lBq+rrKKiovj7778ZP348lStX5tmzZwwZMoS2bdty/vz5THpX8rDYWOjTBxITCe00gPYX5vDHH8rwDhs2yFEXJKkgWbtW6dyR9Lvcxka55Zvu37uXL8O4cUqzEgBXV5g3D9q2lcNE5REyAJS0DBw4EAMDA86fP495sgm0K1asyMcff4yuyWNOnz5NeHg4y5YtUwdm7u7ufPjhh+o0u3bt4oMPPmDEiBHqZWXKlElTTZuBgQFOTrrbp1lbW3Pw4EGNZfPnz6dWrVoEBgZSvHjxd+afr02bBlev8q9tbVqen8+tO8pcnlu2KD/OJUkqGE6fhl69ICFBideGDFHu0FpapiOTa9dg8mTYuFFpQKivrwztMnEiJPt/IeV+MgDMTkIoXeKzm5lZmn+RhYWFceDAAaZPn64R/CWnqwesk5MT8fHxbN26lY4dO6aYZv369Vy+fJkKFSqk7xjS6cWLF6hUKmxsbLJ0P7leQADMmMFLzGlueIjbd/Rxc4Pdu5W7NpIkFQxhYdC1qxL8demi1ASmq93vo0dKkLdiBSQmKss6dVJ69MqLSZ4kA8DsFBWVMwNevnyZ5l9mt27dQgiBh4eHxnJ7e3tiYmIAGDRoELNmzdJYX6dOHcaMGUO3bt3o378/tWrV4sMPP6Rnz544OjoC8OWXX3Ly5EkqVqyIq6srderUoWnTpnTv3h3jdww5cunSJSzeeu+6du3KsmXLtNLGxMQwatQounXrlqY5Hj/55BOtsfxiY2Np1arVO7fN1YRQxnWIj+cb953cvmNB8eLw55/w+iORJKkASExUOv/fvw+lSyvt/tIc/D15otzanTtXaTwI0K4dfPstVKqUVUWWsoFsmSnp9HYN3tmzZ7l48SLly5cnNjZW5zbTpk0jKCiIxYsX4+npyeLFiylbtiyXLl0CwNzcnN27d3Pr1i3GjRuHhYUFw4YNo1atWkRFRREYGIiFhYX6MX36dHXeHh4eXLx4UeMxbdo0rTLExcXRtWtXEhMTWbhwoXp5//79NfJO7scff9TK++02jnnStm1w7hwHTdqw6E5zQGnrI4M/SSpYfvhBqfU3Nlbu3KbhdzFcuKBEjcWLK+PEREeDt7cyi8e2bTL4ywdkDWB2MjNTauNyYr9pVKpUKVQqFdevX9dYXuL1oJ1J06ClxM7Ojk6dOtGpUydmzJhB1apV+e677/j111/VaUqWLEnJkiXp168fY8eOpUyZMvj5+dGjRw8uXryoTmdra6t+bmRkRKl3TAweFxdH586duXPnDkeOHNGo/fv2228ZPny4zu2cnJy08ra0tOT58+ep7i9XS0yEyZN5gRV9DNdAjDLcg2zzJ0kFy927Sl8NgJ9+gipV3rFBbKwyHsz8+W+W1akDI0cqNX+yg0e+IQPA7KRS5fpGsnZ2djRp0oSff/6ZL7/8MsV2gGlhZGREyZIliYyMTDGNm5sbZmZmREZGYmBg8M4gLyVJwd+///7L0aNHteZfLly4MIULF85Q3nnStm0QEMDXBqt5EGFNyZLKKA2SJBUsY8cqMV3DhkqLkFTduqU0EPz7b+X1J58oPUVq1crqYko5QAaAkpaFCxfi7e1NjRo1mDRpEpUqVUJPT49z585x/fp1qlevrrXNrl27+O233+jatStlypRBCMHOnTvZs2cPK1euBJTx/KKiomjZsiWurq48f/6cn376ibi4OJo0aZJqmeLj4wkKCtJYplKpcHR0JD4+no4dO/L333+za9cuEhIS1GltbW0xMjLKpHcmj0hMhEmT2EY7Vsb3QKWCVaty/W8PSZIy2fnzsH698vy7795RebdtmzIRcEQE2NnB6tXQsmV2FFPKITIAlLSULFmSCxcuMH36dEaPHs2DBw8wNjbG09OT4cOHM3DgQK1tPD09MTMzY9iwYdy/fx9jY2NKly7NsmXL6NGjBwANGjRgwYIF9OzZkydPnlCoUCGqVq3KgQMHtDqdvO3KlSs4OztrLDM2NiYmJoYHDx6wY8cOAKq8dX/j6NGj+Pj4ZPzNyIu2buXxpRD6qY6CgG++gQ8+yOlCSZKUnYSApFYvPXpAtWopJExMhKlTlR6+oFwsNmzI4FxwUl6iEroGdZPSJDw8HGtra168eKHV2zQmJoY7d+7g7u6OiYlJDpVQyiq59vMNC0PUq0/La9+xjxZUqaJMApJfK0FTOwdzs7xabinv2LlTGZPZ2Bhu3lT6cmiJjFQGBvz9d+X1l1/C99+DoWF2FjVHyHNQ9gKWpPzj9GmoWpWF13zYRwtMTATr1uXf4E+SJN1iY5Waf1Bm/dAZ/IWGKg0Df/9dCfiWLVN6iRSA4E9SyABQkvI6IWDOHKhfnyv3LRmu+h6A2bNVcnxWSSqARo2C69fBwUF5ruX+fahXD86dU9r7HTmiTAkiFSgyAJSkvO777+Gbb4hJMKCr1V5ihAkNvV8xcIBs3SFJBc3evcqYzQA//qhjzL/r15Xx/K5fB2dnZS5fb+/sLqaUC8gAUJLysh071Pd6vqn7B5fDlXs9R/8wIuZpDkw7KElSjnnyRGnSl+TTT9+afTQsDJo1ezMlyOPHSqePnJiiVMpxeSYAXLhwobrBffXq1Tl58mSKaXv16oVKpdJ6lC9fXp1m1apVOtMkTXcmSbneP/9At24gBLta/Mz809rD80iSVDAIoQR/wcGQ7F/dG4mJSkQYGAilSsGBA9ldRCmXyRMBoJ+fH0OGDGHs2LFcuHCBevXq0aJFCwIDA3WmnzdvHo8fP1Y/7t+/j62tLZ06ddJIZ2VlpZHu8ePHuatHpySl5P59aNMGIiO5VrsXvc8pQ/MM+jwuhwsmSVJOWLkS9u0DExPluZapU5UEpqawebPSQFAq0PJEAPjDDz/Qt29f+vXrR7ly5Zg7dy7FihVj0aJFOtNbW1vj5OSkfpw/f55nz57Ru3dvjXQqlUojnZOTU3YcjiS9n4sXlamZAgM5W+xj6v27nNBQFVWrwrfjXuV06SRJymbBwW/G/JsyBe3OX/v3w6RJyvPFi+U8vhKQBwLAV69e8ddff9G0aVON5U2bNuX06dNpymP58uU0btwYV1dXjeUvX77E1dWVokWL0rp1ay5cuJBp5ZakLHHgANSvD48ecdC1Hx+GbSTsqR61aimrjI1zuoCSJGW34cPh2TOoXFmZuU3Do0fKrV8h4IsvlNk+JIk8MBNIaGgoCQkJODo6aix3dHTUmhpMl8ePH7N3717WJ82H81rZsmVZtWoVFStWJDw8nHnz5uHt7U1AQAClS5fWmVdsbCyxsbHq1+Hh4Rk4IknKoIMHoVUriI/nj6qDaXX5J+LiVDRpAlu2gIUFRAbndCElXeS1Q8oqhw/DmjXKNG9Ll4KBgTIOoFrv3sqYf1WrvukeLEnkgRrAJKq3JjEUQmgt02XVqlXY2NjQvn17jeV16tTh008/pXLlytSrV4+NGzdSpkwZ5s+fn2JeM2bMwNraWv0oVqxYho4lLwgKCuKrr76iVKlSmJiY4OjoyAcffMDixYuJet1jzM3NTd15xszMjAoVKrBkyRKNfF69esXs2bOpXLkyZmZm2Nvb4+3tzcqVK4mLU9qrJe+0Y2hoSIkSJRg+fDiRkZEplm/SpEka075NmjRJnYe+vj7FihWjX79+hISEZP6bkxMSEmDoUIiPJ+ajbvR5OY+4OBXt2ysj/ltY5HQBpdQUpGuHlH0iI6F/f+X5oEFQq5aORH+cUi4Qfn5KA0FJei3X1wDa29ujr6+vVdsXHBysVSv4NiEEK1asoEePHhi9YzoEPT09atasyb///ptimtGjRzN06FD16/Dw8Hx5Ib99+zbe3t7Y2Ngwffp0KlasSHx8PDdv3mTFihW4uLjQtm1bAL799ls+++wzXr58yapVq+jfvz82NjZ06dKFV69e0axZMwICApgyZQre3t5YWVnx559/8t1331G1alV1ENe8eXN1UHjy5En69etHZGRkiu08dSlfvjyHDh0iISGBCxcu0LdvXx4+fMjevXuz4m3KXn5+cPkyWFsz1X0ZN7fo4eQEK1Zo3vY1MDHAt+Sp189r5lBhpbcVlGuHlH0eP4Z27eDWLXBxUfp4JDEwAN+mj+HAfgyIh6WrlGFfkjMwAF/fN8+lgkfkAbVq1RIDBgzQWFauXDkxatSoVLc7evSoAMSlS5feuY/ExERRo0YN0bt37zSX68WLFwIQL1680FoXHR0trl69KqKjo9OcX27RrFkzUbRoUfHy5Uud6xMTE4UQQri6uooff/xRY13p0qVF165dhRBCzJo1S+jp6Ym///5bK49Xr16p8/f19RXt2rXTWN+vXz/h5OSUYhknTpwoKleunOJrIYSYOnWq0NPTE1FRUSnmk1HZ+vm+eiVEqVJCgAgYvFQYGAgBQmzenPW7zu1SOwdzs7xabil3+OcfIYoVU64DdnZCnD79VoKQECGcnZUEffvmSBlzO3kOCpEnwv6hQ4fSo0cPatSogZeXF0uXLiUwMJD+r+u+R48ezcOHD1m9erXGdsuXL6d27dpUqFBBK8/JkydTp04dSpcuTXh4OD/99BMXL15kwYIF2XJMuVVYWBgHDhxg+vTpmJub60yT2q13ExMT9a3ddevW0bhxY6pWraqVztDQEMNU5pw0NTVV55NRpqamJCYmEh8f/1755LhVq+DWLRLsHel7ug/x8dChA3z0UU4XTJKk7HbhAjRoABERUKYM7N6tDOunJgT066dUEZYrp8zvK0k65IkAsEuXLoSFhfHtt9/y+PFjKlSowJ49e9S9eh8/fqw1JuCLFy/YvHkz8+bN05nn8+fP+fzzzwkKCsLa2pqqVaty4sQJaulsRJE5hMiZAdfNzJQGwmlx69YthBB4eHhoLLe3t1cPkj1o0CBmzZqlsT4+Pp61a9dy6dIlBgwYAMC///6Lj49Pust79uxZ1q9fT6NGjdK9bZLr16+zaNEiatWqhaWlZYbzyXExMfDttwD84rOO87/rY20NP/+sO7lIFESFKl8yM3szVHpp/OAlScoTZsxQgr8PPlAmAipU6K0Ey5Yhtm8nysAalv+GmakZOq8Cyf8hpeefhJRv5IkAEGDgwIEMHDhQ57pVq1ZpLbO2tlZ3VtDlxx9/5Mcff8ys4qVJVFTONNZ/+RJSqMxL0du1fGfPniUxMZHu3btr9GYcOXIk48aNIzY2FiMjI0aMGMEXX3wBpL2jDsCuXbuwsLAgPj6euLg42rVrx/z58wkMDMQz2aBWY8aMYcyYMTrzuHTpEhYWFiQkJBAbG4uPjw9Lly5N34HnNnPnwoMHxBVxY+bZDwElHnRx0Z08KjQKC0flw375JBLzwun84CVJyrVCQ2HbNuX5/Pk6gr+bN2HIEKIwwyL+OdRN5fqf/B9SRv5JSHlengkApexRqlQpVCoV169f11heokQJQLmtmtyIESPo1asXZmZmODs7awR8ZcqU4dq1a2nab8OGDVm0aBGGhoa4uLiobw/Hx8dz8eJFdTpbW9sU8/Dw8GDHjh3o6+vj4uKCcV4fFG/vXhg7FoCNLVdy7xcVDg7w2Wc5XC5JknLEmjUQFwfVq0OyQRAUcXFvJv9t0BKO50QJpbxEBoDZyMxM+aGVE/tNKzs7O5o0acLPP//Ml19+mWI7wCT29vaU0miA8ka3bt0YM2YMFy5c0GoHGB8fT2xsrDp/c3NznfkYGBikmP/bjIyM0pw217tyBbp0gcRERO8+zPqzAQBffaXM5CRJUsEiBCxbpjzv109Hgpkz4dw5sLFRBgT00JFGkpLJM+MA5gcqlVLLnt2P9DbtWLhwIfHx8dSoUQM/Pz+uXbvGjRs3WLt2LdevX0dfXz9N+QwZMgRvb28aNWrEggULCAgI4Pbt22zcuJHatWunOuROgRYSoszzGxEB9euzt91iLl1SYWEBKbSCkCQpnztzBq5eVX4AfvLJWysDApQ54AAWLIAiRbK9fFLeI2sAJS0lS5bkwoULTJ8+ndGjR/PgwQOMjY3x9PRk+PDhKbbFfJuxsTEHDx7kxx9/ZMmSJQwfPhwzMzPKlSvH//73P529syWgTx+4cwdKlIDNm5n1sXI7/IsvdLT5kSSpQEiq/evUCaytk6149Qp69VJuAbdvr0SHOdDZUMp7VEIIkdOFyKvCw8OxtrbmxYsXWFlZaayLiYnhzp07uLu7YyJHX893suzzPXwYGjdWBma9eBH/8PLUrQuGhkpM+K4f9pHBkQWqE0hq52BullfLLeWMiAhwdlZm/jh+XJkOXG3SJJg8GezslKYjjo5ERqahf0eaEuVf8hyUNYCSlHskJiqzugMMHEhE8fJ84a287NFD3tWRpILqt9+UeK10aahXL9mKixdh2jTl+YIF8I7ZsSQpORkASlJusXatckG3siJhzHi6d4dLl8DJST0U4DvpG+nTsYj/6+faA3BLkpS3REQoFXwAn3+erE130q3f+Hj4+GPo3Fm9jb4+dOz45rlOaUok5WcyAJSk3CA6GsaNU56PHcuYH+zZuVOZ53fbtrTX/pnYmLDpgVeWFVOSpOz17bfw8KHSJHjQoGQrZsxQOn/Y2Sm1f8l6+5mYwKZN78g4TYmk/Ez2Apak3GDePLh/H4oXZ7nV18yerSxeuRJq187ZokmSlDMuX4ak+Qrmz082BFRAAEydqjz/+Wd561fKEBkASlJOu3VLPYTD0kZ+fDZQ6fU7bpyO4R4kSSoQhFBq/BISlLm/W7Z8vSIuDnr3Rj0peJcuOVpOKe+SAWAWk52s86dM+1wTEsDXF6Ki+LHUAr5YWUd94U9q95MekcGRqFTK3aDI4MjMKaMkSdlu7Vo4cUIZyH/u3NcL4+OVqYAuXABbW1i4UOdAr5GRvLkOpHQZSFMiKT+TAWAWSZrKLLX5iKW8K+lzTfqcM+y77+D0ab4zHsPQW8r4it98o9zu0ZNnpyQVSE+fwrBhyvPx46F4cZROH926wa+/Kp02li1TeohJUgbJTiBZRF9fHxsbG4KDgwEwMzPTmCdXypuEEERFRREcHIyNjU2aZ0XR6dIlmDCB/yjBmHilm+/kycoFX35VJKngGjFCmRCofHkYOhSIiVF67O7eDUZGyrgwHTrkdDGlPE4GgFnI6fWvs6QgUMo/bGxs1J9vhiQmKkM4vHrFOJeVxD3Sp1kzmDAh04ooSVIedPw4rFihPF+yBIxErBLs7dun9Nzdtg2aNcvRMkr5gwwAs5BKpcLZ2ZnChQsTFxeX08WRMomhoeH71fyB8kv+77/5y7w+vz1ShvWfOTMTCidJUp4VG6tM+QjKmH/eteOh8ydK8GdmBnv2QIMGOVtIKd+QAWA20NfXf/+AQcpfvvsOgFH2yyASuneHKlVytkiSJOWsWbPgxg1lVJeZ0xKUuwRbtyq3fbdvl8GflKlkAChJ2e3sWThxgoP6zTl0rzRGRupRYCRJKqCeP4c5c5TnP04Op9DnvZTgz8AAfv9dmSNckjKRDAAlKbt99x3x6PON9WJ4CgMHgrt75mStb6RPS4dzr59XzJxMJUnKcsuWwcuXUL7YC7qOKw2hIUrwt3YttGmTrrz09d+MG5jqVHDvTCTlZzIAlKTsdPs2bN7MTEZz8akr1tYwdmzmZW9iY8Lu4JqZl6EkSVkuLg5++kkAKobe/xoVIVCxIqxaBdWqpTs/ExOlmfH7J5LyMznSmCRlpx9/5O/EykxWTQKUWZzs7XO2SJIk5azNGxO4f19FYZ7QTc9PmQbo/PkMBX+SlFayBlCSsktYGDHL19GTE8QLAz7+WOn8IUlSwSVexfH9l/eAUgzSW4zJ5nXQvn1OF0sqAGQNoCRllyVLGBc9hitUwNFRsGhR5g/4HBkciblKecip4CQpl0tM5FSzKZx/VgoTohnwa51MCf4iI8HcXHmkOhXcOxNJ+ZmsAZSkbPD8SSxDppTkV5SJ23/5RYWDQ9bsKwrz18/kRV2ScrUpU/j+mHKbt2fzYBw+zbwBntM0C6mcqrRAyzM1gAsXLsTd3R0TExOqV6/OyZMnU0x77NgxVCqV1uP69esa6TZv3oynpyfGxsZ4enqydevWrD4MqQDatw/Kl03g15guqEhk8oT49HbqkyQpv9mxg02TLrOd9qhUgiE/uOZ0iaQCJk8EgH5+fgwZMoSxY8dy4cIF6tWrR4sWLQgMDEx1uxs3bvD48WP1o3Tp0up1/v7+dOnShR49ehAQEECPHj3o3LkzZ86cyerDkQqQrVuhRQt49NyM0tzkVP91TJgsK94lqUC7cYNb3SfSl+UAfPONinLlcrhMUoGjEkKInC7Eu9SuXZtq1aqxaNEi9bJy5crRvn17ZsyYoZX+2LFjNGzYkGfPnmFjY6Mzzy5duhAeHs7evXvVy5o3b06hQoXYsGFDmsoVHh6OtbU1L168wMrKKn0HJeV7t25B9eoQHg69WMkC0xGYPbgJtrZZts/I4EgsHJVbwC+fRGJe2PwdW+RtefUczKvlljJBdDQxVb3wurGSi1TlA+9Ejh7TwyATfxdGRoKFhfL85UulmV/GEuVf8hzMAzWAr1694q+//qJp06Yay5s2bcrp06dT3bZq1ao4OzvTqFEjjh49qrHO399fK89mzZq9M09JSovoaOjYUQn+Pih0haV8jlmfrlka/EmSlPslzJjN/24M5CJVsbdN5De/zA3+JCmtcv3XLjQ0lISEBBwdHTWWOzo6EhQUpHMbZ2dnli5dSvXq1YmNjWXNmjU0atSIY8eOUb9+fQCCgoLSlSdAbGwssbGx6tfh4eEZPSwpn/vf/yAgABwKxfHbs6YYqhLgq69yulhSDpHXDgkgYNd9vpjanDPURqUSrF2vR5EiOV0qqaDK9QFgEtVb42UIIbSWJfHw8MDDw0P92svLi/v37/Pdd9+pA8D05gkwY8YMJk+enJHiSwXIzJnKtE4qlWC93f8o8uwRdOoMydqgZhU9Az0aWF98/dwj9cRStpHXjoItIQHGjRXMme1CgiiGlX4k834xo1nmdfrVoKcHDRq8eZ7xRFJ+lus/dXt7e/T19bVq5oKDg7Vq8FJTp04d/v33X/VrJyendOc5evRoXrx4oX7cv38/zfuX8j8hYNQoGD1aeT2jyVEa31oMhQrBvHnZUgZTW1OOPa/CsedVMLU1zZZ9Su8mrx0F28yZMHOWigShTyfV71w78phevTN5ENBkTE3h2DHlYZrSZSBNiaT8LNcHgEZGRlSvXp2DBw9qLD948CB169ZNcz4XLlzA2dlZ/drLy0srzwMHDqSap7GxMVZWVhoPSQJITISBA2HWLOX17KFBjDzaXHkxfz44OeVc4aQcJ68dBdeff8LEiUpfy8V8wcaRf+FSv1QOl0qS8sgt4KFDh9KjRw9q1KiBl5cXS5cuJTAwkP79+wPKr+uHDx+yevVqAObOnYubmxvly5fn1atXrF27ls2bN7N582Z1nl999RX169dn1qxZtGvXju3bt3Po0CFOnTqVI8co5W3Tp8PixcrMHksWJvDZstbKDO9t2kC3bjldPEmSckB4uHL6JySo+IT1fF5kD4y7/u4NJSkb5IkAsEuXLoSFhfHtt9/y+PFjKlSowJ49e3B1VQbOfPz4scaYgK9evWL48OE8fPgQU1NTypcvz+7du2nZsqU6Td26dfntt98YN24c48ePp2TJkvj5+VG7du1sPz4pb3v0CJJGI1qyBD5jBfz1F9jYvIkKs0lkcCRuTtEA3A0yzffDwEhSbjZoENy5A27cYREDUM1flS3DrURGgpub8vzu3VSGgXlnIik/yxPjAOZWchwhCaBfP1i+HOrUgdN/CFRVKsOlS/DddzBsWLaWRY4DmDfk1XJLabdjB7RrB3okcIL6eLe2VRZmww9COQ7gu8lzMI/UAEpSbvXPP7BihfL8++9B9ccpJfgzNYU+fXK2cJIk5YiEBBgzRnk+gjl4m16A+Vez9W6AJL2LDAAl6T2MGKH0/u3UCerWBbouUFZ07670/pUkqcDx84MrV8BG9ZxRYiZMmPDmdqsk5RK5vhewJOVW+/fDgQNgaPi6DeDjx5DU0WjQoBwtmyRJOSMuDiZOVJ6PELOx8SwCQ4fmbKEkSQdZAyhJGRAf/+aaPngwlCwJTF6qrKhbF6pUycniSZKUQ1avVuYBdyCY/+ktgBUHwMgop4slSVpkDaAkZcDSpXD1qjK17/jxKD/7lyxRVsraP0kqkGJj4duJ8QCMZgYWE4eBHFlCyqVkDaAkpdOzZ0qTHoBvv33d1G/TNuUWsKMjdOyYY2XTM9CjhtnV18/dc6wcklQQzf0hkcCHBhThAQNq/Q1jDudIOfT0oEaNN88znkjKz2QAKEnp9O23EBYGnp7wxRevFy5apPzt1y9Hb/eY2ppyLtIzx/YvSQXVuXMwbpwyqtpUoymYrF8BBjnzL9bUVCnP+yeS8jMZ9ktSOty4AT//rDz/8cfX1/ebN+HoUeVX9Oef52j5JEnKfi9eQNfWEcQn6tOJjfguqfu6YbAk5V4yAJSkNEpMVDp8xMdD69bQtOnrFUuXKn9btIDixXOsfJIkZT8h4IuPQ7gdbIkbd1j65WVUvXxzuliS9E4yAJSkNJo1Cw4dUu6cfP/964UxMbBypfL89dzUOSkqNAo3gwe4GTwgKjQqp4sjSfneilkh+B12wIA4NtRfjM3cSTldJKKilGEH3dyU5xlPJOVnsg2gJKXBqVOve/ui3AIuU+b1is2b4elTKFZMqQHMYSJRcC+h6OvnkTlcGknK367+8YwvxyjTqU11WUSdPRNyRYcKIeDevTfPM55Iys9y/psqSblcaCh07apM7/Tpp9C7d7KVixcrf/v1A339HCmfJEnZLzosii5NnhItTGlqcpwRZzoWuPl0pbxNBoCS9A79+sHDh+DhoXT2VU/neeWKUjWorw99++ZoGSVJykbx8QytfpzL0SVxVD1h9QFn9Iq65HSpJCldZAAoSak4dQq2b1d6+27cCBYWyVb++KPyt00bKFIkR8onSVL229xuNYvvKU0+1vwQgmO9Mu/YQpJyHxkASlIqJk9W/vbpA5UqJVtx9CgsX648l/N8SlKBEbrpKF/saQvAqI9u0GRIhRwukSRljAwAJSkFp04pvX4NDGDMmGQrIiPf3PL94guoVy9HyidJUjZ79oxhvqGEYU8Fu0d8+5tHTpdIkjJM9gKWpBQkr/1zdU22YvRouHNHGfNv9uwcKVtKVHoqPI1vvX4u2yRJUmY61HExq6NHoyKRZZttMTTM6RLpplIpMxUlPc94Iik/kwGgJOmQYu3fiRMwf77y/JdfwMoqR8qXEjN7M67ElMrpYkhSvhO1fhtfHOkMwOBOT6jdwDmHS5QyMzOlj9r7J5LyM3kLWJLeIgRMmqQ816j9i4t7M/lvv37JpgKRJClfCwri236B3KYkRS2fM2157g3+JCmtZAAoSW9ZswYOHwZDw7dq/xYuhOvXwcEB5szJsfJJkpSNhODURz8wJ3oQAAtWmmNpmcNlkqRMIANASUrm9m0YpFznmTQpWe1faOibasFp08DGJvsLlwZRoVGUN7lFeZNbcio4ScoEz+f9yqf+A0lEn55tn9H241za8C+ZqCgoX155pDoV3DsTSfmZbAMoSa/Fxyszfbx8qXTsHTky2cqJE+H5c6hcWbkvnEuJRMHV2FKvn8up4CTpvdy6xaDhptzDjRJ2z/l5baGcLlGaCAFXr755nvFEUn4mawAl6bVp08DfX+nXsWZNspndLl9+M+Xb3LlyyjdJKgji4ljbfC3rE7qgTwLrd1rJW79SvpJnAsCFCxfi7u6OiYkJ1atX5+TJkymm3bJlC02aNMHBwQErKyu8vLzYv3+/RppVq1ahUqm0HjExMVl9KFIudOkSTJmiPF+4MNmt38RE+N//lL8ffQQ+PjlVREmSstGLIRMZ/N8QACYNi6C2V575dylJaZInvtF+fn4MGTKEsWPHcuHCBerVq0eLFi0IDAzUmf7EiRM0adKEPXv28Ndff9GwYUPatGnDhQsXNNJZWVnx+PFjjYeJiUl2HJKUiwihTOaRkKDEeN27J1s5fboy64epqez4IUkFxe+/s3phBC+woVzRcEbPssnpEklSpsuyNoA3b97k2LFjBAcHk5iYqLFuwoQJ6crrhx9+oG/fvvTr1w+AuXPnsn//fhYtWsSMGTO00s+dO1fj9fTp09m+fTs7d+6katWq6uUqlQonJ6d0lUXKf3bvVsb8MzKC775LtuLQIUj6ri5aBCVK5Ej5JEnKRjduIHr1ZiFnARg0ykq2+pDypSwJAH/55RcGDBiAvb09Tk5OqJKNMq5SqdIVAL569Yq//vqLUaNGaSxv2rQpp0+fTlMeiYmJREREYGtrq7H85cuXuLq6kpCQQJUqVZgyZYpGgPi22NhYYmNj1a/Dw8PTfBxS7vTqFQwbpjz/+mtwd3+94uFD6NZNqR7s1w98fXOsjFLeJ68decTz5/DxxxyNrMl1ymFhIejRQ86SIeVPWRIATp06lWnTpjFSoxtlxoSGhpKQkICjo6PGckdHR4KCgtKUx/fff09kZCSdO3dWLytbtiyrVq2iYsWKhIeHM2/ePLy9vQkICKB06dI685kxYwaTk+YHk/KFRYvg5k0oXDjZmH9xcdClC4SEQJUq8NNPOVnEdFHpqXDVf/D6ue07UkvZRV478oCXL6FVK7hyhQXGsyAWevRQ5bbJftJEpXrTjjnVqeDemUjKz1RCZH7/bysrKy5evEiJTLhl9ujRI4oUKcLp06fx8vJSL582bRpr1qzh+vXrqW6/YcMG+vXrx/bt22ncuHGK6RITE6lWrRr169fnpxT+4ev6FV+sWDFevHiBVV68ShRwISHg4QHPnsGSJfD5569XjB4NM2cq3YH//htKlszRckopCw8Px9raOtefg/LakcvFxCjB35EjPLDyxC3yMgkJKi5fVobJk/KfvHLtyEpZ0gmkU6dOHDhwIFPysre3R19fX6u2Lzg4WKtW8G1+fn707duXjRs3phr8Aejp6VGzZk3+/fffFNMYGxtjZWWl8ZDypuhoaNdOCf4qVoS+fV+v2L9fCf4Ali+XwZ+UKeS1IxeLiYFOneDIEbCwYGnH/SQkqGjQQAZ/Uv6WJbeAS5Uqxfjx4/nzzz+pWLEihoaaI6f/73//S3NeRkZGVK9enYMHD9KhQwf18oMHD9KuXbsUt9uwYQN9+vRhw4YNtGrV6p37EUJw8eJFKlasmOaySXlTQoIy4LO/vzKhh5/f66H9Hj2CHj2URAMHQseOOVlMSZKy2qNH0KEDnD0LJia8+G0vv/QrCiiXAEnKz7IkAFy6dCkWFhYcP36c48ePa6xTqVTpCgABhg4dSo8ePahRowZeXl4sXbqUwMBA+vfvD8Do0aN5+PAhq1evBpTgr2fPnsybN486deqoaw9NTU2xtrYGYPLkydSpU4fSpUsTHh7OTz/9xMWLF1mwYMH7Hr6Uyw0fDlu2KL1+t2+HcuWA2Fhl/JeQEGW2j++/z+liZkj002jqF7sDwIn77pjamuZwiSQpl/L3V8Z9CgqCQoV4snQ7zcd9QFAQFC2qxIV5VXQ01K+vPD9xQhnFKmOJpPwsSwLAO3fuZGp+Xbp0ISwsjG+//ZbHjx9ToUIF9uzZg+vrBqyPHz/WGBNwyZIlxMfHM2jQIAYlTewK+Pr6smrVKgCeP3/O559/TlBQENbW1lStWpUTJ05Qq1atTC27lHvExcGIETBvnvL6119fX/+ePoW2beGPP5QVq1ZBHh0PMjE+kfNRnq+fy6ngJEmn5cuVKr5Xr6B8ee4u2E2Tfq7cugUODrBjBxjm/il/U5SYCOfPv3me8URSfpYlnUCSS8pelQ97GclGpHlHUBB07gzJJ5B5+RLMH99SGn/fvPnWCvPsL2QmiAyOxMJRKfvLJ5GYF86bx5FWefUczKvlzvNevYKvvlJP7SiAnaue0n90IR4/Bjc3OHAAUhgIIs+IjAQLC+V5ipezNCXKv+Q5mIUzgaxevZqKFStiamqKqakplSpVYs2aNVm1O0lK0V9/QfXqSvCnMZfnxYvg5aUEf0WK5FTxJEnKDvfvQ8OG6uDvJqVpyR7a9VKCP4CDB/N+8CdJaZUlAeAPP/zAgAEDaNmyJRs3bsTPz4/mzZvTv39/fvzxx6zYpSTp9Pff0Lix0tbb01Np6qLWujWEhkK1avBWW1VJkvKJhARlLE9PTzh9mlgrByZ1vkoFLrOPFhgYvLkJ5uycg+WUpGyWJW0A58+fz6JFi+jZs6d6Wbt27ShfvjyTJk3i66+/zordSpKGf/6BJk2Uwf29vWHvXtBL/pPn+TOlBnDfPuRcT5KUD/3zjzKTz7lzAPxZ8TP6Rs/n6kZjAJqzlxknGlC1rllOllKSckSW1AA+fvyYunXrai2vW7cuj5Pq2iUpC129Co0aKf07ateGPXte3/5NXgVYu44S/BXQ9h+SlG/FxcHUqVCjhhL8WVmxoe9B6l5ewtVbxhR2EPjRmT20pHTJLG0GL0m5VpYEgKVKlWLjxo1ay/38/FKcZk2SMkt8vDKTW2io0vZv3z6wskiEGTOgVSvsCcHe4Bls26YZ/NnbK488zl4Vir0qNKeLIUk5459/lJr98eOVQLBdO6L/vsbwvY0RQkWXLnD1fBSd7Y+ien2+55NTX0Oajik/HriUZllyC3jy5Ml06dKFEydO4O3tjUql4tSpUxw+fFhnYChJmWnRIrh8GWxtldu+NnEh0LY37N6NORDiOwIWLgSzZLd9zM2VMQDzOPPC5oQkFqzefJIEKL/4JkxQ5nVMTIRChWD+fOjWjYU/qHj0CIoXV4Z/MjZ+c76bky9OfQ1pupzlk2uelHFZUgP48ccfc+bMGezt7dm2bRtbtmzB3t6es2fPaszmIUmZLSRE+R8AMG1yHA6r5kCpUrB7Nxgbw7JlsHKlZvAnSVLelZgIP/+sdN9dtEh5/fHHcOUKdO9OeISKGTOUpJMmKZcBSZKyqAYQoHr16qxduzarspckncaOVTp9VC4Wxmff14a7/ykrqlVTBn+tUiUniydJUma6dQv69HkzwGflyjB3Lvj4qJPMnQthYeDh8WamR0mSMrEGMDw8XON5ag9Jygp/7XzEsl+UEe3n32+P/t3/wMVFuedz7hxUqUJ0tPK/wcdHmQlJLcUVeUv002h8bC7iY3OR6Kd59zgkKVVRUfDDD0rAd/Kkcjvz55+VQT+TBX9Pn76Z1XHyZDBIqvJIdr5HP43OD6e+hjRdzvLJNU/KuEyrASxUqBCPHz+mcOHC2NjY6Jz5QwiBSqUiISEhs3YrFXRCwLFjRP2wmM93fYPAhW6so57bAxg4W5nuKdkI94mJb4b805j9KMUVeUtifCLHX1R5/VxOBSflM8HBsGCB8ggLU5Y1bKjU7ru7ayWfNg3Cw5U4sVOnZCuSne+J8Yn54dTXkKbLWT655kkZl2kB4JEjR7C1tQXg6NGjmZWtJOl25w6sWwdr15J44yY92cjfVMfO8AWzlxaGHrfk2H6SlNeFh8P+/crwTadOKT18k4IVNzcYMwb69n1rgE/FiROQNO/A9Ok6k0hSgZZpAWCDBg3Uz93d3SlWrJhWLaAQgvv372fWLqWCJCEBzp5V/hns2wdnzqhXjTOczea4jhgaCLYetqZIvSY5WFBJkjIsMVGZmvH0adiyRZmb7dUrzTQ1a8Lw4fDRR8nu6Wp68UJp7ycE9O4NLVtmQ9klKY/Jkk4g7u7u6tvByT19+hR3d3d5C1hKmxs3lH8Ahw/DsWNK747X4lWGXK/ty3aXAczYUg2A5StU1KuXM0WVJCmdXr5UeupeuqTU7AUEwIULEBGhma50aWjeHOrVU6b0cXF5Z9aDB0NgIJQoAfPmZVH5JSmPy5IAMKmt39tevnyJiYlJVuxSyg+EUP4R/P678rh+HYAE9LhERc6Z9uQv59b8nViFfx7bE/vnm+/YuHGyh58k5ToJCXDokBLcPX0Kz57B/ftK4BcYqHsbU1Olt37z5kotX/nyoOP/iS4hIbBiBaxdq9zyXbv29QxAkiRpydQAcOjQoQCoVCrGjx+PWbKx1hISEjhz5gxV5DAc0tuCgpT2fKtWKSM4Aw8owm/6Izlq04FTLysTHmsC0cDtN5tZWir/J9q0gWHDcqLgkiTpFBiojLe5fLkS8KXE0REqVVIeFSsqU/eULZvird3knj1Tfi/evKk8Tp5UWomI1zO7jRunTAgiSZJumRoAXrhwAVBqAC9duoSRkZF6nZGREZUrV2b48OGZuUspr4qIUKZiW79euc2bkEAcBuw26Mgyu5HsDa5GYoIevO7oZ2WlNP2pXl15VKum3N7JSMPuFMeAzieDQ5she/9KOSAkRKm537Dhzbh8oEzJ07w5ODgozx0dwdNTedjZpWsXcXHK7D6rVsGuXcrrt1WpAl27puFHYbLzPZ+c+hrSdEz58cClNMvUADCp92/v3r2ZN28eVsnnWZUKtoQEuHgRjh5VHkeOQEwMAJeowErnsax92Y6QCFN4omxSvz506KD8rVw5czr1mptDpK74KMUVeYt5YXMi5dz2UnZ4+VJps3fwIBw4oIy1mXw4ER8f+Pxz5STOYNOfR4+U2dyuXFE6/t+5o3maursrFYalSyuViM2bQ5Eiacg42fluTr449TWk6XKWT655UsZlSRvAuXPnEh8fr7X86dOnGBgYyMAwP0tMhHv3lHsz//yjXLmvXlXu0cTGaiQ9W+xjxhnO4uDtkvBYWeboCL16KYP7lymT/cWXJAml5+2jR8pYe6GhSu3eo0fw8KFye/fSJfjvP+3tqlWDTz6BLl2gWLEM7z46WhnnecYM7RjF0RE+/RR8fZW7xpIkZUyWBIBdu3alTZs2DBw4UGP5xo0b2bFjB3v27MmK3UrZSQi4e1cZjuXcOfj3X7h9W3mkNKq8lRXUr0+ARycm/NWOHcesAaW5T9u2ynANzZunqfmPJEnv6/Fj+PNP5ZwNDlYe9+8rgV1gYNoGB3Z2VqromzZVHkWLZrg4kZHKnePDh2Hjxjd9ROrUUTp4lSih1PiVLCmvEZKUGbLkNDpz5gw//PCD1nIfHx/Gjh2bFbuUskpEhFKLd/kyXLum1O7du6fci0kaif9tRkZK+55KlZQefOXLg6cnZ5+4MnW6HjtfT82kp6f8ip8wQRnTNTvExCjzxANs3pzszlSKK/KWmOcxfFzmEgCbb1bExCZvHoeUySIilNu1588rjz//VM7h1Bgbg7290k7P3l4ZfqVIESXI8/RUqt8cHN6rWCEhsH27csodPqzZpq9YMZg1S2nPl8ZOwGmX7HyPWbeZj7sr50kePvU1pOlylk+ueVLGZUkAGBsbq/MWcFxcHNFyzsHcITFRubXz+LHyuH//TXD34AE8eaL0zn32LOU8DA2VFte1akGFCspP9BIlwNUVDA0JCVHGcz1xBI5NgL//VjbT01PuEE2cqEzQnp0SEiCpAlpjOMoUV+QtCa8S2BNS8/Vz2b6nQBJC+XF244YSVR04oAR8b3+vVSrlvK1QAZycoHBhpUavVCmlms3RMQsiL8X9+zBqFPz2m2ZFY/Hi0LgxNGoE7dtnYR+FZOd7wquE/HDqa0jT5SyfXPOkjMuSALBmzZosXbqU+fPnayxfvHgx1atXz4pdSqBcSZPa6gQHK8+TXj94oLTfCQ5W/jk8fZr2+R+dnZV/Ep6ebwI8V1el9bWJCTExyv+aq1fhygmlr8fFi8ruktPXV27ljB4t2/dJUqZJGj9z/Xpllpzbt5UOGm8rVkzpQl+jhtKlvnZtsLbO1qJGRCht+2bNetNSpFo1pSKqQwflkpJFMackSW/JkgBw2rRpNG7cmICAABo1agTA4cOHOXfuHAcOHMiKXeZ/z54p7ezu3VMiq0ePlBq6kBClJi84WKnJ0zUuQiqEQ2ESnIsS7eTOC8cyvLAvSYR1UaItCxNtZsdLYztCoszVcWPkBYj6Q/n/8vixEleGhOjOW6VSLuj16yuPhg2VWFKSpPeQvP3tmTNKDd/Vq9rpnJ2VmTOS2ue5umZZkRITlfGenzxRiicExMcrdxmjo5VmhX/+qfQdSapsqlcP5s5VAkBJkrJflgSA3t7e+Pv7M2fOHDZu3IipqSmVKlVi+fLllC5dOkN5Lly4kDlz5vD48WPKly/P3LlzqZfKvF/Hjx9n6NChXLlyBRcXF7755hv69++vkWbz5s2MHz+e//77j5IlSzJt2jQ6dOiQofJlivj4N4HclSvKPdO//lIu7k+fqpMlouIlFjyjEEE4EYQLoVQiDkPiMSTR0hphaYkwt0RYWCiBnIk9EQa2PIyy4U6IBXcfG/P8hR6EoDz+eb+i29i8ae5XsSJUrao0AZSj8EvSe3r8GI4fV0Y5DghQqteTXQ8Apb1e69ZK24rKlZV7qdnQpisxEbZuVZpzXLmStm1Kl4Zp06BjR1nbJ0k5Kcv6UlWpUoV169ZlSl5+fn4MGTKEhQsX4u3tzZIlS2jRogVXr16lePHiWunv3LlDy5Yt+eyzz1i7di1//PEHAwcOxMHBgY9fN3r19/enS5cuTJkyhQ4dOrB161Y6d+7MqVOnqF27dqaUW+3VK+W2zI0bcOuWUnMXFATBwYiwp0Q8iyf0qR5XnhfhAlW4QFVCcecVHsTRk1iMicKMaD1zIrHgZeI7GsZEvH6kk76+ckfI0lIZIsrUVPnr4KA0D7K3BwsLpV2OmZnSRKhoUaVduJ2dvJhLUqZ4/lwZJ/PAAWXMzJs3tdMYGiqBXu3aULcutGqV5tu5cXFKzVxCgvKIioLwcOURHf2mBi8hQXkdE6M84uOVZbGxb5oNX7jwpvLR2lppDqxSKQ9DQyUGNTVVmhjWrq083qOjsCRJmUglRNLEOVkjOjqauLduS6Z3HMDatWtTrVo1Fi1apF5Wrlw52rdvz4wZM7TSjxw5kh07dnDt2jX1sv79+xMQEIC/vz8AXbp0ITw8nL1796rTNG/enEKFCrFhw4Y0lSs8PBxra2v++/0oBkERRN5/SvjjSMKDY4gIjSU6NJKYZ9FEhcfxUpgTgSUvsOYhRXhAUR5QlDDsiMcwXe9HEiMj5cLq5KQEaUZGyvAIenpvZshQqZRgzdxceTg7K0MpuLkpQZu+vvIwNlbS5fcgLjJSCWJBuY1tbv6uFXlLZHAkFo5K2V8+icS8cN48jrRKOgdfvHiRp8YXTSp377pnMYxMJDEymsToWBKiYhHPngMCgYpE9EhAn3gbe4SdvVLVbmODsLBSj4yeFLCBUiMXHa18naOjlYAtMVH5Gx6utCSJisrcY7G0hK+/Vh42Npmbd5ZJdr5HPnn55pzJu6e+hjRdzvLJNS+j8uq1IzNlSQ1gVFQU33zzDRs3biRMx1AhCenocfTq1Sv++usvRo0apbG8adOmnD59Wuc2/v7+NG3aVGNZs2bNWL58OXFxcRgaGuLv78/XX3+tlWbu3LkpliU2NpbYZIMZv3jxAoCSHUsBGf0CRQPRGBkmUtItkUpV9ahSVQ8XFyWgMzRUgjNTU+XXtJmZMpyepaWyPLMCtoQEpYF2fpd8UNnw8GSd31JckbdERkQCStnDIyJJMMmbx5FW4eHhgDL9ZG6W0rVj5Wln0nTteP76oZZ5Pbz19ZVrirW1co1JqsHT11dem5go1xoDA2WZoaFS+1+kiPL48ENlhjdQTp08Idn5HhkRjvqcybunvoY0Xc7yyTUvo/LKtSMrZUkAOGLECI4ePcrChQvp2bMnCxYs4OHDhyxZsoSZM2emK6/Q0FASEhJwdHTUWO7o6EhQUJDObYKCgnSmj4+PJzQ0FGdn5xTTpJQnwIwZM5g8ebKONRkf8T7Jqzi49q/y8Nv43tlJaeDikt4VeYtLqZwuQfaJiIjAOpt7tKZHVl473ldCglIzmNqIT/laqTfnez459TWk6Zjy44GnUW6/dmSlLAkAd+7cyerVq/Hx8aFPnz7Uq1ePUqVK4erqyrp16+jevXu681S9VdUlhNBa9q70by9Pb56jR49m6NCh6tfPnz/H1dWVwMDAAvcFCg8Pp1ixYty/f79AVZ8X1OOG3HnsQggiIiJwyeX/wOS1Q5Ebv0PZpaAee2497rxy7chKWRIAPn36FHd3d0Bp7/f0dY+1Dz74gAEDBqQrL3t7e/T19bVq5oKDg7Vq8JI4OTnpTG9gYICdnV2qaVLKE8DY2BhjY2Ot5dbW1rnqi52drKysCuSxF9Tjhtx37HkhgJLXDk257TuUnQrqsefG484L146spJcVmZYoUYK7d+8C4OnpycaNyj3NnTt3YpPOVsJGRkZUr16dgwcPaiw/ePAgdevW1bmNl5eXVvoDBw5Qo0YNDA0NU02TUp6SJEmSJEn5RZYEgL179yYgIABQbn0sXLgQY2Njvv76a0aMGJHu/IYOHcqyZctYsWIF165d4+uvvyYwMFA9rt/o0aPp2bOnOn3//v25d+8eQ4cO5dq1a6xYsYLly5czfPhwdZqvvvqKAwcOMGvWLK5fv86sWbM4dOgQQ4YMeb+DlyRJkiRJyu1ENrh3757YvHmzuHjxYobzWLBggXB1dRVGRkaiWrVq4vjx4+p1vr6+okGDBhrpjx07JqpWrSqMjIyEm5ubWLRokVaemzZtEh4eHsLQ0FCULVtWbN68OV1liomJERMnThQxMTEZOqa8rKAee0E9biEK9rFntoL6XhbU4xai4B57QT3uvCDTxwGMi4ujadOmLFmyhDJywldJkiRJkqRcJ9NvARsaGnL58uVUe9NKkiRJkiRJOSdL2gD27NmT5cuXZ0XWkiRJkiRJ0nvKkmFgXr16xbJlyzh48CA1atTA/K0pZn744Yes2K0kSZIkSZKUBlkSAF6+fJlq1aoBcPOticzlrWFJkiRJkqSclWmdQP755x8qVKiAnl6W3FWWJEmSJEmSMkmmRWtVq1YlNDQUUAaCDgsLy6ysJUmSJEmSpEyUaQGgjY0Nd+7cAeDu3bskJiZmVtaSJEmSJElSJsq0APDjjz+mQYMGuLu7o1KpqFGjBiVKlND5kKSMOnPmDB06dKB48eIYGxvj6OiIl5cXw4YNS3devXr1wsLCIlPL5+Pjg4+PT6bmKUlS1vnnn3/o27cvJUuWxNTUFFNTU0qXLs0XX3zB+fPnc12+kpRZMq0TyNKlS/noo4+4desW//vf//jss8+wtLTMrOwlid27d9O2bVt8fHyYPXs2zs7OPH78mPPnz/Pbb7/x/fff53QRJUnKQ5YsWcLgwYPx8PDgq6++onz58qhUKq5du8aGDRuoWbMmt27domTJkrkiX0nKTJk+EwgocwH/9NNPMgCUMlWDBg14+PAh169fx8BA87dLYmJiujsg9erVi99//52XL19mWhmTav+OHTuWaXlKkpT5/vjjD+rXr0+rVq34/fffMTIy0kqzadMmvL29cXFxyfF8JSmzZUmX3ZUrV8rgT8p0YWFh2NvbawV/gEbw5+fnR9OmTXF2dsbU1JRy5coxatQoIiMjdeZ769YtWrZsiYWFBcWKFWPYsGHExsZqpHn16hVTp06lbNmyGBsb4+DgQO/evQkJCcncg5QkKVtMnz4dfX19lixZojNIA+jUqZNGkLZjxw68vLwwMzPD0tKSJk2a4O/v/975SlJOkGO2SHmGl5cXZ86c4X//+x9nzpwhLi5OZ7p///2Xli1bsnz5cvbt28eQIUPYuHEjbdq00UobFxdH27ZtadSoEdu3b6dPnz78+OOPzJo1S50mMTGRdu3aMXPmTLp168bu3buZOXMmBw8exMfHh+jo6Cw7ZkmSMl9CQgJHjx6lRo0aODs7p2mb9evX065dO6ysrNiwYQPLly/n2bNn+Pj4cOrUqQznK0k5RkhSHhEaGio++OADAQhAGBoairp164oZM2aIiIgIndskJiaKuLg4cfz4cQGIgIAA9TpfX18BiI0bN2ps07JlS+Hh4aF+vWHDBgGIzZs3a6Q7d+6cAMTChQvVyxo0aCAaNGiQCUcrSVJWCQoKEoDo2rWr1rr4+HgRFxenfiQmJoqEhATh4uIiKlasKBISEtRpIyIiROHChUXdunUzlK8k5SRZAyjlGXZ2dpw8eZJz584xc+ZM/s/efcdVVf4BHP9ctqjgxo2rNGduce89y5EVqTmy/OUgU8nMNM0szT3LkblQ0dTcIzfuVTnSNCeICxCUec/vj0dABBTwHu698H2/XifOOffcc55rnMP3PuP7dOjQgX/++Qdvb28qVKgQl4fyypUrvPvuu+TPnx9bW1vs7e1p0KABAOfPn09wToPBkKhmsGLFily7di1u+/fffydHjhy0a9eO6OjouOXNN98kf/780t9PiAykatWq2Nvbxy2TJ0/m4sWL3L59G09PzwTdTbJly8bbb7/N4cOHefz4carPK4Q56TIVnBB6qlatGtWqVQNUE+7w4cOZMmUK33//PV999RX16tXDycmJcePG8frrr+Ps7MyNGzd46623EjXXOjs74+TklGCfo6Mj4eHhcdt37twhKCgo2f48sYGnEMI65MmThyxZsiT4ohdr+fLlPH78GH9/f9q3bw8QN7FBUs26BQsWxGg08vDhQ/Lnz5+q8wphTroFgBcvXmTGjBmcP38eg8FAmTJl+PTTTyldurRelxSZkL29PaNHj2bKlCn89ddf7N69m9u3b7Nnz564Wj+AoKCgNF8jT5485M6dm61btyb5ugx4EsK62Nra0rhxY7Zv346/v3+CwK5s2bKAmtAgVu7cuQHw9/dPdK7bt29jY2NDzpw5U31eIcxJlybgNWvWUL58eU6cOEGlSpWoWLEiJ0+epHz58qxevVqPS4pMIKmHL8Q36xYsWBCDwQCoWrxnzZs3L83Xbdu2Lffv3ycmJiau9vHZRb7UCGF9vL29iYmJoX///skOKItVunRpChUqxPLly9GeyZwWFhaGr69v3Mjg1J5XCHPSpQZw2LBheHt7M3bs2AT7R48ezfDhw+nSpYselxUZXIsWLShcuDDt2rWjTJkyGI1GTp8+zeTJk8mWLRuDBg2iYMGC5MyZk/79+zN69Gjs7e1ZtmwZZ86cSfN133nnHZYtW0br1q0ZNGgQNWrUwN7enps3b/LHH3/QoUMHOnXqZMJPKoTQW506dZg1axaffvopVapUoV+/fpQrVw4bGxv8/f3x9fUFwMXFBRsbG77//nvee+892rZty0cffURERAQ//PADQUFBfPfdd2k6rxBmpcfIkixZsmiXLl1KtP+ff/7RsmTJosclRSbg4+Ojvfvuu9prr72mZcuWTbO3t9eKFi2qeXp6aufOnYs77tChQ5qHh4fm7Oys5c2bV+vTp4928uRJDdAWLVoUd1yPHj20rFmzJrrO6NGjtedvjaioKG3SpElapUqVNCcnJy1btmxamTJltI8++ijB77qMAhbCupw+fVrr1auXVrx4cc3R0VFzcnLSSpUqpX3wwQfarl27Ehz722+/aTVr1tScnJy0rFmzak2aNNEOHjz4yucVwhx0mQmkdevWdOnShV69eiXYv2jRIlauXMm2bdtMfUkhhBBCCJFCujQBt2/fnuHDh3PixAlq1aoFwOHDh1m9ejVjxoxhw4YNCY4VQgghhBDpR5cawJTOyWowGIiJiTH15YUQQgghxAvoEgAKIYQQQgjLZRUzgezbt4927drFpfn47bffXvqevXv3UrVqVZycnChRogRz585NdIyvry9ly5bF0dGRsmXLsm7dOh1KL4QQQghhWUzWB3D69On069cPJycnpk+f/sJjBw4cmKpzh4WFUalSJXr16sXbb7/90uOvXr1K69at6du3L0uXLuXgwYN88skn5M2bN+79fn5+dOvWjW+++YZOnTqxbt06unbtyoEDB6hZs2aqyieEEEIIYU1M1gRcvHhxjh8/Tu7cuSlevHjyFzQYuHLlSpqvYzAYWLduHR07dkz2mOHDh7Nhw4YE877279+fM2fO4OfnB0C3bt0ICQlhy5Ytcce0bNmSnDlzsmLFijSXTwghhBDC0pmsBvDq1atJrpuDn58fzZs3T7CvRYsWLFiwgKioKOzt7fHz82PIkCGJjpk6dWqy542IiCAiIiJu22g08uDBA3Lnzh03A4UQIv1omsajR48oWLBgigefmYM8O4SwLNby7NCTbnMBm1NAQABubm4J9rm5uREdHc29e/coUKBAsscEBAQke94JEyYwZswYXcoshEi7GzduULhwYXMXI1ny7BDCMln6s0NPugSAnTt3plq1aowYMSLB/h9++IGjR4+my3zAz3+rjm3pfnZ/Use86Nu4t7c3Xl5ecdvBwcEULVqUGzduyLQ+wqIFBMC4ceDjoxEZGf87npu7VOQsb3AeV4LJwhMcicCeKGyJwdY5Cw7ZHLDL6oC9sz22WRzByQkcHcDOHht7Wwx2ttjY22Bjb4utg636aWeDrb0NNnY22DrYgr0dBjtbDLY2YPN0MTz9aWuDwcYAhtgFnv7nmX1qv8HGBoPBgMFGLWFPQmkxoBHZs2c3y79rSsmzQ4j0FxkayZEZR5k3O5rfQ+qhYQtAEcc7vNvgAhO3t7f4Z4eedAkA9+7dy+jRoxPtb9myJZMmTdLjkgnkz58/UU1eYGAgdnZ25M6d+4XHPF8r+CxHR0ccHR0T7XdxcZGHuLBIjx/D5MkwcaJGWJgKqsryN++xjG74UCLPIww1qkOVKlCkJLi5qaVgQcifHxwczPwJXiwkJAQGJP4yZ2nk2SFE+rj4ZyS/jr3C/n0aRwOLEU7ruNeaF7/EoHF5adHtNcLC3JjoavnPDj3pEgCGhobikMQfDnt7e/XA1pmHhwcbN25MsG/79u1Uq1YNe3v7uGN27NiRoB/g9u3bqV27tu7lE0JvmgYrV8Lw4XDjBoCBWvgxiaHUrqVhePst6LgNSpZUtWtCCGGlwsNhy4ogZo97wM4rJYAyca/lMjzgrUr/Mnjma5Sr85r5CmmBdAkAy5cvj4+PD1999VWC/StXrqRs2bKpPl9oaCiXL1+O27569SqnT58mV65cFC1aFG9vb27dusWSJUsANeJ35syZeHl50bdvX/z8/FiwYEGC0b2DBg2ifv36TJw4kQ4dOrB+/Xp27tzJgQMH0viphbAMx47BwIFw+LDaLso1JjKcbiVPYFi5AqpVM28BhRDiFcTEwNmzsGsX7NgWw/49MTyJzgHkwICRNo476dggiDo9X6N010oYbKubu8iWSdPB+vXrNTs7O+2DDz7QFi9erC1evFjz9PTU7OzstHXr1qX6fH/88YcGJFp69OihaZqm9ejRQ2vQoEGC9+zZs0erXLmy5uDgoBUrVkybM2dOovOuXr1aK126tGZvb6+VKVNG8/X1TVW5goODNUALDg5O9WcSQg9z5miara2mgaZltQ/XxvGF9hgnTevZU9NCQsxdPJOz1nvQWssthLkYjZq2dq2mtW+vaTlyqGfcs0tBbmojCv6iXZ22XtMiIl56PrkHNU23qeA2bdrEt99+y+nTp8mSJQsVK1Zk9OjRNGjQQI/LmUVISAiurq4EBwdLPx5hVtHR8NlnEJuDvUuxY0z9rwMFDQEwaxZ8/LF5C6gTa70HrbXcQpjDzZswYABs2BC/L7vdY+pH76YpO2mW7yxl5w/G0KF9is8p96COaWDatGlDmzZt9Dq9EOKp8HB46y2IzWk+vuwyvM+9j8HGBhb/Ap6e5i2gEEKkQXQ0zJ0LX3wBjx6Bvb3GkOoH6XzCm8oRftgZjCoyHP8bZNIg7lXoFgAGBQWxZs0arly5wtChQ8mVKxcnT57Ezc2NQoUK6XVZITIVTYNPPlHBXxaHaJY49qPzuUVgb69Ggbz1lrmLKIQQqbZ9OwwZAufOqe1arz/g55CulDu0S+2oXx+mTFEZDESa6BIAnj17lqZNm+Lq6sp///1Hnz59yJUrF+vWrePatWtxgzWEEK9m9mxYtAhsiOG3yNY0j9wB5crBTz+Bh4e5iyeEEKly6BCMHw+bN6vt3Dlj+KbQXPr9NRBbjFCsGEyapL7cSgaDV6LL/CdeXl707NmTS5cu4eTkFLe/VatW7Nu3T49LCpHp7NsHgwerLrzfMYLmWQ7AhAlw8qQEf0IIq2E0wqZNqlKvTh0V/NnZweCut7kUU5KP//oftva2MHIk/P03vP22BH8moEsN4LFjx5g3b16i/YUKFXrhVGtCiJQJCIAunaKIjrbnHVYwtMgq2HYC3njD3EUTQogUefIEli5VLbnnz6t99vbwwQcwrMYeXh/cWh1UsyYsXgxlyrzwfCJ1dAkAnZyckkz4fPHiRfLmzavHJYXIVKaPuEXgg0KU509+Lj8NwzY/NXuHEEJYuCtXYP58WLAA7t1T+1xcoF8/GDwYCu1aAh9+qBL+tWkDq1aBs7NZy5wR6dIE3KFDB8aOHUtUVBSgplq5fv06I0aM4O2339bjkkJkGpHnLrNgiZrRZky51WQ9sE2CPyGERdM02LkTWrWCUqVg4kQV/Lm7w48/qhmLfvgBCvn8CD16qODvgw9g3ToJ/nSiSwA4adIk7t69S758+Xjy5AkNGjSgVKlSZM+enfHjx+txSSEyh3v3WNt4JoFaPgraB9L+wDBwdTV3qYQQIkkxMbBmDVSvDs2awdatKhhs0ULFdpcvq9G+Ltk18PZWCU0BvLzUCLen07cK09OlCdjFxYUDBw6we/duTp48idFopEqVKjRt2lSPywmROTx5Au3bM/vOdwD0HeiMXY5sZi6UEEIk7fBh+N//4MQJte3sDH36qKkqS5Z85sCYGOjfH37+WW1/9x0MGyYDPXRm8gAwOjoaJycnTp8+TePGjWncuLGpLyFE5hMSAu3b85dfCPupj62tRt8hEvwJISzP3bswYgQsXKi2XVxU375PP4U8eZ47OCIC3nsPfH3BxgbmzVNRotCdyQNAOzs73N3diYmJMfWphcic7t5VHWdOnGCu/TyIgg4dDEg+dSGEpdmzB7p3V5kKAHr2VBV6bm5JHBwWpvL5bd8ODg6wYoUkr09HuvQB/PLLL/H29ubBgwd6nF6IzOPmTZUc68QJQnO7s8ShN6Bm/xBCCEthNMK4cdCkiQr+ypZVSZ0XLUom+Hv4EJo3V8Ff1qwqEaAEf+lKlz6A06dP5/LlyxQsWBB3d3eyZs2a4PWTJ0/qcVkhMpbwcOjQAS5cgCJFWOh5hEff2vL66yA9K4QQluLWLVXTt3On2u7RA2bNUnFdsm9o2RL++gty5FBzWdaqlU6lFbF0CQA7duyox2mFyFz+9z81q0eePNxdd4DRTdXXaC8v6RsthLAMK1fCxx9DUBBkyaICv169XvCGixfVEOBr16BAAdi2DSpUSK/iimfoEgCOHj1aj9MKkXksWKAWGxtYsYKR84oSFARvvin9o4UQ5hUQoKZrW71apXUBlebl11+hdOkXvPH4cdWf+d49eP11FfwVK5YeRRZJ0CUAjHX8+HHOnz+PwWDgjTfeoGrVqnpeToiM4cQJGDBArX/zDcdzNI3LjjBzJtjamq9oQojM648/YPRo2L8/fp+tLYwaBV988ZKUffv2Qdu28OgRVKumIkiZGcysdAkAb968Sffu3Tl48CA5cuQAICgoiNq1a7NixQqKFCmix2WFsH5XrkC7dio1Qrt2GIeN4H91VeLU999XE6ULIUR6OnlS5Wjevj1+X7VqKp7r2jUFU5Bv3gxvv636NTdsCBs2QPbsehZZpIAuo4A//PBDoqKiOH/+PA8ePODBgwecP38eTdPo3bu3HpcUwvr5+6tU+f7+qk/MkiUsWWrDkSOQLRt8/725CyiEyEzu3YO+faFqVRX82dmpxokbN+DYMVUb+NLgb8UKNZgtPFxFjJs3S/BnIXSpAdy/fz+HDh2i9DOdAUqXLs2MGTOoI1UYQiT28KHqGH3lCpQoAdu2YXTJwXdq0g9GjVL9pYUQQm/R0fDTTzBypHo0gcrtN26cejyliKbBhAnqJADvvANLlsjUbhZElwCwaNGiREVFJdofHR1NIcleK0RCkZHQvj38+aeK8nbsgAIF2L5VDZjLnl3NkiSEEHoyGtW8vV99pZ49AJUqqZG9qaq7iYpSD63YqUC8vFQThnRgtii6NAF///33fPrppxw/fhxN0wA1IGTQoEFMmjRJj0sKYZ00TbWpHDigIr1t2+K+Yk+bpg555x1pMRFC6EfTVLe8qlWhWzcV/OXODTNmqIG7qQr+njxRTb4LF6osBjNnwuTJEvxZIIMWG6GZUM6cOXn8+DHR0dHY2alKxtj155NCW/NsISEhIbi6uhIcHIyLi4u5iyOs0ezZ8SN+AUJDIWtWLl6EMmUS7RbPsdZ70FrLLTIWoxF++w3GjoUzZ9S+7Nlh6FA1d2+qfzUfP1bB386dKingqlWq358FkntQpybgqVOnmvycs2fP5ocffsDf359y5coxdepU6tWrl+SxPXv25Jdffkm0v2zZsvz9998ALF68mF5JZKt88uQJTk5Opi28EEnZswcGDUrypZkz07coQojMQ9PUWIyRI+MDv2zZVO75oUNV7V+qhYaqDAZ79sRP7daggSmLLUxMlwCwR48eJj2fj48PgwcPZvbs2dSpU4d58+bRqlUrzp07R9GiRRMdP23aNL6L7T2Pqn2sVKkSXbp0SXCci4sLF2M7OjwlwZ9IF/fvq7aW6Gjo0kVlVH0qOBgWLzZf0YQQGdeRI/DZZ3DwoNrOnl3V9g0alMbAD1RuvzZtVILA7NnV1G4y4NPi6dIH0NR+/PFHevfuTZ8+fXjjjTeYOnUqRYoUYc6cOUke7+rqSv78+eOW48eP8/Dhw0Q1fgaDIcFx+fPnT4+PIwR8/jkEBqoZ02fNSvDSwoXqy/RL0ysIIUQKRUaqGr/atVXw5+SkHkNXr6om4DQHf8HB0Ly5Cv5cXdUgNgn+rILFB4CRkZGcOHGC5s2bJ9jfvHlzDh06lKJzLFiwgKZNm+Lu7p5gf2hoKO7u7hQuXJi2bdty6tQpk5VbiGTt2QOLFqn1n34CZ+e4l/7628BXX6n1jz9O/6IJITKeP/+EmjXh229Vv7/33oN//1UDc9Mc+AE8eABNm8Lhw5AzJ+zapS4krILFB4D37t0jJiYGNze3BPvd3NwICAh46fv9/f3ZsmULfZ6bQLVMmTIsXryYDRs2sGLFCpycnKhTpw6XLl1K9lwRERGEhIQkWIRIlYiI+JwuH32kvo4/dZ9ctO/mRGgoNGoEnp5mKqMwOXl2CHMIDVW1fFWqwOnTKthbswaWLoWCBV/x5IGB0KSJGiacJ4+aJ06me7UqFh8AxjIYDAm2NU1LtC8pixcvJkeOHHTs2DHB/lq1avH+++9TqVIl6tWrx6pVq3j99deZMWNGsueaMGECrq6ucYtMaSdS7bvvVI6F/PnhmX6qUdjRhdVc/c+GEiVUl0DJl5pxyLNDpBdNU826P/+supFMmqS6GnfqBH/9pWZke2U3bkC9eiqqzJdPBX+VKpngxCI9WXwAmCdPHmxtbRPV9gUGBiaqFXyepmksXLgQT09PHBwcXnisjY0N1atXf2ENoLe3N8HBwXHLjRs3Uv5BhLh+XbXBgEry93SebOzsGF52I3/QmGzZNNavV9/U7eygRw+12OkyXEukF3l2CD35+6teJd26QaFCKpVo375w86Za37QJ1q5V3ztf2T//QN266meRIqrvX/nyJjixSG8m+7Py1ltvpfjYtWvXpvhYBwcHqlatyo4dO+jUqVPc/h07dtChQ4cXvnfv3r1cvnw5RfMPa5rG6dOnqVChQrLHODo64ujomOKyC5HADz+ontgNG6qRv08FPHRkxj8tAfj1V0Pcs9TRUUYDZxTy7BCmdPu2irsOHoR9++JTucSyt1fNvh06qBG+WbKY6MK7dqk54e7ehddfVwM+ksjEIayDyQJAV1fXuHVN01i3bh2urq5Uq1YNgBMnThAUFJSqQDGWl5cXnp6eVKtWDQ8PD+bPn8/169fp/7Qvlbe3N7du3WLJkiUJ3rdgwQJq1qxJ+SS+nYwZM4ZatWrx2muvERISwvTp0zl9+jSznhuRKYRJ3Lmj2mRATez7TPeFBQtUE02tWvBcTwUhhIgTFQXe3vDjj6qpN5bBANWqQatWqlte9eomDPoAYmJgzBg1GbCmQeXKsHWrav4VVstkAeCi2FGNwPDhw+natStz587F9un0LzExMXzyySdpyrjdrVs37t+/z9ixY/H396d8+fJs3rw5blSvv78/169fT/Ce4OBgfH19mRY7n9ZzgoKC6NevHwEBAbi6ulK5cmX27dtHjRo1Ul0+IV5q6lQID1cj5Bo1itsdEwPz52uAgY8/jADNIS441DSVWB/UQOEUdHkVQmRQ166pJt4jR9T2m2+qbnh166pHSt68Ol34yhX48EPYu1dt9+2rurCYNMIU5qDLVHB58+blwIEDlC5dOsH+ixcvUrt2be7fv2/qS5qFTCUjUiQoSDWTPHoE69dD+/ZxL23cqDZzcZ9bFMIp9H7cnG9hYSo7P8hUcMmx1nvQWsst0t/jxyo36KhR6lGSI4fafqZHlD4iI9UIkm++UV9es2WDefPg3Xd1vnD6kHtQp5lAoqOjOX/+fKIA8Pz58xiNRj0uKYTlmjVLBX/lyyeaFzM2l3kvFuFEhBkKJ4SwRNevw5IlqrLt3j21r0YN8PGBYsV0vviJE/DBB3DunNpu3BjmzoXXXtP5wiI96RIA9urViw8//JDLly9Tq1YtAA4fPsx3332X5Py7QmRYoaGq+RdU5x2b+IH3V6+qbjQAHzEv/csmhDCb8HCVSi8wUI2puHdPzRB57hzs3q0SNccqVkzl8+vTB16S0OLVGI0wZYp6VkVFqXblH39UmaOlD0qGo0sAOGnSJPLnz8+UKVPw9/cHoECBAgwbNozPPvtMj0sKYXliYuD999WTvUQJ6No1wcvz5ql+fs0ax/Da7stmKqQQIj08fAg7d6ovfdu3qxQtL2Jrq7oM/+9/KmmA7qmg7txRtX7bt6vtt96C+fNfcaoQYcl0+ZWysbFh2LBhDBs2LC7jfWZtYxeZ2PDhqs+foyP8+muCJ3h0tOrHA/BJ3yjYbaYyCiF0oWkqTcvWrSpbyvHjqoLtWfb24OamKtry5FGxVpEiKlNU3bqQbn829+xR6V0CAtTgjqlT1WAPqfXL0HRPLyuBn8iU5s2DyZPV+qJFCaZ8A5W76+5d9dBv2yrGDAUUQujl+HEYOjR+4GysN95QqVpatlRpW3LkMHOMZTSq5PSjR6v1smVh1SooV86MhRLpRbcAcM2aNaxatYrr168TGRmZ4LWTJ0/qdVkhzO/IERgwQK2PHau+WT9n3Tr1s317meVDiIwiMBC8vGDZMrXt5KRG6zZrppbChc1bvgTu3VMTjsd2RO7ZE2bOlHQDmYguU8FNnz6dXr16kS9fPk6dOkWNGjXInTs3V65coVWrVnpcUgjLMXq06v/XtSt8+WWilzUNfvtNrXfqhOrs07mzWp7mzST53UIIC3T0qJp9Izb4e/99Ne338uXQq5eFBX9HjqjCbt2qmnwXLlQtFRL8ZSq65AEsU6YMo0ePpnv37mTPnp0zZ85QokQJvvrqKx48eMDMmTNNfUmzkDxCIpETJ1Tbjq0tXLoExYsnOuTYMZXOIWtW9SXcyckM5cwgrPUetNZyi6T9/LOq9I+MhNKlVZff6tXNXaokaBrMmKHap6OiVFqXNWugYkVzlyzdyT2oUw3g9evXqf20z1OWLFl49OgRAJ6enqxYsUKPSwphGSZMUD+7d08y+IP45t9WrST4E8KaBQVBjx5qvERkpJp79+hRCw3+goJUc8KgQSr469xZdVbMhMGfUHQJAPPnzx8324e7uzuHDx8G4OrVq+hQ4SiEZTh/HtauVesjRiR7WILmXyGEVdq6VeV2X7JEpfccN07d/hZZmXT8uGryXbtWDT2eNk0N9rDIwor0oksA2LhxYzZu3AhA7969GTJkCM2aNaNbt250kr96IqOaOFE1sXTsmOwouosXVZxobw9t2jzdGRamhgIaDGr9xbuFEGakafDFF6oG/9Yt1Yp64ACMHJkgz7vl8PFROWWuXlWtEgcPwsCBkuJF6DMKeP78+XFTvvXv359cuXJx4MAB2rVrR//+/fW4pBDm9d9/sHSpWvf2Tvaw2Obfxo3B1VX/YgkhTGvcuPieHh9/rKbLdXY2b5mSpGkqxUvsQLS2bVXnxBw5zFosYTl0CQBv3rxJkSJF4ra7du1K165d0TSNGzduULRoUT0uK4R5aBp89pka+du0qRrhkYzYAFAqwoWwPgsXwldfxW//8IOFBn+RkdCvH/zyi9oeMkQVVtIJiGfoUmFdvHhx7t69m2j/gwcPKJ5Mx3ghrNbPP8f3rZk4MdnDrl9XHcQNBtVZXAhhPTZsUIM9LN6DB9CkSXzwN2WKms9Xgj/xHF0CQE3TMCTRvyA0NBQnGfYoMpILF9SoOoDx41VH62T8+qv62aAB5M+fDmUTQpjEnj0qrafRqPL7WazLl8HDQ3VKjGUVUaswB5M2AXt5eQFgMBgYNWoUzs/UjcfExHDkyBHefPNNU15SCPOJiFDpXp48UU2/n32W7KGaBosXq/VevdKneEKIV3f8uJqxJyJC/Zw5M767r0U5fFj187t/X2WdvnnT3CUSFs6kAeCpU6cAVQP4559/4uDgEPeag4MDlSpVYujQoaa8pBDm89VXcPq0mtA3NhdEMg4dUl/Os2WDt99OvyIKIdLu/Hk1b++jR9CokRpQG2OJU3dv3qzy+j15ohLR+/hAyZLmLpWwcCYNAP/44w8AevXqxbRp0zJtdm2RCZw5A5Mnq/Wff4YCBV54+KJF6meXLknMtmRrC61bx6+/eLcQIh1s2aJq6+/fVzHV+vUqcXt4uIXdl4sXQ58+KjJt2VLN7CEPD5ECukwFl1nIVDKZlNEIdeqoJpe331YP3BcIC1Px4aNHsHcv1K+fTuXMBKz1HrTWcmcGYWHw+ecwZ47arlgRdu1SFf0WZ+5clYsGwNMTFixQg9HES8k9qFMamLCwML777jt27dpFYGBgXE7AWFeuXNHjskKkj59/VsFftmwqo/5LrFungr8SJVQ+ViGEZbp5U3XnvXhRbQ8erFLpZcli1mIlbeHC+OBvyBCVkNAiM1ELS6VLANinTx/27t2Lp6cnBQoUSHJEsBBWKTAQhg9X6+PGQaFCL31L7OCPHj3k+SyEpbpzR2VP+ecfdVv/8ovatkjLl6tmX1BZCCZPlpk9RKrpEgBu2bKFTZs2UadOHT1OL4T5DB2qJlWvUgUGDHjp4devw+7dav2DD5I5KCwM8uVT64GBcZ0Ek9kthDCxBw+gWTMV/BUtCvv3q59JMft9uWmTephoGvTvr/L8PR/8mb2QwhroEgDmzJmTXLly6XFqIcznjz9UMj+DQfW9sXv57bN8uXpON2wIxYq94MDHj1OzWwhhIv7+KjH7n3+q/Jy7diUf/MUy23154QK8+64a8NGjB8yalXzNnzw8xEvo0iD1zTff8NVXX/HYhL+As2fPpnjx4jg5OVG1alX279+f7LF79uzBYDAkWi5cuJDgOF9fX8qWLYujoyNly5ZlXew8XUI8LyIivr/Nxx9D9eopetuyZeqnRSePFSIT0jT1Ba1cOTh2DHLnhp07oVQpc5csGcHB0LEjhIRAvXowf770KRGvRJcawMmTJ/Pvv//i5uZGsWLFsH9uVNLJkydTdT4fHx8GDx7M7NmzqVOnDvPmzaNVq1acO3fuhfMKX7x4McHonrx588at+/n50a1bN7755hs6derEunXr6Nq1KwcOHKBmzZqpKp/IBCZNUj3D3dzUjB8pcPYs/PUXODhI7j8hLMmDB6oLXex3/ipVVOV+2bLmLVeyYqcguXhRJXlevVo9WIR4BboEgB07djTp+X788Ud69+5Nn6edXqdOncq2bduYM2cOEyZMSPZ9+fLlI0eOHEm+NnXqVJo1a4a3tzcA3t7e7N27l6lTp7JixQqTll9YuStX1IAPUJ2tk/mdet7y5epnmzYpfosQQmeXLql78tIllTHlq6/UuC6LzZ6iaWqWod9/B0dHFbW6uZm7VCID0CUAHD16tMnOFRkZyYkTJxgxYkSC/c2bN+fQoUMvfG/lypUJDw+nbNmyfPnllzRq1CjuNT8/P4YMGZLg+BYtWjB16lSTlV1kAEYjfPKJyv7auLHqf5PCt8UGgCl8ixBCZ3v3wltvqRpAd3cVS1WubO5SvYCmqeg09u/Szz+rrNRCmIAuASBAUFAQa9as4d9//+Xzzz8nV65cnDx5Ejc3NwqlIHVGrHv37hETE4Pbc9943NzcCAgISPI9BQoUYP78+VStWpWIiAh+/fVXmjRpwp49e6j/NAtvQEBAqs4JEBERQURERNx2SEhIij+HsFLjxsG2beqb94s6XD/n4EG4cQNcXFRtg8jc5Nlhfhs3qq4YUVFQs6aa2cOiK9I0DUaOhB9+UNuzZ0tnYmFSugSAZ8+epWnTpri6uvLff//Rt29fcuXKxbp167h27RpLlixJ9TmfzyWoaVqy+QVLly5N6dKl47Y9PDy4ceMGkyZNigsAU3tOgAkTJjBmzJhUl11Yqd9/h9ja7LlzoUyZFL81dvDHW2+lIImsjQ00aBC//uLdwgrJs8O8rl1TmVOiotR0jL/8kvbkzul2X379NcR2cZoxI34QWkrIw0OkgC6/GV5eXvTs2ZNLly7h5OQUt79Vq1bs27cvVefKkycPtra2iWrmAgMDE9XgvUitWrW4dOlS3Hb+/PlTfU5vb2+Cg4Pjlhs3bqT4+sLK/PMPvPeeWh8wAHr2TPFbIyNVH22IP8ULZckCe/ao5Zm/SsnsFlZInh3mEx2t7sOgIFXzt2zZq91P6XJfTpoEY8eq9SlT4H//S9375eEhUkCXAPDYsWN89NFHifYXKlTohU2sSXFwcKBq1ars2LEjwf4dO3ZQu3btFJ/n1KlTFChQIG7bw8Mj0Tm3b9/+wnM6Ojri4uKSYBEZUHg4dOqk0i3UrQs//piqt2/frvoY5c8Pz3Q7FZmYPDvMZ9w41SUje3bVL9diB3vEmj9fTUYMah66wYPNWhyRcenSBOzk5JRkH5eLFy8mSMWSUl5eXnh6elKtWjU8PDyYP38+169fp3///oD6dn3r1q24puWpU6dSrFgxypUrR2RkJEuXLsXX1xdfX9+4cw4aNIj69eszceJEOnTowPr169m5cycHDhxI46cWGca4cXDunIrg0pBuYdMm9fOtt8DWVofyCSFSZPNm+OYbtT5vnpqP26L9+qua3QNgxAh4mqVCCF1oOujbt6/WsWNHLTIyUsuWLZt25coV7dq1a1rlypW1QYMGpemcs2bN0tzd3TUHBwetSpUq2t69e+Ne69Gjh9agQYO47YkTJ2olS5bUnJyctJw5c2p169bVNm3alOicq1ev1kqXLq3Z29trZcqU0Xx9fVNVpuDgYA3QgoOD0/SZhAX6809Ns7PTNNC0VP4+aJqmGY2aVqyYevvvv6fwTaGhmpYnj1pCQ1+2WzzDWu9Bay23tbh2TdO6dVP3IWhaz56mO7cu92VMjKZ99VV8gT/5RD1MLKqQGYvcg5pm0DRNM3VQGRISQuvWrfn777959OgRBQsWJCAgAA8PDzZv3kzWDDIvYUhICK6urgQHB0uTTkZgNEKdOnD4sJobat26VE+wfvGiGivi4KCagVP0qx4WBtmyqfXQ0ARzASexWzzDWu9Bay23NZg7F4YMUT05DAbo10/14nB2Ns35TX5fhoWpad1iW6i8vNTI31cZvCEPj5eSe1CnJmAXFxcOHDjA7t27OXnyJEajkSpVqtC0aVM9LieEacydq4K/bNlg5sxUB38AW7eqn/XryzNXiPS2c6dK26lp6h6cNg3efNPcpXqBS5egc2c1bZCDg2qnTsWAMyFehW55AAEaN25M48aN9byEEKZx547qcwMq9ULhwmk6TWwA2LKlicolhEiRW7dU0nVNgw8/VDmT0/AdLv2sXg29e8OjR5AvH6xdq1oghEgnuiUI2rVrF23btqVkyZKUKlWKtm3bsnPnTr0uJ8SrmTJFPYirVk1dvq1nPHmisi6ABIBCpKeoKHjnHbh7FypVSnMFfvp48gQ+/RS6dlXPnHr14NQpCf5EutMlAJw5cyYtW7Yke/bsDBo0iIEDB+Li4kLr1q2ZOXOmHpcUIu0ePlRZ9kFNDJrGobv79ql+R4ULW/Ck8kJkQCNGwIEDauadNWssOPXdsWNQpYqKUEFN87Z7NxQsaN5yiUxJlybgCRMmMGXKFP73TPLKgQMHUqdOHcaPH59gvxBmN2uW+iZevjy0bZvm0zzb/GuxtQ9CZCCapibriU3VuWgRlCpl3jIlKTJSpZf69luIiVEpphYuhFatzF0ykYnpEgCGhITQMok2sObNmzN8+HA9LilE2oSFxU+07u39SiPv0tz/z8YmfoL356aCS2K3EAIV/H3xBXz3ndqeNEnl3tRbqu/LEydUp8SzZ9V29+5qarfcuXUrozw8REroEgC2b9+edevW8XlsNvOn1q9fT7t27fS4pBBp89NPcP8+lCyp+uSk0X//wYULqvW4SZNUvjlLFtU0lLLdQmR6mqZaT3/4QW1PnQqDBqXPtVN8X0ZFwZgxKkKNiYE8eVRrwys8Z1JMHh4iBXQJAN944w3Gjx/Pnj178PDwAODw4cMcPHiQzz77jOnTp8cdO3DgQD2KIMTLRUSoagNQf03s0n47bNumfnp4QI4cr140IUTyZsyID/5mzVKpXyzKo0cqvcv27Wq7WzdV6DTMhCWEXnQJABcsWEDOnDk5d+4c586di9ufI0cOFixYELdtMBgkABTm89VXKndEoULwwQevdKoNG9RP6dIjhL62blWJngG+/94Cg7+AAGjdWo3sdXaGX35RwaAQFkaXAPDq1at6nFYI01m3Tv31ANV+5OiY5lOFhKgEtAAdO6bhBI8fxw8bPncubsqCZHYLkWmdO6cq04xG1a1u6ND0L8ML78tLl6B5c9UnJG9eNTF49eoWVkghFF0TQQthkf75R029BGrapVf8dr51qxrk9/rr8MYbaTiBpsG1a/HrL94tRKZ0964apB8Somb5mDPHPKPtk70vL12Chg3h9m147TXYskX1LTYHeXiIFJAAUGQuYWHw9tuqj079+vFDCF/BunXqZ8eOkv5FCD08eaKm5756FYoXV9PmOjiYu1TP+PdfaNRIBX/lyqncfvnymbtUQryQjA8XmYfRqGr+/voLChQAHx+wt3+lU0ZEqFYegE6dTFBGIUQCRqPqouvnpwZYbd6sBtRajCtXVPB365ZqAti1S4I/YRUkABSZx+jR8VUHa9aoZKyvaPduVZlYoADUqGGCMgohEvD2VrervT389huUKWPuEj3jwAGoWRNu3FAF270b3NzMXSohUkSagEXmsGKFysQPMH8+1K5tktP+9pv62aGD5FsVwtQWLowfq7VwITRoYN7yJNK2LUQHq+ndfv/dJF8qhUgvuv3J2r9/P++//z4eHh7cunULgF9//ZUDBw7odUkhknb8OPTqpdY//zx+AMgriomB9evVujT/CmFahw5B//5q/auv4P33zVueOEFB8evRUSqx8/79qhlACCuiSwDo6+tLixYtyJIlC6dOnSIiIgKAR48e8e233+pxSSGSFhEBnp7qZ9u2MGGCyU59+DDcuQOurmrwX5oZDCplQ9myCUaRJLNbiAzv5k01rVtUlBqzNXq0uUuEGk3r64uhWlXK8jdl+RvDyJGwcqXlpVmRh4dIAV0CwHHjxjF37lx++ukn7J/pZF+7dm1OnjypxyWFSNq336o52vLlUwlZbW1Nduq1a9XPtm1fcUSiszP8/bdanvlDksxuITK0J09UjfqdO1ChAixebAHdK86dUzd65844B1zh79c68ffuQJzHfWGZAZY8PEQK6HJbXbx4kfr16yfa7+LiQtCz1edC6Onvv+Nr/GbMgFy5THbqyEhYulStS5J/IUzjwQNo2VL12sidW3WxyJbNjAUKCFDt0BUqqOHH9vYwahScPatG/gphxXQZBFKgQAEuX75MsWLFEuw/cOAAJUqU0OOSQiRkNELfvqoNqV076NLFpKffuBECA1Wf7zZtTHpqITKla9fUVIrnz4OLixpgVby4mQpz4QJMmQJLlkB4uNrXqZPKG/r662YqlBCmpUsN4EcffcSgQYM4cuQIBoOB27dvs2zZMoYOHconFjdxo8iQZsxQicOyZ4fZs03eTDN/vvrZq9crpxJU0zaVK6eWx49ftluIDOfkSahVSwV/hQur7Cp165qhIMeOQfv2Kp/f/Pkq+KtVSw3yWLsWXn/dOu5LqyikMDddagCHDRtGcHAwjRo1Ijw8nPr16+Po6MjQoUP53//+p8clhYi3aRN89planzBB/UUxoatXYccOtd6njwlOqGmqj1Hs+ot3C5GhbN6sBtKGhUHFiur2NfEt+3JHj8KYMaowoL4wtm+vniN16yb4AmkV96VVFFKYm255AMePH8/IkSM5d+4cRqORsmXLks2snTlEpnDsmPprEhOj0r3oUOO8YIF6pjZrBtKjQYi0mzsXBgxQPTaaNlUJn11d07EA//0Hw4fDqlVq29ZW5Zv54gtp6hUZni5NwL/88gthYWE4OztTrVo1atSo8crB3+zZsylevDhOTk5UrVqV/fv3J3vs2rVradasGXnz5sXFxQUPDw+2bduW4JjFixdjMBgSLeGx/T2E9bl8WXXIe/wYWrSAn34yedNvdLRKSAvQr59JTy1EphEZCYMHw8cfq+CvZ09V+ZZuwV9oKIwcqWbvWLVKPSd69FB9/xYvluBPZAq6BIBDhw4lX758vPPOO/z+++9ER0e/0vl8fHwYPHgwI0eO5NSpU9SrV49WrVpx/fr1JI/ft28fzZo1Y/PmzZw4cYJGjRrRrl07Tp06leA4FxcX/P39EyxOTk6vVFZhJg8fQuvWcPeuysq/erUJOucltmkT+PtD3ryqhUgIkTr//qsm4pk2TW2PHau+VOlwuyamaWr4funSKkVURIQazXvqlAr8SpVKh0IIYSE0HURFRWkbN27U3n33XS1r1qxanjx5tI8//lg7ePBgms5Xo0YNrX///gn2lSlTRhsxYkSKz1G2bFltzJgxcduLFi3SXF1d01SeWMHBwRqgBQcHv9J5xCuKjNS0Jk00DTStaFFN8/fX7VKtWqnLDBtmwpOGhqqTglp/8W7xDGu9B6213K8iOlrTFizQtOzZ1e90rlyatn59Ohbg7FlNq107/qYqWVLTfvtN04zGVJ3GKu5LqyikeWXGe/B5utQA2tnZ0bZtW5YtW0ZgYCBTp07l2rVrNGrUiJIlS6bqXJGRkZw4cYLmzZsn2N+8eXMOHTqUonMYjUYePXpErufywIWGhuLu7k7hwoVp27ZtohpCYSUGD4ZduyBrVpWfRaf5OK9cga1b1XrfvrpcQogMR9PUANoKFaB3b3j0SI2rOH06nWrRY2JU+paqVdX8clmzqsFhf/+tJvG2xETOQqQD3QaBxHJ2dqZFixY8fPiQa9eucf78+VS9/969e8TExODm5pZgv5ubGwEBASk6x+TJkwkLC6Nr165x+8qUKcPixYupUKECISEhTJs2jTp16nDmzBlee+21JM8TERERN60dQEhISKo+i9DB7NnxaV6WLVPDCHUyZ476Y9aihYlbigwGcHePX3/xbmGFMuuz49EjFeTt2aO2c+YEb28YMgTsdP/rg8or8+GHat5GUIWZPRsKFUrzKa3ivrSKQgqz06tqMSwsTFu6dKnWqlUrzd7eXitRooQ2cuRI7dy5c6k6z61btzRAO3ToUIL948aN00qXLv3S9y9fvlxzdnbWduzY8cLjYmJitEqVKmmffvppsseMHj1aAxItmbkK2axu39Y0R0fVzPHdd7pe6vFj1WQFmrZhg66XEqlgLc04mfHZ8eSJpjVurO6ZrFk17csvNe3hw3S6+N27mva//2mara0qgIuLpi1enOrmXpFxWcuzQ0+6fAfr3r07GzduxNnZmS5durBnzx5q166dpnPlyZMHW1vbRLV9gYGBiWoFn+fj40Pv3r1ZvXo1TZs2feGxNjY2VK9enUuXLiV7jLe3N15eXnHbISEhFClSJAWfQujihx9UJ+46dWDYMF0v5eOjpqlyd1djTYRIjcz27IiKgnfegd271VRuu3dD9erpdOFZs+DrryE4WO3r0EElhs/A/95CpIUuAaDBYMDHx4cWLVpg94r1/A4ODlStWpUdO3bQqVOnuP07duygQ4cOyb5vxYoVfPjhh6xYsYI2KZirS9M0Tp8+TYUKFZI9xtHREUdHx9R9AKGPwECVRAzgq690b+aYNUv97N9fpQoTIjUy07MjOlrNkLN+PTg6qm656RL87dkD//uf6tsHUKkS/PgjNG6cDhcXwgqZuwoyJVauXKnZ29trCxYs0M6dO6cNHjxYy5o1q/bff/9pmqZpI0aM0Dw9PeOOX758uWZnZ6fNmjVL8/f3j1uCgoLijvn666+1rVu3av/++6926tQprVevXpqdnZ125MiRFJdLqpDNaNiw+LalatVUG61Ojh5Vl3Jw0LTAQB0u8Pix+gzPfY5kdotnWOs9aK3lfpnQUE1r21bdL3Z2mrZxo84XjInRtO3bNa1Dh/hRr7lza9r8+WrYsQ6s4r60ikKaV0a9B1PDZDWA06dPp1+/fjg5OTF9+vQXHjtw4MBUnbtbt27cv3+fsWPH4u/vT/ny5dm8eTPuTzu5+vv7J8gJOG/ePKKjoxkwYAADBgyI29+jRw8WL14MQFBQEP369SMgIABXV1cqV67Mvn37qFGjRqrKJszg3r34KrmwMDh+XGWT1Unspbp1U/n/TM5oVJ8hdv3Fu4WwSHfuQNu26nfWyQlWrlTbuoiMVKOyZsxQiQVBtQL07w/jxsFzGR9MySruS6sopDA3g6aZZqLA4sWLc/z4cXLnzk3x4sWTv6DBwJUrV0xxSbMLCQnB1dWV4OBgXFxczF2czOPLL2H8eNXEc+aM2hcaqtI7mNjmzWpyEYA//oCGDU1+CRXExs6U88znSGa3eIa13oPWWu6kREeryTS++AKuXYM8eVSzb61aOl1wyxYYOFDN/AOQPbuaxePjj6FsWZ0uGs8q7kurKKR5ZaR7MK1MVgN49erVJNeFMKmbNyG2hnnECOjeXbdLBQSovkyx0qUfkxBWInZaxIkTVY7MWDt3qu9mJnfhAnz+Ofz+e8L9ly9Dvnw6XFCIjE2XRNBjx47l8ePHifY/efKEsWPH6nFJkRnExKiJ2h89UtFYCgb3vOqlAgN1u4QQVuvYMXULfvSRCv5y545/zeSzqQUGwiefQPnyKvizs1M1gLGkdkuINNElABwzZgyhoaGJ9j9+/JgxY8bocUmRGXz3Hezdqx74y5aBjS6/voBqYd61C7Jk0e0SQlid4GAVe9WsqWbyyJULpk5V+ZZNLiZG9fErVUr194uJUYmc//xTzeMrhHgluvwF1TQNQxJpOc6cOZNoOjYhUuTQIRg9Wq3Png3JzNZiCufOQez3lNgJ64XIzKKjYd48ddvNmKGG277/vmqVHTQInJ1NfMEzZ6B2bRVtPnqkpnH74w+VW6ZMGRNfTIjMyaR5AHPmzInBYMBgMPD6668nCAJjYmIIDQ2lf//+prykyAwePoR331U1AO+9B56e8a/lyWPyy33xhRo41769uuwXX5j8Eokl8zl0+HhCpMqRI2ru6z//VNulS6tuuM9Nz26a39W7d2Hs2PgaPxcX1cmwX7/ENf5mvDms4r60ikIKczLZKGCAX375BU3T+PDDD5k6dSqurq5xrzk4OFCsWDE8PDxMdTmzk1FE6SA2Etu0CUqUgFOn1B8FnRw8qCaqt7GBv/6CN97Q7VLCBKz1HrSWcv/6K/Tpo7Ku5MypJtj4+GOwtzfxhcLCYOZM1bQbO0/y22+rSLNgQRNfTAjruQf1ZNIawB49egAqJUzt2rWxN/lTQmQ648ap4M/JCdas0TX40zQ1yBCgd28J/kTmFRMDI0eqyjeAjh1hwQId0uudOaPalpcuVU29AJUrw6RJMoOHEDrTZSq4Bg0axK0/efKEqKioBK9n1mhbpNKWLarKAVSTUOXKul5u/Xrw81MDP2IvK0Rm8ugRrFihZlk8dUrtGzlStcqabMxVZCT4+qrOhH5+8ftLllTTOr7/vq4DvIQQii4B4OPHjxk2bBirVq3i/v37iV6PiYnR47IiI/nnH9XfT9NUdv+ePRMf8+QJtGql1rdseaUhu48egbe3Wvfyim91MuElkpfMRdLl2kIAUVEq9poxQ7XGgvp9+/ln1Q/2ZVL0uxoaqi4wfbpKsgkqpUunTiqfTKNGKQ/8zHhzWMV9aRWFFOamSwD4+eef88cffzB79mw++OADZs2axa1bt5g3bx7fffedHpcUGck//6g/Bg8fQo0aKs9EUoxGlRYmdj2Nzp+Ht95SIxrz5IFhw0x+iRdL5iLpcm2R6d25A127wr59art0aTXm4oMPUj6O4IW/q0+eqCrFCRPUIA+A/PlVZ8J+/dR6apnx5rCK+9IqCinMTZcAcOPGjSxZsoSGDRvy4YcfUq9ePUqVKoW7uzvLli3jvffe0+OyIiOIDf5u34Zy5dScUo6Oul1u9Wr48ENVOVGoEKxdq2s3QyEsyuHD0Lkz3LqlZlRbsEBtJ5HFK/WMRli+XFWt37yp9pUsqdI5desGDg4muIgQIq106Wjx4MGDuPmAXVxcePDgAQB169ZlX+zXTCGed/p0wuBv927dpnh69EiltujaVQV/jRrByZOqwlGIjO74cdXy6uGhgr8yZeDoUejSxQTBn6ap2qdatVTKpps3oUgR1Z58/rzaJ8GfEGanSw1giRIl+O+//3B3d6ds2bKsWrWKGjVqsHHjRnLkyKHHJYU1i4pSs3yMHasyzuoc/O3fr+aOv3pV/bEbNkwNNrbT5W4QwvxCQlRt36FD6tbav1/tNxhUH7/Zs01Y8125Mlw+o9azZVOJNIcMUSP5hRAWQ5c/eb169eLMmTM0aNAAb29v2rRpw4wZM4iOjubHH3/U45LCWp09C716qeo3UNUS8+frlsT0p59Uf3NNA3d3+OUXeGbQuhAZSmQkfP+9+oITERG/39ZWjbEaMeIV0x09eqRG9C70AbaofZcvqalB3n9fTamTlj5+Qgjd6RIADhkyJG69UaNGXLhwgePHj1OyZEkqVaqkxyWFtQkPV3+VJk5UtX65cqlEsO+8Y6IOSImtWBEf/PXooQYjSn8/kVEdO6byWcbO4FG8ONSpo5p9W7eGYsXSeOInT9TIUh8f+P13ePwYeGYuuHnzoXt71alQCGGx0qXRq2jRohQtWjQ9LiWsgZ+fSuvyzz9qu1Mn1QaVlpqCFE5CunGj6nqkafDJJyrWTGmcafJ5TlNxkXS5tsgQTp6ElStVwPfXX/HjLnLnVnNav/vuK363+vdfNSJ/8WLVcTbWa69B9z44/2AEg42qWsz6CtdJKTPeHFZxX1pFIYU5mSwAnD59eoqPHThwoKkuK6yJpqk/IMOGqVq//Plh1iyVgyUtsmaNT1qWxKUuX1bzmB45opp+Y2JUEDhjRsr/EL7gEqaTzEXS5drCqsXEqEq4KVPis37EMhhULPbjj5A3bxovcP8+7Nmjqs/XrlU3FkDRomoEVdeuUK0aWQ0Gwsa8yidJJTPeHFZxX1pFIYW5mSwAnDJlSoqOMxgMEgBmRiEhKt+Kr6/a7tZN5QbTYVDQ7t1q9oLDhxPu79QJFi6USQaEdXvwQLXAbtoE27apbVCDmDp3ViPay5dXY6memY795YzG+G9NR4/CgQNqqrZnp4tv2RI++wyaNNGtq4YQIn2YLAC8evWqqU4lMpoLF9Rkohcvqlnkp0xR7bAm/gPi5wejRsGuXWrbwQGqVIGaNVXfp06dZKSvsE4hIWqqwpUrYft2VYEeK1culdLof/+DwoVTcdInT2DnThXoHT8OJ05AcHDi48qXVwFf374qqhRCZAjy51Doa8MGNRrw0SOVC2z1ahWRmUJ4ONpbb7PnQUXGZRnH7j22gIox+/dX2SdedQBieDi8/bZa9/XVKZNFMhdJl2sLi3bypKooX748YYte+fLQrp0azFGrVgq/2ERFqS9jJ06oduMtW54O4HiGkxNUraoSYtasCQ0bgpvbS0+d7r+rZrw5rOK+tIpCCnPTJQD88MMPX/j6woUL9bissCSPH6tRvhMmqO0GDWDVKpPl9jMaYeN6mLhlJH7UBlTg98EHqhbQ3d0klyEmBjZvjl/XRTIXSZdrC4sTHq4G2M6apUbyxnr9dejeXfWeeGnqlshI1Xx78mT88uefCXPBgPpS1qqVCviqVYOyZdWNlErp/rtqxpvDKu5LqyikMDddAsCHDx8m2I6KiuKvv/4iKCiIxo0b63FJYSmMRli2TFW/xQ5DHDgQJk1K0x+WZz1+rNIGHj2qakXOn3cCauNIOH0/suXzL+yRwebCWoWGqnzoc+eqsRegujF07qxqtOvWTaLXhKZBYKDqXnHxIvz9t+rDd+pU4mAPVGqWN9+EevXU4KsqVaQvnxCZlC4B4Lp16xLtMxqNfPLJJ5QoUUKPSwpzio5Wf3S2bIHfflN/hECNFJw0Sc0vlUY3bqh4Mja9xbPzmru4aHwS8h2DmEb+yf9C1lcLMIUwl507VRe7//5T20WKwMcfqzx+CSrNb91S03gcPapq+M6ehXv3kj5p7tyqVq9KFTU7R5UqKhmgjIISQpCOfQBtbGwYMmQIDRs2ZNiwYal+/+zZs/nhhx/w9/enXLlyTJ06lXr16iV7/N69e/Hy8uLvv/+mYMGCDBs2jP79+yc4xtfXl1GjRvHvv/9SsmRJxo8fT6dOnVJdtkxF0yAgQAV5fn5qbik/v4Sdx7NnVzWAgwZBliwvPd3t26qy8NYttdy+Df7+akDioUMJByG6uam/ZU2bQt93H+NS8AudPqgQ+gsJUYNqf/5Zbbu7w+TJ0KED2NkY1dy5vx1UN8L+/XDlSuKTGAzqjWXKqKVaNdUxsEQJqd0TQiQrXQeB/Pvvv0Q/O3wthXx8fBg8eDCzZ8+mTp06zJs3j1atWnHu3LkkE0xfvXqV1q1b07dvX5YuXcrBgwf55JNPyJs3L28/7Rjr5+dHt27d+Oabb+jUqRPr1q2ja9euHDhwgJqmGqRgzcLD4c4duH5d1TTE1jZcuKD+aj0vVy5o3lyliWjbVtU+PEPTVJD3zz9w6RKcOwenT6vTJnW6Z9Wvr/L3tWkDBQo884KkuRJWrnZtVcsNMOCjaCa8dYzsJ/dCxwNw8CAEBSV8g42N+gZUu7Zqyq1YUfXbk6S/QohUMmjas/UrpuHl5ZVgW9M0/P392bRpEz169GDmzJmpOl/NmjWpUqUKc+bMidv3xhtv0LFjRybEDjJ4xvDhw9mwYQPnz5+P29e/f3/OnDmDn58fAN26dSMkJIQtW7bEHdOyZUty5szJihUrUlSukJAQXF1dCQ4OxsWcc4ppmhrhFxGhAreICNUsG7uEh6uUD0+eqKGEYWGqQ11wsEoi9uAB3L2ravYCAlTg96KozMZGNSVVr67yq9SpQ2SZigSH2hIUpE53/75qmbpwQXVkP3488d+yWHZ2KrArVEgtBQuq7YIF1diRZKesCgtTk82D6kCV1fTTD6TDJZK9SLpc28pZzD2YSrHlhmCKZY/il0JfUP/fReo+fpazc3weozp1VOBngZ8z3X9XzXhzWMV9aRWFNC9rfXaYki41gKdOnUqwbWNjQ968eZk8efJLRwg/LzIykhMnTjBixIgE+5s3b86hQ4eSfI+fnx/NmzdPsK9FixYsWLCAqKgo7O3t8fPzSzBncewxU6dOTbYsERERRDzTsTr4abNnz0p7sLdRN5imxTa5aKAl/hkfbmtPj9XUPg31omZEMwIx0WqJikEzGhMea9TAaEQzquNBQyO+qSdl686o+TtVlZoRG4zYEo3tM8fZEOOYhSdOOQm3z064rTNGO0eMtg7ERBiI2AURm1V8GRn58uo4W1sVzJUqpWaPqlBBLa+//uLxIcnGos/mxQgJ0WW0WzpcItmLpMu1rVzI018OHb7HmlRyz46uzGPyo7G4XAglBNSUHTVrqkDPw0PdIM/fHC+rMjeDdP9dNePNYRX3pVUU0rys5dmhK83C3bp1SwO0gwcPJtg/fvx47fXXX0/yPa+99po2fvz4BPsOHjyoAdrt27c1TdM0e3t7bdmyZQmOWbZsmebg4JBsWUaPHh0XqskiiyyWs9y4cSMtj5d0I88OWWSxzMXSnx16sppE0IbnOjNrmpZo38uOf35/as/p7e2doHk7KCgId3d3rl+//rQ5J/MICQmhSJEi3LhxI1NVn2fWzw2W+dk1TePRo0cULFjQ3EV5IXl2KJb4O5ReMutnt9TPbS3PDj3pEgDev3+fr776ij/++IPAwECMz+buAB7ETl6ZAnny5MHW1paAgIAE+wMDA3FLJkN9/vz5kzzezs6O3E8HJyR3THLnBHB0dMTR0THRfldXV4v6xU5PLi4umfKzZ9bPDZb32a0hgJJnR0KW9juUnjLrZ7fEz20Nzw496RIAvv/++/z777/07t0bNze3F9aqvYyDgwNVq1Zlx44dCVK07Nixgw4dOiT5Hg8PDzZu3Jhg3/bt26lWrRr2T/vTeHh4sGPHjgT9ALdv307t2rXTXFYhhBBCCGugSwB44MABDhw4QKVKlUxyPi8vLzw9PalWrRoeHh7Mnz+f69evx+X18/b25tatWyxZsgRQI35nzpyJl5cXffv2xc/PjwULFiQY3Tto0CDq16/PxIkT6dChA+vXr2fnzp0cOHDAJGUWQgghhLBUugSAZcqU4cmTJyY7X7du3bh//z5jx47F39+f8uXLs3nzZtyfTvjq7+/P9evX444vXrw4mzdvZsiQIcyaNYuCBQsyffr0uByAALVr12blypV8+eWXjBo1ipIlS+Lj45OqHICOjo6MHj06yaadjC6zfvbM+rkhc392U8us/5aZ9XND5v3smfVzWwNd8gAeO3aMESNG8NVXX1G+fPm4ZtdYltYPQAghhBAiM9GlBjBHjhwEBwfTuHHjBPtjR9nGSE4iIYQQQgiz0SUAfO+993BwcGD58uWvPAhECCGEEEKYli5NwM7Ozpw6dYrSpUub+tRCCCGEEOIV2ehx0mrVqnEjdoZzIYQQQghhUXSpAVy9ejVff/01n3/+ORUqVEg0CKRixYqmvqQQQgghhEghXQJAG5vEFYsGg0EGgQghhBBCWABdBoFcvXpVj9MKIYQQQggT0KUPoLu7+wsXIVJj8eLFGAwGnJycuHbtWqLXGzZsSPny5RPtj4qKIn/+/BgMBtasWZMeRRVCWJgjR47QqVMnihYtiqOjI25ubnh4ePDZZ58lebyXlxcGg4G2bdumc0mFSF+61ADGTsmWnA8++ECPy4oMLiIigi+//JJff/01Rcf//vvv3LlzB4AFCxbQuXNnPYsnhLAwmzZton379jRs2JDvv/+eAgUK4O/vz/Hjx1m5ciWTJ09OcHxUVBRLly4FYOvWrdy6dYtChQqZo+hC6E6XPoA5c+ZMsB0VFcXjx49xcHDA2dmZBw8emPqSIgNbvHgxvXr1omXLlmzfvp2TJ08mmGe6YcOG3Lt3j7/++ivB+9q2bcuOHTto0KABu3bt4tq1axQuXDi9iy+EMJMGDRpw69YtLly4gJ1dwvoOo9GYqL/6mjVr6NKlC23atGHTpk2MHz+eL774Ij2LLES60aUJ+OHDhwmW0NBQLl68SN26dVmxYoUelxSZwLBhw8idOzfDhw9/6bG3b99m69attGvXjs8//xyj0cjixYsTHdezZ0+yZcvGhQsXaNGiBVmzZqVAgQJ89913ABw+fJi6deuSNWtWXn/9dX755ZdE5/jrr7/o0KEDOXPmxMnJiTfffDPJ44QQ6ev+/fvkyZMnUfAHSQ9WXLBgAQ4ODixatIgiRYqwaNEinq8j2bNnDwaDgeXLlzN8+HAKFChAtmzZaNeuHXfu3OHRo0f069ePPHnykCdPHnr16kVoaGiCc4SHh+Pt7U3x4sVxcHCgUKFCDBgwgKCgIJN+fiFeSEtHx44d00qXLp2elxQZwKJFizRAO3bsmDZt2jQN0Hbt2hX3eoMGDbRy5coleM/48eM1QNu0aZNmNBo1d3d3rXjx4prRaExwXI8ePTQHBwftjTfe0KZNm6bt2LFD69WrlwZo3t7e2uuvv64tWLBA27Ztm9a2bVsN0I4fPx73/gsXLmjZs2fXSpYsqS1ZskTbtGmT1r17dw3QJk6cqO8/jBDihfr06aMB2qeffqodPnxYi4yMTPbYGzduaDY2NlqXLl00TdO0L7/8UgO0PXv2JDjujz/+0ADN3d1d69mzp7Z161Zt7ty5WrZs2bRGjRppzZo104YOHapt375dmzhxomZra6t9+umnce83Go1aixYtNDs7O23UqFHa9u3btUmTJmlZs2bVKleurIWHh+vzjyHEc9I1ADx58qSWPXv29LykyACeDQAjIiK0EiVKaNWqVYsL5p4PAI1Go1aqVCmtUKFCWnR0tKZpmjZ69OhEgaOmqQAQ0Hx9feP2RUVFaXnz5tUA7eTJk3H779+/r9na2mpeXl5x+9555x3N0dFRu379eoLztmrVSnN2dtaCgoJM9w8hhEiVe/fuaXXr1tUADdDs7e212rVraxMmTNAePXqU4NixY8dqgLZ161ZN0zTtypUrmsFg0Dw9PRMcFxsAtmvXLsH+wYMHa4A2cODABPs7duyo5cqVK25769atGqB9//33CY7z8fHRAG3+/Pmv/LmFSAldmoA3bNiQYFm/fj1z587F09OTOnXq6HFJkUk4ODgwbtw4jh8/zqpVq5I8Zu/evVy+fJkePXpga2sLQK9evTAYDCxcuDDR8QaDgdatW8dt29nZUapUKQoUKEDlypXj9ufKlYt8+fIlGIm8e/dumjRpQpEiRRKcs2fPnjx+/Bg/P79X+rxCiLTLnTs3+/fv59ixY3z33Xd06NCBf/75B29vbypUqMC9e/cA0DQtrtm3WbNmABQvXpyGDRvi6+tLSEhIonM/P0r4jTfeAKBNmzaJ9j948CCuGXj37t2AekY8q0uXLmTNmpVdu3a9+gcXIgV0CQA7duyYYHnrrbf4+uuvqVixYpJ/gIVIjXfeeYcqVaowcuRIoqKiEr2+YMECADp16kRQUBBBQUG4urpSt25dfH19E/WzcXZ2xsnJKcE+BwcHcuXKlejcDg4OhIeHx23fv3+fAgUKJDquYMGCca8LIcyrWrVqDB8+nNWrV3P79m2GDBnCf//9x/fffw+ooOzq1at06dKFkJCQuOdG165defz4cZJ9159/Pjg4OLxwf+xz4/79+9jZ2ZE3b94ExxkMBvLnzy/PDJFudAkAjUZjgiUmJoaAgACWL1+e5B9LIVLDYDAwceJE/v33X+bPn5/gteDgYHx9fQGoXr06OXPmjFv2799PeHg4y5cvN1lZcufOjb+/f6L9t2/fBiBPnjwmu5YQ4tXZ29szevRogLjMAbFfGn/88ccEz4yPP/44weumkDt3bqKjo7l7926C/ZqmERAQIM8MkW50CQCF0FvTpk1p1qwZY8eOTTDCbvny5Tx58oRvvvmGP/74I9GSJ08ek9ZCN2nShN27d8cFfLGWLFmCs7MztWrVMtm1hBCpk9SXM4Dz588Dqqb+4cOHrFu3jjp16iT5zHjvvfc4duxYojRTadWkSROAuHyDsXx9fQkLC4t7XQi96ZIIunPnzlSrVo0RI0Yk2P/DDz9w9OhRVq9ercdlRSYzceJEqlatSmBgIOXKlQPUN/WcOXMydOjQRM26oJKQ//jjj5w5cyZBLsG0Gj16NL///juNGjXiq6++IleuXCxbtoxNmzbx/fff4+rq+srXEEKkTYsWLShcuDDt2rWjTJkyGI1GTp8+zeTJk8mWLRuDBg1i2bJlhIeHM3DgQBo2bJjoHLlz52bZsmUsWLCAKVOmvHKZmjVrRosWLRg+fDghISHUqVOHs2fPMnr0aCpXroynp+crX0OIlNClBnDv3r2JOsICtGzZkn379ulxSZEJVa5cme7du8dtnz17lhMnTtCjR48kgz+Afv36AaZr0ildujSHDh2idOnSDBgwgI4dO/LXX3+xaNEiPv/8c5NcQwiRNl9++SU5c+ZkypQptG/fnlatWjF9+nSaNm3K0aNHqVChAgsWLCBfvnx07NgxyXNUqFCBWrVqsXTpUiIjI1+5TAaDgd9++w0vLy8WLVpE69atmTRpEp6enuzevRtHR8dXvoYQKaHLTCBZsmTh9OnTlC5dOsH+CxcuULlyZZ48eWLqSwohhBBCiBTSpQawfPny+Pj4JNq/cuVKypYtq8clhRBCCCFECunSB3DUqFG8/fbb/PvvvzRu3BiAXbt2sWLFCun/J4QQQghhZro0AQNs2rSJb7/9ltOnT5MlSxYqVqzI6NGjadCggR6XE0IIIYQQKaRbGpg2bdpw8OBBwsLCuHfvHrt3705z8Ldv3z7atWtHwYIF4zrQvszevXupWrUqTk5OlChRgrlz5yY6xtfXl7Jly+Lo6EjZsmVZt25dmsonhBBCCGFNdAkAjx07xpEjRxLtP3LkCMePH0/1+cLCwqhUqRIzZ85M0fFXr16ldevW1KtXj1OnTvHFF18wcODAuATBAH5+fnTr1g1PT0/OnDmDp6cnXbt2TbLcQgghhBAZiS5NwDVq1GDYsGF07tw5wf61a9cyceLEVwqyDAYD69atS3bIPsDw4cPZsGFDXLJPgP79+3PmzJm4uVm7detGSEgIW7ZsiTumZcuW5MyZM8lpf4QQQgghMgpdBoGcO3eOKlWqJNpfuXJlzp07p8clE/Dz86N58+YJ9rVo0YIFCxYQFRWFvb09fn5+DBkyJNExU6dOTfa8ERERRERExG0bjUYePHhA7ty5MRgMJv0MQoiX0zSNR48eUbBgQWxsLHdiI3l2CGFZrOXZoSddAkBHR0fu3LlDiRIlEuz39/fHzk6XSyYQEBCAm5tbgn1ubm5ER0dz7949ChQokOwxAQEByZ53woQJjBkzRpcyCyHS7saNGxQuXNjcxUiWPDuEsEyW/uzQky7RWLNmzfD29mb9+vVxU2EFBQXxxRdf0KxZMz0umcjz36pjW7qf3Z/UMS/6Nu7t7Y2Xl1fcdnBwMEWLFuXGjRu4uLiYothCWL2ICHjyBMLD1c/Y7cBA+P132LgRHj5M27mdnKBwYShqd4tiF7bixkUmMI/s2bOb9kOYmDw7hEgfkZHgtzWIzQv82XokJ/89yZ/gdUeeUNP1IjXKBTDpUDeLf3boSZcAcPLkydSvXx93d3cqV64MwOnTp3Fzc+PXX3/V45IJ5M+fP1FNXmBgIHZ2duTOnfuFxzxfK/gsR0fHJKfpcXFxkYe4yPBOn4bLl9W6pqkA7+FDCAqCW7fgwgW1BAa+/Fy5c0PFilCoEBQooLZdXCB7dsiSBWxt1eLkBK6uasmdG3LniMEwfhx8/TUAIT16MOGXxF/mLI08O4TQz61bsGVdOJsX32HH6byExhQFigLgQAR1nY7TsOIDGnbOS40+FXHMWZ+QkBAmuVr+s0NPugSAhQoV4uzZsyxbtowzZ86QJUsWevXqRffu3bG3t9fjkgl4eHiwcePGBPu2b99OtWrV4q7v4eHBjh07EvQD3L59O7Vr19a9fEJYk6go8PaGyZNT9z4bGxXAZcmilmzZoGFD6NwZGjSAVPcGuXoVOnrCwYNq+/PPYeRI+OWXVJ5ICGHNwsPh0CHYtlVji+9j/rySFXAC3AHIxx3a5D5Mu2YRNBtUlmw1a0MmDvSSo1uHvKxZs9KvXz+TnCs0NJTLsVUPqDQvp0+fJleuXBQtWhRvb29u3brFkiVLADXid+bMmXh5edG3b1/8/PxYsGBBgtG9gwYNon79+kycOJEOHTqwfv16du7cyYEDB0xSZiEyglu3oFu3+JirVi1wcFDrjo6QMyfkyAFublCmjFqKF4esWcHe3oTP3LVroWdPePRIVRPOmgWenhASYqILCCEsWVgYLFsGa9bA/v0a4eEGwABkxYCRGhylde6jtO7sTJXPGmHzWgdzF9ni6Toi49y5c1y/fp3IyMgE+9u3b5+q8xw/fpxGjRrFbcf2penRoweLFy/G39+f69evx71evHhxNm/ezJAhQ5g1axYFCxZk+vTpvP3223HH1K5dm5UrV/Lll18yatQoSpYsiY+PDzVr1kzLRxUiQwkOhrlz4Ycf4P591Ty7aBG89ZYZCnPhArz3nvraX6cO/PqrijKFEBne1aswezb8/LPqbqIYKMBtmrKTlg5/0LyzC3k+7Q41P5WavlTQJQ/glStX6NSpE3/++ScGgyHRAIyYmBhTX9IsQkJCcHV1JTg4WPrxiAwhNBTGj1cP3NjKtUqV1LfuUqXMUKDoaKhbF44cgebNYdOmBG3H1noPWmu5hUgPUVFqwNi8ebB9u4amqdihBP/Sn7m05XfKVHTE8HF/ePdd9Q01leQe1GkmkEGDBlG8eHHu3LmDs7Mzf//9N/v27aNatWrs2bNHj0sKIV7RlSvg4QHffaeCvzfegMWL4ehRMwV/AJMmqeDP1RUWLEhDx0EhhLXw94cxY6BYMdXasG0baJqBZmxnI235x64cn78fwBt+izCcPgX9+6cp+BOKLk9TPz8/du/eTd68ebGxscHGxoa6desyYcIEBg4cyKlTp/S4rBAijXbuhK5d1aje/Plhzhxo314N5DCbv/6C0aPV+rRpKv+LECLDCQiAoUPBx0cjOlrV9uUlkA9ZSF9+omSuIBXsDZgPBQuat7AZiC4BYExMDNmyZQMgT5483L59m9KlS+Pu7s7Fixf1uKQQIpU0TY2kmz8fli4FoxFq1FDjLQoVMnPhwsPhgw9UUq927dS6ECLDWbMG+n9k5P4DG8BAHQ4wgFm8zVocmjWAXuOgY0eVSkCYlC4BYPny5Tl79iwlSpSgZs2afP/99zg4ODB//vxEs4MIIdLPw4fg5wcHDsD69fDszIw9e6qaPycnsxUvnpcXnDqlkv/Nny8du4XIYEJC4JO+kSxb5QDYUJmTzKcf1Qrchj59oPc/4O5u7mJmaLoEgF9++SVhYWEAjBs3jrZt21KvXj1y586Nj4+PHpcUQiTj7l1YtUqlUDh8WNX8xXJ2Vmle+vVTKV4swvLlKhI1GFTVZP78L3+PEMJq/H38CW+1esI/93JhQwxf8C2jKqzHYdRwVduXDvmChU4BYIsWLeLWS5Qowblz53jw4AE5c+bM1Fm3hUhPmgYDB6pY6tmB96+9pgbW1q8PnTqp8RUW4/x5FY2CSvLcsqV5yyOEMJ3ISFb2203vX+rzmFwU4To+7sPx+OEteHukmTsdZz7pNqQuV65c6XUpIQRq0OzMmWq9alWVSq9rVwvo35ec27fV0L+wMGjcOG66NyGE9YvZsZsR71xl0oPeADRxOsiKH26St/+vMrrfTORfXYgM6N9/YfBgtT5xIgwbZtbivNypU2qwx61bapTf8uVqMmAhhHULCCDk05G8t6Yjv6OCvxEtTjHutxrYOtUxc+EyN6lvFSKDiYlRg2bDwlQz72efmbtEL7FxI9Srp4K/MmVg/341t5wQwnppGixfztUyraizZjC/0w4n20hW/BzGhK2VsXWSfn7mJjWAQmQw33+v0rtkzw6//GLBFWkxMTB2LHzzjfpj0bQprF6tJhcWQlivgAD4+GO2/vaEd9nFQ3JRIE8kv21yoEYNB3OXTjwlNYBCZBA3bqhZkb74Qm1Pn64y6lskf38V8I0dq4K//v1h82YJ/oSwdlu3YqxQiW9+K09rNvOQXNSobuToKQdq1DB34cSzpAZQCCsXHa2mb/v2W3jyRGVP8fKCHj3MXbJk/PmnCv4CAyFrVjXh53vvmbtUQohXERkJI0dyedI6+rOMXTQF4KOPYNo0GxwdzVw+kYgEgEJYsfv3VR6/XbvUdr16ata0ypXNW65kPXgAHTqo4K9CBdXkW7q0uUslhHgV164R2fldJh1vwDf8SThZcHLSmD3bQK9e5i6cSI4EgEJYqT//VLHU1auqIm3uXFWRZrGpNmNioHt3VeDixeGPP9RMH0IIqxW8ejsLe+xlxpNfuYqa6atpU5g710DJkmYunHghCQCFsEI7d6qE+WFhKpZav15VqFm0kSNh+3Y1p+e6dRL8CWHFoiONjG68n+kHPQilOQB5c8fw41Rby/4iKuJIACiEldm8WeVLjohQ+ZJXrbLwWOrKFfjhB1VFCbBwIVSqZN4yCSHS7NGdx7zz5nk2BzQAoGxOfwaPy8N7Pe1xdjZz4USKSQAohBVZvx66dIGoKFUD6OMDDpaaVeG//9SQZB8fMBrVPm9veOcdsxZLCJF2t07eoW29IE4/rkoWHrOg/3HemV1favyskASAQliJnTuhc2c16rdLF1i2zILnTD97Flq0UPnAQK0PHw4NG5q1WEKItDvyy3ne7p2DWzGlyWcIZOOcW9T4qL65iyXSSAJAIaxAaCh8+KEK/kqVgkWLLDj4O3AA2rSBkBDVNr15M5IATAjrpWkwp4cfg36tSjQO5OQhezeEUKatpaYbECkhiaCFsAJffqkSPRcrBqdPq1G/Fun336F5cxX81a0Lly9L8CeEFXscHEWPN44w4FcPonHg7QIH+e+6DWXaljJ30cQrkgBQCAt35Iia1QNUzmSLDP40DSZPhvbtVTbqNm1g2zaZ2UMIK3b94hPqFr3OrxdrYks0k5pvZ/UND1yKuJq7aMIEJAAUwoJFRkKfPiq+8vRUCZ7v3lXbFiMiAnr3hqFDVcH69IG1a1WOGosrrBAiJfb+/ohqFcI5FVKSPNxl5zeH8drSjHv/PODu+XtoRrmvrZ30ARTCgk2bBn/9BXnzwrhxkC+f2h8aagE1gTEx4OurCvbnn2BjAz/+CAMHwuPHFlZYIURK+cx9yPsfZyMaeyrbnuE3n0iKvl2XsMAw8pXNA0DonTCy5pP72ppZTQ3g7NmzKV68OE5OTlStWpX9+/cne2zPnj0xGAyJlnLlysUds3jx4iSPCQ8PT4+PI8RLxcTAjBlq/bvvLCzX35o1UK6cmofuzz9VU+/mzTBokGSAFcKKrZn/gPc+zk409ryT5TcOHLKl6NvVzV0soQOrCAB9fHwYPHgwI0eO5NSpU9SrV49WrVpx/fr1JI+fNm0a/v7+ccuNGzfIlSsXXbp0SXCci4tLguP8/f1xcnJKj48kxEtt3aoGfuTODe++a+7SPGPxYpWH5uJFyJkTRo+Gf/9VqV6EEFZr/cL7dP8oOzHY0SPrapadrYhzjfLmLpbQiVUEgD/++CO9e/emT58+vPHGG0ydOpUiRYowZ86cJI93dXUlf/78ccvx48d5+PAhvZ6bldpgMCQ4Ln/+/OnxcYRIkfnz1c8ePcBivpds2KD6+AF88glcuwZffw25cpm1WEKIV7NsxgO69FY1f+86/8aCM9WxKVXC3MUSOrL4ADAyMpITJ07QvHnzBPubN2/OoUOHUnSOBQsW0LRpU9zd3RPsDw0Nxd3dncKFC9O2bVtOnTr1wvNEREQQEhKSYBFCDzdvqowqAH37mrcscfbtU02+MTHQsyfMnAnZs5u7VFZBnh3CUoWGQq8uobw/MBdRONDFeRO/nHkT25LFzF00oTOLDwDv3btHTEwMbm5uCfa7ubkREDvLwAv4+/uzZcsW+sTWWjxVpkwZFi9ezIYNG1ixYgVOTk7UqVOHS5cuJXuuCRMm4OrqGrcUKVIkbR9KiJdYsEDNntagAZQpY+bC3LgBXl7QqhWEh0PbtvDTT9LXLxXk2SEs0V9/QdWKkSxekw0bYhidYxrLz5bHrlQxcxdNpAOLDwBjGZ77Y6NpWqJ9SVm8eDE5cuSgY8eOCfbXqlWL999/n0qVKlGvXj1WrVrF66+/zozYXvdJ8Pb2Jjg4OG65ceNGmj6LEC8SEwM//6zWP/rIjAUJDIRevaBECZgyRY3sbdJEze1rJwkEUkOeHcLSHD0K9erE8M9VBwpxk92Fe/D1X52xK+n+8jeLDMHin+J58uTB1tY2UW1fYGBgolrB52maxsKFC/H09MTBweGFx9rY2FC9evUX1gA6Ojri6OiY8sILkQZbtqgm4Ny54a234vfb2an+gLHrulq3TkWfd++q7UaNYNgwNdAjJTV/6VpYyyfPDmFJ9u+HNi1jePTYFg8OsbH05+Te4wsv6Qdv52RHj5IHnq7LyGBrZ/FPZgcHB6pWrcqOHTvo1KlT3P4dO3bQoUOHF7537969XL58md69e7/0Opqmcfr0aSpUqPDKZRbiVcycqX727AnPxgyOjmoArq7+/RfGjoUlS9R2xYpq+pFatVJ3nnQprBAitbZvh47tY3gSYUsjdrOhyhiybVsPefK89L2OLo4svlw3HUop0oPFB4AAXl5eeHp6Uq1aNTw8PJg/fz7Xr1+nf//+gGpeuXXrFkti/2g9tWDBAmrWrEn58omHsY8ZM4ZatWrx2muvERISwvTp0zl9+jSzZs1Kl88kRFL8/NQMara28PHH6XTRe/fUiJNFi9RAD1BJnYcNUyN8peZKiAxh6VLo1dNIdIwtrdiMb+PZZFm/CbJlM3fRhBlYRQDYrVs37t+/z9ixY/H396d8+fJs3rw5blSvv79/opyAwcHB+Pr6Mm3atCTPGRQURL9+/QgICMDV1ZXKlSuzb98+asjE9cKMRo1SP3v2hJIlE76maaobHoCz8yuOwbhxA+bMUdUBJ0/GT9dmMEDz5vDVV1C7dtrPb9LCCiFehabB99/DiBEANnRjJb90/h3HZWvhJd2jEpzHqPH4nrqvnfM4Y7CR+9qaGTRNJupMq5CQEFxdXQkODsbFxcXcxRFWbu9eaNgQ7O3h0iV4LmsRYWHxX9RfaXa106ehZUu4cyd+X4UK8M478MEHULhwGk/8DJMV9sWs9R601nIL66NpMHgwTJ+utj9jEt/3/geb+XNVTX8qhAWGkc1N3cvWPhWc3INWUgMoREanaarSDVSe5eeDP5PZuxfat4eQEBX0ff45NG0KBQrodEEhhLkYjfC//6nKfgNGfsSLwR+Fw+zUB38i45EAUAgLsGuX6n7n6AhffKHTRdatg+7dISIC6teH9evVHL5CiAzHaFST9cybp4K/xfTkg0+yw4zZEvwJwIryAAqRUWlafN+/jz4yTQtsAkajql586y0V/LVvryYaluBPiAxJ02DAJ1pc8PcLPfhgcG6VYkCCP/GU/CYIYWa//QaHD6uxEt7eJj55UBC0awfffKO2P/0UfH0hSxYTX0gIYSl+mq8xd54BG2JYwgd4jnkNfvxRBmOJBKQJWAgzio6OD/q8vF6ahzVlIiNh505YvVpFl0FB4OQE8+eDp6cJLiCEsFR/ntUYNCAasOc7RvD+1OowaJC5iyUskASAQpjRokVw8aKa9ePzz1/xZPfvq97eM2aoadxilSqlpm+rUuUVLyCEsGRhoRpdGwUSHuNGKzbz2ZzXoH8/cxdLWCgJAIUwk8ePYfRotT5qFLwsE4GtLXTuHL8eJzJSVSPOnRufe8/NTR3ctSvUqfPcG9JBsoUVQuhC0/i09gkuPKhGQW7xy/eB2Jg4+LN1sKVzIb+n65VNem6R/iQAFMJMpk0Df38oVgyeTmrzQk5OqlU3gehoePdd1a8P4M03VVVily4qoaC5JFlYIYRe1r+3ikV/dsOGGJYNPErez3ua/BpOOZxYfdPD5OcV5iEBoBBmcPs2fPedWh83Lo2zrRmNKmmgr6/K5r98uRrpKx29hchUQr6fy4AVbQH4vPFJGk7rZOYSCWsgAaAQZjBwoMrFXL26Ss2XapqmOnb/8otqYl25EjrJQ1+ITGfJEryHx3CLwpTM+YDRv1c3d4mElZA0MEKksw0bVKWdrS389FPK03KFhanKPYMBwr7+QeX0Ali82PKCvwSFDTN3aYTImFav5lCvn5jDxwDMW5VT1wxPYYFh8bd1oNzX1k5qAIVIR48ewYABan3oUKhUKY0nGjtG/ZwxA95/3yRlE0JYkdWriXinB32Nx9CwoWcPjSZNpfuHSDkJAIVIR19+CTdvQokS8XP/ppmXl5roUwiRuaxeTeQ7H9DVuJJzlCNvXo1JkyX4E6kjTcBCpJOdO1WFHaiMLc7OqTzBqVPx6+3aww8/mKxsQggrsWYNke98QBfjSjbQAUdHjWXLDOTObe6CCWsjAaAQ6eDmTTXYQ9Ogb19o1iwVb46IUIkCGzSI37dggczpKURms2YNkd086Wz0YQMdcHLS2LDBkLrniRBPSROwEDqLioJu3eDePahcGaZPT8GbNA0uX4a9e9Ub/vwTeKbKMNXVh0IIq+brS0y3d3nfuJSNtMfJSWP9egPNm5u7YMJaSQAohM6GD4dDh8DVFdasUTmSE3n8GI4cgWPH1HLokEoWGCtvXvhxHshUvkJkPqtXo3V/l4HGqaymK/b2Gr/9JsGfeDUSAAqho507YcoUtb5kiRr8ESciArZtUzn8NmxInC7FwQFq1oRGjeB//8M2e15ar1AvWfzsara20Lp1/LoQIm3mzIEBA/hG+5LZDMBg0Fi61ECLFulfFFsHW1rnPfZ0vUL6F0CYlASAQugkKkolfAY1WLd9+6cvXLumRoH8/LNqF45VqBDUqgU1aqilZk2eTerlBGzalG7FfzVOTlZUWCEskKbBN9+gjR7NJIYymrEAzJhhoGtX8xTJKYcTmwIl0XRGIQGgEDqZNQvOn4c8eeCb0dGwcYsK+n7/XU3jBlCggOog+M47KuiTadyEENHRMHAgMXPmMYgZzEKle/rqq/g8okK8KgkAhdBBYCB8/bUGGPi2qi85KvwPAgLiD2jSRFULtm0LdnIbCiGeCgqCbt0I236A7qxjI6rpYPJkGDLEvEUTGYv85RHC1K5eZWSXhwQHV6EyJ/lwW1fAqAZyfPAB9O4Nb7yR6tOGhUG+fGo9MBCyZjVtsU3KqgorhIW4ehXatOHg+Zz0NpzkolYaR0dYuhQ6dzZ34dT0b/nc1HrgHciaT+5ra2Y1icRmz55N8eLFcXJyomrVquzfvz/ZY/fs2YPBYEi0XLhwIcFxvr6+lC1bFkdHR8qWLcu6dev0/hgio3r4EBYuhAYNOFnibRaceBOA6fZDse3UQU3+e/MmTJqUpuAv1uPHarEKVlVYIczszz8JrdmEgef7U4/9XNRKkz8/7N5tGcFfrMdk5TES+GUEVlED6OPjw+DBg5k9ezZ16tRh3rx5tGrVinPnzlG0aNFk33fx4kVcXFzitvPmzRu37ufnR7du3fjmm2/o1KkT69ato2vXrhw4cICaNWvq+nlEBmA0wj//qDx9a9eqp3R0NBowhD1o2NC91lXqbl2n8r8IIURyjh7lQrNP6RiymYuUAaBXL9XsmzOnmcsmMiyDpmmauQvxMjVr1qRKlSrMmTMnbt8bb7xBx44dmTBhQqLj9+zZQ6NGjXj48CE5cuRI8pzdunUjJCSELVu2xO1r2bIlOXPmZMWKFSkqV0hICK6urgQHBycINEUGFBEBfn4qr8v+/WpatkePEh5TvjxrK43h7WVv4eQEFy/CC76fpFpYGGTLptZDQy28VTWdCmut96C1llvoYO9eNrSczfvhP/EIFwoVMLJwsY1F5vgLCwwjm5u6l0PvhFl1E7Dcg1bQBBwZGcmJEydo/tzd0Lx5cw4dOvTC91auXJkCBQrQpEkT/vjjjwSv+fn5JTpnixYtXnpOkYn4+8P8+WqgRs6cKh/f+PGwb58K/rJkgTp14Lvv4OJFIo7/yed+bwEwdKhpgz8hRMYTs2M3Xzc9QIdwHx7hQv060Zw8bZnBn8h4LL4J+N69e8TExODm5pZgv5ubGwHPjqp8RoECBZg/fz5Vq1YlIiKCX3/9lSZNmrBnzx7q168PQEBAQKrOCRAREUFERETcdkhISFo/lrBk165Bv36wfXvC/W5u0LSpCgRr1oQyZRKM4J05Ga5cUZldhg9P5zILiybPDvG8wLUHeK+Lxk7jSAA+/TiaydPssLc3c8FEpmHxAWAsw3P50TRNS7QvVunSpSldunTctoeHBzdu3GDSpElxAWBqzwkwYcIExowZk5biC2uxapUK/oKD1XbNmiqDc9u2UKFCsnn67t6Fb75R6+PHx7d+CgHy7BAJ7Z16iu5DSuJPAZxtw5k73wbPDx3MXSyRyVh8E3CePHmwtbVNVDMXGBiYqAbvRWrVqsWlS5fitvPnz5/qc3p7exMcHBy33LhxI8XXFxZM09Q8vJ6eKilzcLAK/C5dgsOH4YsvoGLFFyZpHjlSva1yZejRQ59i2thAgwZqsbH0O9eqCqs/eXYIgBs34P0Wd2k4pDL+FKBstmscO2awmuDPxs6GBq6naeB6Ghs7ua+tncXXADo4OFC1alV27NhBp06d4vbv2LGDDh06pPg8p06dokCBAnHbHh4e7NixgyHPZNbcvn07tWvXTvYcjo6OODo6pvITCIt18SL8+iusWKHabkEFeV98AaNHk9K2mP374aef1Pq0afrFO1mywJ49+pzb5KyqsPqTZ0fmFh0N48bB9xONPAlX2Sj6FNrM1DONyZrben4vsuTKwp6gN81dDGEiFh8AAnh5eeHp6Um1atXw8PBg/vz5XL9+nf79+wPq2/WtW7dYsmQJAFOnTqVYsWKUK1eOyMhIli5diq+vL76+vnHnHDRoEPXr12fixIl06NCB9evXs3PnTg4cOGCWzyjSyZMnKuhbvFiN6o2VNSt06KDmWXrBl4DnRUbCRx+p9T59oF490xZXCGHdwsPVTI/r1wPYUI99TKn0C1UPToesTuYunsjErCIA7NatG/fv32fs2LH4+/tTvnx5Nm/ejLu7OwD+/v5cv3497vjIyEiGDh3KrVu3yJIlC+XKlWPTpk20bt067pjatWuzcuVKvvzyS0aNGkXJkiXx8fGRHIAZVUwMLFmiJtO8eVPts7GBVq3g/fehXbs0pSr5/ns132++fDBxoonLLISwaiEh6nvlnj3gSDgL6M27b57HsOcPC8/jJDIDq8gDaKkkj5AViIyENWvg22/h77/VvsKFYeBAFfg90y0gtS5dUuNCIiJg2TJ4910TlTkZYWFQrJha/+8/C//7kU6FtdZ70FrLLVLuwQNo3hxOnIDshkds1NrSoEygSiP1zKQE1iQsMIxi+Z8A8F9AFskDaOWsogZQiFR78ADmzoVZs+D2bbUvZ07Vv2/AANVH7RVommr6jYhQD/nu3U1Q5hS4dy99rmMSVlVYIUwnOhq6dlXBX16be2w1NqdK6cew+w+rDf5i3dPyPF0LM2s5xKuTAFBkLE+ewIwZMGECBAWpffnzwyefwP/+Z7J5lX76Cf74A5ydYc6cFw4QFkJkMsOGwa5dkNUQxk5jYyqWiVLB3yu0OAhhahIAiowhIkIN7hgzJr6PX4UK6knctSs4mC7Nws2baqYPUDn/SpQw2amFEFZuyRKYMkWt/6J98DT42y3Bn7A4EgAK6xYWBj//DD/8ALduqX1FiqiszO+/D7a2Jr2cpkH//momOA8P+PRTk55eCGHFjhyBfn2NgA2jGMvbFS/D9j1qFiEhLIwEgML6PHoEmzbB2rWwebMKAkF9wx46FD7++JX7+CVn+XJ1aQcHFXeaOL4UQlipCxegTYsoIiLtaccGvq6xBbbuMVm3EyFMTQJAYT00DZYuhUGD4OHD+P0lS6qm3h49QMdku9HR4O2t1keNgrJldbuUEMKK3LwJLRo84X5wFqpzlOX15mKzaTtkz27uogmRLAkAhXXw91fDbjduVNslS6q+fW+9BVWrpssoCMAjSAAAJ0JJREFUjHXr1FROefPG9wFMTzY2UK1a/LpFs6rCCpF2Dx5AyzohXA904XUusqnJFLJt9NWtFcKcbOxsqOZ87ul6cTOXRrwqCQCFZXu+1s/eHr7+WtX42aXvr++0aepn//7gZIYE/lmywLFj6X/dNLGqwgqRNmFh0KbmPf6+noeC3GJ7yynkXf+LSQedWZIsubJwLEyaPjIKCQCF5bp1S9X6bdqktqtWVVO4lS+f7kU5fhwOHlTx58cfp/vlhRAWJiICOlW5xuHL7uTkAdvazMD9t5np/sVUiLSSthlhmZYvh3Ll4kdcfPstHD5sluAP4mv/unWTbA5CZHYxUUber3iWHf+4k5VQNndZTPn14yX4E1ZFAkBhWYKDwdMT3ntPrdeoAadOqdEXZnq4+vuDj49aHzTILEUA4PFjNbtasWJq3aJZVWGFSLmHARF0K3mcNf9UxIEIfuv9O7V8hmSKlACP7z2mmN1Nitnd5PE9ua+tnXxdEZYhKgpWr4aRI9XcsTY28NVXatvM36rnzFHFq1MnflyDOWgaXLsWv27RrKqwQqTMDt8Qer0bzq3IGtgSzfL/+dF0xjvmLla60Ywa12IKP12XqeCsnQSAwrxu3FDVa9Onq3VQtUbLlkHt2mYtGqiZ5ebMUevmrP0TQphPVBQM/yiIKYtyAC68bnOJpdMfUn1AQzOXTIi0kwBQpL/jx2HuXDWZ7pUr8fvz5VPz9Q4cCK6u5ivfM5YsgXv3wN0dOnUyd2mEEOnN3x+6tgrhwJkcAAzI9gvf766Gc/Ua5i2YEK9IAkCRfoxGNWXbyJEQE6P22dqqdtW+fVW/P3PkV0mG0QiTJ6v1IUPM3hIthEhnBw9C53bhBDx0wYVgfi3xNe0PDJORYCJDkD9pIn3cvAm9e8P27Wr7rbfUdt264OJi3rIlY+NGuHQJcuSADz80d2mEEOlF01TXj0GfxhBtdKIcf7GuwTRe+30KZMtm7uIJYRISAAp9REfDvn1qrt6dO+HMGbU/SxbV369373SZveNVTJqkfvbvLzM6CZFZhIfDJ5/AokUAtnTFhwW9DpJt/hxpBhAZivw2C9OJDfpWrwZfX7h7N+HrtWvD/Pkqv5+FO3wYDhxQiZ8//dTcpVEMhvj5hy08draywgqhnDqleqOcOAE2xDCR4Xw2KiuGMdPk9xgw2Bgo63j56XpBM5dGvCoJAMWr0TQV9K1cCWvXQmBg/Gu5c0O7dtC8OTRpogZ5WInY2r/334eCFvKcc3aGv/82dylSyKoKKzK7hw/hyy9h7lwNo9FALu7jQzeajm8MX3xh7uJZDOc8zvwdXsrcxRAmIgGgSJvISFixAn78Ec6ejd+fK5caLtu1KzRqpKrQrMwff6hYFuCzz8xbFiGEfoxGNbvkiBGxDRYGurGSyXxGoR+GwNChZi6hEPqRAFCkzuPHMG+eGs3r76/2Zc2q5kjr2hUaN7bKoC/W/ftqIhJNgz59rKK1WgiRBidPwoABqrsHQFmnf5kZ3odGdgdg5kw1D7kQGZgEgCJlwsNh1iwV+N25o/YVLKhy9vXrBzlzmrd8JhAb9N26Ba+/DlOnmrtECT1+DNWrq/Vjx1Qrq8WyqsKKzGbxYjUOzWiEbFmiGWMzlk/DJmCfNyes3gkNGpi7iBbp8b3HVC98G4BjNwvinEfua2smAaB4uQMH1NPyn3/UdrFiKpffBx+Ag4NZi2ZK8+fDb7+pCswVK1TFpiXRNDh3Ln7dollVYUVmsm5dfPDXueJFpv3VlILGm/Dmm+oB4O5u7iJaLM2ocS6i1NN1mQrO2tmYuwApNXv2bIoXL46TkxNVq1Zl//79yR67du1amjVrRt68eXFxccHDw4Nt27YlOGbx4sUYDIZES3h4uN4fxXrcuaNq+OrXV8FfgQKwYIFa79MnQwV/N26oZM8AEyZAlSrmLY8QwvR274Z33lHBX+/iu1l1towK/jw9VdZnCf5EJmIVAaCPjw+DBw9m5MiRnDp1inr16tGqVSuuX7+e5PH79u2jWbNmbN68mRMnTtCoUSPatWvHqVOnEhzn4uKCv79/gsXJgmaiSHcxMbBnjxr5UKkS5M8PM2aoGpwPP1Q1Oh9+aNV9/JIzc6aa97d27fhAUAiRcZw4AR06qPFrb2XZzNyrzTHY2amb/5dfpJuCyHSsogn4xx9/pHfv3vTp0weAqVOnsm3bNubMmcOECRMSHT/1uc5b3377LevXr2fjxo1Urlw5br/BYCB//vy6lt0qnDsHP/8MPj5w+3bC16pUUVVizZubp2zpIDRUNf8CDB8ONlbxtUgIkVJ370KnjkZCQ21owk6WP+mEXcli8Ouv4OFh7uIJYRYW/6cuMjKSEydO0Py5AKR58+YcOnQoRecwGo08evSIXLlyJdgfGhqKu7s7hQsXpm3btolqCDO8yEgYPVrV9k2ZooI/V1fo0UN1grtzR31tzsDBH6gv/0FBUKoUtG1r7tIIIUwpOhreaR3MjZs2vM5FfOmM4+BPVPoqCf5EJmbxNYD37t0jJiYGNze3BPvd3NwICAhI0TkmT55MWFgYXbt2jdtXpkwZFi9eTIUKFQgJCWHatGnUqVOHM2fO8NprryV5noiICCIiIuK2Q0JC0vCJLMTJk9CrV3wOv9at1Wjeli3B0dG8ZUtHRiNMm6bWBw2S2j+hjwz17LAmRiMjmx5l9/FaZCWUdQX/h6vP72oOciEyOYsPAGMZnpuGR9O0RPuSsmLFCr7++mvWr19PvmdmoqhVqxa1atWK265Tpw5VqlRhxowZTJ8+PclzTZgwgTFjxqTxE1iQJUvUfEeRkZAnj0rv0qVLppzqaNMmuHQJcuSAnj3NXZoXMxji+6hb/P8qqyqs/jLMs8Oa/Pknv3Zez/f/fAnAoto/UXbzGtXKIdLEYGPA3fbm0/VcLzlaWDqLr+/IkycPtra2iWr7AgMDE9UKPs/Hx4fevXuzatUqmjZt+sJjbWxsqF69OpcuXUr2GG9vb4KDg+OWGzdupPyDWAKjUaVv6dFDBX/t26v+f127Zto/0lOmqJ99+0K2bOYty8s4O8N//6nF4vurW1Vh9Wf1zw5rEhKCcbAXX1daxwdPg7+hzc/S5cBgCf5ekXMeZ/6LLsx/0YUlB2AGYPEBoIODA1WrVmXHjh0J9u/YsYPatWsn+74VK1bQs2dPli9fTps2bV56HU3TOH36NAUKFEj2GEdHR1xcXBIsVuPhQxXoffut2vb2Vgmx8uY1b7nM6NAhNe2brS18+qm5SyMyMqt+dliTPXsILVeTLtPqMEb7CoAhfR7x3eaKmfZLrhDJsYomYC8vLzw9PalWrRoeHh7Mnz+f69ev079/f0B9u7516xZLliwBVPD3wQcfMG3aNGrVqhVXe5glSxZcn34DHDNmDLVq1eK1114jJCSE6dOnc/r0aWbNmmWeD6mntWvVnEcBASqFy88/qyTOmdj9+9C9u1p//30oUsS85RFCvILwcBg5kos/bqIzq/mLCjjYG5k7z4ZevbKbu3RCWCSrCAC7devG/fv3GTt2LP7+/pQvX57Nmzfj/rSPkb+/f4KcgPPmzSM6OpoBAwYwYMCAuP09evRg8eLFAAQFBdGvXz8CAgJwdXWlcuXK7Nu3jxo1aqTrZ9NVbHZjX1+1XaYMLFoEz/R9zIyMRpX39fp1Nd7l7FmVAzBLFnOX7MWePFE5uQH27bPw8lpVYYVVO3UKPD3x+bscfThGKNlxy2dk7TobXtBIJNLgyYMn1C9yFYB9N4qTJZfc19bMoGkyT1NahYSE4OrqSnBwsGU16YSGwvffqyV25OHnn8PYsZCZE10/NX48fPmlCv5i/3lCQy1v6rfnhYXF91O0+PKmU2Et9h58CWstt0WJjobvvuPh6KkMN37LT/QDoGFDlcVKUryaXlhgGNnc1L0ceieMrPks+SH0YnIPWkEfQJEKmgZLl0Lp0vDNN/HRDah8fxL8sXMnfKW6BvFcvnAhhLU4fBijRx0WjrrCa8bzccHf0IGR7NghwZ8QKSEBYEZx8qTKbeXpqRI6Fy+ugkER59Ille3GaFQz2nl6mrtEQohUuXED3nuPAI+ONDg+id4s5D7xA9m+HhmFnVV0bBLC/CQAtGaapiYw79oVqlVTw1qdndVI3/PnoWNHc5fQYgQHq6w3QUGqC2RGHOsjRIYVGammpCxdmj+Xn6UmRzhAPbJlNTL+64iXv18IkYh8V7ImmgY3b8KZM3D6NKxfD8ePx7/evbvq91e4sNqOjjZLMS1NTAy88w5cuKD+adatU63hYWHmLpkQ4qX27IFPPoHz59lCS7rZruFRTFZefx1+/92Ggq7RjPw688xeJISpSABo6Z48gV271JQVmzeroavPcnRUeUwGDYIKFcxTRgs3ciRs3aoGoq5fL/2DhLB4RiP8/jv8+CPs3YsRA99lHc+oxyMwxtjQqBGsWQO5ckFYoLkLK4R1kgDQkt27B3XqwD//xO+ztYU33oA331TNvu++++Jkznny6F5MS/bbbzBxolpftAiqVEn4urX981hVea2qsMIihITAL7/AzJlxz737tvn4oNAuNl8vD0CfPqoLh4ND/NvyGO49XZO0JHqTf+uMQwJASxUdDd26qYdg3rxq9EKbNirHQUqn1sqaFe7e1bWYluzyZTXrHcDgweqf81nW9s9jVeW1qsIKszt/XgV9S5aotEGA5uKKb6OZfHb8Ha5ft8PJSQV+H36Y8K1Z82XlrtF605FYE/m3zlgkALRUw4bB7t0ql9off0C5cuYukVV58gQ6d1YVCrVrq66RQggLommwfbvKx7R1a/zu0mXY1XQCIw6148R6WwBKlVJNvpUqmamsQmRAMgrYEv36K0yZotZ/+UWCv1TaswcaNVJjZfLmhVWr1Ax4QggL8ccfUL06tGypgj+DAWP7jqwbc4baOc/RbFZHTpyyJVs2+PprleVKgj8hTEtqAC3NwoXw8cdq/csv4a230n6uJ0+gVSu1vmVLhp6OS9Ng714YN06NmQH1cX18oFChpN9jbf88VlVeqyqsSDdnzqhRWZs2qe1s2bj77iCW5xvMnNV5uLhB7XZ0hI8+Uofmy/fiUz558IRWJS4CsOVKaZmeTEfyb52xSABoKSIjVUe1OXPUdteuMGbMq53TaFRRUex6BhQWBsuWqe5Df/6p9tnbQ79+8MUXULBg8u+1tn8eqyqvVRVW6ComBjZsgOnTVfU8gK0tRztNYELYQH5f6BiXsSpHDpXx5dNPUz5a3xhtZG/wm0/XJbeTnuTfOmORANASXLkCH3ygkjobDCrwGzkSbKSF/lkRERAQoCY6OXRItRzt3x8/452zs/pnHDEC3N3NW1YhMi1Ng2vXVB/mHTtUlXzsgCBbW6I7dWGc2wzGzc1DTIzaXb069OypZufJnt1sJRciU5EA0Jyio2HaNBg1SjWZubio6qy2bc1dMougaarFaOlS1Y/vxo2kjytZUtUa9OoFOXOmbxmFEMB//6k8pfv2wYEDcOtWwtdz54Z+/bjQ7FN6fVGAw2vU7u7dVU19+fLpXmIhMj0JAM3l8GHVzhE7k0ejRvDTTyqayYQiI9U0bYGBcOwYHDmiWhAvXEh4nIODahoqWxZatFBLmTKq4lQIkU7CwlQ1fGyS+r/+Svi6nZ3KU9qsGTGNm7H5QS1mzbdn2wT1sqsrzJ2rZugRQpiHBIDp7epV8PZWoxNAPQknT1bJrTJQFKNpqlLAz08FdMeOqRo8o1G9FhMDUVFqiYyE8PCkz+PoCO3aqclO6tZVmf8z0D+TENYhPFzdzLt3q+Xo0YRTTdraqqT1zZpB3bo8Ll+DnYec2bgRfu+uum6AunfbtlV9dosWNc9HEUIoEgCmhydPVPOIj4+aiywyUj0Je/aE8eOhQAFzl/CVGI2qX96lSypv9aFDqq/387PWpYSrK1SsCLVqQc2a0KSJ6hguhEhnly+r59aWLeqGfv5bWpEiKjF9ixZqxHeuXNy5o9L6ze6gcnDGypVLfcft3z/TNnIIYXEkANTTzZvwww9qDrJHj+L3N2kCkyap6dz0ltJZQ54TFqa68xw9Cv7+agkMVPvDwuDxYzX4InaJ7cz9LDs7NfVajRpqKV1aVRTY2KjF3j5+yZFDdf62tX21j5taafznMRurKq9VFTaTi4qCs2fVt7eDB9XP5zvd5s8PjRvHL8WKER5h4O+/4ex69ZalS+PjRHd3VXvfrh00aKBq8/XijIxITS/yb51xSACoh+vXVc3eokXqwQqqveOdd9R8ZJUrp087ZtasKlpLgYcPVb+7I0fUl/1Dh1RFZUrZ2kLx4vDaayqubdRIzcCR1YJnDUrFP49FsKryWlVhM6GoKHWzb9+uhtIfPaq+1T3Lzg7q1VO1e61aEflaOf4+Z+DkSTj6nXrLn38m/vJXo4Ya2NGuXfokMsiaLythmv7XEfJvndFIAGhKjx/DxIlq3rHYr8ENGqiULk2amD2tS0CACu7271cD9fz91cM7Ojphc00sd3fVwlOsmGqldnNTtXTOziqvr5OT+lbv6Khm3JDZNoSwUGFhqiOun5/6drd3b8JWCVDV8LVqqb58tWtzo2BN9p/MyoED4OcJf/8d/332WblyqVk6KlVSQV+jRtJPVwhrIAGgqfz+u8pFEttsUr++mpaiXj3zlgs4dUq1RK9alXRTbaxSpcDDQy1Nm6pteZALYYUePlTf8vbtU8uJE4lv/ty51aCNxo2JrlmHs5FlOHTYRrUC/5R0H96cOVUDRvXq8UuRIvKcEMIaSQBoCmvXQu/eajSEu7vq3/f222Z5KhqN8OCBmjvzyMEods88z54HFeNer1xZxab166vmWjs7teTKpf4eZCbh4ep/E4Cvr6rRtGRWVV6rKmwGcPu26rt34ICq3Tt7Vg23fyocR+4XqMyDCvV5WKoGAYWrcdupOLdu23B6FRz2gtDQhKe0tVXPi3r11Aj8qlVVTxZLC/bCg8J5+3U1DZDvPxVwyiG/a3qRf+uMRQJAU4gN/nr2hNmzdZv31GhUefGOHlXLxYuqFScsTD28g4NVU278c98eqIgt0XTrCkNH2FG5si5Fs0oxMWqQY+y6pbOq8lpVYa1MTIzqfHfokGrSPXhQpZcC7pOLC5ThAr24kLM257NV51x4cf67lw3N3wD+wPakT+vqGt8CXKeO6suXLVv6fay0iomMYfPd6k/Xpd+pnuTfOmORANAUjEaVqO7nn3UZxurvDwsXqjzR166l7D2lSkGNKtHUWPUZHfkN94XnIKv87xbC6sQmXd6/X/08cgRCQ4nEnpNU4SCdOEoNjtjX41rUM5NfP3y6PGVnp5pwc+ZU/XkLFlTLa6+pGr6yZdN/FL4QwnysJiKYPXs2P/zwA/7+/pQrV46pU6dS7wX96/bu3YuXlxd///03BQsWZNiwYfTv3z/BMb6+vowaNYp///2XkiVLMn78eDp16pT6wnXsqEb8mujpGRGhJgjZt0+15uzaFZ9z1dlZJdivUUPly8uRQw24zJpVfYPPkUP9zJIFCIuAVdNNUiYhRDqJjlZV/Nu2oe3cxY2j/lyILsk13AnAA3/e4rxteY5oNXhifKYJ7pmEA2XKqLRLZcvCG2+oJW9ey2u+FUKYj1UEgD4+PgwePJjZs2dTp04d5s2bR6tWrTh37hxFk0gnf/XqVVq3bk3fvn1ZunQpBw8e5JNPPiFv3ry8/bRfkp+fH926deObb76hU6dOrFu3jq5du3LgwAFq1qyZugL+/LP6ep1GmgZ37qiMDOvXw7ZtiTNo1K6tkqh27qxbC7MQwhxCQ9UgjaNHufHHZQ7ui+FwWHkO04q/+JwwkmiHfdqqniePejbEJk6vVk1NKS6EEC9j0DTN4rP61KxZkypVqjBnzpy4fW+88QYdO3ZkwoQJiY4fPnw4GzZs4Pz583H7+vfvz5kzZ/Dz8wOgW7duhISEsGXLlrhjWrZsSc6cOVmxYkWKyhUSEoKrqyvBwcG4JPPUjY5WffNCQ9Vy/75Kp3DmjJo+8+ZN1cT7fM69vHnVQI169dRAvbJlU1SkhMLC4jvxhIZadlI+M7C2fx6rKm86FTYl96Alii332TdacPlCVnZpjdhBM/6hdKJj7ew0XnsNSpY0UKCAysfs7q4CP5kHG8ICw8jmpn6/Qu+EkTWfJd8Y1i0j/Vtb67PDlCy+BjAyMpITJ04wYsSIBPubN2/OoUOHknyPn58fzZs3T7CvRYsWLFiwgKioKOzt7fHz82PIkCGJjpk6dWqqy9ijh+qX/fhxfKAXEgJBQYlTbb1IhQrQoYNaqlaVB7sQGV3F86uA+D8+tjZGKr/+GI8mztSqbUPVqlCihEFybAohTM7iA8B79+4RExODm5tbgv1ubm4ExM4w/pyAgIAkj4+OjubevXsUKFAg2WOSOydAREQEERERcdvBwcEA/PZbElmUn+PoGN9Pr1QpKF9e1eoVK6a+0bu5JZwqKTWBY7KebUcOCZHRmM+xtn8eqypvOhU25GkGc0tvyEju2WFreEjpUpHUbuBAo0aqxt/VFSA+J8uTJ2oRSQt7FEZsm3jIozBinCz5xrBuGenf2lqeHXqy+AAwluG56jBN0xLte9nxz+9P7TknTJjAmDFjknilSLLviRU7Z+6DBypjw44dL32LaRUs+PJjMjFr++exqvKmQ2EfPXqEq4qcLFJyz44YrRjnLsG5S6orsXg1BUuZuwSZR0b5t7b0Z4eeLD4AzJMnD7a2tolq5gIDAxPV4MXKnz9/ksfb2dmR+2m24+SOSe6cAN7e3nh5ecVtBwUF4e7uzvXr1zPdL1BISAhFihThxo0bmar/RGb93GCZn13TNB49ekRBC4+I5dmhWOLvUHrJrJ/dUj+3tTw79GTxAaCDgwNVq1Zlx44dCVK07Nixgw4dOiT5Hg8PDzZu3Jhg3/bt26lWrRr2TzvTeHh4sGPHjgT9ALdv307t2rWTLYujoyOOz7bTPuXq6mpRv9jpycXFJVN+9sz6ucHyPrs1BFDy7EjI0n6H0lNm/eyW+Lmt4dmhJ4sPAAG8vLzw9PSkWrVqeHh4MH/+fK5fvx6X18/b25tbt26xZMkSQI34nTlzJl5eXvTt2xc/Pz8WLFiQYHTvoEGDqF+/PhMnTqRDhw6sX7+enTt3cuDAAbN8RiGEEEKI9GIVAWC3bt24f/8+Y8eOxd/fn/Lly7N582bc3d0B8Pf35/ozM5cXL16czZs3M2TIEGbNmkXBggWZPn16XA5AgNq1a7Ny5Uq+/PJLRo0aRcmSJfHx8Ul9DkAhhBBCCCtjFQEgwCeffMInn3yS5GuLFy9OtK9BgwacPHnyhefs3LkznTt3TnOZHB0dGT16dJJNOxldZv3smfVzQ+b+7KaWWf8tM+vnhsz72TPr57YGVpEIWgghhBBCmI6NuQsghBBCCCHSlwSAQgghhBCZjASAQgghhBCZjASAaTR79myKFy+Ok5MTVatWZf/+/eYukslNmDCB6tWrkz17dvLly0fHjh25ePFigmM0TePrr7+mYMGCZMmShYYNG/L333+bqcT6mDBhAgaDgcGDB8fty8if+9atW7z//vvkzp0bZ2dn3nzzTU6cOBH3ekb+7Okhoz875LkRT54d8uywaJpItZUrV2r29vbaTz/9pJ07d04bNGiQljVrVu3atWvmLppJ/b+9u4+pqv7jAP4+cXkI7+VqPnBRCzBg3mYKQRkC4qaCG1vlH6bNTa3+Ib1Fcyq4MrSNwqYjaWbTEhm66AmnTstoAqVOTex2CR1PoTjD3bkeqDl37d7P7w/X+XmEfEDkxvm+X9vdON/vOfd+P4ftszfn3sPNzc2ViooK+emnn8TtdkteXp489NBD8tdff+n7lJaWis1mky+++EKamppk/vz5EhMTIz09PUFc+cA5ceKExMXFyeTJk6WgoEAfN2vdv/76q8TGxsqSJUvk+PHj0tnZKd988420t7fr+5i19sGgQu9g37iGvYO947+OAbAfnnjiCcnPzzeMTZw4UYqKioK0osHh9XoFgDQ0NIiISCAQEIfDIaWlpfo+V65cEbvdLh988EGwljlg/vzzT0lMTJTa2lrJzs7Wm7iZ6y4sLJTMzMx/nTdz7YNBxd6hWt8QYe/oi5lrH6r4FvAd8vl8aGxsRE5OjmE8JycHR48eDdKqBscff/wBAHjggQcAAJ2dnbh48aLhXISHhyM7O9sU52LZsmXIy8vDrFmzDONmrnvv3r1IS0vDvHnzMGbMGKSkpGDbtm36vJlrv9dU7R2q9Q2AvYO9Y2hgALxDly5dgt/vR3R0tGE8OjoaFy9eDNKq7j0RwfLly5GZmYlJkyYBgF6vGc9FdXU1Tp06hbfffrvXnJnr/vnnn7FlyxYkJibi4MGDyM/PxyuvvKJ/zaKZa7/XVOwdqvUNgL2DvWPoGDLfBPJfo2maYVtEeo2Zicvlgsfj6fO7ks12Ls6fP4+CggJ8/fXXiIiI+Nf9zFY3AAQCAaSlpeGtt94CAKSkpKC5uRlbtmzBokWL9P3MWPtgUencqdQ3APYO9o6hhVcA79CoUaMQEhLS6y8Wr9fb6y8bs3j55Zexd+9e1NXVYfz48fq4w+EAANOdi8bGRni9XqSmpsJiscBisaChoQHl5eWwWCx6bWarGwBiYmLwyCOPGMacTqf+Xdtm/Z0PBtV6h2p9A2DvYO8YWhgA71BYWBhSU1NRW1trGK+trcW0adOCtKp7Q0TgcrlQU1ODQ4cOIT4+3jAfHx8Ph8NhOBc+nw8NDQ1D+lzMnDkTTU1NcLvd+iMtLQ0LFy6E2+3GhAkTTFk3AGRkZPT6lx2tra2IjY0FYN7f+WBQpXeo2jcA9g72jiEmOPeeDG3//CuHjz76SE6fPi2vvvqqDBs2TM6ePRvspQ2ol156Sex2u9TX10t3d7f+uHz5sr5PaWmp2O12qampkaamJnnuuedMeVv/9XfyiZi37hMnTojFYpGSkhJpa2uTXbt2SWRkpOzcuVPfx6y1DwYVegf7hhF7B3vHfxUDYD9t3rxZYmNjJSwsTB577DH9XxyYCYA+HxUVFfo+gUBAiouLxeFwSHh4uEyfPl2ampqCt+h75MYmbua69+3bJ5MmTZLw8HCZOHGibN261TBv5toHg9l7B/uGEXvH/5m59qFIExEJzrVHIiIiIgoGfgaQiIiISDEMgERERESKYQAkIiIiUgwDIBEREZFiGACJiIiIFMMASERERKQYBkAiIiIixTAAEhERESmGAZCIiIhIMQyARERERIphACQiIiJSDAMgERERkWIYAIlIWWvXrkVycnKwl0FENOgYAIloSFmyZAmeeeaZYC9jUKlYMxHdWwyARERERIphACSiATFjxgy4XC64XC4MHz4cI0eOxOuvvw4R0ffx+XxYtWoVxo0bh2HDhmHq1Kmor6/X53fs2IHhw4fj4MGDcDqdsFqtmDNnDrq7uwFce8u2srISe/bsgaZp0DRNP76wsBBJSUmIjIzEhAkTsGbNGly9etWwxtLSUkRHR8Nms+HFF1/ElStXbllXc3Mz8vLyEBUVBZvNhqysLHR0dAAAAoEA3nzzTYwfPx7h4eFITk7GV199pR9bX18PTdPw+++/62NutxuapuHs2bN3XTMRUX8xABLRgKmsrITFYsHx48dRXl6OsrIyfPjhh/r8888/jyNHjqC6uhoejwfz5s3DnDlz0NbWpu9z+fJlbNiwAVVVVfj222/R1dWFFStWAABWrFiBZ599Vg9I3d3dmDZtGgDAZrNhx44dOH36NDZt2oRt27ahrKxMf95PP/0UxcXFKCkpwcmTJxETE4P333//pvVcuHAB06dPR0REBA4dOoTGxka88MIL+PvvvwEAmzZtwsaNG7FhwwZ4PB7k5ubiqaeeMtRzO/pbMxFRvwkR0QDIzs4Wp9MpgUBAHyssLBSn0ykiIu3t7aJpmly4cMFw3MyZM2X16tUiIlJRUSEApL29XZ/fvHmzREdH69uLFy+Wp59++pbreeeddyQ1NVXfTk9Pl/z8fMM+U6dOlSlTpvzrc6xevVri4+PF5/P1OT927FgpKSkxjD3++OOydOlSERGpq6sTAPLbb7/p8z/88IMAkM7OThEZ2JqJiG4XrwAS0YB58sknoWmavp2eno62tjb4/X6cOnUKIoKkpCRYrVb90dDQoL+lCgCRkZF4+OGH9e2YmBh4vd5bvvbnn3+OzMxMOBwOWK1WrFmzBl1dXfr8mTNnkJ6ebjjmxu0bud1uZGVlITQ0tNdcT08PfvnlF2RkZBjGMzIycObMmVuu93r9rZmIqL8swV4AEakhEAggJCQEjY2NCAkJMcxZrVb95xvDlqZphs8R9uXYsWNYsGAB1q1bh9zcXNjtdlRXV2Pjxo13teb777//lvtcH3gBQET0sfvuu08f+8eNn0sE+lczEdHd4BVAIhowx44d67WdmJiIkJAQpKSkwO/3w+v1IiEhwfBwOBy3/RphYWHw+/2GsSNHjiA2NhavvfYa0tLSkJiYiHPnzhn2cTqdfa7vZiZPnozvvvuuz9AWFRWFsWPH4vDhw4bxo0ePwul0AgBGjx4NAPoNHcC1q4p3qq+aiYjuBgMgEQ2Y8+fPY/ny5WhpacHHH3+M9957DwUFBQCApKQkLFy4EIsWLUJNTQ06Ozvx/fffY/369Thw4MBtv0ZcXBw8Hg9aWlpw6dIlXL16FQkJCejq6kJ1dTU6OjpQXl6O3bt3G44rKCjA9u3bsX37drS2tqK4uBjNzc03fS2Xy4Wenh4sWLAAJ0+eRFtbG6qqqtDS0gIAWLlyJdavX49PPvkELS0tKCoqgtvt1mtOSEjAgw8+iLVr16K1tRX79+/v11XJvmomIrorQf0EIhGZRnZ2tixdulTy8/MlKipKRowYIUVFRYabQnw+n7zxxhsSFxcnoaGh4nA4ZO7cueLxeETk2g0Rdrvd8Ly7d++W61uV1+uV2bNni9VqFQBSV1cnIiIrV66UkSNHitVqlfnz50tZWVmv5yopKZFRo0aJ1WqVxYsXy6pVq256E4iIyI8//ig5OTkSGRkpNptNsrKypKOjQ0RE/H6/rFu3TsaNGyehoaEyZcoU+fLLLw3HHz58WB599FGJiIiQrKws+eyzz3rdBNLfmomI+ksT4QdNiOjuzZgxA8nJyXj33XeDvRQiIroFvgVMREREpBgGQCIiIiLF8C1gIiIiIsXwCiARERGRYhgAiYiIiBTDAEhERESkGAZAIiIiIsUwABIREREphgGQiIiISDEMgERERESKYQAkIiIiUgwDIBEREZFiGACJiIiIFMMASERERKQYBkAiIiIixTAAEhERESmGAZCIiIhIMQyARERERIphACQiIiJSDAMgERERkWIYAImIiIgUwwBIREREpBgGQCIiIiLFMAASERERKYYBkIiIiEgx/wNN9TkJszCwqAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "Image(filename=demo_output_directory+\"/monsoon_sperber/Ex2/cmip5_GISS-E2-H_historical_r1i1p1_monsoon_sperber_2000-2005.png\")" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -533,7 +409,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.10.10" } }, "nbformat": 4, From b60daf47633ab15344070482dac690a71e308ebb Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Mon, 3 Jun 2024 13:19:09 -0700 Subject: [PATCH 42/46] clean up --- .../monsoon_sperber/driver_monsoon_sperber.py | 21 ++----------------- 1 file changed, 2 insertions(+), 19 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 8ef1c91ef..954d8d621 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -100,8 +100,6 @@ # Path to model data as string template modpath = param.process_templated_argument("modpath") modpath_lf = param.process_templated_argument("modpath_lf") -print("modpath = ", modpath) -print("modpath_lf = ", modpath_lf) # Check given model option models = param.modnames @@ -298,7 +296,7 @@ print(f" --- {run} ---") # Get time coordinate information - print("model_path = ", model_path) + print("model_path = ", model_path) ds = xcdat_open(model_path, decode_times=True) ds["time"].attrs["axis"] = "T" @@ -734,22 +732,7 @@ handles.reverse() labels.reverse() ax[list_monsoon_regions[0]].legend(handles, labels) - """ - if debug: - print("debug: handles", handles) - print("debug: labels", labels) - - if model == "obs": - order = [1, 0] - else: - order = [2, 1, 0] - - # Add revised legend - ax[list_monsoon_regions[0]].legend( - [handles[idx] for idx in order], - [labels[idx] for idx in order], - ) - """ + # title ax[region].set_title(region) if region == list_monsoon_regions[-1]: From f0b61d0b5149ab2841ec76473f9eddffaca354c0 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Mon, 3 Jun 2024 15:21:16 -0700 Subject: [PATCH 43/46] update --- .../Demo/Demo_2b_monsoon_sperber.ipynb | 458 ++++++++++++++++-- 1 file changed, 422 insertions(+), 36 deletions(-) diff --git a/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb b/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb index 8b9a079c9..e61ebbf51 100644 --- a/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb +++ b/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb @@ -237,34 +237,13 @@ }, { "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "ename": "SyntaxError", - "evalue": "invalid syntax (2264871688.py, line 1)", - "output_type": "error", - "traceback": [ - "\u001b[0;36m Cell \u001b[0;32mIn[7], line 1\u001b[0;36m\u001b[0m\n\u001b[0;31m driver_monsoon_sperber.py -p basic_monsoon_sperber_param.py\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" - ] - } - ], - "source": [ - "%%bash\n", - "driver_monsoon_sperber.py -p basic_monsoon_sperber_param.py" - ] - }, - { - "cell_type": "code", - "execution_count": 8, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "modpath = \n", - "modpath_lf = \n", "models: ['GISS-E2-H']\n", "list_monsoon_regions: ['AIR', 'AUS', 'Sahel', 'GoG', 'NAmo', 'SAmo']\n", "number of models: 1\n", @@ -272,8 +251,7 @@ "output dir for graphics: demo_output/monsoon_sperber/Ex1\n", "output dir for diagnostic_results: demo_output/monsoon_sperber/Ex1\n", "output dir for metrics_results: demo_output/monsoon_sperber/Ex1\n", - "debug: True\n", - "models: ['obs', 'GISS-E2-H']\n", + "debug: False\n", "==== model: obs ======================================\n" ] }, @@ -281,8 +259,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-06-03 11:55:40,711 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", - "2024-06-03 11:55:40,711 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" + "2024-06-03 13:19:56,862 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", + "2024-06-03 13:19:56,862 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" ] }, { @@ -290,13 +268,159 @@ "output_type": "stream", "text": [ " --- obs ---\n", - "model_path = demo_data/obs4MIPs_PCMDI_daily/NASA-JPL/GPCP-1-3/day/pr/gn/latest/pr_day_GPCP-1-3_PCMDI_gn_19961002-20170101.nc\n" + "model_path = demo_data/obs4MIPs_PCMDI_daily/NASA-JPL/GPCP-1-3/day/pr/gn/latest/pr_day_GPCP-1-3_PCMDI_gn_19961002-20170101.nc\n", + "plot:: region: AIR, nrows: 3, ncols: 2, index: 1\n", + "plot:: region: AUS, nrows: 3, ncols: 2, index: 2\n", + "plot:: region: Sahel, nrows: 3, ncols: 2, index: 3\n", + "plot:: region: GoG, nrows: 3, ncols: 2, index: 4\n", + "plot:: region: NAmo, nrows: 3, ncols: 2, index: 5\n", + "plot:: region: SAmo, nrows: 3, ncols: 2, index: 6\n", + "\n", + "\n", + "\n", + "\n", + " year = 1998\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 1999\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO::2024-06-03 13:20::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 13:20:44,014 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 13:20:44,014 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==== model: GISS-E2-H ======================================\n", + "model_lf_path = demo_data/CMIP5_demo_data/cmip5.historical.GISS-E2-H.sftlf.nc\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-06-03 13:20:44,197 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", + "2024-06-03 13:20:44,197 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " --- r1i1p1 ---\n", + "model_path = demo_data/CMIP5_demo_timeseries/historical/atmos/day/pr/pr_day_GISS-E2-H_historical_r6i1p1_20000101-20051231.nc\n", + "plot:: region: AIR, nrows: 3, ncols: 2, index: 1\n", + "plot:: region: AUS, nrows: 3, ncols: 2, index: 2\n", + "plot:: region: Sahel, nrows: 3, ncols: 2, index: 3\n", + "plot:: region: GoG, nrows: 3, ncols: 2, index: 4\n", + "plot:: region: NAmo, nrows: 3, ncols: 2, index: 5\n", + "plot:: region: SAmo, nrows: 3, ncols: 2, index: 6\n", + "\n", + "\n", + "\n", + "\n", + " year = 2000\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 2001\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 2002\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 2003\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 2004\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 2005\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO::2024-06-03 13:21::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 13:21:11,566 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 13:21:11,566 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" ] } ], "source": [ "%%bash\n", - "driver_monsoon_sperber.py -p basic_monsoon_sperber_param.py --debug True" + "driver_monsoon_sperber.py -p basic_monsoon_sperber_param.py" ] }, { @@ -312,9 +436,187 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "models: ['GISS-E2-H']\n", + "list_monsoon_regions: ['AIR', 'AUS', 'Sahel', 'GoG', 'NAmo', 'SAmo']\n", + "number of models: 1\n", + "realization: r1i1p1\n", + "output dir for graphics: demo_output/monsoon_sperber/Ex2\n", + "output dir for diagnostic_results: demo_output/monsoon_sperber/Ex2\n", + "output dir for metrics_results: demo_output/monsoon_sperber/Ex2\n", + "debug: False\n", + "==== model: obs ======================================\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-06-03 13:21:23,054 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", + "2024-06-03 13:21:23,054 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " --- obs ---\n", + "model_path = demo_data/obs4MIPs_PCMDI_daily/NASA-JPL/GPCP-1-3/day/pr/gn/latest/pr_day_GPCP-1-3_PCMDI_gn_19961002-20170101.nc\n", + "plot:: region: AIR, nrows: 3, ncols: 2, index: 1\n", + "plot:: region: AUS, nrows: 3, ncols: 2, index: 2\n", + "plot:: region: Sahel, nrows: 3, ncols: 2, index: 3\n", + "plot:: region: GoG, nrows: 3, ncols: 2, index: 4\n", + "plot:: region: NAmo, nrows: 3, ncols: 2, index: 5\n", + "plot:: region: SAmo, nrows: 3, ncols: 2, index: 6\n", + "\n", + "\n", + "\n", + "\n", + " year = 1998\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 1999\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO::2024-06-03 13:22::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 13:22:03,374 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 13:22:03,374 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "==== model: GISS-E2-H ======================================\n", + "model_lf_path = demo_data/CMIP5_demo_data/cmip5.historical.GISS-E2-H.sftlf.nc\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2024-06-03 13:22:03,558 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", + "2024-06-03 13:22:03,558 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " --- r1i1p1 ---\n", + "model_path = demo_data/CMIP5_demo_timeseries/historical/atmos/day/pr/pr_day_GISS-E2-H_historical_r6i1p1_20000101-20051231.nc\n", + "plot:: region: AIR, nrows: 3, ncols: 2, index: 1\n", + "plot:: region: AUS, nrows: 3, ncols: 2, index: 2\n", + "plot:: region: Sahel, nrows: 3, ncols: 2, index: 3\n", + "plot:: region: GoG, nrows: 3, ncols: 2, index: 4\n", + "plot:: region: NAmo, nrows: 3, ncols: 2, index: 5\n", + "plot:: region: SAmo, nrows: 3, ncols: 2, index: 6\n", + "\n", + "\n", + "\n", + "\n", + " year = 2000\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 2001\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 2002\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 2003\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 2004\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n", + "\n", + "\n", + " year = 2005\n", + "\n", + "\n", + "region = AIR\n", + "region = AUS\n", + "region = Sahel\n", + "region = GoG\n", + "region = NAmo\n", + "region = SAmo\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO::2024-06-03 13:22::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 13:22:35,447 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 13:22:35,447 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" + ] + } + ], "source": [ "%%bash -s \"$demo_output_directory\"\n", "driver_monsoon_sperber.py -p basic_monsoon_sperber_param.py \\\n", @@ -337,9 +639,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cmip5_GISS-E2-H_historical_r1i1p1_monsoon_sperber_2000-2005.nc\n", + "cmip5_GISS-E2-H_historical_r1i1p1_monsoon_sperber_2000-2005.png\n", + "cmip5_obs_historical_obs_monsoon_sperber_1998-1999.nc\n", + "cmip5_obs_historical_obs_monsoon_sperber_1998-1999.png\n", + "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005_org_2053.json\n", + "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005_org_5752.json\n", + "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005_org_6404.json\n", + "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005_org_8773.json\n" + ] + } + ], "source": [ "! ls {demo_output_directory + \"/monsoon_sperber/Ex2\"}" ] @@ -353,9 +671,58 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "{\n", + " \"GISS-E2-H\": {\n", + " \"r1i1p1\": {\n", + " \"AIR\": {\n", + " \"decay_index\": 54,\n", + " \"duration\": 20,\n", + " \"onset_index\": 35,\n", + " \"slope\": 0.03263245840754827\n", + " },\n", + " \"AUS\": {\n", + " \"decay_index\": 54,\n", + " \"duration\": 23,\n", + " \"onset_index\": 32,\n", + " \"slope\": 0.027284635342319282\n", + " },\n", + " \"GoG\": {\n", + " \"decay_index\": 48,\n", + " \"duration\": 23,\n", + " \"onset_index\": 26,\n", + " \"slope\": 0.01760572909468477\n", + " },\n", + " \"NAmo\": {\n", + " \"decay_index\": 63,\n", + " \"duration\": 51,\n", + " \"onset_index\": 13,\n", + " \"slope\": 0.011989028718271575\n", + " },\n", + " \"SAmo\": {\n", + " \"decay_index\": 56,\n", + " \"duration\": 31,\n", + " \"onset_index\": 26,\n", + " \"slope\": 0.020573642678822508\n", + " },\n", + " \"Sahel\": {\n", + " \"decay_index\": 48,\n", + " \"duration\": 18,\n", + " \"onset_index\": 31,\n", + " \"slope\": 0.03399930924787022\n", + " }\n", + " }\n", + " }\n", + "}\n" + ] + } + ], "source": [ "import json\n", "metrics_file = demo_output_directory + \"/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\"\n", @@ -385,12 +752,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAKACAYAAAAMzckjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgURx+A34t7QhJIgiU4BE3RENwtWHEIBCvaliLFilMo0q9QirtbcZfiJVgLFC8UCRYiQCBu8/0x3JGLkeCQeZ/nnmRnZ2dn93bnfjM/0wghBAqFQqFQKBSKTIPBh+6AQqFQKBQKheL9ogRAhUKhUCgUikyGEgAVCoVCoVAoMhlKAFQoFAqFQqHIZCgBUKFQKBQKhSKToQRAhUKhUCgUikyGEgAVCoVCoVAoMhlKAFQoFAqFQqHIZCgBUKFQKBQKhSKToQRAhUKhUCgUikyGEgAVCoVCoVAoMhlKAFQoFAqFQqHIZCgBUJGpWLJkCRqNRvcxMjIiZ86cdO7cmfv377/3/vj6+uLm5vZaxx46dAiNRsOhQ4d0ZTt37mT06NFv1KdVq1Yxbdq0FPdpNJo3bv9TIyIigtGjR+vd57dFSt9hShw/fpzRo0fz9OnTZPuqVatGtWrV3nrfPna07/Lt27c/dFcUik8SJQAqMiWLFy/Gz8+Pffv20b17d1avXk3lypUJDw9/r/0YMWIEmzZteq1jv/jiC/z8/Pjiiy90ZTt37mTMmDFv1Ke0BEA/Pz+6dev2Ru1/akRERDBmzJh3IgCml+PHjzNmzJgUBcBZs2Yxa9as99+pD0zDhg3x8/PDxcXlQ3dFofgkMfrQHVAoPgTFihWjTJkyAFSvXp34+HjGjRvH5s2bad++fYrHREREYGFh8Vb7kS9fvtc+1sbGhgoVKrzF3rya930+xatxd3f/0F14r0RGRmJmZkbWrFnJmjXrh+6OQvHJolYAFQpeCjZ37twBpGrWysqKCxcuUKdOHaytralZsyYAMTExjB8/nsKFC2NqakrWrFnp3LkzQUFBydpdtWoVnp6eWFlZYWVlRalSpVi4cKFuf0oqYI1GQ9++fZk7dy4FCxbE1NQUd3d31qxZo1cvqfrQ19eXmTNn6trQfrQqspkzZ1KlShWyZcuGpaUlxYsXZ/LkycTGxurarFatGjt27ODOnTt6bSTuW1IV8MWLF2nSpAlZsmTBzMyMUqVKsXTp0hT7unr1aoYPH0727NmxsbGhVq1aXLt2La2vBoDRo0ej0Wg4e/YszZs3x8bGBltbWzp06JDifV+7di2enp5YWlpiZWVF3bp1OXv2rF4d7Xd848YNGjRogJWVFbly5WLAgAFER0cDcPv2bZ2QMWbMGN398PX1BeDGjRt07tyZAgUKYGFhQY4cOfD29ubChQvJ+nT16lXq1auHhYUFjo6O9OzZk+fPn6fr2gcNGgRAnjx5dH3Qfu9JVcC3b99Go9EwZcoUJk2ahJubG+bm5lSrVo1///2X2NhYhgwZQvbs2bG1taVZs2YEBga+1j1MiYiICAYOHEiePHkwMzPD3t6eMmXKsHr1ar16Z86coXHjxtjb22NmZoaHhwfr1q3Tq6NV8+7du5cuXbqQNWtWLCwsiI6OTlUFvH//fmrWrImNjQ0WFhZ4eXnxxx9/6NUJCgriq6++IleuXLp32MvLi/3797/y+hSKzwW1AqhQIH/IAb0VhZiYGBo3bkyPHj0YMmQIcXFxJCQk0KRJE44ePcr3339PxYoVuXPnDqNGjaJatWqcOXMGc3NzAEaOHMm4ceNo3rw5AwYMwNbWlosXL+qEzLTYunUrBw8eZOzYsVhaWjJr1izatm2LkZERLVq0SPGYESNGEB4ezu+//46fn5+uXKsi+++//2jXrh158uTBxMSE8+fP8+OPP3L16lUWLVoESHXiV199xX///Zcu1fS1a9eoWLEi2bJl49dff8XBwYEVK1bg6+vLo0eP+P777/XqDxs2DC8vLxYsWMCzZ88YPHgw3t7eXLlyBUNDw1eer1mzZrRq1YqePXty6dIlRowYweXLlzl58iTGxsYATJgwgR9++IHOnTvzww8/EBMTw5QpU6hcuTKnTp3SWzGLjY2lcePGdO3alQEDBnDkyBHGjRuHra0tI0eOxMXFhd27d1OvXj26du2qU39rn5MHDx7g4ODATz/9RNasWXn8+DFLly6lfPnynD17lkKFCgHw6NEjqlatirGxMbNmzcLJyYmVK1fSt2/fV15zt27dePz4MTNmzGDjxo267/NVK38zZ86kRIkSzJw5k6dPnzJgwAC8vb0pX748xsbGLFq0iDt37jBw4EC6devG1q1bdcdm5B4mpX///ixfvpzx48fj4eFBeHg4Fy9eJCQkRFfn4MGD1KtXj/LlyzNnzhxsbW1Zs2YNrVu3JiIiQidga+nSpQsNGzZk+fLlhIeH677rpKxYsYKOHTvSpEkTli5dirGxMXPnzqVu3brs2bNHN4nz8fHh77//5scff6RgwYI8ffqUv//+W6+PCsVnj1AoMhGLFy8WgDhx4oSIjY0Vz58/F9u3bxdZs2YV1tbWIiAgQAghRKdOnQQgFi1apHf86tWrBSA2bNigV3769GkBiFmzZgkhhLh586YwNDQU7du3T7M/nTp1Eq6urnplgDA3N9f1RQgh4uLiROHChUX+/Pl1ZQcPHhSAOHjwoK6sT58+Ij2vdXx8vIiNjRXLli0ThoaG4vHjx7p9DRs2TNanxH0bNWqUbrtNmzbC1NRU+Pv769WrX7++sLCwEE+fPtXra4MGDfTqrVu3TgDCz88vzf6OGjVKAOK7777TK1+5cqUAxIoVK4QQQvj7+wsjIyPx9ddf69V7/vy5cHZ2Fq1atdKVab/jdevW6dVt0KCBKFSokG47KCgo2XWnRlxcnIiJiREFChTQ6+vgwYOFRqMR586d06tfu3btZN9hSkyZMkUA4tatW8n2Va1aVVStWlW3fevWLQGIkiVLivj4eF35tGnTBCAaN26sd3y/fv0EIEJDQ4UQGbuHKVGsWDHRtGnTNOsULlxYeHh4iNjYWL3yRo0aCRcXF12/te9rx44dk7Wh3ae9J+Hh4cLe3l54e3vr1YuPjxclS5YU5cqV05VZWVmJfv36pdlHheJzR6mAFZmSChUqYGxsjLW1NY0aNcLZ2Zldu3bh5OSkV+/LL7/U296+fTt2dnZ4e3sTFxen+5QqVQpnZ2edWm7fvn3Ex8fTp0+f1+pfzZo19fpiaGhI69atuXHjBvfu3XutNs+ePUvjxo1xcHDA0NAQY2NjOnbsSHx8PP/+++9rtXngwAFq1qxJrly59Mp9fX2JiIjQW4kEaNy4sd52iRIlANK1Kgoks89s1aoVRkZGHDx4EIA9e/YQFxdHx44d9b4fMzMzqlatmsyRQ6PR4O3tnaxP6e1PXFwcEyZMwN3dHRMTE4yMjDAxMeH69etcuXJFV+/gwYMULVqUkiVL6h3frl27dJ3ndWjQoAEGBi+H+CJFigDSeSIx2nJ/f38g4/cwKeXKlWPXrl0MGTKEQ4cOERkZqbf/xo0bXL16VfddJj5HgwYNePjwYTKzgKTvYUocP36cx48f06lTJ702ExISqFevHqdPn9Y5eZUrV44lS5Ywfvx4Tpw4oWcGoVBkFpQKWJEpWbZsGUWKFMHIyAgnJ6cUPQktLCywsbHRK3v06BFPnz7FxMQkxXaDg4MBdHZpOXPmfK3+OTs7p1oWEhKS4Xb9/f2pXLkyhQoVYvr06bi5uWFmZsapU6fo06dPsh/p9BISEpLivcuePbtuf2IcHBz0tk1NTQHSff6k98XIyAgHBwfdeR49egRA2bJlUzw+sUAE8js2MzNL1qeoqKh09ad///7MnDmTwYMHU7VqVbJkyYKBgQHdunXTu6aQkBDy5Mnzyut5m9jb2+tta5/Z1Mq115zRe5iUX3/9lZw5c7J27VomTZqEmZkZdevWZcqUKRQoUEDX/sCBAxk4cGCKbWjfIy3p8fTVtpuaiQTA48ePsbS0ZO3atYwfP54FCxYwYsQIrKysaNasGZMnT36n34lC8TGhBEBFpqRIkSI6L+DUSOz8oMXR0REHBwd2796d4jHW1tbASxuxe/fuJVsdSw8BAQGpliUVotLD5s2bCQ8PZ+PGjbi6uurKz507l+G2EuPg4MDDhw+TlT948ACQ9+ttEhAQQI4cOXTbcXFxhISE6O6J9ny///673nW+K7Q2ZxMmTNArDw4Oxs7OTrft4OCQ5nf6MfGm99DS0pIxY8YwZswYHj16pFsN9Pb25urVq7r2hw4dSvPmzVNsQ2s7qSWldzG1fs+YMSNVb3XtqrqjoyPTpk1j2rRp+Pv7s3XrVoYMGUJgYGCq77ZC8bmhBECFIgM0atSINWvWEB8fT/ny5VOtV6dOHQwNDZk9ezaenp4ZPs8ff/zBo0ePdD9Y8fHxrF27lnz58qW5+pd4RU3rjAIvf0C1+wGEEMyfPz/FNtK7IlezZk02bdrEgwcPdKt+IFdYLSws3nrYmJUrV1K6dGnd9rp164iLi9N5wdatWxcjIyP++++/dKkN00Naq5QajUbvngLs2LGD+/fvkz9/fl1Z9erVmTx5MufPn9dTA69ateqN+/C2eZv30MnJCV9fX86fP8+0adOIiIigUKFCFChQgPPnzycTnN8ELy8v7OzsuHz5crqca7Tkzp2bvn378scff/Dnn3++tf4oFB87SgBUKDJAmzZtWLlyJQ0aNODbb7+lXLlyGBsbc+/ePQ4ePEiTJk1o1qwZbm5uDBs2jHHjxhEZGUnbtm2xtbXl8uXLBAcHvzJYs6OjIzVq1GDEiBE6L+CrV68mCwWTlOLFiwMwadIk6tevj6GhISVKlKB27dqYmJjQtm1bvv/+e6Kiopg9ezZPnjxJsY2NGzcye/ZsSpcujYGBQaqrpaNGjWL79u1Ur16dkSNHYm9vz8qVK9mxYweTJ0/G1tY2nXc2fWzcuBEjIyNq166t8wIuWbIkrVq1AsDNzY2xY8cyfPhwbt68Sb169ciSJQuPHj3i1KlTutWpjGBtbY2rqytbtmyhZs2a2Nvb4+joiJubG40aNWLJkiUULlyYEiVK8NdffzFlypRkQnq/fv1YtGgRDRs2ZPz48Tov4KtXr6arD9rvdfr06XTq1AljY2MKFSqkW3F+m7zpPSxfvjyNGjWiRIkSZMmShStXrrB8+XI8PT11cTTnzp1L/fr1qVu3Lr6+vuTIkYPHjx9z5coV/v77b9avX5/hfltZWTFjxgw6derE48ePadGiBdmyZSMoKIjz588TFBTE7NmzCQ0NpXr16rRr147ChQtjbW3N6dOn2b17d6orkgrFZ8mH9kJRKN4nWs/B06dPp1mvU6dOwtLSMsV9sbGxYurUqaJkyZLCzMxMWFlZicKFC4sePXqI69ev69VdtmyZKFu2rK6eh4eHWLx4sd55UvIC7tOnj5g1a5bIly+fMDY2FoULFxYrV67Uq5eSF3B0dLTo1q2byJo1q9BoNHpektu2bdP1OUeOHGLQoEFi165dydp4/PixaNGihbCzs9O1kbhvSb1hL1y4ILy9vYWtra0wMTERJUuW1LvGxH1dv369XrnWYzVp/aRovYD/+usv4e3tLaysrIS1tbVo27atePToUbL6mzdvFtWrVxc2NjbC1NRUuLq6ihYtWoj9+/fr6qT2HWvPlZj9+/cLDw8PYWpqKgDRqVMnIYQQT548EV27dhXZsmUTFhYWolKlSuLo0aPJPHOFEOLy5cuidu3awszMTNjb24uuXbuKLVu2pMsLWAghhg4dKrJnzy4MDAz0jknNC3jKlCl6x6f2HaT2TqTnHqbEkCFDRJkyZUSWLFmEqampyJs3r/juu+9EcHCwXr3z58+LVq1aiWzZsgljY2Ph7OwsatSoIebMmfPKviXel9Qz+vDhw6Jhw4bC3t5eGBsbixw5coiGDRvqrjsqKkr07NlTlChRQtjY2Ahzc3NRqFAhMWrUKBEeHp7mtSkUnxMaIYR4zzKnQqFIA41GQ58+ffjtt98+dFc+GkaPHs2YMWMICgp663aFCoVCkRlRYWAUCoVCoVAoMhlKAFQoFAqFQqHIZCgVsEKhUCgUCkUmQ60AKhQKhUKhUGQylACoyDBLlixBo9Gg0WhSTAslhCB//vxoNBpdfDbFq6lWrdpHf79Gjx6drqC8ioyh0WgYPXq0bvvy5cuMHj2a27dvf7A+fc5ox7DXub/Hjx9n9OjRPH36NNm+T+EdVii0KAFQ8dpYW1uzcOHCZOWHDx/mv//+eycxyhQflm7duiXL76t4c/z8/OjWrZtu+/Lly4wZM0YJgB8hx48fZ8yYMSkKgLNmzWLWrFnvv1MKxWugBEDFa9O6dWs2bNjAs2fP9MoXLlyIp6cnuXPn/kA9U7wrcubM+dazeyigQoUKr503WvHx4O7ujru7+4fuhkKRLpQAqHht2rZtC8Dq1at1ZaGhoWzYsIEuXbqkeMzjx4/p3bs3OXLkwMTEhLx58zJ8+HCio6P16mk0Gvr27cvy5cspUqQIFhYWlCxZku3bt+vVCwoK4quvviJXrlyYmpqSNWtWvLy82L9/v169RYsWUbJkSczMzLC3t6dZs2ZcuXIlWf+2bt2qy1hgbW1N7dq1k614adWgly5d0mX4cHJyokuXLoSGhr7yvgkhmDx5Mq6urpiZmfHFF1+wa9euFOv6+/vToUMHsmXLhqmpKUWKFOHnn38mISFBV+f27dtoNBqmTJnCpEmTcHNzw9zcnGrVqvHvv/8SGxvLkCFDyJ49O7a2tjRr1ozAwEC986xdu5Y6derg4uKCubk5RYoUYciQIYSHh6d47YnRZsTYvXs3X3zxBebm5hQuXJhFixa98l4AREdHM3bsWIoUKYKZmRkODg5Ur16d48eP6+pERUUxdOhQ8uTJg4mJCTly5KBPnz7JVmG0fdm+fTseHh66a9E+N0uWLKFIkSJYWlpSrlw5zpw5o3e8r68vVlZWXLp0iZo1a2JpaUnWrFnp27cvERERenXT26cDBw5QrVo1HBwcMDc3J3fu3Hz55Zd67SVWAS9ZsoSWLVsCMoWc1txiyZIluvr79++nZs2a2NjYYGFhgZeXF3/88ccr73VUVBQDBgygVKlS2NraYm9vj6enJ1u2bElWNyEhgRkzZlCqVCnMzc2xs7OjQoUKbN26Va/eqlWr8PT0xMrKCisrK0qVKqWnGXBzc8PX1zdZ+0nVpYcOHUKj0bBq1SoGDx6Mi4sLVlZWeHt78+jRI54/f85XX32Fo6Mjjo6OdO7cmbCwMN3x2vcg8X1K6f6mxr59+2jSpAk5c+bEzMyM/Pnz06NHD4KDg3V1Ro8ezaBBgwDIkydPMlOYlFTAH2rMUyheyYeMQq34NEkcnd/Hx0eUK1dOt2/27NnC0tJSPHv2TBQtWlQvQ0FkZKQoUaKEsLS0FFOnThV79+4VI0aMEEZGRqJBgwZ65wCEm5ubKFeunFi3bp3YuXOnqFatmjAyMhL//fefrl7dunVF1qxZxbx588ShQ4fE5s2bxciRI8WaNWt0dSZMmCAA0bZtW7Fjxw6xbNkykTdvXmFrayv+/fdfXb2VK1cKQNSpU0ds3rxZrF27VpQuXVqYmJiIo0eP6uppM0UUKlRIjBw5Uuzbt0/873//E6ampqJz586vvH/a47t27Sp27dol5s2bJ3LkyCGcnZ317ldgYKDIkSOHyJo1q5gzZ47YvXu36Nu3rwBEr169dPW0mR9cXV2Ft7e32L59u1ixYoVwcnISBQsWFD4+PqJLly5i165dYs6cOcLKykp4e3vr9WncuHHil19+ETt27BCHDh0Sc+bMEXny5BHVq1dPse+JcXV1FTlz5hTu7u5i2bJlYs+ePaJly5YCEIcPH07zXsTGxorq1asLIyMjMXDgQLFz506xdetWMWzYMLF69WohhBAJCQmibt26wsjISIwYMULs3btXTJ06VVhaWgoPDw8RFRWVrC/FihUTq1evFjt37hTly5cXxsbGYuTIkcLLy0ts3LhRbNq0SRQsWFA4OTmJiIgI3fGdOnUSJiYmInfu3OLHH38Ue/fuFaNHjxZGRkaiUaNGunrp7dOtW7eEmZmZqF27tti8ebM4dOiQWLlypfDx8RFPnjzRtUeiDCuBgYG6Z3bmzJnCz89P+Pn5icDAQCGEEMuXLxcajUY0bdpUbNy4UWzbtk00atRIGBoavjJLx9OnT4Wvr69Yvny5OHDggNi9e7cYOHCgMDAwEEuXLtWr6+PjIzQajejWrZvYsmWL2LVrl/jxxx/F9OnTdXVGjBghANG8eXOxfv16sXfvXvG///1PjBgxQu870WZOSUzSDCbaTCWurq7C19dX7N69W/e8Vq9eXdSuXVsMHDhQ7N27V0yaNEkYGhqKr7/+Wnd8WlllSJLBJqUsIrNnzxYTJ04UW7duFYcPHxZLly4VJUuWFIUKFRIxMTFCCCHu3r0rvv76awGIjRs36r6b0NDQFK/pQ415CkV6UAKgIsMkFgC1g/bFixeFEEKULVtW+Pr6CiFEMgFwzpw5AhDr1q3Ta2/SpEkCEHv37tWVAcLJyUk8e/ZMVxYQECAMDAzExIkTdWVWVlaiX79+qfb1yZMnwtzcPNlg6+/vL0xNTUW7du2EEELEx8eL7Nmzi+LFi4v4+HhdvefPn4ts2bKJihUr6sq0QtDkyZP12uzdu7cwMzMTCQkJafbHzMxMNGvWTK/8zz//FIDe/RoyZIgAxMmTJ/Xq9urVS2g0GnHt2jUhxMsfvpIlS+r1fdq0aQIQjRs31ju+X79+AtD9aCUlISFBxMbGisOHDwtAnD9/Ptm1J8bV1VWYmZmJO3fu6MoiIyOFvb296NGjR6r3QgiZKg8Q8+fPT7XO7t27U7zfa9euFYCYN2+eXl/Mzc3FvXv3dGXnzp0TgHBxcdFL9bV582YBiK1bt+rKOnXqJAA9IUcIIX788UcBiGPHjmWoT7///rsAxLlz59K8D0kFlPXr16eYIi48PFzY29snE+Dj4+NFyZIl9SZj6SEuLk7ExsaKrl27Cg8PD135kSNHBCCGDx+e6rE3b94UhoaGon379mmeI6MCYNJr0z6v33zzjV5506ZNhb29vW77TQXAxGjfgTt37ghAbNmyRbdvypQpqR6b9Jo+xJinUKQXpQJWvBFVq1YlX758LFq0iAsXLnD69OlU1b8HDhzA0tKSFi1a6JVr1UNJVVjVq1fXcyRxcnIiW7Zs3LlzR1dWrlw5lixZwvjx4zlx4gSxsbF6bfj5+REZGZlMBZUrVy5q1KihO+e1a9d48OABPj4+GBi8fC2srKz48ssvOXHiRDIVYOPGjfW2S5QoQVRUVDL1atL+REVF0b59e73yihUr4urqqld24MAB3N3dKVeunF65r68vQggOHDigV96gQQO9vhcpUgSAhg0b6tXTlvv7++vKbt68Sbt27XB2dsbQ0BBjY2OqVq0KkKKqPCmlSpXSs/k0MzOjYMGCet9VSuzatQszM7NUnxlAd51Jv8OWLVtiaWmZ7LkpVaoUOXLk0G1rr7datWpYWFgkK0+pj0m/n3bt2gFw8ODBDPWpVKlSmJiY8NVXX7F06VJu3ryZ6nWmh+PHj/P48WM6depEXFyc7pOQkEC9evU4ffp0MrV9UtavX4+XlxdWVlYYGRlhbGzMwoUL9b5nrUlCnz59Um1n3759xMfHp1nndWjUqJHedlrP8ePHj/XUwG9CYGAgPXv2JFeuXLr7on0n0/MOpMSHGPMUivSiBEDFG6HRaOjcuTMrVqxgzpw5FCxYkMqVK6dYNyQkBGdn52Q2ZNmyZcPIyIiQkBC9cgcHh2RtmJqaEhkZqdteu3YtnTp1YsGCBXh6emJvb0/Hjh0JCAjQnRPAxcUlWVvZs2fX7X9VvYSEBJ48eZJm/0xNTQH0+pcU7XmcnZ2T7UtaFhISkmp/Erelxd7eXm/bxMQkzfKoqCgAwsLCqFy5MidPnmT8+PEcOnSI06dPs3Hjxldej5b0fFcpERQURPbs2fUE16SEhIRgZGRE1qxZ9co1Gg3Ozs5v7T5oMTIySnY92u8m8fOSnj7ly5eP/fv3ky1bNvr06UO+fPnIly8f06dPT/V60+LRo0cAtGjRAmNjY73PpEmTEELw+PHjVI/fuHEjrVq1IkeOHKxYsQI/Pz/dpC3xfQgKCsLQ0DDF5zRxHeCtO6+86ff3OiQkJFCnTh02btzI999/zx9//MGpU6c4ceIEkL53ICU+xJinUKQXow/dAcWnj6+vLyNHjmTOnDn8+OOPqdZzcHDg5MmTCCH0BsTAwEDi4uJwdHTM8LkdHR2ZNm0a06ZNw9/fn61btzJkyBACAwPZvXu3bkB9+PBhsmMfPHigO+er6hkYGJAlS5YM9y8p2vOkNFgHBATg5uamVze1/gCvdb9S4sCBAzx48IBDhw7pVv2AFMNcvG2yZs3KsWPHSEhISFUIdHBwIC4ujqCgID2BSwhBQEAAZcuWfat9iouLIyQkRO/HWPt9acsy0qfKlStTuXJl4uPjOXPmDDNmzKBfv344OTnRpk2bDPVN+53PmDEjVW9sJyenVI9fsWIFefLkYe3atXrvYFKHhKxZsxIfH09AQECKkxBtHYB79+6RK1euVM9pZmaWrH2A4ODgt/YMa88Dya8lqZCVEhcvXuT8+fMsWbKETp066cpv3LjxRn36EGOeQpFe1Aqg4o3JkSMHgwYNwtvbW2/wTErNmjUJCwtj8+bNeuXLli3T7X8TcufOTd++falduzZ///03AJ6enpibm7NixQq9uvfu3ePAgQO6cxYqVIgcOXKwatUqRKLsiOHh4WzYsEHnGfymVKhQATMzM1auXKlXfvz48WSqyJo1a3L58mXdtWhZtmwZGo2G6tWrv3F/AN0Pk3YFU8vcuXPfSvtpUb9+faKiolL03NSi/Y6SfocbNmwgPDz8jZ+blEj6/axatQpA5+H5On0yNDSkfPnyzJw5EyDZ95qY1FaTvby8sLOz4/Lly5QpUybFj3ZlLCU0Gg0mJiZ6wkhAQEAyL+D69esDMHv27FTbqlOnDoaGhmnWAekF/M8//+iV/fvvv1y7di3N4zKKk5MTZmZmyc6VkodzUjLyDqRnpV/LhxjzFIr0olYAFW+Fn3766ZV1OnbsyMyZM+nUqRO3b9+mePHiHDt2jAkTJtCgQQNq1aqVoXOGhoZSvXp12rVrR+HChbG2tub06dPs3r2b5s2bA2BnZ8eIESMYNmwYHTt2pG3btoSEhDBmzBjMzMwYNWoUAAYGBkyePJn27dvTqFEjevToQXR0NFOmTOHp06fpur70kCVLFgYOHMj48ePp1q0bLVu25O7du4wePTqZuu27775j2bJlNGzYkLFjx+Lq6sqOHTuYNWsWvXr1omDBgm+lTxUrViRLliz07NmTUaNGYWxszMqVKzl//vxbaT8t2rZty+LFi+nZsyfXrl2jevXqJCQkcPLkSYoUKUKbNm2oXbs2devWZfDgwTx79gwvLy/++ecfRo0ahYeHBz4+Pm+1TyYmJvz888+EhYVRtmxZjh8/zvjx46lfvz6VKlUCSHef5syZw4EDB2jYsCG5c+cmKipKFx4nree9WLFiAMybNw9ra2vMzMzIkycPDg4OzJgxg06dOvH48WNatGhBtmzZCAoK4vz58wQFBaUpkDVq1IiNGzfSu3dvWrRowd27dxk3bhwuLi5cv35dV69y5cr4+Pgwfvx4Hj16RKNGjTA1NeXs2bNYWFjw9ddf4+bmxrBhwxg3bhyRkZG6kEiXL18mODiYMWPGAODj40OHDh3o3bs3X375JXfu3GHy5MnJ1OdvikajoUOHDixatIh8+fJRsmRJTp06pRPe06Jw4cLky5ePIUOGIITA3t6ebdu2sW/fvmR1ixcvDsD06dPp1KkTxsbGFCpUKMXA9x9izFMo0s2H8z9RfKok9gJOi6RewEIIERISInr27ClcXFyEkZGRcHV1FUOHDtUL5SGE9Ijr06dPsjYTexRGRUWJnj17ihIlSggbGxthbm4uChUqJEaNGqXn7SmEEAsWLBAlSpQQJiYmwtbWVjRp0kRcunQpWfubN28W5cuXF2ZmZsLS0lLUrFlT/Pnnn3p1tJ6wQUFBKd6X1DwLtSQkJIiJEyeKXLlyCRMTE1GiRAmxbdu2ZB6EQghx584d0a5dO+Hg4CCMjY1FoUKFxJQpU/S8fbXej1OmTNE7VutVuX79+hT7mfj7O378uPD09BQWFhYia9asolu3buLvv/9O5lWZmhdww4YNk11nSteTEpGRkWLkyJGiQIECwsTERDg4OIgaNWqI48eP69UZPHiwcHV1FcbGxsLFxUX06tVLL5RKWn1J6XlK6b516tRJWFpain/++UdUq1ZNmJubC3t7e9GrVy8RFhaWrN+v6pOfn59o1qyZcHV1FaampsLBwUFUrVpVz/NY27/EXqpCSC/uPHnyCENDw2Tfw+HDh0XDhg2Fvb29MDY2Fjly5BANGzZM9l2nxE8//STc3NyEqampKFKkiJg/f36K32t8fLz45ZdfRLFixXTvjaenp9i2bZtevWXLlomyZcsKMzMzYWVlJTw8PPT6mpCQICZPnizy5s0rzMzMRJkyZcSBAwdS9QJOz/MqRMrvYWhoqOjWrZtwcnISlpaWwtvbW9y+fTtdXsCXL18WtWvXFtbW1iJLliyiZcuWwt/fP8XvZujQoSJ79uzCwMBAz1s7pWf+Q415CsWr0AiRSN+lUCgUmRhfX19+//33t+ZZqlAoFB8rygZQoVAoFAqFIpOhBECFQqFQKBSKTIZSASsUCoVCoVBkMtQKoEKhUCgUCkUmQwmACoVCoVAoFJkMJQBmIv755x86d+5Mnjx5MDMzw8rKii+++ILJkyfrpY+qVq0aGo2GvHnzkpKFwJEjR9BoNGg0Gr0AvkuWLEGj0XDmzBld2ejRo3V1tUFo8+TJw7fffquXaeLQoUN69RJ/tOmYXpdHjx4xbNgwSpUqhY2NDSYmJuTMmZPmzZuzdetW4uPjk/Xj999/12vj5MmTNGvWjNy5c2NqaoqTkxOenp4MGDBAr15sbCxz586lbNmy2NvbY2FhgaurK02aNGHTpk3p6m9q90Gj0ejlnt24cSNt27Ylf/78mJub4+bmRvv27fXiub2KatWq6WLOJSU4OBiNRsPo0aPT3V56207M7du3kz1L6WHVqlVMmzbttfqWHt7k2tODm5tbslzCb4NLly7Ru3dvPD09sbS0RKPRcOjQoRTrpnSNP/zwA40aNSJHjhzJnrnXZdmyZbRp04ZChQphYGCgl/HmdYiPj+d///sf9erVI2fOnFhYWFCkSBGGDBmSagabGTNmULhwYUxNTcmTJw9jxoxJMY9uYGAgvr6+ODo6YmFhgaenZ7KcvVr279+vCxLv6OiIr69vmrnAE/Pvv/8ycOBASpcujZ2dHfb29nh5eSUbe95Vv7TvXUqfNWvWpOsaFJ82KhB0JmH+/Pn07t2bQoUKMWjQINzd3YmNjeXMmTPMmTMHPz8/PQHF2tqaW7du6WXL0LJo0SJsbGx49uxZus+/e/dubG1tef78OTt37mT69OmcOnWK48eP62UlmDBhQrIMF+kRIlLjxIkTNG7cGCEEvXr1okKFClhZWeHv78+2bdto3rw5c+fOpWvXrqm2sWPHDho3bky1atWYPHkyLi4uPHz4kDNnzrBmzRp+/vlnXV0fHx82btxIv379GDNmDKampty8eZPdu3ezZ88emjVrlq5+t2jRIplwCegFz500aRLOzs4MHz6cvHnzcvfuXSZMmMAXX3zBiRMnKFq0aAbu1IfDxcUFPz8/8uXLl6HjVq1axcWLF+nXr9876Zefn99bz3P7Pjhz5gybN2/Gw8ODmjVrsm3btlTrpnSNv/zyCyVKlKBx48a6oNVvyvLlywkICKBcuXIkJCSkKHhlhMjISEaPHk3btm3p1q0bjo6O/P3334wfP55t27Zx5swZzM3NdfV//PFHRowYwZAhQ6hTpw6nT5/mhx9+4P79+8ybN09XLzo6mpo1a/L06VOmT59OtmzZmDlzJvXq1WP//v16qRIPHz5M/fr1adiwIVu2bCEwMJDBgwdTs2ZNzpw5kyyrSFL27t3Ljh078PHxoWzZssTFxbF27VpatmzJmDFjGDly5Hvp19dff027du30ygoUKJCxL0TxafIhgxAq3g/Hjx8XhoaGol69esmCjwohRHR0tNiyZYtuu2rVqqJo0aKiQoUKol27dnp1nz17JiwsLET37t2TBadNKWBrakGTfXx8BCCOHTsmhEg9COyb8OTJE+Hk5CTy5MkjHjx4kGKd8+fPiwMHDui2U+pHlSpVRL58+URsbGyy4xMHZL5586YAxMiRI1M8V+K6aUEqAWGT8ujRo2Rl9+/fF8bGxqJr167pOpf2u06JoKCgFIPgppe02n4bNGzYULi6ur7VNhMSEkRERMRbbTM1Egf4fRtoAwEnfs7Wr1+vF6g4PSQ+3tLS8q30MXGbb+N7i4uLE8HBwcnKtde7fPlyXVlwcLAwMzMTX331lV7dH3/8UWg0Gr2A8DNnzhSAXhDy2NhY4e7uLsqVK6d3fNmyZYW7u7veuPDnn38KQMyaNeuV1xAUFCQSEhKSlTds2FBYWFjojdXvol+pBZBXZB6UCjgTMGHCBDQaDfPmzUtxVmpiYkLjxo2TlXfp0oWNGzfqqVS0qoGMJrFPijaRfdL8t2+T+fPn8+jRI92qXUqUKFHilTl1Q0JCcHR0xMgo+YK5gYGBXj0g1XMlrvs2yJYtW7Ky7NmzkzNnTu7evftWz/UmnD59msqVK2NhYUHevHn56aefSEhI0O1PSQUcFBTEV199Ra5cuTA1NSVr1qx4eXmxf/9+QKqXd+zYwZ07d/RUV1oeP35M7969yZEjByYmJuTNm5fhw4cTHR2t1zeNRkPfvn2ZM2cORYoUwdTUlKVLl+r2JVWP3r9/X9cvExMTsmfPTosWLXj06BEAUVFRDBgwgFKlSmFra4u9vT2enp7pykebEXx9fbGysuLChQvUqVMHa2tr3Up9Rp6zlK4xvcdrVfxHjx6lQoUKmJubkyNHDkaMGKFnVpHRPqUHQ0NDHBwckpWXK1cOQO/53717N1FRUXTu3FmvbufOnRFC6OXp3bRpE4UKFcLT01NXZmRkRIcOHTh16hT3798H5HNw+vRpfHx89MaFihUrUrBgwXSZezg6Ouo9s4mvISIiQs8s5332S5F5UALgZ058fDwHDhygdOnS5MqVK0PHtmnTBkNDQ1avXq0rW7hwIS1atMDGxuaN+nXjxg2AZPlA+/Tpg5GRETY2NtStW5djx4699jn27duHoaEhDRo0eKO+enp6cvLkSb755htOnjyZqvqqSJEi2NnZMWbMGObNm8ft27df+5xCCOLi4pJ9xCuiNt28eZM7d+5kWP2b0rmS/oi/DgEBAbRv354OHTqwdetW6tevz9ChQ1mxYkWax/n4+LB582ZGjhzJ3r17WbBgAbVq1dIJ2bNmzcLLywtnZ2f8/Px0H5BCWPXq1Vm2bBn9+/dnx44ddOjQgcmTJ6eYL3Xz5s3Mnj2bkSNHsmfPHipXrpxin+7fv0/ZsmXZtGkT/fv3Z9euXUybNg1bW1uePHkCSFXd48ePGThwIJs3b2b16tVUqlSJ5s2bs2zZsje5lcmIiYmhcePG1KhRgy1btuhy775PAgICaNOmDe3bt2fLli20aNGC8ePH8+233773vgAcOHAAQO/5v3jxIvAyh68WFxcXHB0ddfu1dUuUKJGsXW3ZpUuX9NpMrW7iNjPKwYMHyZo1q94E713266effsLExAQLCwsqVarE1q1bX7vvik8LZQP4mRMcHExERAR58uTJ8LHW1ta0aNGCRYsW0atXLy5fvszJkyeZNGlShtuKj48nLi6OsLAwduzYwZw5c8iVK5fux9bW1pZvv/2WatWq4eDgwI0bN5gyZYpupadu3boZPufdu3fJmjUrFhYWeuUJCQl6K1AGBgZprlD89NNPXL16lRkzZjBjxgyMjY0pW7Ys3t7e9O3bFysrKwAsLS1ZuXIlnTp1okePHgA4ODhQo0YNfHx88Pb2TnffZ82axaxZs5KVL1++nA4dOqR4TFxcHF27dsXKyorvvvsu3ee6dOkSxsbG6a6fEUJCQti5c6duZaZWrVocOnSIVatW0bFjx1SP+/PPP+nWrRvdu3fXlTVp0kT3v7u7O3Z2dpiamupWk7UsXbqUf/75h3Xr1tGyZUsAateujZWVFYMHD2bfvn3Url1bVz8sLIwLFy6QJUuWNK9l5MiRBAcHc/78eYoUKaIrb9Wqle5/W1tbFi9erNuOj4+nZs2aPHnyhGnTpqV5zRklNjaWkSNHJlvZep+EhISwZcsWnQahTp06REZGMnv2bL7//nty58793vpy//59hgwZQpkyZWjUqJFeH01NTbG0tEx2jL29vW5Soa1rb2+fYj3t/sR/U6ubuM2MsGDBAg4dOsT06dMxNDR8p/0yNTWle/fu1K5dGxcXF/z9/ZkxYwZNmjRh/vz5dOvW7bWuQfHpoARARZp06dKFqlWrcuHCBZYsWUK+fPmoUqUKf/31V4bacXZ21tv28vJi3rx5mJmZAeDh4YGHh4duf+XKlWnWrBnFixfn+++/fy0BMDX69+/P9OnTddsNGzZk+/btqdZ3cHDg6NGjnDlzhj/++IMzZ85w6NAhhg4dyty5czl9+jSOjo4ANGjQAH9/f/bs2cOff/7JqVOn2Lx5M+vXr6dPnz789ttvgBQMEq/mJRVCW7VqxaBBg5L1JW/evCn2UQhB165dOXr0KBs2bNBb7U0q8Go0Gr0fl3z58qXo9RcaGkqtWrVSvS/pwdnZWSf8aSlRogTnzp1L87hy5cqxZMkSHBwcqFWrFqVLl063kHrgwAEsLS1p0aKFXrmvry+DBw/mjz/+0BMAa9So8UrhD2DXrl1Ur15dT/hLifXr1zNt2jTOnz9PeHi4rlz7rL9Nvvzyy7feZkawtrZOZj7Srl075s+fz5EjR1KdrLxtHj9+TIMGDRBCsHbt2mQTupRUrantext1E5fHxcXp7TM0NEzxuF27dtGnTx9atGjB119//cpzv2m/XFxc9BxgAFq2bEn58uUZMmQIvr6+KZq9KD4flAr4M0cbMuDWrVuvdXyVKlUoUKAAc+fOZfny5XTp0iXNgSg19u/fz+nTpzl37hzBwcEcO3YMd3f3NI+xs7OjUaNG/PPPP0RGRmb4nLlz5yYoKIiIiAi98gEDBnD69GlOnz6dqr1eSpQpU4bBgwezfv16Hjx4wHfffcft27eZPHmyXj1zc3OaNm3KlClTOHz4MDdu3MDd3Z2ZM2fqVDX58uXD2NhY9xk7dqxeG1mzZqVMmTLJPinN7IUQdOvWjRUrVrBkyRK9lTKQQnzicyX16jYzM0vxXCVLlkz3vUmNlOy0TE1NX/l9rl27lk6dOrFgwQI8PT2xt7enY8eOBAQEvPKcISEhODs7J3tOs2XLhpGRUbLVmfQ+A0FBQa/0Ct64cSOtWrUiR44crFixAj8/P06fPk2XLl2IiopK13nSi4WFxRubYrwpTk5Oycq0k73XXQXLKE+ePKF27drcv3+fffv2JZskOTg4EBUVlWwcACk4Jn6nHBwcUuy31h5PW1f7XKdWN3Gbid89Y2NjnY1pYvbs2UPz5s2pXbs2K1euTPbsvot+pYSxsTGtW7cmJCQkQ+GkFJ8mSrz/zDE0NKRmzZrs2rWLe/fuvVZYi86dO/PDDz+g0Wjo1KnTa/WjZMmSulWyjKBdJXsdobN27drs3buXnTt36q0G5cqVS7dCZmJikuF2QQ6Uo0aN4pdffnmlvU/u3Ln56quv6NevH5cuXaJo0aJs27ZNzyEhe/bsr9UPrfC3ePFiFi5cmOKKy+jRo+nbt69u29ra+rXO9T5xdHRk2rRpTJs2DX9/f7Zu3cqQIUMIDAxk9+7daR7r4ODAyZMnEULoPTeBgYHExcUlew7T+2xlzZqVe/fupVlnxYoV5MmTh7Vr1+q1m9T55G3wOu/E20br/JIYrZCekvD/tnny5Am1atXi1q1b/PHHHynavmlt/y5cuED58uX1+hkcHKwXZqp48eJcuHAhWRvaMm1d7d8LFy4kszG+cOGCXpunT5/W25/UHGfPnj00bdqUqlWrsmHDhhTHpHfRr9TQjrlv23FH8fGhvuFMwNChQxFC0L17d2JiYpLtj42NTTNWWKdOnfD29mbQoEHkyJHjXXZVjydPnrB9+3ZKlSr1Wuqzbt264eTkxPfff8/Dhw9fux+pHXvlyhXgpfD2/PlzwsLC0lW3ePHieqttryMAar/TxYsXM3fu3FRtwdzc3PTOVahQoQyf60OSO3du+vbtS+3atfn777915amtJNasWZOwsDA9705A54SRdAU0vdSvX5+DBw9y7dq1VOtog50nFs4CAgLeuhfwx8Lz58+TOQ2sWrUKAwMDqlSp8k7PrRX+bt68yd69e/VMSBJTr149zMzMkgUa1waub9q0qa6sWbNmXL16lZMnT+rK4uLiWLFiBeXLl9e9pzly5KBcuXKsWLFCz1nqxIkTXLt2Tc/ZKOnKemLBeO/evTRt2pRKlSqxefPmVGMHvot+pURsbCxr167F0dGR/Pnzp1lX8emjVgAzAZ6ensyePZvevXtTunRpevXqRdGiRYmNjeXs2bPMmzePYsWKpeqkkD179mQ/pm+bdu3akTt3bsqUKYOjoyPXr1/n559/5tGjRykO3J07d2bx4sVpZimws7Nj8+bNeHt7U7JkSb1A0CEhIRw5coSAgAAqVqyYZt/q1q1Lzpw58fb2pnDhwiQkJHDu3Dl+/vlnrKysdB6P165do27durRp04aqVavi4uLCkydP2LFjB/PmzaNatWqvPJeWR48epZgBxcbGRqc6/+abb1i4cCFdunShePHievVNTU1T/UF8U7RZHN7EyzktQkNDqV69Ou3ataNw4cJYW1tz+vRpdu/erfcDVrx4cTZu3Mjs2bMpXbo0BgYGlClTho4dOzJz5kw6derE7du3KV68OMeOHWPChAk0aNDgte0ax44dy65du6hSpQrDhg2jePHiPH36lN27d9O/f38KFy5Mo0aN2LhxI71796ZFixbcvXuXcePG4eLiki6VWrVq1Th8+PArvb3TIiIigp07dwLononDhw8THByMpaUl9evXT/P4w4cPExQUBEhb1Tt37uiyU1StWlXPc9/BwYFevXrh7+9PwYIF2blzJ/Pnz6dXr156DiCXL1/m8uXLgBSIIyIidG26u7vrmYNoNBqqVq2aavYSkIGg69aty9mzZ5k2bRpxcXF6z3/WrFl1gcXt7e354YcfGDFiBPb29rpA0KNHj6Zbt2565+7SpQszZ86kZcuW/PTTT2TLlo1Zs2Zx7do1XQgiLZMmTaJ27dq0bNmS3r17ExgYyJAhQyhWrFi6HHOOHTtG06ZNcXZ2ZtiwYcnsYt3d3XUq/nfRr/79+xMbG6vzpr979y4zZszg3LlzLF68WM9OWPGZ8iGCDyo+DOfOnROdOnUSuXPnFiYmJsLS0lJ4eHiIkSNHisDAQF299ATwPX369BsFgk7KxIkTRalSpYStra0wNDQUWbNmFc2aNROnTp1KVnfGjBkCELt3707XdQcEBIihQ4eKEiVKCEtLS2FsbCyyZ88uvL29xbJly/QCpqYUCHrt2rWiXbt2okCBAsLKykoYGxuL3LlzCx8fH3H58mVdvSdPnojx48eLGjVqiBw5cujucalSpcT48ePTHWAYSPXj5eWlq+fq6ppqvfQG2n2dQNCOjo6iQoUKr912p06d9PqnDUirfZaioqJEz549RYkSJYSNjY0wNzcXhQoVEqNGjdIFOxZCiMePH4sWLVoIOzs7odFoROLhLCQkRPTs2VO4uLgIIyMj4erqKoYOHZosEDppBN1O6drv3r0runTpIpydnXXPUatWrfSCcv/000/Czc1NmJqaiiJFioj58+fr3oPEpBQIunTp0sLZ2TnF/iSmU6dOwtLSMsV92vuZnucipWusWrVqqscnDiit/X4PHTokypQpI0xNTYWLi4sYNmxYsqDp2utP6ZP4/M+fPxeAaNOmTZrXn9Y1AikGr54+fbooWLCgMDExEblz5xajRo0SMTExyeoFBASIjh07Cnt7e2FmZiYqVKgg9u3bl2I/9u7dKypUqCDMzMyEvb296NixY4oB2lMirXuS9F6/i34tXLhQlCtXTtjb2wsjIyORJUsWUbduXbFnz5509V/x6aMR4g2mmgrFB6BVq1bcunUrmW2N4t1z+fJlihYtyvbt22nYsOGH7s5nxfPnz7G3t2fatGn06dPnQ3fnlVSrVo3g4OA3inmXlJ07d9KoUSPOnz+fLG6fQqF4uygVsOKTQgjBoUOHXhlIWPFuOHjwIJ6enkr4ewccOXKEHDly6MU+zGwcPHiQNm3aKOFPoXgPqBVAhUKhUGSYd7ECqFAo3h9KAFQoFAqFQqHIZKgwMAqFQqFQKBSZDCUAKhQKhUKhUGQylACoUCgUCoVCkclQAqBCoVAoFApFJkMJgAqFQqFQKBSZDCUAKhQKhUKhUGQylACoUCgUCoVCkclQAqBCoVAoFApFJkMJgAqFQqFQKBSZDCUAKhQKhUKhUGQylACoUCgUCoVCkclQAqBCoVAoFApFJkMJgIrPll9//RWNRkOxYsVS3K/RaOjbt69u+/bt22g0Gt3HwMCALFmyULNmTfbu3fu+uq1QKN4zaY0V2nFh6tSpKR47depUNBoNt2/f1pXFxsYyd+5cypYti729PRYWFri6utKkSRM2bdr0ri5DocgQSgBUfLYsWrQIgEuXLnHy5Ml0H/f111/j5+fH0aNHmTp1KtevX6dBgwYcOXLkXXVVoVB8QF53rEgNHx8fvv76a6pXr86KFSvYtm0bP/zwA0ZGRuzZs+eN21co3gZGH7oDCsW74MyZM5w/f56GDRuyY8cOFi5cSPny5dN1bO7cualQoQIAXl5eFChQgKpVq7Jw4UKqVKnyLrutUCjeM28yVqTErVu3WLt2LSNHjmTMmDG68po1a9K9e3cSEhLeRrcVijdGrQAqPksWLlwIwE8//UTFihVZs2YNERERr9VWmTJlAHj06NFb659Cofg4eJtjBUBISAgALi4uKe43MFA/u4qPA/UkKj47IiMjWb16NWXLlqVYsWJ06dKF58+fs379+tdq79atWwAULFjwbXZToVB8YN72WAFQpEgR7OzsGDNmDPPmzdOzDVQoPiaUAKj47Pj9998JDQ2la9euALRu3RorKyvdTP9VJCQkEBcXR3R0NOfPn6d79+64uLjQv3//d9lthULxnnnTsSIlLC0tWblyJXFxcfTo0YM8efLg6OhIq1at2LZt29vqukLxxigBUPHZsXDhQszNzWnTpg0AVlZWtGzZkqNHj3L9+vVXHj948GCMjY0xMzOjVKlSXLx4kW3btuHm5vaOe65QKN4nbzpWpEaDBg3w9/dn06ZNDBw4kKJFi7J582YaN26sF3lAofiQKAFQ8Vlx48YNjhw5QsOGDRFC8PTpU54+fUqLFi2Al95+afHtt99y+vRpjh07xtSpU4mNjaVJkyY62x6FQvHpk96xwshI+krGx8en2E5cXBwAxsbGeuXm5uY0bdqUKVOmcPjwYW7cuIG7uzszZ87k0qVL7+qyFIp0owRAxWfFokWLEELw+++/kyVLFt2nYcOGACxdujTVgVxLzpw5KVOmDF5eXgwYMIAFCxZw//59Ro0a9T4uQaFQvAfSO1Y4OjpiaGjI/fv3U2zn/v37GBoa4uDgkOb5cufOzVdffQWgBEDFR4ESABWfDfHx8SxdupR8+fJx8ODBZJ8BAwbw8OFDdu3alaF227dvT7Vq1Zg/fz537tx5R71XKBTvi4yMFWZmZnh5ebF161aioqL02omKimLr1q1UqlQJMzMzAJ4/f05YWFiK571y5QoA2bNnf7cXqFCkAxUHUPHZsGvXLh48eMCkSZOoVq1asv3FihXjt99+Y+HChTRq1ChDbU+aNIny5cszbtw4FixY8JZ6rFAoPgQZHSt++uknqlevjqenJ/369SN37tz4+/szbdo0Hj16xJo1a3THXrt2jbp169KmTRuqVq2Ki4sLT548YceOHcybN49q1apRsWLF93i1CkXKqBVAxWfDwoULMTExoXPnzinud3R0pFmzZmzfvj3DMf3KlStHy5YtWbp0Kf/999/b6K5CofhAZHSs8PT05M8//yRPnjwMHDiQ2rVrM3DgQPLkycPx48fx9PTUHZs/f3769+/P1atX6d+/P7Vq1aJdu3acOnWK8ePHs3PnThULUPFRoBFCiA/dCYVCoVAoFArF+0NNQxQKhUKhUCgyGUoAVCgUCoVCochkKAFQoVAoFAqFIpPxSQiAR44cwdvbm+zZs6PRaNi8efMrjzl8+DClS5fGzMyMvHnzMmfOnGR1NmzYgLu7O6ampri7u7Np06Z30HuFQqFQKBSKj4tPQgAMDw+nZMmS/Pbbb+mqf+vWLRo0aEDlypU5e/Ysw4YN45tvvmHDhg26On5+frRu3RofHx/Onz+Pj48PrVq14uTJk+/qMhQKhUKhUCg+Cj45L2CNRsOmTZto2rRpqnUGDx7M1q1bdUE3AXr27Mn58+fx8/MDZNLvZ8+e6QUFrlevHlmyZGH16tXvrP8KhUKhUCgUH5rPMhC0n58fderU0SurW7cuCxcuJDY2FmNjY/z8/Pjuu++S1Zk2bVqq7UZHRxMdHa3bTkhI4PHjxzg4OKDRaN7qNSgUilcjhOD58+dkz579o46tpsYOheLj4lMZO94ln6UAGBAQgJOTk16Zk5MTcXFxBAcH4+LikmqdgICAVNudOHEiY8aMeSd9VigUr8/du3fJmTPnh+5GqqixQ6H4OPnYx453yWcpAALJZtVaTXfi8pTqpDUbHzp0KP3799dth4aGkjt3bu7evYuNjc3b6LZC8VkQGRnJvXv3uH37NteuXePq1atcv36dR48e8ejRIyIiIlI8zlCjwcPGhsLh4RSKiyM7YAIYIwcrQzMzDK2tMcmZE1svL4xKlqRs9+5YW1u/x6vLOGrsUHyuhIeHs3DhQn799VeCgoJ05ba2tjg4OGBlZYWlpSVmZmaYmppiamqKoaEhGo0GjUaDgYEBBgYGaDQaDA0Ndf+bmJhgZmaGhYUFRkZG8hhAExMDcXEQG4smLg5TjQbjhARMHz3C7PFjLCIjMY2OxiQsDOPYWIyePcPy8WOsASvkeELx4jxv0YJCo0Z99GPHu+SzFACdnZ2TreQFBgZiZGSEg4NDmnWSrgomRvvwJsXGxkYN4opMy9WrV9m1axdXrlzh8uXLXL9+ncDAwFceZ6DRYGtujo1GQylDQ76MiaFRVBRZQkNlBUNDyJsXcueGmjWhYUMoUgSMjXVtPHv2DLp3/+jVqGrsUHwuxMTEcOXKFS5cuMC5c+dYunQpwcHBAOTIkYNWrVrRokULKlSo8HZUq0+ewM2bcOMGvDgPAAkJUhAMDoZjxyAiAiIj4cEDeUxSKlaEFi3A1RVy5MCySBEYNeqjHzveJZ+lAOjp6cm2bdv0yvbu3UuZMmUwfvHj4enpyb59+/TsAPfu3auSdCsU6SQkJIRRo0Yxe/ZsEhISku23tLTEzdmZIo6OuOfOTZEKFchZoABOFhY4PX+O9ZYtaHbvhsQTMQMDOUCXKgVdukDp0uDi8v4uSqFQpMrWrVvp3r17sglevnz5GD58OB06dND9xr4WQkBIiBTi7tyB0FAp4EVHQ44c4O4OWbLA48dw/jxs3w7Hj0NUVPK23NygWjWoUgVq14Zs2eQxDx9CuXLw/Pnr9/Mz4ZMQAMPCwrhx44Zu+9atW5w7dw57e3ty587N0KFDuX//PsuWLQOkx+9vv/1G//796d69O35+fixcuFDPu/fbb7+lSpUqTJo0iSZNmrBlyxb279/PsWPH3vv1KRSfEtHR0cydO5fRo0fz5MVMu3bt2pQvXx53d3cKFSiAW0QEWW7eRFO0KBQvDrGxsH8/nD0LJ0/CoUNyxg5gYgKFC0O+fFCnDtStC3nyfLgLVCgUekRERDBw4EBmz54NSPVu8eLFKV68OFWqVKFFixYYGb2BOJGQALt3w9On4OAgJ31eXnD6tBT8ypSBfftg4ULYuxcSqZoBeUy1alChghTuvvgCjIykAPnkCZw5I8ebIkWgQQPIxKt+eohPgIMHDwog2adTp05CCCE6deokqlatqnfMoUOHhIeHhzAxMRFubm5i9uzZydpdv369KFSokDA2NhaFCxcWGzZsyFC/QkNDBSBCQ0Nf99IUik+G2NhYsWDBApE7d27dO1i8eHFx4MCBl5Xu3RNi6VIhTp4UIjZWlh0/LkSLFkK4ugoh5/jyY2cnhKenEH37CrFvnxDPn2e4T5/qO/ip9luR+Xjw4IFwd3fXvfMDBgwQUVFRb+8E8fFCbN4sxPnzL8uio4VYtUqISZOEqFFDCGNj/bHDyEiIUqXk2HH8uBCRkUKcOSPEtm1CrFwpP7//LsT+/UKcPi3EkyfJTqveQSE+uTiAHxPPnj3D1taW0NDQNO144uPjiY2NfY89U3zMGBsbY2ho+KG7kW4SEhJYv349I0eO5N9//wUge/bsjBgxgm7dusmZvxByln3zplTfhofDrl2wYAH4+8sZPshZuYsLFCoEffrIFT8Li9fuW3rfwY+NT7XfisxFZGQkVatW5fTp0zg7O7N06dJkIdbeCCFg2zZp9lG4sFT/njkDkyZJdW14+Mu62bJB06bQqpW05zM3l/tPnJBqXQ8PyJkTbGzStcKn3sFPRAX8qSKEICAggKdPn37orig+Muzs7HB2dv6oDZDj4+PZuXMnI0aM4Pz58wA4OjoydOhQevXqhbm5uawYEwOrVsnB28YGpk+HjRvh0aOXjRUuDOXLS/VM1qzSGPsjvnaFIrMjhKBr166cPn0ae3t7jh07Rr58+d5O4zExcP8+bNgghcCnT2HZMjhwAM6de1nP3l6qdXv1kk5g2jEjIkKqgh8/lvtr1FDjyWugBMB3iFb4y5YtGxYWFh/1j73i/SCEICIiQmdE7fIROjhcunSJZcuWsWLFCh48eABIb9WBAwfSr18/GTZBCAgMlLPvbdvA2hr+/Vfa6cTEyIbMzKS9TfHiULUq5M8Phw9Ds2ZqsFYoPnImTpzI6tWrMTIy4vfff3994S86Wq7QBQTIT3i49OQ3NJSr/xERMGoU3L4t62s00uavShXw9YWiRWWZENIh5MIF6SRSqZJcOVS8NkoAfEfEx8frhD9t6BmFAtCtnAUGBpItW7aPQh0cERHBunXrmDt3LidOnNCVZ7Gxobu3N9+3aoWDmZmcdWszWjx+LGfsx4/rr/blzi0dOUqVksJf2bLyB+CPP+DLL6UaWKFQfJTExcUxceJERo4cCcBvv/1G9erV099AWBhcvw63bsmwLKam4OwsTT+KFQMrK4iPh+HDYe5cufoHchJZrRpUrgyNG0uzkbAwOcaEhEhHMgcHKFhQ1lOTyDdGjcTvCK3Nn8Ub2DcpPl+0z0VsbOyHFQATEti2aBEdv/uOp2FhABgZGtKwfHk6envTsH59TG1s5Gw9JEQO5qdPw86dcvUvMlK2Y2Eh7XIqVZKhW0qWlPY4ERHSu8/UFNq2lX8VCsVHybVr1+jYsSOnTp0C4LvvvqNHjx6vPjA+Xqpur1wBS0soUADq1UvdvnfGDJg2TU4m3dygb1/pobt1Kzg5yRAwDg5gZwe5cklVsInJW7pKhRYlAL5jlNpXkRIf9LkQAu7dg3PnOPfPP7QZP56IqCjy5MlD9+7d6dy5M87OznJQ37FDhm65fh0uX4Zr116GbwE5SPv4wLhxcmavJTpaBme9fVva5+TI8d4vU6FQpJ+VK1fSvXt3IiMjsbOzY+bMmbRt2zbtg7SC38WLUKKEnOS9akK7cSN8/71c0fviC2nf9+yZFPp69pSaA8V7QQmACkVmIT4e/v5bztKzZyewQAGa9O1LRFQUderUYceOHdKjNypKevCuWSMH5XPnZDwtLZaWcpWvWDH44Qep3omMlDaB4eFw9648rlw5uSKoJkEKxUeLEIKJEycyfPhwAGrVqsXixYvTlx/3wAHp+NWhw6sFv+ho+Plnae8XFweOjtLOz8ZG2vy5uEhPX8V7QwmACkVmIDISNm2SkfTbtycmPp4WtWrh7+9PgQIFWDN6NEb79skVu4cPpQC3Y4dU+4Jc6fvyS/D0lIJk2bLSOPvqVWnbZ2kpbXgsLeVqX+XKSvBTKD5y4uLi6NOnD/PmzQNg0KBB/PTTT+lL4RYSIu33atdOvk8IORHUOn4cPw5Ll77M+lO2LIwZA/Xrv72LUWSYt5CoT/E5EhAQwLfffkv+/PkxMzPDycmJSpUqMWfOHCJeqADd3Nx0Cb0tLCwoVqwYc+fO1WsnJiaGyZMnU7JkSSwsLHB0dMTLy4vFixfr7CR9fX117RgbG5M3b14GDhxIeOIYUEkYPXo0pRKpCkaPHq1rw9DQkFy5ctGtWze95OSZlqdPYd06aThdqhRRsbH4+Phw9OhRbCwt2erjQ5a//oJ//pER9v/+W4ZkCAmRDh27d8PBg1C9OmTPLmNxhYXBihXyb6tW0rO3Vi0pIObLp4Q/heIjJjIykrlz51KsWDHmzZuHRqPht99+Y/LkyenP3/vHH/KdT0xCgvTSXb5cxgQNDYWpU2Vcv4AAOUH87Tf45hsZGUDxQVErgIpk3Lx5Ey8vL+zs7JgwYQLFixcnLi6Of//9l0WLFpE9e3YaN24MwNixY+nevTthYWEsWbKEnj17YmdnR+vWrYmJiaFu3bqcP3+ecePG4eXlhY2NDSdOnGDq1Kl4eHjohLh69erphMKjR4/SrVs3wsPDdamH0kPRokXZv38/8fHxnD17lq5du3L//n127dr1Lm7Tp0FQkFTnNmkCdnYEBwfTtGlT/vzzT4wMDVndsSOF//xT2vjdvPnyOEND8PaWwt6jR9IY28NDBmc9eFDa+1SoIHP3KhSKT4YVK1bw3XffERwcDMiYpIsXL6Zp06bpb+Tff6UKN0uWl2X37kmVcKFC0u535EhYuVKGhdJopLA4bZrUFFy58kYB4BVvByUAKpLRu3dvjIyMOHPmDJaWlrry4sWL8+WXX5I4eYy1tbV0GADGjx/PunXr2Lx5M61bt2batGkcOXKEM2fO4OHhoTsmb968tGzZkhhtvDjA1NRU1067du04ePAgmzdvzpAAaGRkpGsjR44cfPPNN4wcOZLIyMiXQYszE3FxUvhr3hysrLh+/ToN6tblxq1b2JqastHUlBpJ76+rqxzAv/ji5aDt4iIdOq5cgUaN1MCtUHyiHD9+HF9fX+Lj43F1daVfv3507dpVxvZML3Fx4OcnHT602ydOyLKCBWH+fNi8+aX5SJUqcsXP3l5GBti8WWoMFB8cJQC+R7RBgN83GQlCHRISwt69e5kwYYKe8JeYtNoyMzPTqXZXrlxJrVq19IQ/LcbGxhgbG6fajrm5+RunzzM3NychIYG4uLg3aueTZf9+uUpnZUVYWBj16tTh5u3buJmYsCM6GvfoaBms+YsvpM1e5coyJIO9vVQDlyolZ/jr18sgzsquT6H4ZAkJCaFNmzbEx8fTunVrVqxYIZ2+MsqxY3KieOKEtPO7eVPa/Nnbw+DBMlIASPORKVOk6cjmzXLiuHOntBnMiMCpeGcoAfA9EhERgVXiUBnvibCwsFSFuaTcuHEDIQSFChXSK3d0dCQqKgqAPn36MGnSJL39cXFxrFixggsXLtCrVy8Arl+/TrVq1TLc31OnTrFq1Spq1qyZ4WO1XL16ldmzZ1OuXLmMzW4/F27ckPY4BQsC8P3333Pz9m1yazSciInBydhYGmF/950UAhMTGipt+4KCpJ1P7dpyFVChUHySJCQk0KlTJ+7evUuBAgWYN29exoS/kBA5pvz9txTwGjSQk0MjIzlRXLtWqntBCoI//CDDu4SHw7x50omsSBE5wVR8NCgBUJEiSVf5Tp06RUJCAu3btydamwkCGDx4MD/88APR0dGYmJgwaNAgXeBQIUS6Vx63b9+OlZUVcXFxxMbG0qRJE2bMmIG/vz/u7u66esOGDWPYsGEptnHhwgWsrKyIj48nOjqaatWq6bzbMhXPn0uvuxcqmn379ulU6YuFwKlgwZcewYlJSJCG2hs2yJU+Nzdo3/7V4R0UCsVHzf/+9z927NiBqakp69atw8bGJn0H3rsnVbumpnI8MDSEPn2kw1h0tAwZ9fXXcrJoYADffitt/+zsZNlPP8lQUI0bq3HkI0QJgO8RCwsLwl5kW3jf500v+fPnR6PRcPXqVb3yvHnzAiSzpRs0aBC+vr5YWFjg4uKiJ/AVLFiQK1eupOu81atXZ/bs2RgbG5M9e3adejguLo5ziZKD29vbp9pGoUKF2Lp1K4aGhmTPnh3TzJR1QggZuuXsWTkw168PxsaEhobSpXNnAPoANby8pKG2iYlM5XbzpnQACQgAf39Z7uEhHUDSuWqsUCg+Xm7fvs0PP/wAwK+//qoXPSFVEhJeqm1Ll4b792HhQqlRePBAmpaMHStX90CGhFq0SMb+BLlaOGUKdOsmQ74oPkqUAPge0Wg06VbFfigcHByoXbs2v/32G19//fUr++vo6Ej+/PlT3NeuXTuGDRvG2bNnk9kBxsXFER0drWvf0tIyxXaMjIxSbT8pJiYm6a772SCEdM44c0ba3FSvLmffL/juu++4d/8++YBJWbLI1T0DAzh8WEbkz5lTqnfLloWuXWVQVoVC8dkwfPhwoqOjqV69Ot27d0/fQdu2yUmhtbUUBkNDZbgnL6+XKuB//pGagiFDZHBnU1M5Hu3eDVu2yFy/uXO/24tTvBFKAFQkY9asWXh5eVGmTBlGjx5NiRIlMDAw4PTp01y9epXSpUunq51+/fqxY8cOatasybhx46hUqRLW1tacOXOGSZMmsXDhwvTNRhUpc+OGVPXmzy/VvUmcajZv2sTixYvRAEsAy/nz4dQpOZjfvAnDhsm8mwqF4rPkzJkzrFq1CoCpU6embZKjTet29CgEB0sbvqxZpeNG7twyxufixVLlGx4us3asWPEyEHRUFMydKzULv/wCmTHywieGEgAVyciXLx9nz55lwoQJDB06lHv37mFqaoq7uzsDBw6kd+/e6WrH1NSUffv28csvvzB37lwGDhyIhYUFRYoU4ZtvvqFYsWLv+Eo+U2JiYO9eKfC1bi1n3kl4eOMG3Xx8APgeqFSvnjTY9vSUKdtcXZXwp1B8xgghGDhwIAA+Pj588cUXqVf+7z/p3VuggNQC9OolBbo1a+Sqn729nGSuWyfrV68unT60zmHh4TLgc/bs0Levsvf7RNCIxEHdFBni2bNn2NraEhoamsyoNioqilu3bpEnTx7MknpZKjI9r/18PHwohb9KlWTGjRQQd+7QwNub3RcuUAo4aWqKydWr0og7Lk4O3O3aJVsx/BRJ6x38mPlU+634dNi2bRuNGzfG1NSUf//9l9wpqWOfPZPjia2tFPS2bZNx+7Sre40aycDv/fvLkC9GRjBuHAwa9FLIe/oUJk6U+XxbtPhkQkWpd1CtACoUnw5CwJ490hYnNceeu3eZNWoUuy9cwAxYCZj8738vwy+cPCmNuj8D4U+hUKRMdHQ033//PSDtgJMJf0LIkC5XrkDdutJueONGKFlSruqdOSOFvWbNpEoY5IRz1Srp6CEEPHkihcKFC6WX7xuE7VJ8GJQAqFB8Kjx4ALlypS78PXzIpRUrGLhmDQCTAff69WUaOJBqmlu3ZGgXhULx2TJkyBCuXr1K1qxZGTJkyMsdQsjQLseOQZ48UhMQEyNVuxUryrKYGJmvd9kyWd/cXAZ4HjBAhnbZsEGqh7NkkSnhfHzk6p/ik0MJgArFp8KVKzKYalKEgHPniFq2jDbr1hEVHU11oLe1tUy4bmws6xw9KtU7n4iKRqFQZJxdu3Yxbdo0AH755Rep3oyLkw4eV67IFb4GDaTaNzZWZvqpUQNy5JANDB8OS5fK/5s0gcmTpWPHxo3SdrhOHekdfO6cFA6V8PfJojK5KxSfCg8fSiNrkALdgwewb58crNeu5fugIC4+eADAQSCqf38ZosHJSdZ99kyFZVAoPmMePXqEr6+vbrtDhw4y/aifnxT22raV+b1tbWWFQ4egfPmXwt/s2dKZQ8uWLfJYOzvo0EFOKK2tZYiYq1fltuKT5ZMRAGfNmqUzmC9dujRHtXYJKeDr64tGo0n2KVq0qK7OkiVLUqyjTXemUHxU+PvLv//8I7N4rFgBly/LAKyFCrH96VNmaFMxaalc+eX/x47Ba6TlUygUnwZCCHx9fQkMDNT7rSM6Gm7flsGbE6d/e/hQpnx8kS6SZctklg+QQqKWFi2gcGEZPxSk+nfPHhks3uCTESEUKfBJfHtr166lX79+DB8+nLNnz1K5cmXq16+Pv/ZHMQnTp0/n4cOHus/du3ext7enZcuWevVsbGz06j18+FB57Co+HqKjpdp22TL5MTKSA26tWtLupmZNePiQK1On0nnRIkBm+9CR9P3Ilu29dV2hULxfFi9ezO7duzEzM2Px4sUvd5w6JVf5Ept+xMdL7UGdOnJ72TLw9ZWahTp1YMGC1E+0a5dUGX/kSQ0Ur+aTEAD/97//0bVrV7p160aRIkWYNm0auXLl0uU3TYqtrS3Ozs66z5kzZ3jy5AmdX6TE0qLRaPTqOTs7v4/LUSjSJi4O/vxTGmZnyyaFPTc3GfOvePGX0fk3buTUsmVU3r6d4NhYPICxidU3EREv/69U6X1fhUKheE8EBgbqYv6NGzdOL3869+7J+H6J8fOTHr+WlvrCX8OGUsBzdEz5RBcvSnVwrlzv5DoU75ePXgCMiYnhr7/+oo52pvKCOnXqcPz48XS1sXDhQmrVqoWrq6teeVhYGK6uruTMmZNGjRpx9uzZt9ZvheK1uHVLxunT2twUKiRt96ytX6pbXqRb2ufvT41ZswiJiaEcsHflSkx79nzZVtasL/9PlB5OoVB8XgwcOJAnT55QsmRJ+vXrp78z6epfWJgM31KiBCxf/lL4K1dO5v9NTa37/LnMNV6lyju6CsX75qP3Ag4ODiY+Ph6nJFkLnJycCAgIeOXxDx8+ZNeuXbp0OFoKFy7MkiVLKF68OM+ePWP69Ol4eXlx/vx5CiSdLb0gOjqa6Oho3fazZ89e44oUihSIjpYzbzMzaNNGP7vH1avSBkfLyZP8+e+/NBw4kNiEBGoDG0eNwqpdO8LDw1/Wy5PnvXVfkTZq7FC8K/744w+WL1+ORqNh3rx5GBkZ6T1rycaBy5fBw0NqGLTCn7u7zOFrlIpIIIRMCVe3rsry8Rnx0a8Aakmaw1AIkXZewxcsWbIEOzs7mjZtqldeoUIFOnToQMmSJalcuTLr1q2jYMGCzJgxI9W2Jk6ciK2tre6T6zNeBg8ICODbb78lf/78mJmZ4eTkRKVKlZgzZ470KgPc3Nx04QYAzp49S6NGjciWLRtmZma4ubnRunVrgoODdXU2bNhA+fLlsbW1xdramqJFizJgwIA0+zJ69OgUHXYKvxCKYmNjGTx4MMWLF8fS0pLs2bPTsWNHHrzwiE0LjUbD5s2bk5X7+vome2beGdrBtUQJqFcveWq3//6DvHnl/9euEXX9Ol1+/JHYhASaAtuaNcNq1Kjk7apcnB8NmWnsULw/wsPD6fli1b9Pnz6UK1cueaWkv5M3bsClSzIeaEKCVAXPmyfj+qXG6dNS7avsiD8rPvoVQEdHRwwNDZOt9gUGBiZbFUyKEIJFixbh4+ODiYlJmnUNDAwoW7Ys169fT7XO0KFD6d+/v2772bNnn+VAfvPmTby8vLCzs2PChAkUL16cuLg4/v33XxYtWkT27Nlp3Lix3jGBgYHUqlULb29v9uzZg52dHbdu3WLr1q06gXH//v20adOGCRMm0LhxYzQaDZcvX+aPP/54ZZ+KFi3K/v379cqMXsxWIyIi+PvvvxkxYgQlS5bkyZMn9OvXj8aNG3PmzJm3dFfeIWfPSpsbrZCXmNu35cBsbCxn7n/+yfhly/g3OBhnYJG7O6bLlukGeSMjIzr5+MCdOxhdvCjtBs3MUp/ZK94LmWXsULw/Hj58SJMmTbhx4wbZs2dn/Pjxun1GRkZ0qlIFXF114yQg1b9XrsjYfvHxMitQly4yDVxijIygUyf5/4kTUkNRv/57uCrF++Sj/1UwMTGhdOnS7Nu3j2bNmunK9+3bRxNthoNUOHz4MDdu3KBr166vPI8QgnPnzlG8ePFU65iammKadHXmM6R3794YGRlx5swZLBN5ehUvXpwvv/ySlNJHHz9+nGfPnrFgwQLdgJMnTx5q1Kihq7N9+3YqVarEoEGDdGUFCxZM10qbkZFRqk46tra27Nu3T69sxowZlCtXDn9//5RzYH4shITIaPqtWyffFxsLhw9LlfCpU/DwIf8cPcqkY8cAmOnmRpb9+8HKSneIqakpS4YNkyEegoJkMnfFByezjB2K98OFCxdo2LAhd+/excHBgd9//x1bbWw/wNTAgCW9esmxIzG7d8PPP8tsHzVryriA7dolP4GpKSxa9NIspUYNFUD+M+STUAH379+fBQsWsGjRIq5cucJ3332Hv7+/bul76NChdOzYMdlxCxcupHz58hQrVizZvjFjxrBnzx5u3rzJuXPn6Nq1K+fOndO1mVkJCQlh79699OnTR0/4S0xKqndnZ2fi4uLYtGlTigKits6lS5e4ePHiW+1zSoSGhqLRaLD7mJ0fhIAjR2TC9ZQG14MHZXqmP/+E58+Jj4yk6/LlxAHNsmal+fnzMqp/YhISpLAYESHjfikUis+Ks2fP4uXlxd27dylYsCAnTpzA09NTv5K/f/Kg7w8fQs+eEBkpowKMGCGzeKRkKhIbC7//LjN/eHkp4e8z5aNfAQRo3bo1ISEhjB07locPH1KsWDF27typ8+p9+PBhspiAoaGhbNiwgenTp6fY5tOnT/nqq68ICAjA1tYWDw8Pjhw5krINxdtCCP3QHO8LC4t0v8A3btxACEGhQoX0yh0dHXVBsvv06cOkSZP09leoUIFhw4bRrl07evbsSbly5ahRowYdO3bUqeq//vprjh49SvHixXF1daVChQrUqVOH9u3bv3J15MKFC1glWukCaNOmDQtSiFcVFRXFkCFDaNeunUyD9Aratm2LYRLD5ujoaBo2bPjKY18bIeRAXLas3gqejvv35bOideqoUIH52bNzBrA1Nua3U6cghWsTp04RkSsX3LyJRb16aLTHZ+AZUCgUHy8TJ07k+fPnVKpUia1bt5IlBds9ceMGEQUKQHg4FmZmaE6dgu++kxoHZ2cZ5++vv1L26I2IkPl+S5eWAqAQauz4XBGK1yY0NFQAIjQ0NNm+yMhIcfnyZREZGfmyMCxMCPk6vd9PWFi6r+nEiRMCEJs2bdIr/++//8T169dFuXLlxLfffiuEEMLV1VX88ssvevWCg4PFunXrRP/+/UXevHmFnZ2d+Oeff/Tq3LhxQ8yfP1907dpV2NnZiRIlSojw8HBx584dYWlpqfv8+OOPQgghRo0aJYoUKSKuX7+u9wkICEjW/5iYGNGkSRPh4eGh97306NFDr20tgJg9e3aytps3by6aNGmS7vuWUSJDQsTlv//Wfz60xMcLsXSpELduCbFqlRDx8SLmu++EKwhATJ88OeVGnz8XYfPnC17UC3v06LWegU+JtN7Bj5lPtd+KD0tQUJAwNjYWgDh79myq9fTGgfnzhfj+ezkOGBoKceSIEOvXCxEYmPzAJ0+EWLJEiP/+U2NHJuCTWAFUvD/y58+PRqPh6tWreuV5XzgomL/Cs9TBwYGWLVvSsmVLJk6ciIeHB1OnTmWpNrk4kC9fPvLly0e3bt0YPnw4BQsWZO3atfj4+HDu3DldPXt7e93/JiYm5M+fP81zx8bG0qpVK27dusWBAwf0Vv/Gjh2rC5SaFGdn52RtW1tb8/Tp0zTP99rExkobnNSyzty9K3P+Hj4MX34JFy+ybto07gBZbW3p3rdvysf98Yfy0lMoPmOWL19ObGwspUuXplSpUilXev5cX6tQsODLFG8TJ8qxx9lZP05obCycOSM9hJs2VU5jmQT1Lb9PLCykF9aHOG86cXBwoHbt2vz22298/fXXqdoBpgcTExPy5cunH5suCW5ublhYWBAeHo6RkdErhbzU0Ap/169f5+DBgzg4OOjtz5YtG9k+BuEoIQFCQ2Vg5ydPUq5z7ZpUAVerBhYWiK++YtILu8pvBw1KWQi/e1eqd4yN313fFQrFB0MIoTN56datW+oVb97Ut//r318KfR4ekC8f2NpK2z+Q3r1nz8oxp0wZGXxeo3lpeqL4rFEC4PtEo/kk8ifOmjULLy8vypQpw+jRoylRogQGBgacPn2aq1evUrp06WTHbN++nTVr1tCmTRsKFiyIEIJt27axc+dOXV7K0aNHExERQYMGDXB1deXp06f8+uuvxMbGUrt27TT7FBcXlywUkEajwcnJibi4OFq0aMHff//N9u3biY+P19W1t7d/ZQig90pYWMo2f4k5fFiGXMiTB6ZNY9fJk1wArCws6N27d8rHHDggU8gl8pRXKBSfDydPnuTy5cuYm5vTtm3b1Cv+95/+RPCvv+SY06ABFCsmVwSDgmRsvydPZBxAH5/UM4AoPluUAKhIRr58+Th79iwTJkxg6NCh3Lt3D1NTU9zd3Rk4cGCKQoi7uzsWFhYMGDCAu3fvYmpqSoECBViwYAE+Pj4AVK1alZkzZ9KxY0cePXpElixZ8PDwYO/evcmcTpJy6dIlXJJ4vJqamhIVFcW9e/fYunUrQDK1yMGDB6lWrdrr34y3TWysXP1LHKk/Mfv2SdVwpUqwdi3074/W3aZHr14pGnzz9CkcPy5jeynVjULxWaJd/WvZsqVeyBc9hJBCXdJIDBUqQNeu0qlj/36pJvb0lKpgRaZFI0QqMTsUr+TZs2fY2toSGhqazNs0KiqKW7dukSdPHsxSs/VSZC7i4uQKoJ1dys/HuXMy9Ev9+jIAtLc3fnFxVASMjYy4dfs2OXLk0G8zNBSWLoWcOaF5c8LDw3Xe0mGPHmGpDZYeFvZJrD5nlLTewY+ZT7Xfig/D8+fPcXFxITw8nMOHD1MltXy8Dx/CkiWEe3tj9SKmbdgXX2DZpo20A9y6FYoUkat+aREe/lJTocaOzxa1XKBQvC+io1N3/Pj3X7h1S87Ig4KgeXOex8XRw9YWQkPxadEiZeFv82YoUABesYKqUCg+XdasWUN4eDgFChSgcuXKqVc8e1aGh3qhEQFkHvGGDWH9eqhTJ3nsUEWmRQmACsX7IjoaUgpMHRQkgzc3ayaDr7ZvT3xkJO2zZuVCUBDOtraMnTJF/5j4eNiyBRo3ltH9Xxh9Gxoa0qJFC/m/iQm8+F8lcFcoPk2eP3/OmDFjAPjqq69SDMQPyPh9W7ZAx44Y1qhBCwA3Nwxz5YJ//oGWLdPvEGhoqMaOTIASABWK90FCgvyb1NA6Kgp27pThXvz9Yc8euHuXYTY2bAsKwtTEhM0//0yOnDn1j/vzT/jii5dqmhe2f2ZmZqxfv/5lvcT/KxSKT46xY8dy//598ubNSx9tOJekRETAvHlQvToMGoRZTAzrPT2haFHp+NGqVcacPMzM1NiRCVBuPwrF+yA6WubXTIwQMnZf7dpSkNuxA9auZSEw+dkzABZ360b5zp31jwsKgoAAObj7+0vDboVC8dlx8eJFfvnlF0DmN08xBFR4uNQcZMkiTUn8/KSjWZEikDcvtG+vPHwVKaKeCoXifRAVpW//J4QsK1BABn2OiYEZM5iXkED3F1V+aNaMtqNH6w/eCQlylbBePRlW6L//ZGwvhULxWSGEoE+fPsTHx9OsWTMaNGiQvNKjR1L4q1FDOoBMnCjLy5WTZVWrqjRuilRRAqBC8a4RQgpuiW1pwsOlYFewoNweOJBf/P3pgczf1Kd1a8Z8+61+tH6QsbuKFHmZBzgwUC/7R3h4OBqNBo1GQ3hgoBz8VWBXheKTY8WKFRw5cgQLCwumTZuWvMI//8j4ny1aSAeyOXPkpNLNjfDy5dF06IDGyyvNQPypEh6uxo5MgBIAFYp3TUwMJA5Grc0Go1UJr1rF1Jkz6f9i9/f9+jGjfn0MKlXSb+fJE7ni98UXL9uxtFQzfIXiM+Px48cMGDAAgBEjRpA7cWaPhATYtUuagrRuLR07Bg2CO3ek6rdGDejY8QP1XPEpoZxAFIp3TWTkyzhakZEyHqClpRzA//qL//r1Y9gLJ5Exo0YxokABNHXq6K8YCiG9fbWqX5Apn17kaFYoFJ8PgwYNIigoiKJFi9K/f/+XO2JjZeinwoXhRZw/fvoJTp6UGoWKFWHmTBklQKF4BWoFUKF4l8TGyhm7sbH8Gx4uc3FqNFIQ/N//+CEoiFigbo0ajKxeHY27e3LV799/y9Rw9vZyOz4eLlxQAqBC8Zlx+PBhFi1aBMDcuXNfprKMioJ166QGQCv8+fnBDz/I/8uXl/aAKvGAIp0oAVDxTtBoNGzevBmA27dvo9FoOHfu3GsdnxKv02Z6cHNzS9ne5nUQQqZc0trrPXsm/9eu4D17xqW//mLNi+o/DRgg1bxJ0tkRGgpXr0rDbpBC5YYN8ofA2vrt9FWhUHxwoqOj6dGjByBj/nl5eckdT59K4a969ZdOX7duQd26cjJYvLhcCXxVnnGFIhFKBazQw9fXl6dPn6YpfGWUXLly8fDhQxwdHdN9zMOHD1POe/spER0t4/MZGb3M/audzcfEwPPn/Pyiavs2bSgVFARt2ujb9EVGyjiBdetKFU9UlBT+KlaUK4IKheKzYdKkSVy7dg0nJyd++uknWXj7Nhw5IoO+awPJX70qs3o8fy6dwL76So4JCkUGUAKg4p1jaGiIcwaTjme0/keHEBAWRrytLZr4eAyeP3+pvgV49IhI4DhgYmLCuFatpF2P1jEkMhJOnIAHD8DLCxwdISQEtm+XcQOzZ/8QV6VQKN4RT58+ZcqLjD+//PILWezspNe/v7+cGJqYyHHlwAEYOhTu3pXjRffucmXQSP2cKzKGUgEr0qRatWp88803fP/999jb2+Ps7Mzo0aP16ly/fp0qVapgZmaGu7s7+/bt09ufWF2bkJBAzpw5mTNnjl6dv//+G41Gw82bN4HkKuBTp07h4eGBmZkZZcqU4ezZs3rHL1myBLskadY2b96slzbpv//+o0mTJjg5OWFlZUXZsmXZv39/uu/FkSNHMDY2JiAgQK98wIABuuTs2n5sX78e98qVMTU3586lS9LpQxvPLyICERrK0xfH9+7dmzxhYS9Dwvz3n4zCnzs3tGsHbm5w8aJ0AmnWLE3hz9DQkAYNGtCgQQOZCq5BA/lR6ZwUio+aBQsWEBYWRtGiRWlTsyasWSM1Bc2bS+Hv/n1YsADmzoW//pIHtW4tY4m6u+u1pTcOvM67b2ioxo5MgJoyKF7J0qVL6d+/PydPnsTPzw9fX1+8vLyoXbs2CQkJNG/eHEdHR06cOMGzZ8/o169fqm0ZGBjQpk0bVq5cSc+ePXXlq1atwtPTk7wpODWEh4fTqFEjatSowYoVK7h16xbffvtthq8jLCyMBg0aMH78eMzMzFi6dCne3t5cu3ZNP8xCKlSpUoW8efOyfPlyBg0aBEBcXBwrVqx4qa4BIiIimPjzzyxYsAAHGxuyZcny0jBbCLh7lyAgBrC2tmZ4t25yNm9oCJcuweXLUvAzMnoZ8sHEBNq2fWVEfzMzM3bs2PGyIPH/CoXioyQ2NpZff/0VgP5166I5elQKX7a2ssKlSzLu37Fj0gQkIUHG/8uXT5qHJAkFlWwcyChmZmrsyASoFUDFKylRogSjRo2iQIECdOzYkTJlyvDHH38AsH//fq5cucLy5cspVaoUVapUYcKECWm21759e/7880/u3LkDQEJCAmvWrKFDhw4p1l+5ciXx8fEsWrSIokWL0qhRI50AlhFKlixJjx49KF68OAUKFGD8+PHkzZuXrVu3pruNrl27snjxYt32jh07iIiIoFWrVrqy2NhYZs2cSUVPTwq5uGCZPfvLATo0lPDnzwl6UXfEiBE43rsnHT/++kuu/n355Uvhb/NmuRJYq5ZK56RQfKZs2LCBu3fvks3OjnZt2sgxQCv8Xb4sNQCbNsGyZXJc6NwZKleWK3+furmM4oOhflEUr6REiRJ62y4uLgQGBgJw5coVcufOTc6cOXX7PT0902zPw8ODwoULs3r1akCGPQgMDNQTohJz5coVSpYsiYWFRbrPkRLh4eF8//33uLu7Y2dnh5WVFVevXsXf3z/dbfj6+nLjxg1OnDgBwKJFi2jVqhWW2jh/8fGYmJhQ4osvpPeujc1LwU0IEu7d4zYy24eFhQXeDRrIbB6PHsm/3t6yvlb4K1RIJnNXKBSfJUIIfv5ZuoP1qVsXs7JlX+68ckVODBcvlmYhIO3/xo+XziEppYdTKNKJUgF/CLZvl95b7wNra2jU6I2aMDY21tvWaDQkvAhcLIRIVl+TjswU7du3Z9WqVQwZMoRVq1ZRt27dVL2EUzpHUgwMDJLVi42N1dseNGgQe/bsYerUqeTPnx9zc3NatGhBTEzMK9vXki1bNry9vVm8eDF58+Zl586dHDp06GWFyEjMzc3RREXJVbzEGUCCg7kfFUUkYGRoiL29PRp/f+nZd/UqtGwpVwqFeCn8FS2a7r6BFHKzvUgNF3jrFpZaT+HAwJfBqBUKxUfDsWPHOHPmDGbGxvTS5vIFuH4dDh+WK39798qyadPg229h6lSoX19mAUkBvXEgMPDlBDW9hIe/TDGpxo7PFiUAfgjeUCD7mHB3d8ff358HDx6Q/YVzgp+f3yuPa9euHT/88AN//fUXv//+O7Nnz07zHMuXLyfyhXAF6FbgtGTNmpXnz58THh6uG+ySxgg8evQovr6+NGvWDJA2gbdv307vpero1q0bbdq0IWfOnOTLl+9lrK6oqJcG05GRel6/cbGx3L17l5AX29mzZyfk8WNp1xMaCj4+L1cKz56FHDkyLPxpiYiISLzxWm0oFIr3g3b1r2PjxmTVTtju3JE2ePv2vRT+Zs+GHj1g1SoZF7BmzTTbjXjTd1+NHZ89n4wKeNasWeTJkwczMzNKly7N0aNHU6176NAhNBpNss/Vq1f16m3YsAF3d3dMTU1xd3dn06ZN7/oyPjtq1apFoUKF6NixI+fPn+fo0aMMHz78lcflyZOHihUr0rVrV+Li4mjSpEmqddu1a4eBgQFdu3bl8uXL7Ny5k6lTp+rVKV++PBYWFgwbNowbN26watUqlixZolcnf/78bNy4kXPnznH+/HnatWunW8nMCHXr1sXW1pbx48fTuXNnWSiEnDVrw7gYGOjs/kJDQ7l08SIhL86V3c4OG1tbqea9eBGaNIEXgi2RkbIssRpIoVB8lqxfv54tW7ag0WjoN3asLHz4UKp7t26VMUBBpndr3156AV+/DqNHK5tgxRvzSTxBa9eupV+/fgwfPpyzZ89SuXJl6tev/0rbrWvXrvHw4UPdp0CBArp9fn5+tG7dGh8fH86fP4+Pjw+tWrXi5MmT7/pyPisMDAzYtGkT0dHRlCtXjm7duvHjjz+m69j27dtz/vx5mjdvrlvZSwkrKyu2bdvG5cuX8fDwYPjw4UyaNEmvjr29PStWrGDnzp0UL16c1atXJwtX88svv5AlSxYqVqyIt7c3devW5Ysvvnita/b19SU+Pp6O2qTr0dFS3asdlF8Igk+ePOH69evExsdjChTOmpXszs4vs4RUqgROTi8bP3gQqlVTg7tC8Zlz48YNunbtCsD3fftSxN1dxv387Tep6j14UFb87TfpFLJunRxn+vVTMf8UbwWNSI+B1QemfPnyfPHFF3pqwiJFitC0aVMmJraZeMGhQ4eoXr06T548SRYbTkvr1q159uwZu3bt0pXVq1ePLFmy6JwTXsWzZ8+wtbUlNDQUG226rxdERUVx69Yt3aql4vOie/fuPHr0SHoQCwGPH0OWLFJwe/oUrKyIiovjypUrxMfH4wDkNjXFMHt2sLUlKjiYW7dvk6dkScy0wm9AgAz+3LTpa/crPDwcqxfpoMIePcJSK1yGhX2WdjxpvYMfM59qvxVvh6ioKDw9PTl37hyVChfm4IULGF28CD//DGvXynSP2bLB0qUy5ePu3fL9LVkS8ud/Zft640BY2OvZAGrTyqmx47Plo19miImJ4a+//qJOnTp65XXq1OH48eNpHuvh4YGLiws1a9bkoHY29QI/P79kbdatW/eVbSoyN6Ghoezfv5+VK1fy9ddfy8KYGDA2frlqFx9PgoEB//33H/Hx8VgBroBhtmyyntYByNz8ZXgYIeCPP15p16NQKD5t4uPj+eabbzh37hyONjasWbYMo82bpWfvihVS+KtXT9oHa4W/AgXkBDMdwp9CkV4++nXk4OBg4uPjcUqsJgOcnJySZWTQ4uLiwrx58yhdujTR0dEsX76cmjVrcujQIV3GhoCAgAy1CTJRd7Q2pytyBqHIXDRp0oRTp07Ro0cPateuLQvDw1/G7IqLA0ND/P39iYyMxEijIa8QGFhYSAeRhAQZZDUqSgqDIIW/PXtkKjhr6w9zYYp3iho7FADnz5+nR48enDx5Eo1Gw4rOncmxd6+M/7lli6zUpw9MmAAXLsjySpXg1ClIJUyWQvG6fPQCoJakoUWEEKmGGylUqBCFChXSbXt6enL37l2mTp2qEwAz2ibAxIkTGTNmzOt0X/GZoBfyBeTqn6HhS+/fmBgePn9OcHAwAHmFwMTAQKpztAKfRiPtBTUaKRBu3Qq5csnZ/htiYGBA1apV5f9GRvDif2VT+GFRY0fmJj4+nh9++IEpU6YQHx+PjY0N0729qasN+L5mjZw8NmsmBb69e6W6t1Qp+P13GSIqA++w3jjwOu++gYEaOzIBH70A6OjoiKGhYbKVucDAwGQreGlRoUIFVqxYodt2dnbOcJtDhw6lf//+uu1nz56RK1eudPdB8RkSFiaDPSMnEPcfPCDg6VMAcgA2IEO6aDRStWNvD0+eSPWvEHKgL1gwWS7P18Xc3FxfSE0qsCo+CGrsyNz89NNPunSRLVu2ZFqLFmTftg1KlJBOHZGRUKaMTAFZr560v4uNlTEAa9VKNd5faiQbBzKKubkaOzIBH71ob2JiQunSpdm3b59e+b59+6hYsWK62zl79iwuLi66bU9Pz2Rt7t27N802TU1NsbGx0fsoMjGxsXJ2bGSEEAJ/f3+d8JfT0BAXkHY7hoZS2LOxkbN8IyMpEEZEQJEib034U3y8qLEj83LixAlGjRoFwJw5c1i3Zg3ZN2yQ9r5Tp8oJYd680uGjRQsp7P39t4z35+EhJ5AKxTvgo18BBOjfvz8+Pj6UKVMGT09P5s2bh7+/Pz179gTk7Pr+/fssW7YMgGnTpuHm5kbRokWJiYlhxYoVbNiwgQ0bNuja/Pbbb6lSpQqTJk2iSZMmbNmyhf3793Ps2LG32vdPwMla8bqEhels9h4+fEhQkMzw62pjQ9Znz2QoGBubl+peY2PpLWxnhwgOluWurh/yChQKxTvk2bNntGvXjvj4eNq2bctX3btLQc/ERMb4u3BB2g/v2SMdPEJDZRagYsWgQ4eXpiUKxTvgkxAAW7duTUhICGPHjuXhw4cUK1aMnTt34vrix/Phw4d6MQFjYmIYOHAg9+/fx9zcnKJFi7Jjxw4aJMqbWLFiRdasWcMPP/zAiBEjyJcvH2vXrqV8+fJvpc/a9GkRERFpxrhTfKJo08wZGRETE6MzJ3B1ciLrizzJ2NnJwf3ZM3BwkI4fJiYQFkZEfDwYGydLs/emhIeH4+bmBsDtS5ew1GYTuX37swzloFB8zPTp04dbt27h5ubG7Fmz0OzaJYU+MzPp8WtkBDNmvPTuPXxYqoAzYN6UEnrjwO3brxcG5sXxauz4fPkk4gB+rLwqjtDDhw95+vQp2bJlw8LCIl05chWfCKGhUlVjbMz9+/d58uQJ5iYm5LWwQPP0qRT08uaVtj2mpnL17+lThLExEdHRBD57hp2dnZ5ZwttAxQH8NPhU+61IP1u3bqVJkyYYGBhwZNUqvBISIE8emDJFrvIlJEC3bjBvntQQBAfD0aPSEeQNUXEAX416Bz+RFcBPFWdnZ0A6lyg+I+LjZUR+CwtiYmJ4+PAhAM7W1tx+8EDWyZZNzpyjouTgGRX18lhLS+zs7HTPh0Kh+LyIj49n2LBhAAyqXx+vnDmlw8fBg/DXX1L4q1BBBn7WLgwcPiyzACkU7wklAL5DNBoNLi4uZMuWjVitylDx6XPggAzR4OBAt27dOHbsGPWqV2daaKg03q5cGebPlwFcK1SQq3/ahO716mFsY4Ohsu1RKD5b1s6cyaVLl7CzsWHI8uXSGQykwHfnjlxdGzlSF0GAgACpNXBw+HCdVmQ6lAD4HjA0NFQ/+J8LT55ItW6OHOzZs4eVK1dibGzMoPz5MfvhB1ln61aZ09PSEhwdZRyvhAQoV+7lD4FCofj8iI8ndtcuRr0I+TJo8GDstO/8n3/KVI8AHTtKWz8tR45A3brvubOKzM5HHwZGofioOH4cvLyIi4vTxXXr27cv+daskfvbtoWiRaUtT4UKUvjLmlUKfgUKfMCOKxSKd0p4OKxZw7Jz57jx8CFZs2blm2++ebm/Vy8ZOD5/fpg27aXq9+ZNuRKozSakULwnlACoUKSX58+lQbSzM/PmzePy5cvY29szokULuHhR1hk+XAqJxYrBtm1SVXzvHmjTxikUis+PgAD4/XeiK1dm7Pz5gAxPpnXEYMUK6f2r0cDKlS+zAgUGypXBGjU+UMcVmRmlAlYo0oufH1SsyJMnTxg5ciQAY8eOJcvkyXJ/gwbg4gJnz8rtKlXgzBkZyf8th3tJDQMDA8qUKSP/NzKS2QXkjvdyfoUi0xAQIHP1+vtL+72WLZk2Ywb+/v7kyJGDXr16yXphYaBdCezVS5qCgAwPtWuXDP5sYvJWu6Y3DrxuKjg1dnz2KAFQoUgPEREyTEOuXIz97jtCQkJwd3enR7NmMpUTwMCB0vEjLk46goSGytRv7zGSv7m5OadPn35ZkPh/hULxdjh2DEJCoHhxKF8ejIw4ffo0P7ywAx4/fjxmZmaybpcu0nbY2RkmTZJlUVEyFEyjRu8kxEqycSDjDaixIxOgRHuFIj2cOgXly3Pt2jV+++03AH755ReMfv1VCnxlykiHj/v3ZQL3rFnh3DkpCCoUis+HU6fkhLBxYxnr08iI0NBQ2rRpQ1xcHC1btqRTp06y7vr10g4YYOZM6f0bHi7La9RQXr+KD4paAVQoXkV0NNy9S0LlyvStV4+4uDgaNWpEnUqVoGVLWefbb2HdOjmolyolB/j69VUqJ4Xic+LsWQgKkuYeL5w4hBD06NGDmzdv4ubmxrx582TQ/xs34LvvZB7wChWgeXOZCnLbNjk2ZMv2gS9GkdlRK4AKRVoIIXN2VqrEpMmT2b9/P+bm5vz8888we7a048mRQwp6Tk4ykOvduzJHsKPje+9uREQEbm5uuLm5EREcLNM5ubnJFQuFQvH6XLwoY/glEv4AFi1axNq1azEyMmL16tXY2dlJ544hQ6RGwNoaRo+W/2/fLjN9vGPhT28ceJ13PyJCjR2ZALUCqFCkxcmT4OTEsfv3GTFiBAC//fYbBRMSQBv3r1s3GQB66FD5w/Dnn9K25wMghODOnTvy/4QE+YMld3yQ/igUnwX//gtXr8pVvETC3+XLl/n6668BafdXoUIFGS1gxgzYtElW6thRClIHD0KrVjIP8DtGbxx4nXdfCDV2ZAKUAKhQpMatW/DgAcGVK9PGw4P4+Hg6dOhA5zZtZHiXqCgoXFjO8EuUkA4f/v7yrzb8g0Kh+LS5dUuqflu00POIjYyMpHXr1kRGRlKnTh0GDRokg8SvWAGLF8vg761bQ8GC0qGiRYv3IvwpFOlFqYAVipQIDZXBnBs1olv37ty/f59ChQoxe/ZsND16SPseW1vp+fv8ubTpAbn65+X1YfuuUCjeHCHkqp+fn1z5S2LP279/fy5evIiTkxPLli3DIDZWOnzs3CnVva6u0L27VAcr4U/xEaJWABWKpERHw5Yt4O3NsVOn2LJlC0ZGRqxbtw6rzZvlDF+jgTFjZCywOnVk2ITbt6X37zsI66BQKN4j9+/D4cPSvrdly2RxPDds2MCcOXMAWL58OU5ZskjHr1u3pJ2foSGsXi3L+vVTwp/io0QJgApFYhISpPBXrRpkycKYMWMA6NKlCyUcHWUgV5B2PSDVv+XLy+OOHZMrBQqF4tNDCCnAnTkjJ3GNG6doyhEcHEyPHj0AGDJkCLVr1JARAJ4+lc4eABMmyDiB2bNDrlzv7xoUigygBECFIjF790q7vty5OXbsGPv378fIyIhhw4ZBnz4yqr+bG+TODUZGMsiroSH88Ye0A7Sw+NBXoFAoMsrFi9KRy9VVmnNYW6dadcCAAYSEhFCsWDHGjh0Lhw5J27/+/aUQ2aWLdAwbPBh+/VXPaUSh+JhQAqBCocXPD0xNpSAHeqt/rmfOyMj9Bgbg6yuFwI4d5eB+9apM8v7iuA+JRqPB3d1d/m9gAC/+Vz9CCkUqnDwp4/O1b//KuJ379+9n2bJlaDQaFixYgLG/vxQeR46UY0DDhjBnDvz4oxwfzM3f00XoozcOvM67r9GosSMToARAhUIIOHIEYmOhZk0A/dW/3r1lPl+QA3zu3NKoW6ORap4zZ6Bt2w94AS+xsLDg0qVLLwsS/69QKPT5808Z565evVcKOhERETrVb9++fSlftChMnSpDvjx7JoM9//671CIYG0OlSu/jClIk2TiQ8QbU2JEJUAKgInMjhBywLS2hatUXRYLRL2x5unTpguu4cTIPsL09dO4MRYvK+jExsGOHDOyqMn4oFJ8WR45AfLyc3KVjlWvs2LHcvHmTnDlz8uP48fC//8nP8+cyJ/CuXfDwIfzzj3QcUStnio8cFQZGkbnZvVvm40w0W1++fDl//PEHxsbGDHN0hA0b5I5Jk6SgV7CgFBy3b4cqVdK0F1IoFB8hZ89Kb//q1dMlqB07dowpU6YAMHPmTKw3boSffpLCX5Ei0gHMzEx6/bq5QYEC7/gCFIo3RwmAiszL2bNy0C5TRld08+ZN+vTpA8DoDh1wnTRJ7mjeXKp16tSR2ydPgrOzHOw/IiIiIihatChFixaVqeCKFpUflc5JoZDcugX//ffSrOMVPH36lA4dOpCQkEDHjh1pXKAA9O4tHT9KlpQrfzY2sHSp1Ax8BKt/euPA66aCU2PHZ49SASsyJw8eyPROrVrpiuLi4ujQoQNhYWFULluWwRs3ShWRu7s06C5WTAqM/v4yTthHGPJFCMHly5fl/wkJ8OJ/lc5JoUCachw7Bm3apFtI69OnD3fu3CFv3rz89uOPULmyFP48PGDiROk5vG+fTJ02ZoyMDvCB0RsHXjcVnBo7Pns+/JOqULxvIiLkgN2qld6PwI8//oifnx82NjYsDwnBMDRUJm3/3/8gLg7y5ZPG3gcPZugHRKFQfGBCQ6Vt3s2b8OWXyQI7p8aKFStYtWoVhoaGrFq+HOsePWTAdxcXGQ2gXDlpIrJ/vxwn0tmuQvEx8MmogGfNmkWePHkwMzOjdOnSHD16NNW6GzdupHbt2mTNmhUbGxs8PT3Zs2ePXp0lS5ag0WiSfaKiot71pSg+JHFxMpyLNnvHCy5cuMC4ceMAmFWuHK43b8r9o0fLbB+1a8tZ/+bN4O0tw8UoFIqPl7Aw+OsvmZHjwAGZ1cPHJ915ukNDQ+nbty8Ao0ePpvz27TLNm5ERfPst2NnBtm1SqPz55w8W8kWheF0+CQFw7dq19OvXj+HDh3P27FkqV65M/fr18ff3T7H+kSNHqF27Njt37uSvv/6ievXqeHt7c/bsWb16NjY2PHz4UO9jplL2fL7Ex8OmTVC2rJzBv0AIQf/+/YmPj6d55cq0/+MPuaNTJ+kgovUS3LBBCoL29h/oAhQKRZpo8/euWgV79kiTjS+/lJ76efPKOJ7pZNmyZYSGhlKkSBGG5s8v1b0ghT1nZ6hRQ25366YCwCs+Sd6ZCvjff//l0KFDBAYGkpCQoLdv5MiRGWrrf//7H127dqVbt24ATJs2jT179jB79mwmal/KREybNk1ve8KECWzZsoVt27bh4eGhK9doNDg7O2eoL4pPFG2Kt2LFknno7dixg/3792NiYsLUixflj0ilStLGz8REDva//w5eXnqCo0Kh+Ii4fVva97m6yjidJiav3ZQQglmzZgHQp25dDDt3ljs6dABbW2jQQGb/qVEDsmR5C51XKN4/70QAnD9/Pr169cLR0RFnZ2e9SOQajSZDAmBMTAx//fUXQ4YM0SuvU6cOx48fT1cbCQkJPH/+HPskKzdhYWG4uroSHx9PqVKlGDdunJ6AmJTo6Giio6N128+ePUv3dSg+INHR0lOvQAEZsiERMTExDBgwAIDvcuYkz82b0u5v7Fjp6NGqFWzcKLN85MnzIXqv+AxQY8c7JCJChnOyspKTtrewGnfw4EGuXr2KlYUFPmvXQlSU9PitVk2agFy8KFNG5sz55v1XKD4Q70QAHD9+PD/++CODBw9+47aCg4OJj4/HyclJr9zJyYmAgIB0tfHzzz8THh5Oq0Qen4ULF2bJkiUUL16cZ8+eMX36dLy8vDh//jwFUonhNHHiRF16MMUnQFyctAG6dk2u3uXLp79fCGaPG8e///5LNmNjht28KVVEP/0k7YeqV5fCX+nSn0xcL41Gg6urq/zfwECuhsgdH7BXCjV2vCOuXoVTp6SZRvbsb63ZmTNnAuBjbY3Nw4fSFGT0aBnwOSoKgoKkN/BHit448Lqp4NTY8dmjEa/lI542NjY2nDt3jrx5875xWw8ePCBHjhwcP34cT09PXfmPP/7I8uXLuXr1aprHr169mm7durFlyxZqpRH3KSEhgS+++IIqVarw66+/plgnpVl8rly5CA0NxcbGJoNXpnhnxMbC+fMylZGHhxy0Ew9ikZFw7hxBZ85QaPhwnjx/zlzgK41GGnePHQtbt8q6FSuqlb+PmGfPnmFra/vRv4Nq7HgLhIXBo0fyExgI4eHg5CRX5d5i6JV79+7h5uZGfHw8F4GihoZw6JCMHdi2rXQqadlS2f194nwqY8e75J2sALZs2ZK9e/fSs2fPN27L0dERQ0PDZKt9gYGByVYFk7J27Vq6du3K+vXr0xT+AAwMDChbtizXr19PtY6pqSmmyvvz4yUmBk6ckLZApUpJe52kKdquX4fjx4ksWZImK1bw5PlzigNdDQxg+HAZx2v/fhnhv0EDmfdXoXhD1NiRAaKjZbDm4GB48kS+i0JIFa+Tk7TJLVlSBl1+B8ybMoX4+HiqAkUNDGD5cqnqjYuTdn9eXkr4U3wWvBMBMH/+/IwYMYITJ05QvHhxjJPERvrmm2/S3ZaJiQmlS5dm3759NGvWTFe+b98+mjRpkupxq1evpkuXLqxevZqGDRu+8jxCCM6dO0fx4sXT3TfFR8SDBzK2X4UKUjWTVG0hBBw+DM+fE9+mDR1atcLv1CnsgLXGxhj+8gv06SN/fM6cke0o4U+heD9ERsrA7NeuSYetfPnk+1eypBT83rUaUgi4fp3Qw4eZP3cuAL0BFi+Wq34rV8rQT9bWkD//u+2LQvGeeCcC4Lx587CysuLw4cMcPnxYb59Go8mQAAjQv39/fHx8KFOmDJ6ensybNw9/f3/dCuPQoUO5f/8+y5YtA6Tw17FjR6ZPn06FChV0q4fm5ubY2toCMGbMGCpUqECBAgV49uwZv/76K+fOndPZfig+ERIS4M8/pUqoVavksbgiI2WcrvPnpQNItWoM7NOHjVu3YgJsMTGhyNKlMrAzwNGj8semSpX3filvg8jISKq86PuRPXswr1tX7jhyRMUpU3w8xMfLFb579+SqvIEBFCokHSze53MaFAQXLsC9ezyysKDeoEEEREeTE2g2ezY0bSrDP50+DQMHfjJOH3rjwJEjmGf0nkZGvhwD1djx2fJOBMBbt2691fZat25NSEgIY8eO5eHDhxQrVoydO3fqjFwfPnyoFxNw7ty5xMXF0adPH11eV4BOnTqxZMkSQOZ3/OqrrwgICMDW1hYPDw+OHDlCuXLl3mrfFe+QqCgZ2qVAAen9p10lCA+X9n83bsjI/Pnygbc3sWZmDOrVi+lz5gCw1NSUKhMnvhT+4uLkYD9mTHLV8SdCQkICZ86ckf/HxcnVTLnjA/ZKkSmJjYXHj+XnyRP+z955R0dZfA342fQCBFIIHYJC6B3pvfcOCtJUELFQRIoK/ESQIiqiIvhJEekQaVKk997F0AUSQighpPfsfH9c0khAArtpzHPOHnZnZ2fmXfLevTO3ERQklXTi48Vnz8VF0ip16ZLxidUTUsa4uECFCtxwcKBF48ZcjY7GDdgwYQLWjRuLfHFzk1x/2UT5g8fkwPPc+0ajlh0vAWYJAklOwvDPFYmUxdFOpJlIQABs2iTRf4ULi5C6fFnKPRkMSfn+HjmH37lzh56dO7P/6NHEIcI++wzHceOSfIkWLpTPDhiQCRdkGsLDw8n1qNJB2N27OCb4yYaFmc1nKjPJrvdgdl33E4mNlZM0Pz/x2QO595ydkx5OTpAnT+ZurgIDpSpInjzQsCHK1paNEycyZMoU/I1GSlhYsG3hQkq5ucmpZLNmEvTxxhtZosbvs5JCDoSF4Zjeez88PKliipYdORaz/UUvXryYr7/+OjGoonTp0nzyySf07dvXXFNqXgaioyUH14ULcuoHYqK4fh1Kl4b27VM5aJ88eZKO7dpx++5dcgOhCW+89lqSYNuyRYqfp5FYXKPRPIGoKDGPXr+elCcvI3z2npXwcDh1Cvz9RUl1dJT0Ti4uXD54kGHdu7M1WYDh9hUreDUqSqqGeHpKGUhX12yl/Gk0z4pZ/qq//fZbxo8fzwcffEC9evVQSnHw4EGGDBlCQEAAI0aMMMe0mpzMzZsiyKOjJQFr1aqitFlaSsRvWoEfwKlTp2jeuDFBYWGUA5a6uVH1/n15s3p1+XfPHikbNWOGFvQaTQJKSWR9SIicAoWHyyMsDB48EIXK2lruv/r1s47SB2IROH5crAL16kGtWomVQaKjopjasSNfbdxILPIjGPfoYwXv3oXevZPKPe7bJ1YGjSYHYpZfux9++IGff/6Zfv36JbZ16tSJ8uXL87///U8rgJpn59Yt2L1banq6u0uwxz//yA69XbunmibOHTlCiyZNCIqKoh6wxdMTizVrJC8gSAWBbdvElDx58guVjtJosiXx8WKyTVDsHj6UPHthYaLQ2dqKuTRXLrnXXF2hRAlRkB7L7pDpGI1yYnfjhvj/VqggqaCSKaZHvLx4u18/vCMiAGidJw9TZ82i6ltvSYfOnZOUvytXxEdQ1/7W5FDMogD6+/tTt27dVO1169bF39/fHFNqsitKyQ9QgqN4grP4v//KqZ+9vShsefKIMK5Z878j0pTC+4cfaDZiBIFGI7WAzd26kXvBAsIvX07qt2mTRLt99pmkd9BocjpKiavD1aui5FlYyL2VO7coeG5uojgl+H9lF44cEYWtcGGpYFGzZkoFNTiY5f360WfDBhSQH/jhzTfpMWcOEStXJvVL2ATGx8OhQ+L7p9HkUMyWB3DVqlV8+umnKdpXrlz5xDJrmpcAo1GCN+7elZ36/fvyg5Qnj+yy8+UTZfDBA6nAMXRo+hKuKgUbNxI3cSK9zpwhAKhuZcXWRYvI06ePOKnPmoVrwolA/vziR2hnZ5bLzSxcXV2Tv8i8hWiyFtevS+TrK69IcEN2U/LSQik5xbezS3XaB8gp/9dfEzlzJqPCwlBALzc3ftq0CZfChaXUY82aSTIhgaNHoVq1bG0VcH3Re1/LjhyPWRTAL774gl69erFv3z7q1auHwWDgwIED7Ny5k1WrVpljSk1WIzxcTDH+/nK6FxcnwtnFRTL5V6okAiZ5RODx45A3L3TsmD5/IqUkCfRnn8GJE/wMnAecra3Z8vff5C1YEP78E7Ztw/Gjj7jfooX8AGajtA7PiqOjI/cTfBxBlGzNy014uPjL5skD3bvnnJxucXGSpqVkSfEJTo5SsHIljBwJ/v7MAW4DxVxd+e3UKWyPH5fk8T174mhvz/3kqU5CQ0VZ7t07I6/GpKSSA+kfQMuOlwCzKIDdunXj6NGjfPfdd6xbtw6lFOXKlePYsWNUffxG1WRv4uJEkAYGiuk2OFgEqIOD+ApVrPhs/kI+PmLy7dYtfcrfgQPw+edS5QO4b2/PhLg4iI1lysiRuJ08KWYuPz+J/rt9W8w62Xhnr9E8M5cvi3m0ZUvZeGV3IiLEPeTyZXHfqF1bTjSTc/y4KH4HDgAQUqQIU4OCICyM//XuLcpfgwZpn3DFxclmsVmzrBXUotGYAbOFPFavXp0lS5aYa3hNRmM0pkzoGhgo5lxLSyhUSIRp6dKS68vBIX3CMzRUAj1ef/3ZPmc0woYNErV7+LC02dhAnz58dvw4QefPU7lECQa98YaceuzcKeau4sXlpEALdk1O5+5dUfzs7OQkK7tGtxuNcOyYWBPi4+X0skQJUWgfN2EfPy5J3Ddtktc2NjBmDLOU4sHkyXgWKEDfYcPkxPBJc61dK/6DOUFZ1mj+A5NJhZCQkMRkiiEhIU/t+7ImXcwWKCU+eAEBYgK4f1922hYWSX56+fKBh4e8trB4sfmio8WM067d06sBKCU+fCtXwooVcgoAIuR79QJ3d076+fHrP/8A8MNvv2EZGyunAAYDtG0LRYsSGRhIm0c/AFv+/Rf7HBbhFxkZSZs2bQDY8scf2CfkStyyJeeY/jRP5uxZuU9cXOR0LCEReHYkMBA2bxYrQvfuT1Zi//4bPv1UTu5AZFKdOvDLLwQWKMA3jypGffHVV1ilofwlyoTYWLZs3459Dqj1m0IObNnyfKXgHn1ey46ci8kUwHz58uHv70/+/PnJmzdvmpU/lFIYDAbi4+NNNa3mRVFKfIRu3RKzSkiInOblzy8nZjVqmO/mDwmBdevENJuWOSY2Vur8btoEGzdKofgE8uaFgQNFGb17l4hWrRg8ZgxKKXr36kWDgAA5iYyPl+TQj34IjXFx7A0OTnye0zAajYn1t41xcYmmcV3O6SXg/HnxuX399ex74hcZKYqfj4/44bVvL/d6Wly/DhMnwpIlIscsLCQRddeuEhBiZcWUPn0ICQujcqVK9OjfP81hjFFRSTIhByh/8JgceN5ScFp25HhMJiV27dqF86PTlN27d5tqWI2piIqS07wHD5JMuVFRcjqWK5fU5GzUSEy4GcHdu7B1qwh4F5ek9tBQaV+3ThS/R4IZkBPC1q0l6WxUlPzY1aqFsXFj+vXuzalTp3DJl48Znp6i+N25A506iZKo0eRkHj6EM2fEvzW71LGOjRW/31u35F5NMPG6uEg6mtdfT21hCAmRet2//y4J3BMqmbZqJX57vXuLLDtyhH2bN/Pdhg0AfDV1KhZpWSsCAiQSWKN5CTGZAtioUaPE5x4eHhQtWjTVKaBSCl9fX1NNqXmc2FjZOd+4ITm+oqJEqIIoT25uctJWtqyYbzO6ADuIEnrmjPzbvbtEmyklGfd/+UWEe3R0Un9XVzHf1qkjzxMS1datKwqr0cjnI0bg5eWFtYUFa5s1o3C9enKNhQu/uIlao8nqxMfLZql9+6yt/MXEiFy6c0dKOUZHiyvJq6/Kpi6tU0sfH0nzcvSo+PidP58k00AUvzfeEHnWrp2cVnl5EZw/P31//x2lFAMHDqRt27Ypx1VK5NCFC0mmTo3mJcMsdgIPD49Ec3ByAgMD8fDw0CZgUxEbK9GtPj7yL4jZtnx5SexqZ5d5PwjJEzwnnDrevSuncVWqSODItWuwapXs5i9eTPrsq69Cly5y2mdvL6ZpOzv5AfH1hTJliLt9m4szZ7L+9GmmPkrkOv+rr2gwZkzmXK9Gk1ns3i3BTU8ylWY2hw7JvW5vL9YGV1dR3B4P4oiJkXv977/h5EmxBDzy6U2Bpyf07Sunfbduidm4RQv5vJcXvPYaH3zxBT4+PpQsWZLvv/8+5ecT8iG++qqcMgYEmO/aNZosjFkUwARfv8cJCwvDLocl3c0QIiMl6OHqVfHXS/huEyJwS5SQE7GM9vuJi0tS8BJSwAQHJ+3Qc+eWnbmLCxQtKgEbx47B3Lni3H3qVNJYjo4ijHv0kAi8gwclIq9gQeINBv6+do3jERGcVIpTmzZx7p9/iE52Uvj5p5/SVyt/mpeF2FhRjv75R/JZli+f2StKG29vObVPnqQ5Kkqqdly8KO97e8t1XL4s15UcCwsJZmnYUKJza9aU61VK6nc7Osp7Pj6wbx/3K1VigZcXS5YswcLCgiVLlpA7ocrPw4dymujsnLPyIWo0z4lJNYaRI0cCYDAYGD9+PA7JqjjEx8dz9OhRqlSpYsopczbx8ZLgOCREdqtNmkhak4wmIVDk4UPJo3frlghxa+skBa9AAdmZ58olvnlXrshjzx759+pVEfDJT38tLSXbfrVqItgTko8ePMgta2tWBASw++BBDly+TEh4eKpl5XZ0pErVqnTo2JGPP/44474PjSYz+ecfOSGrVEk2TFk1p+WNG3K6HxAAU6cmbRYDAp4cWJA7t0T9VqgATZvKyV5CpH5srMifAwdg82Ye2ttzLiaGy0uXcjkkhP1XrnDs1CnUI7/Azz//nDp16shcR46Iv2GrVrq2r0bzCJMqgKdPnwbkBPDvv//GJplgsrGxoXLlyowaNcqUU+ZcIiIkEKJy5efb3SslAjMmRnxtoqNFaYuOTmqLixPhaDTK85iYlI8EDAaJqM2bV/zqKlUS/0FvbxHGv/8uJ5S3bokp+vFdfHJcXUVRrFhRfJbKl5f+hw4Re+IEm65f59d//2XLuXMpotfy2NtT09OT6tWqUb1BA6rVr0/JkiXTduz+D9JRXC5bknzjla5Sepqsz9GjcO+enKhlRf/Whw8l7+b69SK/wsLS7ufkJH66ZcqIDChfHsqVg2LFRN4oJRtfPz84cUI2hhYWxFpasmXTJhb5+fHnvn3EpiFrqlSpwus9evBxz56wf7+YfCtVemqe0Zx4lzi86L2vZUeOx6AStksmZODAgXz//fc5Pt9fSEgITk5OBAcHm/ZafXzEr6dVq2dLSGo0imP1jRviIxcXJz8O1tZyOmBrKz50trbySGizspJ+lpbysLFJelhaijn3zh3ZOd+4IYL0+vUkc/ST8j1aWkoamQIFRKCXLSsKX61akrU/Olocug8cgJs3+TsmhoW3brHk6FHuJ4v6bVi5Ml06daJhu3ZUrl4dy6zs4K7JFMx2D5qZdK9bKVGsLC0l1UlWSGaulMibo0clIfuhQ3JfJz/dc3OT6j5Nm8rzfPkkJZO7u1xDfLycCt67J0peQnYCgNy5uW008sOaNfxz+TLXb9/mekAA4QnvI/7mZTw9KVWsGJWKFKG1hweFDQaRbYULi+tJoUL/XYlI89KRXWWHKTGL09isWbOISyPHWmBgIFZWVi/tl/1U4uMlIu3MGRGOPXo8eQemlOyML18WBQ1E2SpRQvL2PatJKCpKFLuE0koJPkX//itmmv8K1nFwENOts7NE85UpIzvtihXlvYRdvL+/rHPPHpg+XV67uXHMzo7PDxxg+/nziUO6u7kxYOBA3nr7bUqXLv1s16HR5GSUEp/Z/PnlfssIjMYkc21AgChot2+L3PH1lZycly6lfcJXqJCc7vfsKZH6sbESEJZgefD3l1O94GDZgCbkHfXwkM8GBBB54wbf/v47UzduTKHwAbjnz8+bLVvSv0oVKhYoIEpx3rwyRrFi4pKSFRRkjSaLY5YTwDZt2tChQweGDh2aon3u3Lls2LCBzZs3m3rKTMEkOwijUaLezpyRk7IqVVIrcEaj7IwTTuMePJDdraen5Lx63BQUGZmU8+/BAzHN+vommWhv35bH3bv/vT4nJ4ksLlFCdtNFi8rc7u4y9rFjIrjj4kTZi4wUxTImRv5NSNCaUEmkQQPO2tszYdYsNjzK3G9lZUXHjh0ZOHAgrVu3xiq7JrHVZDjZdRf/zOtWSiox5M8vmztToZRs/k6cEJmSUPXHz0/ab95MmY7pSVhayqavTh2RXX5+ss74eJEHCa4k1tZJpl1LS/H3hSQZAYTHxbH/7l12Xr7Mqq1b8XmUMqx2+fL0rVePknnz4uHmxiuvvIKVp6fIHR3IoXlOsqvsMCVmUQCdnZ05ePAgZcuWTdF+8eJF6tWrx4MHD0w9ZabwQn9ARqPsoI8fF0WuevXUUbwBAeLDEhkpylOBAhIB5+IiQvrcOTEX+/gkmWlv3BBB/qzkzi21MUuUkLGdnUU4OzpKwIm1tQSAJET6BgaKf2JIiJzyVaggfa2tkxQ9Ozt5ODsnmYJdXTl28iSTJ09m48aNAFhYWNC/f38mTJhAiRIl0vf9PSdRQUF0e3Sy6HX5MnZZNXXGcxIVFUW3bt0A8Fq6FLs+feQNLy/5P8lhZFch/kzrToh0dXF58ZM/Pz+RNSdOJP0bGPjfn8uXL6kEZP78SblECxWSzWF4uGwkfX1lg1q2rGwY8+aVgDAHB3nY2yfJBXt7edjYcP/+fdavX4/Xhg3sPHKE2GSWo6IuLkwfOpTXBw7EkD9/+muMPyM5USakkANeXunPvhEVJaZ7GUDLjhyKWY5aoqOj0zQBx8bGEhkZaY4psw/R0XD6tCh/CXmoEk784uPFLPLwoSh3BoOkd3n4UE4JDx2S1CnHjv23kmdtLT8cLi5ySujqmqTYOTiI4ufiIv9GRoqCFx0tPwq+vtKWEDAC0i93blHmChSQH4BChUTIJzwcHcW38JGQvn//PocOHWLf4sXs2bOHU4/SvlhYWNCrVy8mTpyIp6enub7pNImPiWHzo+8uPnmgSw4hPj4+8YQ9PiZGTIfyRiauSvNc7NsnilR6lL/4eDndv35dZMzBgzLO9eup+1pZQalScqqfO3eSfEhQ9pydkxQ3a2uRBaGhovD5+8uG8NHmjhYtJF1LckUhNlbmTXBVSaa8+T54wNiVK1lx6FCKYK9ihQvTvFkzmrVsSecuXV48kOEZyIkyIYUceJ57Pz5ey46XALMogDVr1uSXX37hhx9+SNE+d+5cqlevbo4psy4hISKI/f1FeFpZiY9cixaS1f6PP+Q0UKkk02l4uCh4p05JwtO0/GysrcXnrnBh2ZUnlE9ycREBbmMjY8XFycPJSd6PixMB7uMjSuatWyKoEyJ8y5WD0qWTHLYTlLun7LyjoqK4dOkS3t7e/PPPP5w5c4YzZ87gl5Cc+hGWlpb07duXcePGaf8+jeZpXL8uClanTv/d188PNmyQyNs9e9I23RoMouiVLCkRt1WqiBzKnVt+4OPjkzIBBAQkuYtERcmJf3S0KHd588oJX61aYsqNixNFMSpKThXDwkTOxcbKnB4esol9lHolNDSUb7/9lunTpyceBlSrVo1u3brRpUsXypQpk2YOWY1GY3rMogBOmTKF5s2bc/bsWZo1awbAzp07OX78ONu2bTPHlFmL4GCJkr10SXbQZcuKmdfOTk7/tm5Nqn957548v3VLFL+0cHRMUsyKFxflLiRE2hP8/xL8BH19k8rAJThdgyieVlbyGRcXUfZatkRVrUq8uzuRMTEEBwcTHBxMaGgokXfvEnnjBmFhYdy/f5979+7x4MEDwsPDiYiIICwsDH9/f27dusX9J5xGGgwGypQpQ8OGDWnYsCFNmjShYMGCZvjCNZocRFiYnNq98Ubq9+LjJVDryBGJvD18WORMciwt5VTOzU1cNJo1g44d5VQPRM4EBMgGcNMmkQtxcaKwWVqKhcDZWZQ9a+sk/73kpSVv3kxyEwkPx2hvz47z57kbFoaytUVZWhIXF0fUyZNEHjjAtWvXOHLkCH///XfiiVSDBg2YNWsW1apVM993qdFonohZFMB69epx+PBhvv76a1atWoW9vT2VKlVi/vz5lCpV6rnGnDNnDl9//TX+/v6UL1+eWbNm0aBBgyf237t3LyNHjuSff/6hUKFCjB49miFDhqTo4+Xlxfjx47l27RqvvPIKU6ZMoUuXLs+1Pm7dStoBOznJTrtHD9kJ798PM2aI783t20/3vbG3TzLDFCok5tu8ecUkGxkJ3t4YnZ0Jc3Tk4e3b3ImM5E5MDAExMcTa2BDn4IAxd25UoUIoBweUgwORsbGEhYURGhqKn58f1/fv58aNGwQFBT3ftaZB3rx5KV++POXLl6dixYpUrVqVSpUqJWXh12g0/41S8OefUgbRxkYsAQmK3pEjIkMe3ygaDGLKbdpUFL3q1eWzCaUYAwNh714xxSYEd4SEiIJYqpScAjo5idyxs5N/E/z3EtJHJbQ/lorJaDSydu1aJk6cyD9plW1Lg1KlSjFlyhS6d++uT/s0mkzEbOGWVapUYenSpSYZa+XKlQwfPpw5c+ZQr1495s2bR5s2bfD29qZYsWKp+l+/fp22bdsyaNAglixZwsGDBxk6dChubm6JjrGHDx+mV69efPnll3Tp0oW1a9fSs2dPDhw4QK1atdK3wI0bRUlr3FhMvUePiuNsQhLSx+NsLCxEuStfHlWkCKH29gQA/0REcNrfn9O3bhEQFkbMtWvEXrpEdFwcEXFxRBqNhMfEEPZYWgRTYWlpiZOTE7lz58bR0RF7e3scHR1xc3Mjf/78uLq6kitXLhwcHHBwcMDd3Z0iRYpQuHBhXFxctDDXaJ6X0FCRFYcOiVVgyxY5BbxxI3VfW1uxBLz6qgRvOTvLaX9YmCRf/uOPpNyeCYneHRykb+fOxLq4EFWiBPG2tsTHxxMREUFISAghISFERkaioqJQkZHEx8cTGRlJVFQUUVFRxMXFER8fT3R0NP7+/vj6+nL69Gm8vb0BcHJy4rXXXsNgMGAwGLC2tsbOzg57e3sKFChArVq1qFWrFkWKFMnAL1aj0TwJs0QBJycyMjJVtvb0RtzUqlWLatWq8fPPPye2lS1bls6dOzN16tRU/ceMGcOGDRu4cOFCYtuQIUM4e/Yshw8fBqBXr16EhISwZcuWxD6tW7cmX758LF++/JnWlRBFdK1XL6y8vQm/fJmQ6GhCgFAgEogCIuzsCMudm1AHB4Lz5sXPwoJbDx5w6+FDHoSHE/ekskj/gY2NDQUKFKBAgQK4ublhY2ODlZUVFhYWiRUyDAYDDg4OODo64ujoSMGCBfHw8KBEiRK4uLhgaWmJpaUltra2ODg45HglLvzePXK5uwMQdvcujglmsRxCeHg4uXLlAh5d36NrJSwsKfVGDiK7RvIlrHtgwYJYBwVhjI3FGB9PvFIkCGQFGIF4OzviHBxQCSdz9vaoBH89gwFlYYF65OJhtLAgMj6e8JgYImNjibewwGhpSXx8PCEhITx8+JCIiAiTXkvu3LkZMWIEI0aMIG82jKDNiTIhhRwIC8Mxvfd+eLj8rckAWnbkUMxyAhgREcHo0aNZtWpVmilf0hOVFBMTw8mTJxk7dmyK9pYtW3Lo0KE0P3P48GFatmyZoq1Vq1bMnz+f2NhYrK2tOXz4MCNGjEjVZ9asWU9cS3R0NNHJHKyDH1WteGXlyqdfRFRUUnb7mzfT7GJjY8Mrr7xCpUqVqFKlCoUKFcLGxgZra2tsbW2xt7fHzs4OBwcH8uTJQ+7cubG1tTWZwhYfH09oaKhJxsrKhCe7xpDQUOJzWHqD8GTmwZDQUBLvtJCQHBnNF/KoGo2Z97EvzJNkx0J////+cIL8eJa0Lc+BpaUlefLkwcnJCTs7u8QTPEtLS+zs7LCzs8PW1hYrKyssLS2xtrbG3d2dwoULU7hwYZo2bYrzoyCPkCdVB8rC5ESZkEIOhISkPxI4uZuBlh05F2UGhg4dqsqWLatWr16t7O3t1YIFC9SXX36pihQpopYsWZKusfz8/BSgDh48mKJ9ypQpqnTp0ml+plSpUmrKlCkp2g4ePKgAdfv2baWUUtbW1mrp0qUp+ixdulTZ2Ng8cS0TJ05UyMZcP/RDP7LQw9fXN11yJaPRskM/9CNrPrK67DAnZjkB3LhxI4sXL6Zx48a89dZbNGjQgFdffZXixYuzdOlS+iQkp00Hj590KaWeevqVVv/H29M75rhx4xg5cmTi66CgIIoXL46Pjw9OTk7/fRE5iJCQEIoWLYqvr+9LdXz+sl43ZM1rV0oRGhpKoUKFMnspT0XLDiEr/g1lFC/rtWfV684ussOcmEUBDAwMxMPDAxB/v8BHpov69evz3nvvpWssV1dXLC0tuZNQ8/YR9+7dwz3Bv+kxChQokGZ/KysrXFxcntrnSWMC2NraYmtrm6rdyckpS/1hZyR58uR5Ka/9Zb1uyHrXnh0UKC07UpLV/oYykpf12rPidWcH2WFOLP67S/opWbIkNx5Fr5UrV45Vq1YBcjKYXidhGxsbqlevzvbt21O0b9++nbp166b5mTp16qTqv23bNmrUqIG1tfVT+zxpTI1Go9FoNJqcglkUwIEDB3L27FlATB9z5szB1taWESNG8Mknn6R7vJEjR/Lrr7+yYMECLly4wIgRI/Dx8UnM6zdu3Dj69euX2H/IkCHcvHmTkSNHcuHCBRYsWMD8+fMZNWpUYp9hw4axbds2pk+fzsWLF5k+fTo7duxg+PDhL3bxGo1Go9FoNFmdjHA0vHnzpvLy8lJnzpx57jF++uknVbx4cWVjY6OqVaum9u7dm/he//79VaNGjVL037Nnj6pataqysbFRJUqUUD///HOqMVevXq08PT2VtbW1KlOmjPLy8krXmqKiotTEiRNVVFTUc11TduZlvfaX9bqVermv3dS8rN/ly3rdSr281/6yXnd2wOR5AGNjY2nZsiXz5s3T9V41Go1Go9FosiAmNwFbW1tz/vz5HJ9QWKPRaDQajSa7YhYfwH79+jF//nxzDK3RaDQajUajeUHMkgYmJiaGX3/9le3bt1OjRo1UZWi+/fZbc0yr0Wg0Go1Go3kGzKIAnj9/nmrVqgFw+fLlFO9p07BGo9FoNBpN5mKyIJBz585RoUIFLCzMYlXWaDQajUaj0ZgIk2lrVatWJSAgAJBE0A8ePDDV0BqNRqPRaDQaE2IyBTBv3rxcv34dgBs3bmA0Gk01tEaj0Wg0Go3GhJhMAezWrRuNGjXCw8MDg8FAjRo1KFmyZJoPjeZ5OXr0KF26dKFYsWLY2tri7u5OnTp1+Pjjj9M91oABA8iVK5dJ19e4cWMaN25s0jE1Go35OHfuHG+//TavvPIK9vb22NvbU6pUKd59911OnDiR5cbVaEyFyYJAfvnlF7p27crVq1f56KOPGDRoELlz5zbV8BoNmzZtomPHjjRu3JgZM2ZQsGBB/P39OXHiBCtWrOCbb77J7CVqNJpsxLx58/jggw/w9PRk2LBhlC9fHoPBwIULF1i+fDk1a9bk6tWrvPLKK1liXI3GlJi8EghILeDZs2drBVBjUho1aoSfnx8XL17Eyirl3sVoNKY7AGnAgAGsWbOGsLAwk60x4fRvz549JhtTo9GYnoMHD9KwYUPatWvHmjVrsLGxSdVn9erV1KtXj0KFCmX6uBqNqTFLyO7ChQu18qcxOQ8ePMDV1TWV8gekUP5WrlxJy5YtKViwIPb29pQtW5axY8cSHh6e5rhXr16lbdu25MqVi6JFi/Lxxx8THR2dok9MTAyTJ0+mTJky2Nra4ubmxsCBA7l//75pL1Kj0WQIX331FZaWlsybNy9NJQ2gR48eKZS0DRs2UKdOHRwcHMidOzctWrTg8OHDLzyuRpMZ6JwtmmxDnTp1OHr0KB999BFHjx4lNjY2zX5Xrlyhbdu2zJ8/n61btzJ8+HBWrVpFhw4dUvWNjY2lY8eONGvWjPXr1/PWW2/x3XffMX369MQ+RqORTp06MW3aNHr37s2mTZuYNm0a27dvp3HjxkRGRprtmjUajemJj49n9+7d1KhRg4IFCz7TZ5YtW0anTp3IkycPy5cvZ/78+Tx8+JDGjRtz4MCB5x5Xo8k0lEaTTQgICFD169dXgAKUtbW1qlu3rpo6daoKDQ1N8zNGo1HFxsaqvXv3KkCdPXs28b3+/fsrQK1atSrFZ9q2bas8PT0TXy9fvlwBysvLK0W/48ePK0DNmTMnsa1Ro0aqUaNGJrhajUZjLu7cuaMA9frrr6d6Ly4uTsXGxiY+jEajio+PV4UKFVIVK1ZU8fHxiX1DQ0NV/vz5Vd26dZ9rXI0mM9EngJpsg4uLC/v37+f48eNMmzaNTp06cfnyZcaNG0fFihUT81D++++/9O7dmwIFCmBpaYm1tTWNGjUC4MKFCynGNBgMqU4GK1WqxM2bNxNf//nnn+TNm5cOHToQFxeX+KhSpQoFChTQ/n4aTQ6ievXqWFtbJz6++eYbLl26xO3bt+nbt28Kd5NcuXLRrVs3jhw5QkRERLrH1WgyE7OUgtNozEmNGjWoUaMGICbcMWPG8N133zFjxgwmTJhAgwYNsLOzY/LkyZQuXRoHBwd8fX3p2rVrKnOtg4MDdnZ2KdpsbW2JiopKfH337l2CgoKe6M+ToHhqNJrsgaurK/b29ik2egksW7aMiIgI/P396dixI0BiYYO0zLqFChXCaDTy8OFDChQokK5xNZrMxGwK4KVLl/jhhx+4cOECBoOBMmXK8OGHH+Lp6WmuKTUvIdbW1kycOJHvvvuO8+fPs2vXLm7fvs2ePXsST/0AgoKCnnsOV1dXXFxc2Lp1a5rv64AnjSZ7YWlpSdOmTdm2bRv+/v4pFLty5coBUtAgARcXFwD8/f1TjXX79m0sLCzIly9fusfVaDITs5iA16xZQ4UKFTh58iSVK1emUqVKnDp1igoVKrB69WpzTKl5CUhL+EKSWbdQoUIYDAZATvGSM2/evOeet3379jx48ID4+PjE08fkD72p0WiyH+PGjSM+Pp4hQ4Y8MaAsAU9PTwoXLsyyZctQyTKnhYeH4+XllRgZnN5xNZrMxCwngKNHj2bcuHFMmjQpRfvEiRMZM2YMPXr0MMe0mhxOq1atKFKkCB06dKBMmTIYjUbOnDnDN998Q65cuRg2bBiFChUiX758DBkyhIkTJ2Jtbc3SpUs5e/bsc8/7+uuvs3TpUtq2bcuwYcN47bXXsLa25tatW+zevZtOnTrRpUsXE16pRqMxN/Xq1eOnn37iww8/pFq1agwePJjy5ctjYWGBv78/Xl5eAOTJkwcLCwtmzJhBnz59aN++Pe+++y7R0dF8/fXXBAUFMW3atOcaV6PJVMwRWWJvb6+uXLmSqv3y5cvK3t7eHFNqXgJWrlypevfurUqVKqVy5cqlrK2tVbFixVTfvn2Vt7d3Yr9Dhw6pOnXqKAcHB+Xm5qbeeecdderUKQWohQsXJvbr37+/cnR0TDXPxIkT1eO3RmxsrJo5c6aqXLmysrOzU7ly5VJlypRR7777boq/dR0FrNFkL86cOaMGDhyoPDw8lK2trbKzs1Ovvvqq6tevn9q5c2eKvuvWrVO1atVSdnZ2ytHRUTVr1kwdPHjwhcfVaDIDs1QCadu2LT169GDgwIEp2hcuXMiKFSv466+/TD2lRqPRaDQajeYZMYsJuGPHjowZM4aTJ09Su3ZtAI4cOcLq1av54osv2LBhQ4q+Go1Go9FoNJqMwywngM9ak9VgMBAfH2/q6TUajUaj0Wg0T8EsCqBGo9FoNBqNJuuSLSqB7Nu3jw4dOiSm+Vi3bt1/fmbv3r1Ur14dOzs7SpYsydy5c1P18fLyoly5ctja2lKuXDnWrl1rhtVrNBqNRqPRZC1M5gM4e/ZsBg8ejJ2dHbNnz35q348++ihdY4eHh1O5cmUGDhxIt27d/rP/9evXadu2LYMGDWLJkiUcPHiQoUOH4ubmlvj5w4cP06tXL7788ku6dOnC2rVr6dmzJwcOHKBWrVrpWp9Go9FoNBpNdsJkJmAPDw9OnDiBi4sLHh4eT57QYODff/997nkMBgNr166lc+fOT+wzZswYNmzYkKLu65AhQzh79iyHDx8GoFevXoSEhLBly5bEPq1btyZfvnwsX778uden0Wg0Go1Gk9Ux2Qng9evX03yeGRw+fJiWLVumaGvVqhXz588nNjYWa2trDh8+zIgRI1L1mTVr1hPHjY6OJjo6OvG10WgkMDAQFxeXxAoUGo0m41BKERoaSqFChZ45+Cwz0LJDo8laZBfZYU7MVgs4M7lz5w7u7u4p2tzd3YmLiyMgIICCBQs+sc+dO3eeOO7UqVP54osvzLJmjUbz/Pj6+lKkSJHMXsYT0bJDo8maZHXZYU7MogB2796dGjVqMHbs2BTtX3/9NceOHcuQesCP76oTLN3J29Pq87Td+Lhx4xg5cmTi6+DgYIoVK4avr68u66PJ0ty5c4fJX3zBylWriImLS2x3ASoBZQEnwB6wBawBy0cPGxsbrOztsXZ0xDJ3bnBwAHt7sLXFwsYGg5UVFtbWWNjYYGljg4W1NZY2Nlg+are0tQVLSwzW1hisrMDCItXDYGEBBkPKRwLJ3jNYWGBI+NfCgvDISFq9/z65c+fOuC/zOdCyQ6PJAEJC4NQpOHAArlwhxseHozduMC8wkD+BBH+3onZ29G7WjOmbNmV52WFOzKIA7t27l4kTJ6Zqb926NTNnzjTHlCkoUKBAqpO8e/fuYWVlhYuLy1P7PH4qmBxbW1tsbW1TtefJk0cLcU2WJCIigm9mzmT6tGmER0YCUA7oA/QCShoMGPLnh1dfhQIFIH9+KFwYKlSAGjWgUKGUylgWIyQkBN5/P8ubUbXs0GjMQGgonDkDu3eDtzfcu8el+/f5/cYN9oeFcQyISta9ZZkyDJsxg1Zt2xIeHs50J6csLzvMiVkUwLCwMGxsbFK1W1tbi8A2M3Xq1GHjxo0p2rZt20aNGjWwtrZO7LN9+/YUfoDbtm2jbt26Zl+fRmNulFKsWL6cMR9/jO+jjU5tYCZQ18ICQ4kS8M470KkTlCghp3oajUaTVQkLA19fuHQJLl+GCxfg3j1wdSUqd262/P03c7y92fHYx5ytrOhasiTDlyyhfM2ambL0rIpZFMAKFSqwcuVKJkyYkKJ9xYoVlCtXLt3jhYWFcfXq1cTX169f58yZMzg7O1OsWDHGjRuHn58fixcvBiTi98cff2TkyJEMGjSIw4cPM3/+/BTRvcOGDaNhw4ZMnz6dTp06sX79enbs2MGBAwee86o1mqzB8ePH+ei99zhy8iQAxSwsmG400stgwFC9OnzxBbRtm8mr1Gg0mv8gPh6WL4ejR8HaGvLlA6OR+Ph4ztWqxc4rV9i+ZAn7790j8tFHDEC7fPnoXL489apWxbNLFwyNGokriSYlygysX79eWVlZqX79+qlFixapRYsWqb59+yorKyu1du3adI+3e/duhZjvUzz69++vlFKqf//+qlGjRik+s2fPHlW1alVlY2OjSpQooX7++edU465evVp5enoqa2trVaZMGeXl5ZWudQUHBytABQcHp/uaNBqTYzSqn7/6SllaWChAOVpbq8lWVioClMqbV6kuXZQ6fz6zV2lSsus9mF3XrdFkGBcvKvX++0r93/8pFRGhjPHx6o9PP1UdGzVSeZ2cUukDhWxs1NhKldT1bt2U2rpVqcDApw6v70GlzFYKbtOmTXz11VecOXMGe3t7KlWqxMSJE2nUqJE5pssUQkJCcHJyIjg4WPvxaDKVuH/+4eMRI5i9fTsAPUqXZtbNmxSKjoYiRWDsWKhWDerUyeSVmpbseg9m13VrNGYnPh5+/VVMvR9+CB4e3Lp1i/ffeIMNySx0uYGGQPNixWjxwQeUCwoS15a33gJLy/+cRt+DZkwD065dO9q1a2eu4TUazSOizp+na79+bDl9GoApdesy7sQJDDExEtCxdSucOwe1a2fySjUajeYJxMZKBO/y5VClCkyfTpzBwNwff+TTsWMJDQ/HGhgBdAeqvvYaVtOmSUaCM2egTBlo3z5LB61lNcymAAYFBbFmzRr+/fdfRo0ahbOzM6dOncLd3Z3ChQuba1qN5qVC+foy9IMP2HL6NPZ2diwuWZLux45BXJwof/v2wcGDEuyhBaNGo8mK3L8Pf/4JDx/CgAFQpQrbtm1jxIgReHt7AxLE9itIIMeUKdC0qWxu4+PBzg5at9YyLp2YRQE8d+4czZs3x8nJiRs3bvDOO+/g7OzM2rVruXnzZmKwhkajeQHu32fO55+zcO9eLCwsWGdrS8tHwpISJUSgXr4M1avDS2ri0Gg0WZwLF+DkSclEULcuhx48YEq7dmzevBmQXKVfAoOLFMFy+nR4/XVR9LZulU3ujRvQvLkEiWjShVnCYkaOHMmAAQO4cuUKdnZ2ie1t2rRh37595phSo3m5iItj33ffMXzZMgCmKUXL4GBwdBRhuHw5xMSIUHyOyHuNRqMxK/HxsHMnXL+OsVo1Nl2+TMNBg6hXrx6bN2/GymBgOHAFeG/0aCwvX4bevSWa9+BByJ0bbGzk35e0kseLYpYTwOPHjzNv3rxU7YULF35qqTWNRvNs3Fm3jh5z5hAXF8frBgOjlIKKFWHkSPDwkJ3x4cPQo0dmL1Wj0WhS8vAhbNpEpKcnS44f57tBg7hw+zYg+YL72dkxOjSU0nZ2sHhxSjl29qwkgK5YEXbtEqVQ81yYRQG0s7NLM+HzpUuXcHNzM8eUGs3Lw7lzzJ42jXvBwVQAflUKQ+PGsGSJ7Kg9PEQwJphKNBqNJqvw99/8u307v/j4MH/ECAICAgCpijO4VSuGb91K4dBQcHYWeValinwuLg4OHYKAANngHjokiqGV2UIZcjxm+eY6derEpEmTWLVqFSA1d318fBg7dizdunUzx5QaTc4nKAj27iVm1y7mX7kCwBeAY5Mm8PHHMHmyRPpeuQIdO0Iapcc0Go0mM1CRkeycPp1vtmzhr+PHSchAVzx/foaNHcvbQJ5PPhHTsIcH7NkDxYrJhy9fFotGlSrw4IFEDPfooTe4L4hZFMCZM2fStm1b8ufPT2RkJI0aNeLOnTvUqVOHKVOmmGNKjSbnEhgoxc1jY8HBgT+AeyEhFAI61q8PgwdLzqwRI6B06cxerUaj0SQSHx/P2nnzmPb115y8cSOxvVWzZgwpV472kydj9b//wXffyRs1a8K2bZA3L/j5wf79UqO8a1fYuBFq1YJXXsmMS8lxmEUBzJMnDwcOHGDXrl2cOnUKo9FItWrVaN68uTmm02hyLrdvixmkaVMpdn7jBnN+/hmAQW5uWPXvL33atdPKn0ajyVIc2bGDD4YM4eS1awA4ODjwzjvv8NG77/LKiRMi1wYMgLVr5QMdOsCKFRAZCatXS2Rwu3Zi5vXygkaNoGjRzLugHIbJFcC4uDjs7Ow4c+YMTZs2pWnTpqaeQqN5OYiIgO3bxay7YweULcv5SZPYHxuLJTBo6FApkN6zp46C02g0WYb7/v6MffttFmzZAsih0PDhw/nwww9xzZcPVq2SII6uXeH4cVHw3nkHZs6Ef/6Bq1clr1++fBAcLMpgixZQsGAmX1nOwuQKoJWVFcWLFyc+Pt7UQ2s0Lw9GI6xfD7lywcWL0LYtNG/O3Fu3AOhUvTqFra2hXz9xltZoNJoswJ4//+SNN9/kTnAwAAMGDGDatGm4u7vDvXvwxx/g5CTK340bkrpqwgRxZfnzTyheXALYIiIk119wsMg/V9fMvbAciFlMwJ9//jnjxo1jyZIlOOsfJ40m/fz1F9y8Ca1aiUBs0oSwc+dISKE+tEYNaNZMK38ajSZLYDQa+eqTT5j43XcYlaJcuXL8+uuv1HntNTnl27ZNlDhLS0ndEhwMbm4wd6749G3cKPIuf34p7ebtDfXrJwWCaEyOWRTA2bNnc/XqVQoVKkTx4sVxdHRM8f6pU6fMMa1GkzM4c0YUwLFj5XWDBuDtzQIbG0JjYijt7k7TatXEWVqj0WgyGT8/PwZ07cqOY8cA6N+/Pz/99BOOsbGSlL5SJVH6Vq0Sn7+YGFH65s6VqN7QUOjTR5I8X7ggm9833tBRvmbGLApg586dzTGsRpPzuXMH5syBr76S8m2PlL/7Tk5MNBohJoaR7dtjaNhQdtIajUaTiaxYtoz33n2XoLAw7O3t+emnnxg4cKAocidOQPv2EtE7bRp8+ql8qGZNmDhRAtiSm3evX4e//4Zu3bTylwGYRQGcOHGiOYbVaHI2AQHw/fcwaJAIxI8+gmPHwMGBz1q3JmjlSqq88grvNG4Mnp6ZvVqNRvOScufOHTZv3szqVavY+tdfANSsWZPff/8dT09PSdL88KGc+ikF774L//d/8uH27aFvX/Hxe/11KecGkvLl0CEJatOb2wzBrCm0T5w4wYULFzAYDJQtW5bq1aubczqNJvsSEiLpD8qUgRo1YOVK+OEHAE6MHs2vX3wBwI/vvINl06Z6d6zRaDKc3bt3M3HiRPbv35/YZmlpyfjx4/n000+xtrKCvXslmXPbtiLXevUSlxaDQUpVuruL73KzZtKmFBw5Ar6+EhhibZ2JV/hyYRYF8NatW7zxxhscPHiQvHnzAhAUFETdunVZvnw5RXUeH40mJdu2ya63UydJ6jxwIADGdu34YP16lFK82bo19WrWhEKFMnmxGo3mZeLUqVOMGzeObdu2JbbVKFeO9rVq0fOTTyhbtqwocrt2yYleo0bw77+S18/bW6oSffcdnD4N/ftLChiQQJBNmySHqa7skeFYmGPQt956i9jYWC5cuEBgYCCBgYFcuHABpRRvv/22OabUaLIv166J71/VqlLvslUrSYRasyaLCxfm6OnT5HJwYEa3bpI4VaPRaDKAgIAABg0aRPXq1dm2bRtWVla8//77+J45w/HPP2fir7+K8hcbCxs2SNqqBg3ElFurlih/efPCjz9Kbr9PPhHlLz4eDh4U5a9VK7F6aOUvwzHLCeD+/fs5dOiQ+AI8wtPTkx9++IF69eqZY0qNJnsSFye5rvLkgQoVoGFD8PGBokUxVqvGtD//BGB8hw4U7N9fC0mNRmN24uLi+L//+z8+++wzHj58CMAbb7zB5MmTKVm0qET2dukiUbvBwaL81akDr74qJuB27SA8XKp2DBsmSmDbtlCqlJwM7t8P1arpSN9MxiwKYLFixYiNjU3VHhcXR+HChc0xpUaTPTl4UFIgvP66mEBOn5YkqW+9xbbAQC75+ZHbzo4h332nfWM0Go1ZMRqNrFmzhgkTJnDp0iUAKleuzE8//SSHN6GhsGYN1K0LuXNL1O6+fWLqdXaG3bslyCMiAkqWhFGjoE0b6dO5s1T5uHRJFL+E4A9NpmEWE/CMGTP48MMPOXHiBEopQAJChg0bxsyZM80xpUaT/QgKkjq/rVtLzr+tW6Uk0qhRUK0a3585A8DrXbqQu0CBTF2qRqPJuSil2LBhA9WrV6dXr15cunQJFxcXfvjhB06cOCHK3/nzsG4dNG8uyem3bhWF7o03RPnbuVNO/iIi5OTvhx9kY7t3ryh///4rqWE6d9bKXxbBoBI0NBOSL18+IiIiiIuLw8pKDhkTnj+eFDowMNDU02cYISEhODk5ERwcTJ48eTJ7OZrsxv/9nyh8YWGS8sVgEF+Z99/nElAmWdewsLBU944m+96D2XXdmpyF0Whk3bp1TJo0ibNnzwKQO3duRo0axfDhw+VvMzBQgjtcXMRFJSBAlL86dSR4A+SEr3Vr8V0uUQJ+/x0qV5ayb506yRjHj0t+PyuzJh95ZvQ9aCYT8KxZs0w+5pw5c/j666/x9/enfPnyzJo1iwYNGqTZd8CAAfz222+p2suVK8c///wDwKJFiyRZ5WNERkZiZ2dn2sVrNI9z+bKYT2rUkLx/AP/7n+THev99fszUxWk0mpyMUorNmzfz2WefJSp+uXLl4oMPPmDUqFG4uLjISd6WLeLL17ix5Ca9c0cyFnTvLjV8QXKVtm8vyl+ZMjBvnvj3rV4t7UFBkualR48so/xpBLP8b/Tv39+k461cuZLhw4czZ84c6tWrx7x582jTpg3e3t4US6NO4Pfff8+0adMSX8fFxVG5cmV69OiRol+ePHkS/RwS0MqfxuzExcnO2N0d3nlHIuKaNoVx42DFCoKBRZm9Ro1GkyM5evQoH3/8MQcPHgTkxG/48OEMGzYMFwcH8dHbuVPSutSpk1SL9+7dJOXPwUHazp2TKN7QUCn3NmkS1KsneUxbtpT2Q4fkM9qHOcuRLdTxb7/9lrfffpt33nkHkBPGv/76i59//pmpU6em6u/k5ISTk1Pi63Xr1vHw4cNUJ34Gg4EC2rdKk9Hs2yeRvnv2SLb8woVFYK5eDVWqsAAIA8p6enLhsQ2KRqPRPA8xMTF88cUXTJs2DaPRiJ2dHR9++CFjxoyRE7+LF+U0r0oV6NgRkh+G3L8vZt/kyt/Jk6LkBQVJCquhQ8UH8M8/oXp1iI5OUv60z1+WxCxBIKYkJiaGkydP0rJlyxTtLVu25NChQ880xvz582nevDnFixdP0R4WFkbx4sUpUqQI7du35/Tp0yZbt0aTJoGBsHSp/HvhggjZ1aulZuZrr3H+3DkmPOr63qMNj0aj0bwIf//9N7Vq1eKrr77CaDTSp08frl27xowZM3Bxdpa0LFeuQJ8+cpKXXPm7fFkqeXTrlmT23b1bkj0HBory9+67ougdOiSWjVy5JMOBVv6yNFleAQwICCA+Ph53d/cU7e7u7ty5c+c/P+/v78+WLVsSTw8TKFOmDIsWLWLDhg0sX74cOzs76tWrx5UrV544VnR0NCEhISkeGk26mDtXcmdt3Sqv33lHTCzR0TwIDqbjiBGEAU2Avm+8kZkr1ZgQLTs0mUFYWBiffPIJ1apV48yZM7i4uLBmzRqWLFlCoUKFJIHz+vWipLVvn7IGr9Eoit6VKxLNmyuXtP/xh5h9w8OhSRMYP16SP/v7S0Bb2bKwY4cojFr5y9JkeQUwAcNjySKVUqna0mLRokXkzZuXzp07p2ivXbs2b775JpUrV6ZBgwasWrWK0qVL88Oj+qtpMXXq1ETzspOTky5pp0kfd+7A2bNw+7YkTy1ZEqZMge3biXV2pke/fly/f5+SwGrAWvvM5Bi07NBkFEoprl+/zq+PqnTMnDmTuLg4unTpwvnz5+nWrZt0DAyUhM4VK0rVjuS/pwEBUps8b14x61pZia/y+PFyqhcbK+lcJk+WMm/588OpU6IQrl8veQG1P32WJ8v7ALq6umJpaZnqtO/evXupTgUfRynFggUL6Nu3Lzb/sROxsLCgZs2aTz0BHDduHCNHjkx8HRISogW55tnZtk0Uv7/+klPADz8UAXz/PmO2b2e3tze5cuVifdOmuOTLR7SdXWJAlZWOnsvWaNmhMSf+/v5s3bqVrVu3sn//fvz9/RPfK1myJD/88ANt27ZN+sDly3D0qKRoSeYvT1SU5O0LC5MEzvnySfudO9L32DF5PXiw5ANMCGBbuVIqg/z5p6SKcXbOgKvWvCgm+1Xp2rXrM/f9448/nrmvjY0N1atXZ/v27XTp0iWxffv27XTq1Ompn927dy9Xr159pvrDSinOnDlDxYQi1Wlga2uLra3tM69do0nEx0eE7qlT8rptW9lVP3zInYED+aFECQB+//13Kjw6rbZFTrA12R8tOzSm5Pbt2+zfv5+DBw+yb9++xFQuCVhbW1OtWjU6derE8OHDsbe3lzeCg8Wsa2srCZyTbyyDgiTRc+PGkssvgfnz4eOP5bOOjjB1qpSurFNHAtjWrhV/wOPHpRRc8s9qsjQmUwCTR90qpVi7di1OTk7UqFEDgJMnTxIUFJQuRTGBkSNH0rdvX2rUqEGdOnX45Zdf8PHxYciQIYDsrv38/Fi8eHGKz82fP59atWpRoUKFVGN+8cUX1K5dm1KlShESEsLs2bM5c+YMP/30U7rXp9E8FaXEyfrwYYmmK1AAypcXH5pBg5g/dy5xcXHUrl07lauCRqPRJBAbG8u4ceP49ttvSV7DwWAwUKNGDdq0aUOzZs2oWbNmktIHcrJ34AA8eCAK3uPWs8hIMd127ixmX5A8pX37SjAHiMyaOVNMx127ir/g5s2iBIaFiVm4alVzXr7GxJhMAVy4cGHi8zFjxtCzZ0/mzp2L5SOn0vj4eIYOHfpcGbd79erFgwcPmDRpEv7+/lSoUIHNmzcnRvX6+/vj4+OT4jPBwcF4eXnx/fffpzlmUFAQgwcP5s6dOzg5OVG1alX27dvHa6+9lu71aTRP5epVEZYJUeaNG4uJpGJF4vPm5ZdffgHgvffeE2UxIgIAZW9PRGQkAA4ODs/k86rRaHImN2/epFevXhw9ehSAKlWq0KBBA+rXr0+TJk1wc3NL/SGjUawO3t6Sn69589R9EvKStmyZpPwtXixpXcLDRXZ98okEdVy/Dj17iiL5119yCpgrl6S06tXLbNeuMQ9mKQXn5ubGgQMH8PT0TNF+6dIl6taty4MHD0w9ZaagS8lo/pPoaHGmPnoUfv5Z/G26dhWTSffubNy1i44dO+Ls7Iyfnx928fGJ0Xbhd++S69FOXZeCS5vseg9m13VrMp6IiAgWLFjA+PHjCQoKIm/evCxYsCCFS1Sa3L4t0bjly8vJnEUaMZ/x8XLyV6mSmG9DQ0XxW7JE3q9aFX79VeTY/fsSEHLypCiC7dpJHy8vqfKRkB8wm6DvQTNFAcfFxXHhwoVU7RcuXMBoNJpjSo0ma7JtmyRF3bhRXleuDM2aSQSwoyM///wzAAMHDtRVaDQaTSI+Pj5MnjyZ4sWL8+GHHxIUFMRrr73G6dOn/1v58/WV+r09e4r8SUv5CwuTzWnZsqL8nTwpCt+SJRIR/Pnncsp36ZKcAjZrJieFRqOMa2Ehyl/bttlO+dMIZgktHDhwIG+99RZXr16ldu3aABw5coRp06alWX9Xo8mRXLokztZ//QW3bkkppPbtISYGatfm+vXrbH2UD/Ddd9/N5MVqNJqMJCoqinv37nHv3j3u379PQEAADx48wNvbm127dnHt2rXEviVKlOCTTz7hnXfe+c+MFvj4iM9xjx4if9IiQUFs2xbc3OSU74MP5KSvQAGJ6s2XTzawrVvLyeCaNWImLlhQfAbXrJH30jI9a7IFZlEAZ86cSYECBfjuu+8Sw9ELFizI6NGj+fjjj80xpUaTtQgLE7Nv06YwfLi0tWwpO+3ixcHamnnz5qGUokWLFpQqVSpTl6vRaMzLw4cP2bFjB1u3bmXbtm3cunXrqf0tLS2pVasWH3zwAT169Hi2VFA+PhLs0aNH2kmY4+JEOXz4UJI7G40wcCAkZBto2lQUu4cPJWdpz55SujI8XKKGbWwkoGTNGmjRInUwiSZbYRYF0MLCgtGjRzN69OjEjPcvq41d8xKilETHNWsG33wjJd8sLERghoRA5crExcWxYMECAIYOHZrJC9ZoNKZGKcXBgwfZunUr27dv58SJE6lcoKytrXF3d8fNzQ1XV1dcXFwoWrQojRs3pn79+un73Xz4UIIxXn89beXv339F+atVSxI2X74sCZsvXxb5NGkSjBsn6V4OHhR5tWIFVKsmfoQgCubu3fJewYLP/+VosgRmzy6rFT/NS8fff4tw/PNPKf0GUL8+JESYW1qyb9cu7t+/j6urK+3bt8+8tWo0GpNz4sQJRo0axd69e1O0ly1bljZt2tC6dWtq1KhB3rx5TRPdHx0tfsadOqVW/oxG2L5d/k1QDmfPhrFjxZTr6ioJ6Zs3l3H+7/+kssehQ9CxowSuxcWJ4hcZKdG+2l85R2A2BXDNmjWsWrUKHx8fYmJiUrx3KiEZrkaT0wgLE9PJK6/AZ5+JwCxXTtIoXLsmphlg7dq1AHTs2FFX+dBocgj37t1j5MiRLF26FAA7Ozu6dOlCixYtaNGiBUWKFDH9pErBhg2SXip5VQ+QlFLr10u5twoVRB517iz9QVLDrFwpufz8/aU0ZcOG4huYK5eM7e0tSZ5r14bHMntosjdm+eWZPXs2n332Gf3792f9+vUMHDiQa9eucfz4cd5//31zTKnRZD5KwdatIlSbNZNcWQUKiA+gpyfcuAG2tiilWLduHUDqaD5LS6m1CVja2NA94XnyIu0ajSbLcezYMbp27Yqfnx8Ab775JlOmTKFYsWLmnXjPHtlwPj7PnTsSgJYQuHHliqRuSSh3OmoUfPWVBKedPg3z5kmJt2rV5P0bN8Sf0MMDeveWfpqchTIDnp6eatmyZUoppXLlyqWuXbumlFJq/Pjx6v333zfHlJlCcHCwAlRwcHBmL0WTFfj7b6V271bq44+VAqXs7JRasUIpo1GpVauUevR3cuzYMQUoR0dHFRkZmblrzuZk13swu65bkzb/93//p2xsbBSgPD091bFjxzJm4itXlNq4MWWb0ajUwYNKrVypVFiYtHl5KZUrl8glJyel1q1L6u/lpdQHHyh17568fvhQqTVrlNq6VamIiIy4ikxB34NKmSUPoI+PD3Xr1gXA3t6e0NBQAPr27cvy5cvNMaVGk7lER0uptzt3YM4caZsxQ/xlHjwQv5tH/rAJ5t82bdro3H8aTTYmKCiI/v37M2jQIGJiYujUqRPHjh2jZs2a5p88JET89Fq1Stm2YoXImx49pHbv11/L87AwyfN36pT4Ciolp37nzsG330oVkD17xIrRsKGMm7ycnCbHYRYFsECBAonVPooXL86RI0cAuH79eor6hRpNjmHPHlH0TpwQPxt3d3j/fcmftXWrlEx6xBPNvxqNJtuwdetWKlSowOLFi7GwsGDy5Mn88ccfGRP4aDRK0Ee7dmKaNRol7dTGjRKhW6OGKHjvvQejR8v7/fuLwliypNTt/f57URgnTJBMBcuWictKr146t99LglkUwKZNm7LxUeWDt99+mxEjRtCiRQt69eqlf/Q0OY/wcNiyRZyr58+XtgkTJBH02rXig5M/PyDlEC9cuIC1tTXtEkopPT6WwQAGA+H37mEwGDAYDISHh2fc9Wg0mieilOLTTz+lTZs2+Pn5UapUKQ4cOMBnn32GRVoVN8zBnj1SVcjFRawOS5eKIti7t0T1RkVJ0vmELARffgkLF0r0bnCwRAFbWkpZyqVLRe68+SaUKSPyR/NSYJYgkF9++SUx39GQIUNwdnbmwIEDdOjQgSFDhphjSo0m81iyRHJrrVsHQUEigIsWBT8/6NNHBO0jEsy/TZs2xenxiD2NRpPlmTx5MlOnTgXgvffeY+bMmThkZCm0mBhR+po2ldx/27ZBt25i7gWxRDRrJtkIrK1hwQJR7pSStl27JK2Lu7vU9O3WTZdye0kxiwJ469YtihYtmvi6Z8+e9OzZE6UUvr6+5o+K0mgyCj8/yfs3ZQqUKCFtTZqIQG3WLFX3BAVQn4RrNNmPBQsWMGHChMTXX3/9dcYqfyCWhTJlxIy7caPk6ktQ/q5dk3Qwt25JSph16+R1gpUiLk4UxGrVxDKRK1fGrl2TpTDLebWHhwf3799P1R4YGIiHh4c5ptRoMofZs+Hdd2HmTDn9K1JEUi40apSqq4+PD8eOHcNgMNCpU6eMX6tGo3luNmzYwKBBgzJ7GZKXr2xZ2LRJEsznzSvtZ86I79+tWyKHDhwQOXTmDHh5Sa6/kyelfm/Xrlr505hHAVRKpZndPCwsTEc9anIO27eLEI2OlnxaILvttm0hjeTOv//+OwCNGjWiQIECGbhQjUbzIuzZs4eePXtiNBp58803M28hYWHiUnL2rARqlCwp7UeOiDIYFCSvd+2CQoUkIjgiAurWled9+kg/jQYTm4BHjhwJgMFgYPz48SmOxuPj4zl69ChVqlQx5ZQaTebg7S2O2O+8I6Zeo1F8cmrUkIz7j6GUYtGjgusDBw7M2LVqNJrn5sSJE3Ts2JHo6Gg6duzIjz/+yJIlSzJnMefPi3vJnTuSygWkRFvbthL4kcDt25KRoE0b8f0bN04S0pcpkynL1mRNTKoAnj59GpAfu7///hubZDUJbWxsqFy5MqNGjTLllBpNxnPtmuTSKlcOpk0TR2o3N6ngkTdvYsRvcg4dOsTVq1fJlSsX3bp1y/g1azSadHPhwgVat25NaGgoTZo0YeXKlcTHx2fego4cEfnSq5dE6+7YIalgYmLE+rBnT1Lf118XpXDUKBg0SCt/mlSYVAHcvXs3ICcc33//fcbkQ9JoMpKgIEn4XLy47MZ/+UXaBw2SZKt//ZVmyaSFCxcC0KNHDxwTHLbTwtJSdvNIKbi2Cc91KTiNJkPZsmULAwcO5MGDB9SoUYP169djZ2dHVFRU5tyXFy+Cr6/k9rO0FGWwQwdR/jp0gEmTYMAAURBr1RLXlEmT5KSwevWMW6cm22CWKOCEHzuNJsdx9KjstDdtkshfkN14hw6SNT+NiMDw8HBWrVoFwIABA54+vp2djA3YAZsePddoNBlDeHg4n3zyCT///DMAlSpVYsuWLeTOnRsAOzu7jL8v//1X8vgNGgS2trL5bNlSTviaN4eRI8UScfy4bECjo2HWLDn1a9kyY9eqyTaYRQEMDw9n2rRp7Ny5k3v37iXmBEzg33//Nce0Go15iYqCgAD5d98+SQHj5iZRdbVqiZAuWDDVx9auXUtoaCglS5akvnbA1miyLLdu3aJ58+ZcunQJgOHDh/PVV19hn1kl0aKjJdjMaITSpcHTMynVS2ioyJ3Bg0Up7NxZzMKxsVKOMnduyf+n0TwBsyiA77zzDnv37qVv374ULFgwzYhgjSbbcfKkBHls2ACPTvR4800xsRgM4O8vCaAfIyH4o3///hlXKUCj0aSLu3fv0qxZMy5fvkzhwoX57bffaJZGLs8MIyhI8vglpHJp3lw2mc2aSS6/ChWkzFuxYiKXQPL8zZsn8mjQoBRJ6DWaxzGLArhlyxY2bdpEvXr1zDG8RpPxxMfD1atQqpRk1o+LEwH8xhuQL5/0uXMHHisC7+Pjw65duwDo16/ff88THp4YRBJ+/Tr5H+XNvHfv3tN9BzUazXMTGBhIixYtuHz5MsWKFWP//v1PLFgQHh5O/kf3qNnuy5gY2Wh27ixKn4uL/Dt5Mty8KdWGvvpKEkAnKH/+/pKMXim4ezdNX2SNJjlmOY7Ily8fzs7O5hhao8kczp+H8uVF6P7zj+T569dPhG9MjCRdjY8XU0wyli1bhlKKxo0bUyKhUsh/EREhDyAiIoKIR881Go3p8ff3p3Xr1vz9998UKFCAnTt3/me1KrPel0pJhY+GDcUEfPmyJHZet07y+1lYwPTpYhZu0kQ+c/kyrFwpsig2FpJl4NBonoRZFMAvv/ySCRMmmPQGmTNnDh4eHtjZ2VG9enX279//xL579uzBYDCkely8eDFFPy8vL8qVK4etrS3lypVLLNOl0aQgoYZmQl1NkKi6wYPh0CERvK6u0LNnqo8uXboUIHOTx2o0mlQopVi2bBnly5fn+PHjuLi4sGPHDl599dXMXdiBA+JK4uICW7dC+/bw228wd668P3KkJKBv314Uvi1bZFP62OZTo/kvzGIC/uabb7h27Rru7u6UKFEC68eOok+dOpWu8VauXMnw4cOZM2cO9erVY968ebRp0wZvb++n7tQuXbqUIhWNm5tb4vPDhw/Tq1cvvvzyS7p06cLatWvp2bMnBw4coFatWulanyaH888/kvblvffE8drVFT7/XJJBKyV+gGn4uZ47d47z589jY2Ojc/9pNFmIwMBA3nnnncRNf7Vq1fj9998pV65c5i7M1xcCA8XasHat5PjbtAm++06UvRYtxOrQtStcuSJZCerUkejfVq0yd+2abIdZFMDOnTubdLxvv/2Wt99+m3feeQeAWbNm8ddff/Hzzz8zderUJ34uf/785E2ok/gYs2bNokWLFowbNw6AcePGsXfvXmbNmsXy5ctNun5NNiYgQE7/Hj6U/H8gpZSqVJHX3bunqfyBmH8B2rVr98S/Q41Gk7FcuXKFdu3aceXKFaytrZkwYQJjxoxJdVCR4SglVT3c3ODCBfEvPn9eqg2FhUG1alLKrXFj+OMP6ffGG+IrWKsWuLtn7vo12Q6zKIATJ0402VgxMTGcPHmSsWPHpmhv2bIlhw4deupnq1atSlRUFOXKlePzzz+nSYK/BHICOGLEiBT9W7VqxaxZs0y2dk02JyYGNm8W4Vq3rrRVrQoffgg7d4rJ9wnKn9FoTFQAe/funVEr1mg0T2Hv3r107dqVwMBAihcvztq1a6latWpmL0vYu1dSvFSpApUqiRLYrJkof2XKwNChYn3Yv18igvPlg/XroWxZePVVCSDTaNKBWRRAgKCgINasWcO1a9f45JNPcHZ25tSpU7i7u1O4cOFnHicgIID4+HjcH9vduLu7c+fOnTQ/U7BgQX755ReqV69OdHQ0v//+O82aNWPPnj00bNgQgDt37qRrTIDo6Giio6MTX4eEhDzzdWiyGUqJ8leggPj6BQZKmbc6deR5s2aS+PkJHDx4EF9fX/LkyUO7du0ybt2aLImWHZnPxo0b6datG7GxsdSqVYv169en+g3IFIxGUf7WrJHk8nnzwo0bouQ9fCjuJ1OmQEiIZB4oXlzk06ZNEvVbvnwmX4Amu2IWBfDcuXM0b94cJycnbty4waBBg3B2dmbt2rXcvHmTxYsXp3vMx3MJKqWemF/Q09MTT0/PxNd16tTB19eXmTNnJiqA6R0TYOrUqXzxxRfpXrsmm6GU1NS8dg0uXUoy/VavLslYX31VovKeQkLwR9euXdOXRNbCQvJ+ARZWVjRKeK7zB2ZrtOzIXG7evEm/fv2IjY2lR48e/Pbbb8+d3NnCwsJ092VsrPj6hYTABx+I8nfnjvj63b4tG9DffwcfH6nta2cnn9u+XUy+VaokX1ii7EDLC80zYJa/kpEjRzJgwACuXLmCXcIfLNCmTRv27duXrrFcXV2xtLRMdTJ37969dO3eateuzZUrVxJfFyhQIN1jjhs3juDg4MSHr6/vM8+vySbExUm6hcOHxQS8fr0I6erVRTj37p1S6KZBTEwMq1evBqBPnz7pm9/eXpTPPXuwd3Zmz5497NmzJ/MqEWhMgpYdmUdcXBx9+vQhKCiIWrVqsXTp0he6n+zt7U1zX0ZGSgaBMmWkhGSZMpL8uVUryTmaNy8sXy4Vh3r0SFL+/v5bFLzHco4mlx1Ps05oNAmYRQE8fvw47777bqr2woULP9XEmhY2NjZUr16d7du3p2jfvn07dRP8sp6B06dPUzBZma46deqkGnPbtm1PHdPW1pY8efKkeGhyEBERIpD9/SUFw6pVcO8eFC4sr3/+WRyv/4Nt27YRGBhIgQIFUvidal5etOzIPCZPnszBgwfJnTs3y5Yty/xgD5BsAqtXw2uvwenTovT5+YnZ99w5UQhXrJCEzt27J+X1CwiQ95s2zdz1a3IEZjEB29nZpenjcunSpRSpWJ6VkSNH0rdvX2rUqEGdOnX45Zdf8PHxYciQIYDsrv38/BJNy7NmzaJEiRKUL1+emJgYlixZgpeXF15eXoljDhs2jIYNGzJ9+nQ6derE+vXr2bFjBwcOHHjOq9Zke/bsEX8cd3fJu3XmjOy6Bw8WU8wz/u0mFIrv2rUrlroUk0aTaWzevJkvv/wSgHnz5lGyZMlMXhGi1G3dKome9+2TfH6XLklql7t3JZ/f4sXy/PXXJek8iCVi82bo0kWbeDUmwSx/RZ06dWLSpEnExsYC4mvn4+PD2LFjnysfWq9evZg1axaTJk2iSpUq7Nu3j82bN1O8eHFAMrn7+Pgk9o+JiWHUqFFUqlSJBg0acODAATZt2kTXrl0T+9StW5cVK1awcOFCKlWqxKJFi1i5cqXOAfgyc/y4nPQdPSqZ+AEWLYJbt6Bv32caQinF1q1bAWjbtm361xAeLoqmmxvh9+7h5uaGm5sb4TrCT6N5Znx8fHj99ddp164dRqORAQMG8MYbb5hk7PDw8Oe/L69ehR075KRv3z7o2FFcTho3FoXPxQWWLhU50KFD0slffLwEfdSvD7lzP2lhibJDRwRrngWDUkqZetCQkBDatm3LP//8Q2hoKIUKFeLOnTvUqVOHzZs355iapiEhITg5OREcHKxNOtmdoCBJ7lyxokTc+fqKU/Zrr0mql2es5HHp0iXKlCmDjY0NgYGB6f9bDw+XLP9A+N275HrkkxoWFpZj7htTkl3vwey67uzA3LlzGTFiBFFRURgMBgYPHsy3336Lg4ODScYPDw8n16N79JnvS6Vkg+nnJ0rc5s3QujWMHw//93/Sp1w5WLJEav5Wry4RviC1f/fulbanRfwmkx2EhUmdYM0T0fegmUzAefLk4cCBA+zatYtTp05hNBqpVq0azZs3N8d0Gs2L89dfsrM+eFCUP3d3+PhjmD0bJk165mESTv8aNmyoFTaNJoPZsWMHQ4cORSlFw4YN+f7776nyH0FbZichn6irq0Tpbtwoylz79nDihGwwmzWDgQMlwKNaNVH+IiNh2zY5BezZMykIRKMxEWbLAwjQtGlTmmpnVU1Wx2iUxM7588sOHGDWLBG+NWok7aqfgQQFsHXr1mZYqEajeRJ+fn707t0bpRRvvfUWv/7661PTemUIAQFium3YMClxs6WlKIKBgaLcNWoEgwZBvXpQsKAohLdvS6qXZs3+M+WURvO8mE0B3LlzJ9999x0XLlzAYDBQpkwZhg8frk8BNVmPCxfE/2bvXjHVNGggu3AvL0hHWcPIyEj27NkDaAVQo8lIYmNjef3117l//z6VK1fmxx9/zFzlTymJ7r1wQYI2LC1lc3nokAR4gJwIjhkDI0bI+wmfO3ZMzL49e+p0LhqzYpYgkB9//JHWrVuTO3duhg0bxkcffUSePHlo27YtP/74ozmm1GieD6UkHUN8PFy+LE7YEyZIuaWiReVU8BnZt28fUVFRFClSJPOLyms0LxFjx47lwIED5MmThzVr1mRu3syICKnqERkptXrt7OCrr2D69CTlr3t3+PFHcTOxtBQ5dO2aBIAYjfK+Vv40ZsYsJ4BTp07lu+++44MPPkhs++ijj6hXrx5TpkxJ0a7RZCqXL4vT9dGj8rpTJyhWTE4DBw9O11DJzb+ZbnrSaF4ClFJMnDiRb7/9FoCFCxfy6quvZt6CfHxg925o2VLMuQEBcpK3e7e87+QE778vlT7q1xdz79274oJSoIAoftrXT5NBmEUBDAkJSdME1rJlS8aMGWOOKTWa9GM0SpqXhw9FUBcrJoL7999FQBctmq7hTOL/Z2EhfodIKbgaCc913i+NJgVKKT799FOmTZsGwMyZM1Ok+jIXFhYWqe/LBNOtr6/k7rO1hQMHJJVLUJD0qVsX3ntP2pyc5DMnT0pqmI4d0+Vr/ISFJcoOnSdQ8yyYRQHs2LEja9eu5ZNPPknRvn79ejp06GCOKTWa9LN8uQjivXvldbduErFnbS1O2+ngxo0bXLx4EUtLS5o1a/b8a7K3l3QRgD1SVUej0aREKcWYMWP4+uuvAUn+P2zYsAyZ297ePuV9GRUliZ3d3ESGGAyS269XL5EnTk4wbRr06ZOUwy86WiKD3dzkhNAUFoNkskOjeRbMogCWLVuWKVOmsGfPHurUqQPAkSNHOHjwIB9//DGzZ89O7PvRRx+ZYwkazdM5d07MvrlySVmm4sXB01NMwu+9l+7h/vrrL0BKDObNm9fEi9VoNMn54YcfEpW/n376iaFDh2bOQq5ckcCOxo1FhgDMnStmXqNR6obv3590uhcdLUrav/9K9G/CZzSaTMAsCuD8+fPJly8f3t7eeHt7J7bnzZuX+fPnJ742GAxaAdRkPA8eSF3fYcMk0TOIMLa1lYLshQqle8gNGzYA0KZNG1OuVKPRPMbWrVsZMWIEADNmzMgc5S86Wk797Oygd2+xGoAkdp48WZ43aAC7dok59uZNURb9/aFmTUn5ov2ENZmMWRTA69evm2NYjebFiY6GH34QU82YMXL65+4uJt+CBeGVV9I9ZEhICDt27ACgczrSxqRJRIRUBAAiTpyg3COfHm9vb5NVMtBosive3t706tULo9HIW2+9xahRozJ8DRG+vpSrWhXs7PC+fBkHa2s57Xv/fTn9A6hdG/74Q3IAhoVJLr+yZSWvn7kUv2SyA29v0PJC8x+YNRG0RpOliI2VdAzFionD9oYNkoKhf385Afz7b3iOCMKtW7cSExND6dKlKVu27IutUSk5LQCU0cjNhOemr9io0WQr7t+/T/v27QkJCaFhw4b8/PPPGR9tf/kyat8+bj54ADy6L4OD4d13YeVK6VOzJnz4IezZI6ZhV9eMWVsy2YGWF5pnQCuAmpeDu3fhp59kF54/f1KKlx495CRw40Zx2n4O1q5dC8jpn07/otGYnsjISDp16sT169fx8PDAy8sLGxubjJlcKbh+HU6dklO1Hj2kcgfAjRvw2WdS4QOgTRtRAOvXl42mRpOF0QqgJucTFATLlkmQR/36ULmymGyaNpWkz/v2QZMmz5V/Kzo6mk2bNgHQpUsXEy9co9EYjUb69evH4cOHyZs3L5s3b8Y1I07V4uOlmoe3twRrtGolUbzh4Ul9uneHixfleb9+YoLt2VMrf5psgVYANTmfjRvFSbt1azH1PnwoJ4EDB4pZOG/e5xbYu3btIjQ0lIIFC/JaQkCJRqMxGePGjWPNmjVYW1uzbt06ypQpY94JjUbJEnD2LFSqBG++mTKvXkRE0vOLF8HKCiZOFBni6AgeHuZdn0ZjIrQCqMnZXLggiVbfeUcUvn/+AWdnMQHXry/JWnv3fu7h161bB0CnTp10smaNxsQsWLCAGTNmJD5v1KiReSYyGiWJs7e3JIUvU0YUv4QavQn884/IkQRcXWHWLFECY2IkgbxGk00wmwK4f/9+5s2bx7Vr11izZg2FCxfm999/x8PDg/r165trWo0miZgYWLVKzLuzZ8tJoJUVfPstlCwp+bk6dHjurPnx8fGsf+T7o82/Go1pOXToEEOGDAFgwoQJvPnmm+aZ6PZt2L5dzLw1akhy5uQoJSXe5syBhQvh/v2k9+bOFflRvLgkhM6Txzxr1GjMgFkUQC8vL/r27UufPn04ffo00dHRAISGhvLVV1+xefNmc0yr0aRkwwbx2bl5E2bOlLYffxSBHR4O1auL+fc5OXLkCHfv3sXJyYnGjRubZMkYDImpHAwWFpRLeK6DSzQvEbdu3aJr167ExsbSrVs3Jk6caPpJjEaxANy/L4Edj6dNiYuTUm1r10qt3tOnIT4eg4MD5fLkAVtbDJaW4hu4apWcGGYmyWSHzjGoeRbMogBOnjyZuXPn0q9fP1asWJHYXrduXSZNmmSOKTWalPj4yAnf4MHwqBoN774LLi5S4/f+/SRh+Zz88ccfALRv3950EYkODmJmAhyAfx4912heFiIjI+nSpQt3796lYsWKLFq0yPTuFVFRkqevQgVJ2JxcYYqJkeoeW7aIC8mBA+I3DNCmDQ6jR/PPrVtQqpQkkt+2TfKIPm4uzmiSyQ6N5lkwiwJ46dIlGqZRSzVPnjwEJRTG1mjMRVQULF4MXbvCiBGS7NnDQxTAv/8Wn8CePV9oipiYGJYsWQJA9+7dTbFqjealJzAwkC5dunDixAlcXFxYv349uRLKqJmKyEhYs0ayABQunPK9kBAJ6PD2ltO/R/n+KFQIpkxJqvjRvbtkDbh3TxI968APTTbELApgwYIFuXr1KiVKlEjRfuDAAUqWLGmOKTUaQSnJvu/oKEJ8+3bx+/vxR0kF06SJmGxecLe+ceNG7t27R4ECBWjXrp2JFq/RvLzcvHmTNm3acOHCBfLkycO6devwMLViFR4OXl7QsiUUKJDyvUOHYOhQqQceGSlthQvLCWHXrqLwNWuWZCpWSkzDbduado0aTQZhFgXw3XffZdiwYSxYsACDwcDt27c5fPgwo0aNYsKECeaYUqMRzp4VIV+0aFK0Xr16sHmznPqlcTL9PPzyyy8ADBw4EOuEUwFTEBEhiWSBiL17qfko6vH48eO6FJwmx3Lq1CnatWvHnTt3KFKkCJs3b6ZixYqmnSQwUALB2rZNCvRQSsymo0fLZjEuTtrLl4fmzaVMpLOzlHYrWhSAiIgIatasCdHRHP/5ZxycnEy7zuclmezg+HFdCk7zn5hFARw9ejTBwcE0adKEqKgoGjZsiK2tLaNGjeKDDz4wx5QaDdy6BefPiwl45kwxzTg7i7mmUiWTKX/Xr19n+/btALzzzjsmGTMRpeTkEikF553wXJd20uRQNm/eTM+ePQkPD6dSpUps2rSJIkWKmHaS69fFl69zZ3ByEkXv4EGpDrRxo8gMgIoVpZpHrlzSr3Fj8RNM5oOY4r7MSrk/k8kOXQpO8yyYLQ3MlClT+Oyzz/D29sZoNFKuXDnT+3JoNAn8/bcIv9KlJSP/pUuSkqFbN/HfadDAZFPNnz8fpRQtWrTQLg0azQswd+5c3n//fYxGI82bN2fNmjU4mfJETSk4cUKCwl5/XVw/Tp+G+fNh9Wrx4QNJC9Whg/xrays5QsuWTZ0AOqEySAJWOpWuJvtilsy1v/32G+Hh4Tg4OFCjRg1ee+21F1b+5syZg4eHB3Z2dlSvXp39+/c/se8ff/xBixYtcHNzI0+ePNSpU4e//vorRZ9FixZhMBhSPaISdoKa7IFSsHs3+PmJf07//qL8JfjrlCsH7dubLC1CXFwcCxYsAGBwQj1hjUaTLmJiYhg+fDjvvfceRqORAQMGsHnzZtMqf35+4vcbGys+fBER8M038PbbcvJ3756YeDt3hg8+EAtBly6SOaB8+STlLyhIIoLXrxfT8euvm26NGk0mYpbty6hRoxg6dCgdOnTgzTffpHXr1li9wE5p5cqVDB8+nDlz5lCvXj3mzZtHmzZt8Pb2plgaJbz27dtHixYt+Oqrr8ibNy8LFy6kQ4cOHD16lKpVqyb2y5MnD5cuXUrxWbvnqAeryUROnZLIvCZNRNG7eFGUvWbNxPz75ptgwqLxmzZtwt/fHzc3Nzp27GiycTWal4Vr167Rq1cvTp48CcCkSZP4/PPPTZfrMjxcUrNYW0OnTmLOvXMHBg2CrVvF/GttLVHAZcpIJaAqVZLkhFJSDeTqVbhxQ9pr1xZLQsL4Gk1OQJmB2NhYtXHjRtW7d2/l6OioXF1d1XvvvacOHjz4XOO99tprasiQISnaypQpo8aOHfvMY5QrV0598cUXia8XLlyonJycnms9CQQHBytABQcHv9A4muckPl6pRYuUiotTasYMpUR0K9W2rVKrVyt14oTJp2zTpo0C1OjRo00+tlJKqbCwxOsIu3tXAQpQYWFh5pkvm5Nd78Hsuu4XIS4uTs2fP1/lzp1bAcrZ2VmtX7/etJNcvy4ywd8/qW3nTqUKFUqSD+XLK/Xll0otX65URIT0CQ1V6swZpdauVer335XavFmpy5eViolJNUVYWFjWvC+TyQ6VldaVRXkZ78HHMcsJoJWVFe3bt6d9+/ZERESwdu1ali1bRpMmTShSpAjXrl175rFiYmI4efIkY8eOTdHesmVLDh069ExjGI1GQkNDcXZ2TtEeFhZG8eLFiY+Pp0qVKnz55ZcpTgg1WZyLF8Xnb+dOGDNG2tq1E/+ebdugWjWTTvfvv/+ydetWAAYNGmTSsTWanIpSirVr1/L5559z4cIFAOrXr8+yZcso+iiy1gSTSOL3wEB44w05tYuOhiFDYMkSOfWzt5fMADVqSFBYtWrSvmcP+PtLsEezZlI9SKN5CTC7B6uDgwOtWrXi4cOH3Lx5M1EAPCsBAQHEx8fj7u6eot3d3Z07d+480xjffPMN4eHh9EyW/LdMmTIsWrSIihUrEhISwvfff0+9evU4e/YspUqVSnOc6OjoxLJ2ACEhIem6Fo0JUUrMvyVKQMeO8rpuXSnbtGWLmHdMXA7p559/RilFq1atePXVV006diIGg9QVRUrBFU94rks7ZWteVtkRGhpKx44d2bNnDwD58uVj3LhxjBgx4oXcglLw778S4VuxYlJVj1WrxK8voW6vpyeMHCnm4NatJUDs3Dk4c0bMu40aPbO8MBgMWfO+TCY7dCk4zTNhrqPF8PBwtWTJEtWmTRtlbW2tSpYsqT777DPl7e2drnH8/PwUoA4dOpSiffLkycrT0/M/P79s2TLl4OCgtm/f/tR+8fHxqnLlyurDDz98Yp+JEycmHv0nf7zMR8iZxvXrSm3ZolSBAmLyKFdOqfBwpXx9ldq40eTTRUREKGdnZwWoDRs2mHx8zfORXcw4L6PsiIyMVE2bNlWAcnR0VJ9//rl6+PCh6SYIDBQz7vbtSkVGSpuPj1J16yaZQnPlUmrAAKV+/VVMvAEBSm3bptTixUodP65UbKzp1qPJVmQX2WFOzHIC+MYbb7Bx40YcHBzo0aMHe/bsoW7dus81lqurK5aWlqlO++7du5fqVPBxVq5cydtvv83q1atp3rz5U/taWFhQs2ZNrly58sQ+48aNY+TIkYmvQ0JCTGfC0KSPQ4fE5HPnjuzm9+yRyN/duyX1i4lZuXIlgYGBFC9enLY6878mnbxssiM2NpbXX3+dXbt2kStXLnbt2iXJk01FdDRs2CCn/zY2ksz5p58k6jfhpLV+fan6U6OGnACePCn5AGvUkCTP+pRM85JjFgXQYDCwcuVKWrVq9cLH/DY2NlSvXp3t27fTpUuXxPbt27fTqVOnJ35u+fLlvPXWWyxfvvyZSnUppThz5sxTs8/b2tpia2ubvgvQmJ7z5+HwYTHzgNTudHODHTvEt8cMGfB/+uknAIYMGYJlZhd912Q7XibZERcXx8CBA1m/fj22trZs3LjRtMqfUrBuHeTLJ0rgiRNS/vH6dXm/bFnx76tdGypXlnQwFy6I0pc3r+nWodFkc8yiAC5btsyk440cOZK+fftSo0YN6tSpwy+//IKPjw9DhgwBZHft5+fH4sWLAVH++vXrx/fff0/t2rUTTw/t7e0T80x98cUX1K5dm1KlShESEsLs2bM5c+ZM4g+9JosSGio7/QIFxOHb0lJ2/Q0aiEN35comn/L48eOcOHECGxsb3n77bZOPn4LIyMSKJZF//UXDVq0ASW1kb29v3rk1mhckPDyc119/nT///BMrKyvWrFlD48aNTTdBVBQsXChVfx48kGTOgYHynqOjpH2xsJC0LvnySeBHx44m3RRGRkbS8NE9mqXuy2Syg3375No1mqdgMgVw9uzZDB48GDs7O2bPnv3Uvh999FG6xu7VqxcPHjxg0qRJ+Pv7U6FCBTZv3pzoiOvv74+Pj09i/3nz5hEXF8f777/P+++/n9jev39/Fi1aBEBQUBCDBw/mzp07ODk5UbVqVfbt28drWam0jyYloaEwb54oe8OHS1t8vJh2zp+XJNBmIGFT0KtXL9wSaoiaC6NRTjQAY1wcJxKeG43mnVejeUHu3r1L+/btOXHiBHZ2dqxYsYL27dubboKHD+HXX0X5W7sWfH2l3c1NcoAajaIENm8ueUHNdNpnNBqz5n2ZTHaQldalybIYlDJN0UAPDw9OnDiBi4sLHh4eT57QYODff/81xZSZTkhICE5OTgQHB5MnT57MXk7OJiwMvLzkBODePZgwQXz/EqIp798HV1eTT7t58+ZEF4Ldu3eb9jQjLcLDJVIRCL97l1yP/FzDwsJwdHQ079zZkOx6D2bXdadFXFwcq1at4tNPP+XmzZu4urqyceNGateubbpJrl6FadOkys+BAynfe+89+bdMGanSkT+/6eZNg/Dw8MTKVlnqvkwmOwgLE2VY80Ry0j34vJjsBPB6gv/FY881mhcmIgL++EPydF27BuPGSXvv3jB3rjw3g7njzp07DBw4MPG1Sf2YNJpsTkJZxOnTp6fY1O/YsYPKpnLFiIsTM++PP8LZs0lVOMqVS6rJW6aM5O8rX940c2o0LwlmqQU8adIkIiIiUrVHRkYyadIkc0ypyalER8vJX8uWIvC//15MQW5uUKeO2aaNj4/nzTff5F5CsXiNRpPI8ePHqVmzJu+++y7//vsvLi4uie+ZLEfmhQvw1lvw8ccS9R8eLvf911/DI39vAHr10sqfRvMcmEUB/OKLLwgLC0vVHhERwRdffGGOKTU5kZgYWLNG/HmioiTi79AhsLWFnj3NmsZhypQp7Ny5M+s4eGs0WYDg4GA++ugjatWqxZkzZ3B2dmbWrFnpTvD/VCIj4eef4e23YelSqdJhawuffCKR//nzS2RvAglmT41Gky7MEgWslEozQ/rZs2dTlWPTaNJEKdi4EerVk4jf4cNFGQQYMUKcnNu0McvU3t7eiRuV77//nsGDB5tlHo0muxAXF8f8+fMZP3489x9V13jzzTf59ttvcXNzIzzBNPsiGI1w7Bh88438mxDYV7GilHQrXhyKFZNI18jIF59Po3nJMakCmC9fPgwGAwaDgdKlS6dQAuPj4wkLC0tM3aLRPJWLF8HFRUq9LVwICxZIe8+eIvzfeUf8/swQ+PHpp59iNBrp2LEjvXv35tNPPzX5HE8l2TW5muH6NJr0cPToUQYNGsTff/8NgKenJ7Nnz6Zly5Yp+j3X32p0NNy4Ib69hw9LPr8zZ2QDaGUl5t1x4yS3n8VjBqtMvDey7H2ZVdelyZKYVAGcNWsWSineeustvvjii8SceyAJnUuUKEEdM/ptaXII0dFyAtCnj9TrHD9elL7y5aVmp729BIRAUq1PE3Hw4EHWr1+PhYUF06ZNw9HRMfHEI0NwdEy8JkfI2Lk1msf4/fffeeedd4iJiSFfvnz873//47333sPa2jpFv3TfJ5GRsHev5PAzGmHFCti5U1w9AIoWhRkzpKrPY3M9mtDk9/6zkuEy4VnJxO9Ekz0xqQLY/1EeNg8PD+rWrZtKSGg0z8Tu3WLmiY6GAQPE3ydfPvlB2LULpk83y7RKKT755BMA3n77bcqWLWuWeTSarE58fDyfffYZ0x/da507d2b+/Pkv7sITGyt5O69ckRO9WbPg1KmkvHVFisip37BhogRqNBqzYRYfwEaNGiU+j4yMJDY2NsX7L2vOHc0zcPu2nAK4u8Obb8Lp01LtY+VKSQXzv//JazOwfv16Dh8+jL29Pf/73//MModGk5UJDQ1l+fLlzJ07l9OnTwPw2WefMWnSJCweN8E+K0rBzZtymn/vniRtX7s2yccP4JVXYNAgCfBo21buf41GY1bMogBGREQwevRoVq1axYMHD1K9Hx8fb45pNdkZpeRU4MABKdb+wQfyIwGSAPavv8T/L/kPQ2RkUiDIli0vlAswNDSUcY/yC44cOZJChQo9miKSNo/m2LJli/mjgpNdU+Qff9Cma9eMm1vz0hIbG8uECRP44YcfEgM67O3t+fXXX+ndu/d/tWKiKwAAgaRJREFUfv6J90l0NKxfL1G8hw/DokVw9668Z2Eh9/rIkVC6tOT569gRnuWU0YT3fnrJcJnwrGTid6LJnphFAfzkk0/YvXs3c+bMoV+/fvz000/4+fkxb948pk2bZo4pNdkVpSS/38mTEuHn6irl3hYulPebN4fLl+U0sEGDlJ81GsWPKOH5c3LhwgW6du3KxYsXcXV1ZfTo0cmmMLL30RwZUvYp2TUZ4+Iydm7NS8ndu3fp2bMn+/btAyTIY/DgwfTr1++Zgx3SvE8CA0X5u3VL8vZdvSrtjo7i4jFkiET4X7ggf/dvvimBH882oUnu/echw2XCs5KJ34kme2IWBXDjxo0sXryYxo0b89Zbb9GgQQNeffVVihcvztKlS+nTp485ptVkN+LiJOrPyQk6d5bn587BnDnyfvny4gf06acSDWwGVq9ezVtvvUVYWBiFCxfmjz/+0C4KmpeGI0eO0L17d/z8/MidOzfz58+ne/fuaabxemaMRjHzbtwoefvOnk2K6m3aVJS/woXFH9DeXhQ/M7l1aDSaJ2MWBTAwMDCxHnCePHkIDAwEoH79+ryXULdR83ITEiKnA7VrS7qXlSvhyJGkdC+FC0uB97FjzVLUPTQ0lJEjR/Lrr78C0KRJE1asWEF+M9cR1WiyAidOnGDKlCmsW7cOgDJlyrB27VrKlCnz4oN//bVE8e/bl5Svr2ZN6NsX7OzETFm4sFkTuWs0mv/GLApgyZIluXHjBsWLF6dcuXKsWrWK1157jY0bN5LXDD/mmmyGnx/s2AGtW8P167B8uWT8v3xZ3i9cGL79Frp2fXaTUDrYv38//fv35/r16xgMBkaPHs3kyZOxMsNcGk1WICQkhCNHjnDo0CF27drF/v37ATAYDPTu3Zs5c+Y8/8l3VJSkcEng66+T0rkULgwDB0KrVhLg1bGjKIEajSbTMcsv3sCBAzl79iyNGjVi3LhxtGvXjh9++IG4uDi+/fZbc0ypyS5cvCinA6VKwZ9/SpTvvHliDra3h1dflddmyhf5f//3f7z77rsopShevDi//fZbiqh1jSYnERMTw4wZM5g8eTLR0dGJ7ZaWlvTp04exY8c+f7qjsDDYvl3Ktp05k9QeFSU1exs3hv79pV9cHPTooU/9NJoshFkUwBEjRiQ+b9KkCRcvXuTEiRO88sorVK5c2RxTarI60dFyyuftDdWryyngnDmSAwzEDNymjaR5eeUVsyxh+fLlicpf//79mT17tvb30+RYjh8/zttvv51YwcPDw4N69epRp04d2rZtS4nn8auNj4fjxyWoY8cO8PVNOu1L4NNP5X52dhbfv9atxc9Xo9FkKTLE5lWsWDGKFSuWEVNpsiJXrsgpQaVK8OWX8N13MGGC/JjY2kqZp8GDxUcovYXdHRyeqdvGjRvp27cvSimGDh3Kjz/++MyO7g7POIfJSDZfhs+tybacOnWKFStW8Pfff3P+/Hlu3boFgIuLC99//z29e/d+vuCO+Hj4919J0bRkiQR1JE/v5ewMnTvjsGSJBIDY2Mgmr1IlSeBuLjLx3siy92VWXZcmS2IyBXD27NnP3Pejjz4y1bSarExMjAR6HDsmFT2KFoV27aTSB0iKl1KlJPFr27apa33+F46O8IQi9Eoprl69ytGjRzl69Cj/93//R3x8PH379uWHH3545h9CR0dH0xS6f1aSXZMjZOzcmmxHfHw8f/75J999911iapIEDAYDffr04dtvv8XNzS29A0uN3uPHJX/fsWOSriU4WN63tJRo3qpVwd4ex9hYwn/5BTp1MkvQViqecu+bf+oMlgnPSiZ+J5rsickUwO++++6Z+hkMBq0AvgzExcmpX0yMRPJevAienlKr0sYGvv9eqgPUqiXRviZk165dfPbZZxw5ciRFe5cuXViwYMHzVzTQaLIAgYGBbNmyhU2bNvHXX38lZlmwsrKie/fuNGnShAoVKlC+fPkU9dj/k4gI8cndulXyct6+LffrvXtyP4OcMDVpAh4ecrrn4SH3sKenTuWi0WQzTKYAXr9+3VRDabI78fEwdar4Ab33HvzyC4wYIT8ixYrB6tVyClimjOT/MxGHDx9m/Pjx7HwUkWhjY0O1atWoVasW9erVo0uXLjrSV5MtCQkJYf369axYsYJt27YRl6CQAc7OzgwaNIgPPviAIkWKPHkQpSQg4+FDedy+Lad6p0/DpUvilxsWBqGh0jc5uXNLYEefPhLcUa6cVOXRQR0aTbZF/xpqTEt4uARy1KgB3brBW2/B77/Ley1aSL6/334T379+/V5srqgoVNeu7AkMZLK9Pbv27AHA2tqaIUOG8Omnn1KgQIEXnCKKbt26AeDl5YWduVNYREXJ9wZELV1Kt0dJ0zNkbk2W49SpU8ydO5dly5alMDtWqFCBDh060LZtW2rXrp1yYxMRIafrvr5iso2Lk6TLCc+DguDvv+HaNUm99HgQB0jQhoeH3MfVqkmf3r2fWKM3M+8TvLwyNLVMhl/rs5KJ34kme2IWBfCtt9566vsLEpL9anIWR4+KsteokfzQVK4sUb8gdXwXL5YcYS4uEvTxAqcHRqORjevXM33LFg4/arO2tqZfv36MHz+e4sWLv/j1ID5WmzdvTnxuduLjIWG+mJiMnVuTJYiKimLlypX89NNPHD9+PLG9dOnSvPHGG/Tq1UtStygFPj5S/is0VJIuG43yw1+8OJQsKabcPXskiOP+fXncvSt/Zwk4OEjf8uXhtddE6XN1BX9/ORUsVAiqVJG2J5CZ9wkZfG9k+LU+K5n4nWiyJ2ZRAB8+fJjidWxsLOfPnycoKIimTZuaY0pNZnLzJsycKScMFSqIErhliyiBDg4SAPL222IWfuUVifZ9DiIiIjh37hzHjh1j7ty5XLhwAQBbYNC77/LJp5/qaHNNtiUsLIxp06Yxd+5cHjyKsrWxsaF79+4MGTKE+vXrS/BSWBjs2iU1dosWhdKl5Qffx0eCNXbvFpPuvXuiGKZFrlyQP78EYr32muTgBFEe4+LkNKlMGSndps28Gk2OxCwK4Nq1a1O1GY1Ghg4dSsmSJc0xpSajiY2VRM7LlklKiCJFICBA0ryEhUmfVq3EQTw6GvbvF+UwwUTxjPj6+rJ06dLE9BbJi6/nyZOHoSEhDAMKfPONRMFpNNmQHTt2MGjQIG7cuAFA0aJFee+993j77bfJ7+Ymp3anTklU7qVLovD5+kqk7u3b4tMXG5v24Pnzizk3Tx4JwHr1VUnR0quXbNC0gqfRvJRkmA+ghYUFI0aMoHHjxowePTrdn58zZw5ff/01/v7+lC9fnlmzZtGgQYMn9t+7dy8jR47kn3/+oVChQowePZohQ4ak6OPl5cX48eO5du0ar7zyClOmTKFLly7pXluOJz4eAgPFlHT0qOQB8/MTE1REhJw8JKdMGTH5vvIKHDokTuP16slpxWMopbh9+za3bt3Cz88PPz8/bt++jb+/P1evXuXQoUOoZA7p7u7uVK1alebNmzOod2/yFCpk3mvXaMxISEgIH3/8cWJN6uLFi/PNN9/QqWNHrK5dE/PuhQtSacPbWxTBoKC0B7OwgBIlRLkrVEiUOxsbqbttaytm3CpVRCF0c9OKn0bzkpOhQSDXrl1LEb32rKxcuZLhw4czZ84c6tWrx7x582jTpg3e3t5pmvyuX79O27ZtGTRoEEuWLOHgwYMMHToUNze3ROfdw4cP06tXL7788ku6dOnC2rVr6dmzJwcOHKBWrVovfK3ZDqVEqTtzRhI3BwSI0nf3rry+c0d8jNLKM2UwiNJXtaqcNFhayonEyZMSBPLaayiluOXry+XLl7ly5Qre3t6cOXOGs2fPEhIS8tSlNWzYkL59+9KuXTsKFiyY9IbOeaXJ5tStWxdfX18A3n//faZ+9BG5N26UgCkfHzHzpnWy5+EhjwIFxDcv4fQ7OFiUvhIl5FG6tGzEbGwy7Jo0Gk32wKDU4/H+L87IkSNTvFZK4e/vz6ZNm+jfvz8//vhjusarVasW1apV4+eff05sK1u2LJ07d2bq1Kmp+o8ZM4YNGzYk+ogBDBkyhLNnz3L4sIQM9OrVi5CQELZs2ZLYp3Xr1uTLl4/ly5c/07pCQkJwcnIiODg480qKKSUm1ogIORl4+FB+BKKjkx4REUmPoKAk5e7BA+kbGirvRUc/WclLTq5ccoJQoID86+ZGjJUVwfHxBAGBDg48qFSJAGtrLl68yPHjxzlx4gRBTzi5sLKyomDBghQuXJjChQtTqFAhChYsSKFChWjUqNGTS1aFhydVDgkLM4sJODw8nFyP5ggLC8PR3GbmZNcUfvcuuR5FXWbI3NmQLHEPPgcJ6wYo4eTEb0WK0PDWraREy8mxsZH0SUWKyCl6yZISpWtpKX8rdnZy4leihPTJhFRHmXmfmOvef/LUGXytz0omfifZkewqO0yJWSTF6dOnU7y2sLDAzc2Nb7755j8jhB8nJiaGkydPMnbs2BTtLVu25NChQ2l+5vDhw7Rs2TJFW6tWrZg/fz6xsbFYW1tz+PDhFDWLE/rMmjXriWuJjo5OUVA9+JGwHlC5MtaPkgun0Kcff65UivcTnqtH72E0gtGIio9PSt0QF4dK9rnkfZNr7i/yHMD46BH32HvxlpZEWloS9ehhtLLCaDAQHxREdGAg0XFxRMXEEPMk/6NkWFpaUqJECV599VVKlSpFxYoVqVixIqVLl8ba2vqJn3viCWFyRTUkxCyRb8lTb4SEhJg/6i/ZfOHJHPgzZO5sSMLfhhn2sSblSbKjJ/BNcDB5goNJ/CvPlQsKFkwy51arJq9z5xZlz8FBgjbS8t+LiMiIy0lFZt4n5rr3nzx1Bl/rs5KJ30l2JLvIDrOisjh+fn4KUAcPHkzRPmXKFFW6dOk0P1OqVCk1ZcqUFG0HDx5UgLp9+7ZSSilra2u1dOnSFH2WLl2qbGxsnriWiRMnKkQ/0g/90I8s9PD19X0e8ZJhaNmhH/qRNR9ZXXaYk2yTCPrx2q1KqafWc02r/+Pt6R1z3LhxKczbQUFBFC9eHB8fn/SVXMoBhISEULRoUXx9fV+q4/OX9boha167UorQ0FAKZfFgIC07hKz4N5RRvKzXnlWvO7vIDnNiFgXwwYMHTJgwgd27d3Pv3r0UqTuAxNqVz4KrqyuWlpbcuXMnRfu9e/dwf0JW+gIFCqTZ38rKChcXl6f2edKYALa2ttja2qZqd3JyylJ/2BlJnjx5Xsprf1mvG7LetWcHBUrLjpRktb+hjORlvfaseN3ZQXaYE7MogG+++SbXrl3j7bffxt3d/amnav+FjY0N1atXZ/v27SlStGzfvp1OnTql+Zk6deqwcePGFG3btm2jRo0aib5mderUYfv27Sn8ALdt20bdunWfe60ajUaj0Wg02QGzKIAHDhzgwIEDVK5c2STjjRw5kr59+1KjRg3q1KnDL7/8go+PT2Jev3HjxuHn58fixYsBifj98ccfGTlyJIMGDeLw4cPMnz8/RXTvsGHDaNiwIdOnT6dTp06sX7+eHTt2cODAAZOsWaPRaDQajSarYhYFsEyZMkRGRppsvF69evHgwQMmTZqEv78/FSpUYPPmzYn1Xv39/fFJlozYw8ODzZs3M2LECH766ScKFSrE7NmzE3MAguTfWrFiBZ9//jnjx4/nlVdeYeXKlenKAWhra8vEiRPTNO3kdF7Wa39Zrxte7ms3NS/rd/myXje8vNf+sl53dsAseQCPHz/O2LFjmTBhAhUqVEiV4iOr+QFoNBqNRqPRvEyY5QQwb968BAcH07Rp0xTtCVG2WSZvkkaj0Wg0Gs1LiFkUwD59+mBjY8OyZcteOAhEo9FoNBqNRmNazGICdnBw4PTp03h6epp6aI1Go9FoNBrNC2JhjkFr1KiRWOBco9FoNBqNRpO1MMsJ4OrVq/nf//7HJ598QsWKFVMFgVSqVMnUU2o0Go1Go9FonhGzKIAWFqkPFg0Ggw4C0Wg0Go1Go8kCmCUI5Pr16+YYVqPRaDQajUZjAsziA1i8ePGnPjSa9LBo0SIMBgN2dnbcvHkz1fuNGzemQoUKqdpjY2MpUKAABoOBNWvWZMRSNRpNFuPo0aN06dKFYsWKYWtri7u7O3Xq1OHjjz9Os//IkSMxGAy0b98+g1eq0WQsZjkBTCjJ9iT69etnjmk1OZzo6Gg+//xzfv/992fq/+eff3L37l0A5s+fT/fu3c25PI1Gk8XYtGkTHTt2pHHjxsyYMYOCBQvi7+/PiRMnWLFiBd98802K/rGxsSxZsgSArVu34ufnR+HChTNj6RqN2TGLD2C+fPlSvI6NjSUiIgIbGxscHBwIDAw09ZSaHMyiRYsYOHAgrVu3Ztu2bZw6dSpFnenGjRsTEBDA+fPnU3yuffv2bN++nUaNGrFz505u3rxJkSJFMnr5Go0mk2jUqBF+fn5cvHgRK6uU5x1GozGVv/qaNWvo0aMH7dq1Y9OmTUyZMoVPP/00I5es0WQYZjEBP3z4MMUjLCyMS5cuUb9+fZYvX26OKTUvAaNHj8bFxYUxY8b8Z9/bt2+zdetWOnTowCeffILRaGTRokWp+g0YMIBcuXJx8eJFWrVqhaOjIwULFmTatGkAHDlyhPr16+Po6Ejp0qX57bffUo1x/vx5OnXqRL58+bCzs6NKlSpp9tNoNBnLgwcPcHV1TaX8QdrBivPnz8fGxoaFCxdStGhRFi5cyONnJHv27MFgMLBs2TLGjBlDwYIFyZUrFx06dODu3buEhoYyePBgXF1dcXV1ZeDAgYSFhaUYIyoqinHjxuHh4YGNjQ2FCxfm/fffJygoyKTXr9E8FZWBHD9+XHl6embklJocwMKFCxWgjh8/rr7//nsFqJ07dya+36hRI1W+fPkUn5kyZYoC1KZNm5TRaFTFixdXHh4eymg0pujXv39/ZWNjo8qWLau+//57tX37djVw4EAFqHHjxqnSpUur+fPnq7/++ku1b99eAerEiROJn7948aLKnTu3euWVV9TixYvVpk2b1BtvvKEANX36dPN+MRqN5qm88847ClAffvihOnLkiIqJiXliX19fX2VhYaF69OihlFLq888/V4Das2dPin67d+9WgCpevLgaMGCA2rp1q5o7d67KlSuXatKkiWrRooUaNWqU2rZtm5o+fbqytLRUH374YeLnjUajatWqlbKyslLjx49X27ZtUzNnzlSOjo6qatWqKioqyjxfhkbzGBmqAJ46dUrlzp07I6fU5ACSK4DR0dGqZMmSqkaNGonK3OMKoNFoVK+++qoqXLiwiouLU0opNXHixFSKo1KiAALKy8srsS02Nla5ubkpQJ06dSqx/cGDB8rS0lKNHDkyse31119Xtra2ysfHJ8W4bdq0UQ4ODiooKMh0X4RGo0kXAQEBqn79+gpQgLK2tlZ169ZVU6dOVaGhoSn6Tpo0SQFq69atSiml/v33X2UwGFTfvn1T9EtQADt06JCiffjw4QpQH330UYr2zp07K2dn58TXW7duVYCaMWNGin4rV65UgPrll19e+Lo1mmfBLCbgDRs2pHisX7+euXPn0rdvX+rVq2eOKTUvCTY2NkyePJkTJ06watWqNPvs3buXq1ev0r9/fywtLQEYOHAgBoOBBQsWpOpvMBho27Zt4msrKyteffVVChYsSNWqVRPbnZ2dyZ8/f4pI5F27dtGsWTOKFi2aYswBAwYQERHB4cOHX+h6NRrN8+Pi4sL+/fs5fvw406ZNo1OnTly+fJlx48ZRsWJFAgICAFBKJZp9W7RoAYCHhweNGzfGy8uLkJCQVGM/HiVctmxZANq1a5eqPTAwMNEMvGvXLkBkRHJ69OiBo6MjO3fufPEL12ieAbMogJ07d07x6Nq1K//73/+oVKlSmj/AGk16eP3116lWrRqfffYZsbGxqd6fP38+AF26dCEoKIigoCCcnJyoX78+Xl5eqfxsHBwcsLOzS9FmY2ODs7NzqrFtbGyIiopKfP3gwQMKFiyYql+hQoUS39doNJlLjRo1GDNmDKtXr+b27duMGDGCGzduMGPGDECUsuvXr9OjRw9CQkIS5UbPnj2JiIhI03f9cflgY2Pz1PYEufHgwQOsrKxwc3NL0c9gMFCgQAEtMzQZhlkUQKPRmOIRHx/PnTt3WLZsWZo/lhpNejAYDEyfPp1r167xyy+/pHgvODgYLy8vAGrWrEm+fPkSH/v37ycqKoply5aZbC0uLi74+/unar99+zYArq6uJptLo9G8ONbW1kycOBEgMXNAwqbx22+/TSEz3nvvvRTvmwIXFxfi4uK4f/9+inalFHfu3NEyQ5NhmEUB1GjMTfPmzWnRogWTJk1KEWG3bNkyIiMj+fLLL9m9e3eqh6urq0lPoZs1a8auXbsSFb4EFi9ejIODA7Vr1zbZXBqNJn2ktTkDuHDhAiAn9Q8fPmTt2rXUq1cvTZnRp08fjh8/nirN1PPSrFkzgMR8gwl4eXkRHh6e+L5GY27Mkgi6e/fu1KhRg7Fjx6Zo//rrrzl27BirV682x7Sal4zp06dTvXp17t27R/ny5QHZqefLl49Ro0alMuuCJCH/9ttvOXv2bIpcgs/LxIkT+fPPP2nSpAkTJkzA2dmZpUuXsmnTJmbMmIGTk9MLz6HRaJ6PVq1aUaRIETp06ECZMmUwGo2cOXOGb775hly5cjFs2DCWLl1KVFQUH330EY0bN041houLC0uXLmX+/Pl89913L7ymFi1a0KpVK8aMGUNISAj16tXj3LlzTJw4kapVq9K3b98XnkOjeRbMcgK4d+/eVI6wAK1bt2bfvn3mmFLzElK1alXeeOONxNfnzp3j5MmT9O/fP03lD2Dw4MGA6Uw6np6eHDp0CE9PT95//306d+7M+fPnWbhwIZ988olJ5tBoNM/H559/Tr58+fjuu+/o2LEjbdq0Yfbs2TRv3pxjx45RsWJF5s+fT/78+encuXOaY1SsWJHatWuzZMkSYmJiXnhNBoOBdevWMXLkSBYuXEjbtm2ZOXMmffv2ZdeuXdja2r7wHBrNs2CWSiD29vacOXMGT0/PFO0XL16katWqREZGmnpKjUaj0Wg0Gs0zYpYTwAoVKrBy5cpU7StWrKBcuXLmmFKj0Wg0Go1G84yYxQdw/PjxdOvWjWvXrtG0aVMAdu7cyfLly7X/n0aj0Wg0Gk0mYxYTMMCmTZv46quvOHPmDPb29lSqVImJEyfSqFEjc0yn0Wg0Go1Go3lGzJYGpl27dhw8eJDw8HACAgLYtWvXcyt/+/bto0OHDhQqVCjRgfa/2Lt3L9WrV8fOzo6SJUsyd+7cVH28vLwoV64ctra2lCtXjrVr1z7X+jQajUaj0WiyE2ZRAI8fP87Ro0dTtR89epQTJ06ke7zw8HAqV67Mjz/++Ez9r1+/Ttu2bWnQoAGnT5/m008/5aOPPkpMEAxw+PBhevXqRd++fTl79ix9+/alZ8+eaa5bo9FoNBqNJidhFhPwa6+9xujRo+nevXuK9j/++IPp06e/kJJlMBhYu3btE0P2AcaMGcOGDRsSk30CDBkyhLNnzybWZu3VqxchISFs2bIlsU/r1q3Jly9fmmV/NBqNRqPRaHIKZgkC8fb2plq1aqnaq1atire3tzmmTMHhw4dp2bJlirZWrVoxf/58YmNjsba25vDhw4wYMSJVn1mzZj1x3OjoaKKjoxNfG41GAgMDcXFxwWAwmPQaNBrNf6OUIjQ0lEKFCmFhkXULG2nZodFkLbKL7DAnZlEAbW1tuXv3LiVLlkzR7u/vj5WVWaZMwZ07d3B3d0/R5u7uTlxcHAEBARQsWPCJfe7cufPEcadOncoXX3xhljVrNJrnx9fXlyJFimT2Mp6Ilh0aTdYkq8sOc2IWbaxFixaMGzeO9evXJ5bCCgoK4tNPP6VFixbmmDIVj++qEyzdydvT6vO03fi4ceMYOXJk4uvg4GCKFSuGr68vefLkMcWyNZpsT3R0NJGRkURFRREZGZn4+t69e/z5559s3LiRhw8fPtfYdjY2FHF2ppiVFSVu3cIdmArkzp3bpNdgarTs0GgyBqUUl//5hw0//MCfW7ZwJjg4xftWwGv29tSuWJFvjx3L8rLDnJhFAfzmm29o2LAhxYsXp2rVqgCcOXMGd3d3fv/9d3NMmYICBQqkOsm7d+8eVlZWuLi4PLXP46eCybG1tU2zTE+ePHm0ENfkeM6cOcPVq1cBEbJRUVE8fPiQoKAg/Pz8uHjxIhcvXuTevXv/OZaLiwuVKlWicOHCFCxYEBcXF/LkyUPuXLmwDwrC8soVLF99FbsyZXDKmxcnwOXQIVyKFMHw44+wdy8AIc2aMXXnzixvRtWyQ6MxH/Hx8Rw6eJD1c+awYeNGrkREJL5nAdQwGGharBhNevSg3gcf4Fi8OCEhIXzr5JTlZYc5MYsCWLhwYc6dO8fSpUs5e/Ys9vb2DBw4kDfeeANra2tzTJmCOnXqsHHjxhRt27Zto0aNGonz16lTh+3bt6fwA9y2bRt169Y1+/o0muxEbGws48aN45tvvknX5ywsLLCzs8Pe3h57e3ty5cpF48aN6d69O40aNUrtDmI0wqZNULgwvPsu2NgkvTd/Pvj5wbffgq+vtI0fDx4esHPnC16hRqPJbjx8+JBt27bx58qVbN68mcBkPrY2QHMLC7p4etJxxAjy9+0LT6gP/zJjNoc8R0dHBg8ebJKxwsLCEk8eQNK8nDlzBmdnZ4oVK8a4cePw8/Nj8eLFgET8/vjjj4wcOZJBgwZx+PBh5s+fnyK6d9iwYTRs2JDp06fTqVMn1q9fz44dOzhw4IBJ1qzR5AT8/Pzo1asXB/+/vfsOj6roAjj82/RCSIAAofcqLfTQpYqgFOkKWFABC4go8IkNRUBRKQKKIqggRQFBARGE0EEEQjeEDiEh1PRCdu/3x0kllFCS7CbnfZ59TO7e3Z0byeTcmTNntm0DoHHjxjglBWbOzs4UKFAALy8vihYtStWqValatSrlypXD3d0dR0fHzN9dWyywYgVUqAC1aqV/7swZ+PVXWLcOzGbw9oa5c8HHR75XSuUJgYGBLF60iLV//MHOPXuwpCli4gV0MpnoUq4cjw0fjsfNN5EqIyMLHT582FizZo2xYsWKdI97tXHjRgPI8Bg4cKBhGIYxcOBAo2XLlule4+/vb/j6+hpOTk5G2bJljVmzZmV4319++cWoUqWK4ejoaFStWtVYunTpPbUrPDzcAIzw8PB7vialrNn169eNiRMnGoUKFTIAI3/+/Pf8+5FpiYmG8euvhnHoUMbnLBbDeOstwwB5dOxoGJcuyXMLFhjhly/b5O+g9h1KZY7FYjE2b95sPNG+fYYYoBoYb4GxqUAB48bQoYYRHJzp99XfQcPIkjqAJ0+epFu3bhw8eBCTyZRhAYY5l9y1R0RE4OnpSXh4uObxqFwhKiqK8ePHM3PmTCIiIgCoXbs2v/76KxUrVnz4HxgZCX/8AXXqQLVqGZ//4w/o0weio6FzZ1i5EkwmCA+HjRuJaN3aJn8Hte9Q6s6ioqJYNHcu38yaxb9JNX1NQEegK9DB0ZHStWrBm29C795wj6Vc9Hcwi6aAhw0bRrly5Vi/fj3ly5fnn3/+4cqVK7z55ptMnjw5Kz5SKfWATp48SZcuXTh06BAA1apVY9SoUfTt2zdl2vehOnoUdu+Gjh2hcOGMz+/dCyNGSPBXtCh8+60EfwCHDkGNGg+/TUqpHHVkxw6++vRT5v/5J5FxcQA4A88CbwBVfHygQQPJAa5fP7VPUPcsSwLAHTt2sGHDBgoXLoydnR12dnY0a9aMCRMm8Prrr7Nv376s+Fil1H1av349vXr14tq1a/j4+DBr1iyefPLJrCuQunGj5O89/TTY22d8/sIF+PBDCAqS54cMkZw/kMngkyfBzw+iorKmfUqpbGPEx7N6xgy+/P57/j58OOV4JeAlYCBQuFYtaNwYXnhBAr88Wrz5YcqSANBsNpMvXz4AvL29uXDhAlWqVKFMmTIEBgZmxUcqpe6RYRhs376d2bNnM3/+fCwWCw0bNmTZsmWUKFEi6z44Ph5CQ6Fv31s/HxUFkyfD+vXy/YsvwmOPpT7v7w+VKukfAKVsXVwcl9etY8i4cfz677+AlG3pArwKPOrlhalzZxnxK1MG2rYFd/ecbHGukiUBYI0aNThw4ADly5enUaNGfPrppzg5OTF79uwMu4MopbLPtWvX2LFjB1u3bmXFihXptmZ89tlnmTVrFi5ZXS7h6FGoXv3Wz5nN8N13sGgRxMTIeW3bpuYH+vvLiGDjxlnbRqVU1omMhJ07WfXnnwz69ltCIyNxAF5PepRp1w5eeQWKFJFZgObNpeSTeqiyJAAcO3Ys0dHRAHz88cd07tyZ5s2bU6hQIRYvXpwVH6mUuo1Lly6xZMkSFixYwM6dO0m77svNzY3evXvz0ksv0Ti7gqqjR+GppzIeNwxZ5PH99xASAoUKSbmXoCDIn1+KP5tM0KJF9rRTKfVwRUaCvz+JUVGMnjePz//6C4BqwI8uLtQfNkxqgEZHSw5wqVLwzDM62p9FsiQA7NChQ8rX5cuX58iRI1y9epUCBQrk6arbSmUnwzB4/fXXmTVrVrqV95UqVaJZs2a0aNGCbt26pWzXmC2uXwdX14z1uWJiYP58WLIEDh4ER0cYOhQKFoTSpWHtWink2rJl9rVVKfVwJCbCzp1w+jSh4eH0eestNsXGAjDM3p4Jr7yC6+uvw/HjsHWrjPj36aN1/LJYlhWCvlnBggWz66OUUsCcOXP46quvAKhXrx5PP/00vXr1ytr8vrs5cEAKPZ84AadPy4hATIzkBG7aBBs2yHmffAJVqkgwePUqNGwINWvmXLuVUvfnzBlJ3fD2ZteECXQ/coQLgAcwt21bnvrgAzh7Fo4cgXr1oHjxnG1vHpJtAaBSKvucOHGC4cOHAzBp0iTefvvtnG0QyBTv6dOSv7doEXToAB4eMt3bvz/s2CHnDR8OTZpIrt+cOfDee1CyZE62XCl1rxIS5IYuKgp27uTnb77hecMgHqju5cWy2bOpEhMjv+fduulWbTlAA0Clchmz2cyAAQOIjo6mRYsWvPnmmzndJBEcLPv8Hjkio3lFi0o+4OOPS2Do4ABffSU5QJ9+KtNGXbpo8KeUrUke9YuJwfLee7x7+TKfJD31ZKtWzH/5ZTzy5YMnnwRn55xsaZ6mAaBSucynn37K9u3b8fDw4IcffsD+VnX2csL+/dCoEfz5p1TuX7RIanrFxMj+vkuXysjfsmVS5+/RR6F9+5xutVIqs5JH/c6dgyVLCF+/ngHAyqSnRw8axPgmTbBr2lQWeKgcpQGgUrnEuXPnGDVqFAsXLgRg2rRplC1bNmcblSw4WAK9+Hjw8oLBg2W1L0DTpvDzz/IHYdkyyQ+sXh169tTVf0rZivPnZbHWuXMwaxaHwsLoDgQBzs7OzH7pJQY8+SS0aiWj/SrH6f8FpWxcYmIiEydO5JNPPiE2NhaTycSIESMYOHBgTjdNREZKUefevWHNGhn5W7JESrr873/wwQfyB2HdOlkFGBkJr72mwZ9StsAwYNcuCAiAP//EWLmSeYbBq0AMULpYMZa+/DL1Bw2SFBBlNTQAVMqGXblyhd69e/P3338D0Lx5c6ZOnYqvr28OtyzJjRvw22/QubMUeV6+XII/OztYsEBKPVy6BCtWwH//wbBhsG2blIpRSlm3uDj44w8IC4MvvuC/EycYAvgnPd22Zk0WfvQR3p066aifFdL/I0rZqIMHD9KlSxdOnTqFu7s7X3/9NU8//bR11dpcvVr27C1USLZ3mz9fjk+cKMFfRIQEfwkJ8M47UvalQoWcbbNS6u4iIyVl49Ahznz1FdPj4pgOJACuLi6836ULI6dOxb5o0ZxuqboNDQCVskHr16+na9euREdHU65cOVasWEFNa6uTd/q0jOSVLg1jx8Jnn8l00XPPwciRkhM4Y4b8ISlVSvKHqlTRen9KWbvLl2H5cnbPmMHE/fv5DbAkPfV4/fp8NXw45fr21TQOK6cBoFI2ZvXq1XTv3p34+Hhat27NkiVLKFSoUE43Kz3DkKnfDRtkMUdEhByvWFF281iwQAI+Dw/Z6ql2bd3kXSlbEBwMCxbw3aefMvjKFZL3GGrToAEjmjen48svY6pcOUebqDJHA0ClbMiKFSvo2bMnN27coGvXrixevBgna9su6cQJmer96isZKQAp8tq5swSDZrOc06IFDBoki0GUUtbvxAksU6Ywds4cJiRt5da9bFk+/OgjagA88QRk59aS6oFoAKiUjVi/fj09evQgMTGRnj17smDBAhwdHXO6WemdOSOje1OmyL6/jo7w2GOS71e3LhQpIvl+IKuCNfhTyjbs3UvMyJG8sHkzi5L2Fn+veXM+GDYMU/780Lq17OqhbIYGgErZgKioKJ5//nkSExOpWLEic+fOtZ7gb/9+2eP3yhVZ5RsQIFO+Hh6weDF07Jh67o0bUvPvqac0P0gpW7FwISffeYeup05xEDABswcMYFC7dlCjhuTuKpujAaBSNmDs2LGcO3eOsmXLEhAQgLs15MuZzbBqFVy4AG5usqhj3z5Z1FGihOT4PfJI+tf8+Sc0bw758uVMm5VSmWexwJgxrPnuO/pdvcp1oLCDA0umTKGVp6fk8+qOHjZLb8GVsnK7du1i2rRpAHzzzTfWEfxduCAreQMDoXFj2fD9vfck+KtUCXbuzBj8HTggCz3Kl8+ZNiulMi8iAuOpp5g4cyadkoK/Rt7e7N2yhVYeHtCmjQZ/Nk5HAJWyYgkJCQwaNAjDMOjfvz++vr5cunQJb2/vnK33N2UKPPusLO748ENI2n6Ohg1l2rdECVkJHBQkj2vXpBZghw4512alVOaEhhLboweD9uzh57g4AF5u1IgpP/5I5K+/cqlVK7yLFkUzeG2bBoBKWbGpU6dy6NAhChcuzMcff0yRIkUAyQnMsZHAfftkgcdHH0khWMOQxRzt2sFff0G5cjISuHUrODlJIegCBXTBh1K2IDiYi9260XnvXv41m7EHpg8cyJA33yR640aKvPMOAFEXL+Ke1B8p22QzU8AzZ86kXLlyuLi4UK9ePbZs2XLbc5999llMJlOGxyNppqTmzZt3y3Piku52lMppZrOZ6dOnAzBx4kTrqPWXmAgTJsAPP8DSpRL8+flB164wZ07qeatWyYrf1q2hYEEN/pSyBWfPcvmpp2i7Zw//ms0UtLNj3UcfMeS55yTto0uXnG6heohsYgRw8eLFDB8+nJkzZ9K0aVO++eYbOnbsyJEjRyhdunSG86dOncrEiRNTvk9MTKR27dr07Nkz3Xn58+cnMDAw3TEXF5esuQil7tGff/7JuXPnKFSoEP369cNsNt/9RQ/b5ctw/jyEh8uo36+/ykrfxESZ0n38cahVS/KBChRIfV2FClL2RSllG4KCuDpwIO127+aQxUIxe3v858yhctWqEB0t6RthYTndSvUQ2cQI4BdffMELL7zAoEGDqFatGlOmTKFUqVLMmjXrlud7enri4+OT8vj333+5du0azz33XLrzTCZTuvN8fHyy43KUypTZs2cDMHDgwJy5MTl9WlbyOjnJDh6urvDLLxL8VaoEx47Bjz/CiBGyuGPp0tTXVquW/e1VSt2f3bu5NmAAHXbtIsBioai9PRu+/57KdevCpUvw6KM53UKVBaw+AExISGDPnj20b98+3fH27duzffv2TL3HnDlzaNu2LWXKlEl3PCoqijJlylCyZEk6d+7Mvn377vg+8fHxREREpHsolRXOnz/PH3/8AcCLL76YvR9uNkue3+rV4O0tuXyvvCJV/uPjZa/ePXsgLk7KuixYICOFjz2Wve20Idp3KKtkscCff7Jj8GDq7trFvxYL3vb2/D13LlWbNpVV/o8/rikcuZTVTwFfvnwZs9lM0aJF0x0vWrQooaGhd319SEgIa9as4eeff053vGrVqsybN4+aNWsSERHB1KlTadq0Kfv376dSpUq3fK8JEybw4Ycf3v/FKJVJc+bMwWKx0LJlS6pWrZp1HxQZCefOyTTv1asS1F28CCdPyqjeH3/A5s0yBQQy8rd+vSz28PAAX19I/t1MPkdloH2HsjqXLmH+/Xc+nTCBd48fxwyUd3Tkt++/55EmTWDXLtm6UQu251pWHwAmu7nkhWEYmSqDMW/ePLy8vOjatWu6440bN6Zx48Yp3zdt2pS6desyffr0lJprNxszZgwjRoxI+T4iIoJSWgdJPWRms5nvvvsOgJdffjlrPuT8eZg6VaZ3PT0lmHN3lzy/6GioXRumTZMRAJB8v7ffhhdflJHBRo1kWlhlivYdympYLLBjB/EnTtBn7Fh+CwkBoK+XF18vXUr+0qXhn3+gRw9wsJkQQd0Hq/+/6+3tjb29fYbRvrCwsAyjgjczDIPvv/+e/v374+TkdMdz7ezsaNCgAUFBQbc9x9nZGWdn58w3Xqn7sGbNGs6fP0+hQoXo3r17ynEHBwcGDhyY8vV9O3YMPv8cXn0VypaVBR5Hj0JoKDRoABs3wrBhkuvn7S3Tv717Q7FisGKFlHspXjzj+zo4QFL79A9Hetp3KKsQGQl//EF0iRJ0GzmSdZcu4QzMLFuW55YsweTpCXv33jb4c3BxYWCFCilfK9tm9b20k5MT9erVY926dXTr1i3l+Lp16+hylyXpmzZt4vjx47zwwgt3/RzDMAgICKBmzZoP3GalHsRXX30FSDmjtEGDs7Mz8+bNu/83tljg778lv+/552W077ffJMgzDNixA15/XY4D1K8P8+fLrh5nzsiev08+mX61b1rOzvAg7VNKZZ0TJ2DbNq43bkznRo3Ydv067sCKWrVoM2eObOd44IDs021vf8u3cM6fn3nHj2dvu1WWsfoAEGDEiBH079+f+vXr4+fnx+zZszl79iyDBw8GZHolODiYH3/8Md3r5syZQ6NGjahRo0aG9/zwww9p3LgxlSpVIiIigmnTphEQEMCMGTOy5ZqUupUdO3awdu1a7O3tGTJkyMN7Y7NZgj0vLynUbBgSDJ45A+vWQXBw6rne3lLC5YknZIeP4sVlVe9Ni6iUUjZi1y4IDSW4aVM61a7N/uhoPIE1TZviN3265PkFBkL37przl4fYRADYu3dvrly5wrhx4wgJCaFGjRqsXr06ZVVvSEgIZ8+eTfea8PBwli5dytSpU2/5ntevX+ell14iNDQUT09PfH192bx5Mw0bNszy61Hqdt59911ARv8qJE21JDMMg5iYGADc3NwyvxVccvBXsSIEBECTJlKg+fz51HOcnKBVK3j6adnD99IlmfINCZH6X5n5LMOApPbh5qYrB5WyBjt3Qng4B0uX5vHq1TmfkEARYG3HjtSZOhUiIqQv6NLlrsGfYbEQc/kyAG7e3pg0WLRpJsMwjJxuhK2KiIjA09OT8PBw8ufPn9PNUTZu06ZNtGrVCkdHR4KCgjKULYqOjiZfvnzAPWwFlxz8lSsHR45IENilixR0LVRI9vP19ZXzknN+XF2hevXU6aDMdvLR0ZDUPqKiZFFJFrPV30FbbbeyMTt2QGQkG4Bujz9OhNlMFWBNz56UmzxZVvvHx0P79pm6YYsOCyNfUu69rW8Fp7+DNjICqFRuZxgG7733HgCDBg3KEPzdl6goWLkSqlSBgwehRAno1EnKvZQuDb//LiVgLBbZycPNTV536ZLU9+vTR6eDlLJV27ZBTAyrIyLo3qsX8YZBM2DFgAEUnDRJRgaLF5eRf5Unae+ulBX4+++/2bx5M87Ozvzvf/978Dc8f162batQQVb1HTkiOX3Jwd9778mijho15Hhy8BcfL2VeunUDR8cHb4dSKnsZhuT1Jiby+5kzdEsK/roC615/nYIzZsCGDTLKrylPeZqOACqVwwzDSMn9e/nllylZsuSDvJmUalm3TqZgd+2SO/2AAHm+dGlZ2VunjtT+u9natdCyZepUrlLKdlgssGoV+PiwYsMGeo4ezQ2gh8nEz5Mm4fjmm9I/NGkiJaBUnqYBoFI57LfffmPnzp24ubkxZsyYe38Dw5DCrZs2ybSPqysUKSLTvkeOQPICqccfhyVLbp+bd+SIjATqHwalbI/ZLMFdhQrsWbuWXknBXx97e3764w8cHnsM/v0XChfW33EFaACoVI5KTExMCfpGjBiBj4/Pvb3BjRuwaJEEb9HR4OIio33JO3iAlH4ZNgyeeeb2wV9EhOzv26/ffV2HUioHmc2wbBlUrky4vz+93nmHBOBJR0d+2rkTh7p14cIFqQXYq1dOt1ZZCQ0AlcpBc+fOJTAwkEKFCvHWW2/d24uPHoXp02Unj3Pn4L//ZAEHSCHXtm1lIUf9+rLa71ZbtyW/ds8eWSBymwKwSikrlZgowV+FChibNzNo7FhOJiZS1s6OeVu3SvAXGytpIT17ankmlUIDQKVySExMDO+//z4g9f/uVorA3t6eHk89BZGR2P/8M2zZIrl8//0nX0Pq1m1DhkDRotLxL1kiW7klSx7tO3dORgdLl5bSMF5eD3ZB9vayhVTy10qprBUfL8Ff2bKwcyezxo/n16goHIHFP/9MgYYNZZZg2TIp9ZK82Os+2Ts50aNEiZSvlW3TAFCpHDJ16lRCQkIoW7Zsyq42t5SYCGfO4BIYyC9dukDlyjKdU7OmTPt++62cN2kSvPaaFG/euVPKwDg7w6OPytTw+fNy3GSCevWk/MPDHA1wcYFffnl476eUur3ISFi+HMqXh0OHODx9Om9cvAjApDffpGHv3jI1vHy5LPooVuyBP9LFy4tf0haQVzZNA0ClcsCFCxeYOHEiAB+PG4dzWJgEaLGxsptGTIwEfiBBWpkyUrLB21uKOP/2m9zNJ9UO5MsvZX/f1atldW/r1vJfw4DTp2VLt4IFZRQgjxY9VSrXuHxZVvvWrAkHDmCeO5dBgYEkAI83asTwzz6T3/3ff5dzypXL6RYrK6QBoFI54PXXXyciIoIGlSrR1zDg+HEJ8tzc5OHqeus6fIYh0zmRkZAUQPLmm9CunXT2rVpBXJzU/gsNlSCyWDF48sls2ZlDKZXFgoNlH28/P1n1v2ABs3bsYCfg4erKN7/+igkkQCxdWvbxVuoWNABUKjslJrJyxgyWLl2KvZ0d386Zg13z5pl6abqt4JydcQfo2BE++EAWg5QuDVu3QqlSUgC6SZPsLeacA1vBKZWnnDoF27dLrc7162HxYs7+/TfJxaMmTp5MyeLFZQeg0qVlm8eHKDdtBac0AFQqa8XGSr7e2bMQGkpkbCyvfPIJACPfeovamQz+iI6GNWtSv4+Ph7p14fvvYe5cGeXr21e3blMqt/rvP9m9p149+OsvWLQIY8MGhphMRBkGTZs2ZfCLL0p6SKVKMvWr1B1oAKjUgzAMCc7Cw1MfERHySEiQqdzixWXhRosWjB0xgvNhYZQvXz5l798MLBZ5fXS05AKeOwcHDoCnZ+o5FSvCuHFw7JgEmOPHa/CnVG519CgcPgw+PlLn8+efwd+fj+ztWW024+TkxLezZ2O3apVM+eq0r8oEDQCVupvERLh4Ea5fh2vX5L+RkRL8gUx7enrKw8dHgj0PD7ipTML69euZPn06AF9//TVuySUZLBYJ5A4flgUeERHymQkJ4OAgizYsFki7R/ALL0gQOG0aTJigwZ9SuVVQkAR9Dg7S58yahbF5Mx/Y2THObAbgs88+o9rly3KzqcGfyiQNAJW6FYtF8m0OHZJ8tuLFoUABya+rWVMCvHsIus6fP0/fvn0xDIMXX3yRdu3ayWKNgABZsBEZKSt8K1SQILJoUShUSEb3Jk2CmTPTv6GLi+zb27+/rupVKrc6eVLyek0m6XcGD8bYto137e0Znyb4e71tW+mvMptSohQaACqVUUyM5NGULi3J1g9YIPnGjRv07t2by5cv4+vry7Q335T3v3JFcgSLFoWnnpIA8OhR2dd32zbYuFE69WSPPirHQM7fvFlKwyilchfDkHy/nTtlIVfr1vD007BjBx87ODA+qUTUF198wRt9+oC/v2zxprt8qHugAaBSaV25An/8AR06yEjcgzCbITSUUW++yfbt2/F0c+PXAQNwOX1aRhg9PKRsy44dMGiQBHfR0enfw85OVvKNHw+1aslIJMjoX48eOvWrVG4THy/1PEFKQjVrBt26wf79fOPoyHs3bgBJwd/zz8vNZK9euvuOumcaACqVLChI7ri7d5fg7H4kJspqvcOHwWJhfXAwXy5eDMCPP/9M+QoVZMrX3h5WrIABA6TDT+bqKts6Va4s7ejWLaUt9itW8Hjr1hATg33Nmg++ddvDZm8Pjz+e+rVS6t6Ehclq/4YNZSbA1xfatIHTp1nm4sLQpL5i7NixvDFkCCxeDE88If1GNrB3cuLxwoVTvla2TQNApa5ckcKqBQrInrn307FdvAj79kmF/qpVoUsXbtjb83rt2gC8+uqrPOniAp9+Kvv2nj6d+tpixWQk8IknoEUL+f7mkb3ISFzi4lj1009SB8wap35dXKT4rFLq3p07J1O5XbtKUXcfH5n6vXKFdQUL0i8yEktSDvG499+XbRfbtJEdfrKJi5cXq8LCsu3zVNbSAFDlTVFRcOaMJFnHxUHbtpnvSBMTU0u9hIXJCt5CheRuPc208YwpUzh69CjeHh58tGmTLOSwWORJd3fo0weGDpXX3S13Z9s2qFFD6n9pro9SuUtQEPz7L/TsKekdYWGSFhIfzw/FijEoLIxEs5muXbsy86uvMP3xh/QbJUvmdMuVDdMAUOUtYWGwbp3k1pQpA02b3jnwMwzZUu30aVmRGxcnSdn588ujYEEJ5BwcUs+PjCTsp5/44K23APgkMhKvgwfl+fr1pYTL009nfpo5MlJGBy5elNGB5PIxSinbFxAAJ05I8Ld1q0zrLlyIAYwrX54PTp4EoE+fPsydMweH1atlb9+qVXO02cr2aQCo8gbDkI72v/+gS5fULctud25yCZiICBnVK1cO6tQBZ2dZqHHlijzOnZN8v/h46cTXr4d9+3gnMpJwwBd4vkgReOYZeO45GcW7V6tWQWQk0f36UaRECQDCwsJwt7at1qKjIXlrqLAw3QpOqTsxDJnyTUiQXN9du2DECNi3j1DglfLlWZYU/I0ZM4aPx43DbuXKHN3lIzosjCJJW8GF6VZwNs9mAsCZM2fy2WefERISwiOPPMKUKVNofpuaR/7+/jz66KMZjh89epSqae6ali5dyrvvvsuJEyeoUKEC48ePp1u3bll2DSqbRUWlBmonT0LhwpLjd7uVs4mJEswFBEg+W/78MkoXFiYPkNe6u8uUb6FC8v22bbBwoUwFA3uBOUlvOW3qVOxfeeXeFkUkjzru3Sv5ggDvvgtATEzMPf8YspW1t08pa2A2S7WBYsWkvNOuXdC3L8aZM/xob88bTk5cO3kSBwcHZsyYwUsDB8pq32rV4JFHcrTp+huee9hEALh48WKGDx/OzJkzadq0Kd988w0dO3bkyJEjlC5d+ravCwwMJH+aIrmFk1YvAezYsYPevXvz0Ucf0a1bN5YvX06vXr3YunUrjRo1ytLrUVkoLk6CuKNHZZSvcGGZpm3dOuNU740bsGGDBIggo3gWi+TXFSkiRZkLFZIpV5NJntu/X+7a582TnJ2zZ1Pfz2TCaNOGN86fx/jvP/r27Uuz11/PXJvPnpXRxJAQeVy/LlPUQ4dK8WmTKWOJGKWU7UlIgGXLJIevShXpT3r25Prlywywt+d3sxliY/H19eX777+njpcXLFokNUnLls3hxqvcxGQYyftZWa9GjRpRt25dZs2alXKsWrVqdO3alQkTJmQ4P3kE8Nq1a3jdplRG7969iYiIYM2aNSnHHnvsMQoUKMDChQsz1a6IiAg8PT0JDw9PF2iqHBAdLaNlV6/K9EjVqpKrdzuXL0utrXr1JPALDJTp3Vq1oHz51FHCS5fkTn3NGskdvH49/fuYTLJyt0cP6N6dZTt38tRTT+Hi4kJgYOCtb1AsFjh/Xj7z4kX53Hz5ZB/h+Hj5o1CrVoZcv+joaPIlTV1HRUVZ5xRw8tR6VFS2TAHb6u+grbZbPaDYWFi6VHbsKFNGbkC7d+dQeDjd7O05bjbj7OTEh+PG8eawYThs2iQ3qu3aST+Rw6LDwsiXNAUcZeNTwPo7aAMjgAkJCezZs4fRo0enO96+fXu2b99+x9f6+voSFxdH9erVGTt2bLpp4R07dvDGG2+kO79Dhw5MmTLlobVdZTHDkIBs714JpJo1k9077mb7dllNW6oUHDki0ypPPZVa/sVige++gzlzpBZX8spdkACneXPw84NGjaBBAykfA8THx/NW0sKPkSNHpg/+DEMWkQQESJBaqpTczTs4SDDo4SHvW7y4rvBVKjeKjITlyyWYK1YM/vwT+vRhSXg4z5tMRJvNlC5RguUrV1K3UiX49VfpX6pUyemWq1zK6gPAy5cvYzabKZp015GsaNGihIaG3vI1xYoVY/bs2dSrV4/4+Hh++ukn2rRpg7+/Py1atAAgNDT0nt4T5A98fJqivREREfd7WepBBAZKIHXjhkzrVq0qU7x3C5wsFpg9W1b0PvecTPE63PQrcOkSPPtsaiV+gNq1ZeFI+/ZSf+82I4tfffUVJ0+epFixYowaNUoOGobUBzx0SIK7hg1lZGzrVglcGzWSGoAa9OVq2nfkceHhksPXqZNs+fjHH8T178+b4eHMBDAM2jRrxqLly/GOi5Mp4uRzlcoiVh8AJjPd9AfSMIwMx5JVqVKFKmnumvz8/Dh37hyTJ09OCQDv9T0BJkyYwIcffng/zVcPg2HApk0y1di9+52neG8WHg4TJkjQ98knGReCGIYUgx4wQHLwnJzgww+hX79MjSpeunSJjz76CIDx48fLVO2NGxJIFiggW8uFhsLu3TIC2KyZ5vPkIdp35GHXr8uuP08+KX3Bxo0EPfMMvcPD2Zd0yqhXXuHjKVNwOHJE8pd795aFaEplIasPAL29vbG3t88wMhcWFpZhBO9OGjduzPz581O+9/Hxuef3HDNmDCNGjEj5PiIiglKlSmW6DeoBJCTAypUSNLVqlfnXJSZKkvXvv0sH3KZN+udPn4aff4YFC2Q6GKS46qpVkoeXSe+88w7h4eH4+voycOBAuHZNcn08PKSkTFycjAA2bix/BO5jxM/Ozo6WLVumfG117OwkUT35a5VC+4486upV6Xu6dAEvL6K3bOGzzp35LCaGGMDb3Z2f5szhsV69pJ+Kj5d6gFb6+2Pn4EBLT8+Ur5Vts/r/g05OTtSrV49169alK9Gybt06unTpkun32bdvH8WKFUv53s/Pj3Xr1qXLA/zrr79o0qTJbd/D2dkZZytIxM2TVqyQ6dMyZTL/mm3bZLukkiXhrbdSq+aHh0t+zY8/wubNqec7OUkAkxy4ZdKWLVv49ttvAZj62WfYbdggyd3lyslKv0qVHsoUr6urK/7+/g/8PlnG1VX+iKkMtO/Ig65dk+CvWzcMDw9+mjiRMe+8w4WknOJHy5fnp5UrKVGlikwPlywpJWGsmGvBgvjfvBBO2SyrDwABRowYQf/+/alfvz5+fn7Mnj2bs2fPMnjwYEDuroODg/nxxx8BmDJlCmXLluWRRx4hISGB+fPns3TpUpYuXZrynsOGDaNFixZMmjSJLl26sGLFCtavX8/WrVtz5BrVHSRvtZaZ4C8mRkbyNm6UIs5vvy0jbyCB38SJMHWqrMaD1FW8NWtK8Nelyz1NLSckJPDyyy8DMOjJJ2l+8qQkez/9dI7X61JK5ZDwcJmx6NoVS758vNmvH1MWLQKgnJ0dn/bqxVNff40pf35ZGFKjBlSunMONVnmNTQSAvXv35sqVK4wbN46QkBBq1KjB6tWrKZMUEISEhHA2TT22hIQERo4cSXBwMK6urjzyyCOsWrWKxx9/POWcJk2asGjRIsaOHcu7775LhQoVWLx4sdYAtDaJibBjh+Ti3UpcnKyiPXNGcuycnaWMS8GC8MYbssgjIQG+/RY++EDKv4CMyj35pGwFFxkpU8NJu2xkmmHw6ZgxHD16lCL58zPppZekYHS/fun2BFZK5SERETKi16ULia6uvNiuHfM2bADgQycn3n7rLVxGjZJZBn9/qQigwZ/KATZRB9BaaR2hbLBpkxRlrlZNvo+KkkLPZ87IIgsXFwncypaV8+zsZLq4Xj2Z0v36a5g1S4JDkPIL/frJit4CBeRRrlzmd+owDFkkcvAgQfv3U3PsWOJv3GDB8OH0a9IEOna88zZzDyA6OpqySQtHTp8+bZ11AJMXtpw+rXUA78BW263u4to1Gfnr3JkEZ2f6tmrFsj17sAe+d3ZmwFtvwahR0kccOiTF3zt2zOlWZ1p0WBhlk25uT4eGah1AG2cTI4Aqj7p2TYItX1/Ys0emgp2cZGq1a9fUun1pBQXJqODEiTLql5AgxwsUgNdflynhmwos35HZLHf0ISHy3hERUKwYRqVKvPy//xF/4wbt69en73vvpdQDzEqXk0cwrZW1t0+prHLhghSL79oVw9GRwW3asGzPHpyAxa6udH3zzdTgLzhYAsBevXK61ffsso4Z5RoaACrrFBoKX30lo3t//y1TJGmLNd/KpUswerR0wpGRcqxmTWjbVkrA3C0JPzZWOubz5+XzLRYZUfT0lNHFVq0kx3DXLr6dMIGNe/fi5ubGrMWLMWVD8KeUslJBQVLiqVcvuHGDab16MXfnTuyA5W5uPD5ypNyA5ssnfdP69Xfel1ypbKABoLIuV67A/Pky2jdwINSvf/dOMioKJk2CadNkhA5kCvjFF2UBSKdOGd8jLk7u2IODJdhLSJBVrMWLQ8WKUqcvbZmDM2ekcr+HB+crVmTk4sWA1PwrX778Q/wBKKVshmHAzp3Sh/TqBRER/PXSS4xYtQqAz9zceHzsWFkUVqiQ5DSvWCF9ktb5UzlMA0CVcxITJeA7eRIOHIDjxyWvr21beO21Owd+hiFTKEuWyEhhcmmCcuVg3DiZjnVykvcymWQ0LzhYdhEJCUkN9kqXlt04bjeyePWqjCgWLAidOmG4uzP4iSeIjIzEz8+P11577aH/WJRSNuDGDdkn3MdHUlKuXOHYsGH0XrYMCzDQ1ZU3Jk2SmYPSpaXPWrVK+hvd4UNZAQ0AVfaxWCTp+dAh2Qbt+nUJvIoWhTp1ZIrXyyvj9mxpxcbC559LDb+goNTjFSvCO+/I4o7161P32fX3l32CExNlOrl6dVnxe7e6fDduyHZtly7J3p0FCwLw84IFrFq1CicnJ7777jvsM7t4RCmVe4SHy0he8+Zy0xkayoURI+iweDHXDYPGTk58PXkypkaNpMQLSDUDb2+pQKCUFdAAUGWN6GgZbQsNlby5hAQJAH18JAjs1Ek2Ob+XlaJbtsALL6QGfg4OUjj1+eehRw84eBB++EFG9g4elHIwVapIJ30vVevNZikGXbt2un16ExMTGTNmDADvvvsu1atXz/x7KqVyh+BguclM3trt3Dmuvf02HZYs4bTFQgVHR36bOBGXJk3kxhbkhjc8HB57LEebrlRaGgCqh8cwJPA6eFDyW6pUAT8/CfKcnCQQXLoUHn88U/vrpoiOltVzM2bI9wUKSND3v//JyNyNG/Ddd5I3+MwzUjLG1fX+r+GPP6Tjrlo13VPLly/n3LlzFC5cmJEjR97f+z8AOzs76tevn/K11bGzk5zN5K+Vym2OHIH9+1P36j12jJhx43jil184ZLHg4+DAXx99RNE2bVK3kjx4UBaWPfHEQ9kRKCfZOThQP6mKgm4FZ/v0/6B6OCIiYM0amWbt3TvjiFtoKKxdK3fA97CHM9u2SQL1mTPyfZcuMHOmFFE9fx7++Uc+t0ED+OyzzNfzu52NG2UE8abgD2Dq1KkADB48GJccSOB2dXVl9+7d2f65mebqKishlcqNdu9OXexhbw8BASR89hk9Fy1im8WCp709a0ePpny3bqmFnQMD5ca0WzebD/5AtoLbHR2d081QD4kGgOrBxMZCQACcOAEdOkDhwumfv3BBgjhXV+kEM1twMzIShgyBhQtl6rh4cZg3T/LxNm6UGoGOjnDqFAwdKqON98MwZGrm/Hl5Lzc3CSZv8u+//7Jt2zYcHR0ZMmTI/X2WUso27dwpOcudO0uf8fffmL/7jgGLF7PaMHC1s+OP4cOp9dprUjIKpE/cv19ym3VEXFkhDQDVvUtIkJW7hw5JvlyNGrK7RlycHA8NlUdsrCzqaN9eaullhmHI7h9DhsB//8mxPn1k1K9AAQn8zp2T93NwgJdeur9yCoYh0zl79kh5hhIlZLq6UKFbnp48+te7d2+KFSt275+nlLJN27dLqakOHSA+Hn79FWPJEob8/juLAUeTiWXDh9Ns3LjUIvNnzsjsRM+eDz4roVQW0QBQZU5EhARkJ0/K9+XKyXSum5skRAcEyCifj49st1anzr3tuAHSyX7xhdTzu3JFiqZ+/bVMASdLHhG8n717QQK/kydlRV758hK43iWXJSQkhMVJdf+GDRt275/5kMTExKQsPDly5Ahu9/rzzWoxMbLKGiS4trb2KXWvtm2TG9t27aQk1Lx5xPzyC8N27eI7wM5kYsGQITw2fnzqjWhwsCxY69Xr3haf2YCYy5epnrQV3JHQUNy0nI1Ny13/OtXDYxiyrdfx4xIwubtLXlz37qk18ywW2feyfHkZ5XsQ/v7w0Ucy+mc2SyCxdGlqLp7FAosWSUmXd965844gt7qWK1ek1uD581CmjEzLZHKhyKxZs7hx4wZNmzZNWYSREwzD4ExSLqRVbuFtGKm5mtbYPqXuxbZtMovRpo2ksnzxBXtWruTp48cJTDpl9rPP0nPSpNTg7/Jl2bmoV69766NshGGxcMZsTvla2TYNAFV6Z85IyYLoaMnnq1ABGjbMOI1hNsNvv0mA9sgj9/dZsbGy4vbbb2HDBnlPkFG5b76REUCQ0ceVK+HsWVkNfLeO9cYNydcJC5PgNTxcVgvXrCllY+4hGTs2NpZZs2YBOTv6p5TKRjt2yIh227awfz+WyZP5dO1a3r18mUSgWIECzHvhBdr/73+p/VR0tBR67t5dd/lQNkEDQCWjNSdOwK5dksDcps3tF2skj/Js2ybbrd1itexd/forfPKJTBPGx6ceb9MG3n0XWrRIDdKOH5ccnGLFZKQxPl528oiKkqmZ2FjpqCMjUwNIR0fJPfT2lhqAXl733sYkP/74I5cvX6ZMmTJ069btvt9HKWUjknP+2raFlSu5/tNPDFy1ipVxcQD0aN2ar/v1o9Bjj0leMshN5/Ll0LGjVChQygZoAJjXGYaUZ3F0lDvXO02LHjgguX4lS0pNq8yu6E1mNsPIkTB1auoUYZEikl/zyiuyCCNtuzZtkhG88+fh8GEpzBweLp2uh4cEeK6ukmvm4fHQk60tFguff/45AG+88QYOuSyfRymVhmFIPrOjIzRtCvPmcXD5crqvXs1xiwVnk4mvPvmEF/z8MLm7p+YgJyTIriBNm6auAFbKBuhftLxu40ZZUZs2+LqV4GAZJczEoolbunhRduvYulW+f/FFKd9Sq1b6EgnJK4x/+UXy9hwdpXyMn1+219H6/fffCQoKwsvLi+effz5bP1splY0sFvj9dyk35e0NP//M4kWLeH7DBmKA0s7OLF21ivply0r1gxYt5HWnTsHmzalbwillQzQAzMu2bpXg627Bn2FIoNitW+aDP8OQ91+0SEbyjh6VTtbVFWbPlh070oqIkLybS5dktZ2vrwSAyRX3c8DkyZMBKfzsodM6SuVOcXEygvfIIxARQeLu3Yz5+msm790LQNvChVm4dy/ebm6Ss9y3r9yorlsn/WefPuDsnMMXodS90wAwr9q3T3Ln2rW7+7mHDkn+XWb27T11CqZPlzy/c+fSP1evHsydK4sxQDrRM2ekvExsrDxvNkPFivJcxYo5Fvzt3LmTrVu34ujoyGuvvZYjbbiZyWRKKQNjssZdBUym1DIw1tg+pW52+bIs3GjeHAICOG4289Jbb7Hx7FkARlWtyvh9+7C/fl1GCLt1k35tyxZo2RLKls3R5mc3k50d1ZOCXZMWt7Z5GgDmRSEhsj1Rr153/0OdkCCrgm8esUsWGSl3xatXyyKSoKDU55ycpFbg44/Lf8uUkZHBwEB5T3t7OdaggQSO27ZB48aSW/Pbb9Ip55Dk0b9nnnmG4sWL51g70nJzc+Pw4cM53Yzbc3OTXE2lbMGxY1KsuVYtotat45P9+/n8m29IsFhwB+Y2a0bPjRulBMymTbIN5ZYt0mf27Zsry7zcjZu3N4eTFsMo26cBYF4TGwt//ZW54A9kRVzjxhkXWERGytZsCxdK4JdcE8pkkjvjZ56RWntpV+BeuCD1/kqUkEUkwcGyyjcwEOrWhf795fVr1qRfCZzNNm7cyLJlywB48803c6QNSqksYjZLSsuVKxj29ixeupSRc+cSfOECAB2AaT17UnnhQik9tXOn3MD+/js0aSKlsZTKBTQAzEsMQzqxdu1uv9o3Jkby9S5elG3X8ueXgC55z9zAQHmPFStkajhZ06aSr9ejh5RsSWY2y2sOHJB6WU88Ie+dXOTZz09q9CW7elXqaZUqlTU/g7u4cuUK/fv3xzAMBg0axCP3W+NQKWV9rl+XvsswOHDxIq+vXMmm7dsBKA98aTLxxOefYxo+XHKQt22TmYjVq2Uf4NtsFamULdIAMK+wWCRpuXx5Wel2s5gYGe27eFHKrVSvLqN8Fy7IKJ9hyN3wb7/JtAnIgpC+faW0S61aciwxUcq2XLggU80REVC5skyfuLrKHsG7dsn2bjcvKLFYpAxD69ZZ+qO4neSgLzg4mMqVKzNlypQcacftxMTE0KBBAwB2795tnVvBJbWP3bt1KzhlXS5ehB9+AHd3foyM5PmxYzGbzbgC/wNGenrismSJ7GoUEyO5gdWqSb/Yq1emdw7KzWIuX6ZByZIA7D5/XreCs3EaAOYFMTGyk0a1ahLc3SwgQO5wS5WSoGz/fikNU7KkLMxITITXX5fSLCC5L4MGya4cpUpJwLdhgwR89vYyAlismASRyVXyQUYQ166VDdJvDv4SE+XOvEoVKcOQA2bPns1vv/2Go6MjCxcuxD0zi16ykWEYHDlyJOVrq2MYUtw7+WulrIFhyE3n3LnQtSvLo6J47vXXsVgsdAWmAqUfeUQKOVeqJH3Rr79KCarwcJnZ0AUPgGz/diSpeL9uBWf7bOZf9cyZMylXrhwuLi7Uq1ePLVu23PbcZcuW0a5dOwoXLkz+/Pnx8/Nj7dq16c6ZN28eJpMpwyMutyW4njsngVurVrcO/o4cgR9/lGnh9u3lTvfpp2W6o3Zt2deyZk15D3t7ePllWegxfbqM7i1YIMnUVavKaGCfPjJlXLlyavCXPCq4YoVMAd88MhQXB0uWyOfdqo3Z4Ny5c7zxxhsATJgwgbp16+ZIO5RSD9G5c1J26o8/4OOPWe/oSJ9nnsFisfA8sAwo3bOn5PlVqpSa23zxotz8tmunwZ/KtWxiBHDx4sUMHz6cmTNn0rRpU7755hs6duzIkSNHKF26dIbzN2/eTLt27fjkk0/w8vJi7ty5PPHEE+zatQtfX9+U8/Lnz09gYGC617rkhj0czWYprRIQILtm3G764vhxmD9fFl8k/1zi42U0b80aefz3nxyvVUvuoEuXlhFCf38J+u606fnhw9IGe3vw8ZFtktLm+xmGFH3eulW2XUqurJ8DvvrqK2JjY2nSpElKIKiUslFms6zcPX5cArgRI/gnKIiunTuTkJBAD2C2vT2mCRMkhcVkkpzmX36R2YtBg1K3eVMql7KJAPCLL77ghRdeYNCgQQBMmTKFtWvXMmvWLCZMmJDh/Jtztz755BNWrFjB77//ni4ANJlM+Pj4ZGnbs11cHCxeLNO9PXrcvkDp+fMy6vboozLqtnUr/PSTHLt+PfU8JycYM0amgNeuldy+OnUkT+92q3QNQ8olREXJqODNd9CGIaOGu3fLNHMO59dERUUxe/ZsAEaNGoWd3vErZbuuX5eb1cREubFt0oTQ8+fp1rIl0fHxdADm16mD/Q8/yI2txSJ5zocOSa5yw4Zax1LlCVYfACYkJLBnzx5Gjx6d7nj79u3ZnrR6624sFguRkZEUTDv6hPzhL1OmDGazmTp16vDRRx+lCxBtjmFI4nLr1ndeRRsfLx1khQoyMle/vhSGTubjI7X7OnaUkTl7e1i2TI4VLnznNpjN0oYiReT1N3ekZrOMLLq5SS6gFVTQ/+GHH7h+/ToVK1akc+fOOd0cpdT92r8fvv5a0lnatwd3d27s2EGvRx/lQnw81YFfxo7F+b33JMcvMRFmzJA+cfToe9/fXCkbZvUB4OXLlzGbzRQtWjTd8aJFixIaGpqp9/j888+Jjo6mV69eKceqVq3KvHnzqFmzJhEREUydOpWmTZuyf/9+KlWqdMv3iY+PJz4pARYgIiLiPq4oC/3zj6zwvV3wd+mSnBMYCEWLSh2+556TYs/58smIYf/+ksOXXPcvPFyCv1uVQIiKknzAEyfkPZLVqyeLOW4WFyeJ1nXqyAilFbBYLEydOhWAYcOG6eifyhJW33fYuuBgKU91/Di8955M4yYkwCefMHLsWLYYBvlNJpYtWoRH8t+BuDiYMEFST159NWOtU6VyOasPAJPdvPWVYRiZ2g5r4cKFfPDBB6xYsYIiRYqkHG/cuDGNGzdO+b5p06bUrVuX6dOnM23atFu+14QJE/jwww/v8wqy2PnzkvD81FMZn4uOlpy9hASp13fmjEx5+PvL8507w7ffyshfsmvXpB7gsWMyLZI2HyYhQcrBODjIYo9One48hWsYstPHli2SVG0lO2sArFq1iqCgILy8vHj22Wdzujl3ZDKZKFOmTMrXVsdkkp1dkr9WKay677BlISHSr0RHS6rJuHEyu7BpEwwZwjdHj5Lcm/84fz5VkoO/Y8dkIVu7drIwTf+9ZorJzo4ySYGybgVn+6w+APT29sbe3j7DaF9YWFiGUcGbLV68mBdeeIFffvmFtm3b3vFcOzs7GjRoQFDarcxuMmbMGEaMGJHyfUREBKVyqGBxOtHRslq3d++MHdm+fbIYo1Urybf7/Xf46COpx+fuDl9+KQnPJpOUi9m/X+6ivbxkkUfDhulLtpjNMiLYuPGd98GMiZGizsePS/3AsmUlOE1bFsYKfPnllwC8+OKL5LOytt3Mzc2N06dP53Qzbs/NDay5fTnIavsOW5W8o5FhyH7hLi6yW0d8PAwaROKcObwFTEk6few779ClXz+ZtZg/XwLA116TG1iVaW7e3pxOTMzpZqiHxOoDQCcnJ+rVq8e6devo1q1byvF169bRpUuX275u4cKFPP/88yxcuJBOnTrd9XMMwyAgIICaNWve9hxnZ2ecrSBnLR2zWcqrPPaYdIJpnTwpo31PPy0B3vLlsigjPl7y/1aulA4wKEgSoBMTZUHI00/fuvSBYchn+freOvhLSJCFIpGRMiJYqJCc17KlVd5hb9++nY0bN2Jvb89rr72W081RuZhV9h226r//pK5fvXpSZaBOHahRQxayDRjAlVOn6A38nXT6e++9x/vvvSe7eixbJv3XxIl5ci9fpdKy+gAQYMSIEfTv35/69evj5+fH7NmzOXv2LIMHDwbk7jo4OJgff/wRkOBvwIABTJ06lcaNG6eMHrq6uuLp6QnAhx9+SOPGjalUqRIRERFMmzaNgIAAZsyYkTMXeb/++ks6wJtHQyMiZGqkb1/5euRI+O47ea5lS/j4Y+lI9+2T3UHatJHiz7cTF5e6k8it8vsuXZJi0i1aQLlyD+3yssqVK1fo27cvAM8884yOxihl7WJj4c8/ZaFGrVoS/HXqJDMZY8bAp5/yj8VCL3t7zpjNuLu78+OPP9K9WTOZ9TAMyfWzgf5JqexgEwFg7969uXLlCuPGjSMkJIQaNWqwevXqlHyokJAQzp49m3L+N998Q2JiIq+88gqvvPJKyvGBAwcyb948AK5fv85LL71EaGgonp6e+Pr6snnzZho2bJit1/ZA9u2TVbTVq6c/bjbLVG+nTjIiN3iwlG8BWRn38svg4SGjfR4et39/w5DAbvduCSLr15diqSClE8LDZb/M0FAZaeze/c7vZyUsFgv9+/fn7NmzODs7c+DAAWJjY3G18q2eYmNjadGiBSC1Lq2uvbGxcgMAsHmzbp2lHp6TJ+WGtlkzOHhQZij69ZMFbf36YQQE8CUwymQi0WymQoUKLJ83j5rHjsH778OAAZK2YoUzEbYk9upVWiTdLG8+dw7XmyprKNtiMqxyTynbEBERgaenJ+Hh4eTPyvIBhiEB3H//SYX65E7Mw0OCvLSdmmHINMe1a1LRfts2OV6kiIwAPvHE7T8nLk4Wa5w5I/l7ILmA9evL60Gmif/5R6aNCxeWad5ChWRk0EaSgsePH8/YsWNxdnZOWZkZFRVldVu/3Sw6OjolT9Eq2xsdnZrjGRUlIzNZLNt+Bx8yW213trtyBXbskK9btJAUlBYtZOXujBkwahQn4uN5zcGBNUm5aT2ffJJvu3bFMzn3uF8/KfmiHlh0WBj5kmaboi5exD3Nwkpbo7+DNjICmKcFBUkHWKKELMq4XQFmw5AFF9Onw7//So5M2r0aDx++9R67sbFw4ICUcnF0lOmR+vVlx47kgM4wpCM+dUrep149uaO2wbvp9evX89577wFSMHzIkCE53CKlVDqGIf3Rnj0yityggdxkLlkiqSrHjsGTTxJ94ACfAJ8BN5KCvy8HD2ZYkyaYYmNl0VmNGjl6KUpZMw0ArVl4uOxR2a9f+pW4yWJiZLTu9Gmpg7VihZQ/iIyU51u3lm3dION03IULEiQmJEg+Te/eGetgnTgho32GIQFhiRLwzDM2Wy8rKCiInj17yj6gzz9P//79NQBUyppcuiQVDYoWTd03/MYN2aKtYkUYNgx+/ZUDQBfg9E0vf7F3b0xnzkjwd3PdUqVUOhoAWiuLRTYw79QpNfgzDAnuzp2TFW+xsTJFGxgo27gFB8t51arBtGng55ex7Mq1a7Bxo+QOtm5964Uf167B+vXy3t27W8VuHQ8qPDycJ598kuvXr9O4cWNmzJiB2WzO6WYppUDST/z95aa2Y0fpl5L3Cvf3l9mNl16C6Gh+B/o5OBCVmEgZYMKYMfRL3hL0+HHo08fqyk0pZY00ALRW/v4yMmcyyR3xxYuyEOPsWSlfULKkjP59+qkUQwUJ2MaNgyFDJGiMjk59v+T9eUNDZf/fm6eDk3f1OH5cvr/VOTbKbDbTp08f/vvvP0qWLMny5ctxcXEhOu3PRymV/QxDCs7v3i3VCcqWTd0rfOdOCQB/+QWOHMEAJhcvzqiQEIzERNoASwDnZs1S388Ka40qZa00ALRGJ05IQFa+vKzmrV0btm+XTvLMGQnUYmNTzy9QQIo5v/XW7ffq3bBBpkR69pQO9vRp+ZzLl2XVsKurrPDt3DnXrd585513+PPPP3F1dWXFihX4pN3xRCmVM6KjpXRU4cJSe9TBQW5mV6+WvOc1a1KqF4Tnz88LFSuydO9eAAZ37Mi0NWtwBKIvXkx9T63tp1SmaQBoba5ckWCvShXJv1uzRqY+0uwjCkjR5zp14IUXJEfQze3W7+ftLXl+np4yJXzkCOzdK3tlPvKIPH+r/MJc4rfffmPSpEkAzJ07l7p166Z73tvGRjmtvr3W3j5lHUJDpURVhw6yBeW1azBzpqS9HDyYOntRoAABTz1Fz7//5vjevTg6OPBl//4MHT4c086dKcXrrf73IhfxtsHFf+rWtAzMA3joy8hjYmDWLCm5UqyYjNol57Z4e0tuTIcOULeujNbdLnBLSJA76eBgmUKpUkVW9B46JDt/1K2bK/L67ub48ePUq1ePiIgIhg8fnrLtm8o9bLWUg622+6E4fFgqD3TpIn3euHEy6nfqVGrlgrJlufLSS0wMDWX6N98QHx9P6cKFWfLllzQqVEgWi5QvL31ZLpuxUNkjT/8OJsm9Qz+2xDCk5MGcOZJ717695P0lB3/Tp0te382rb5PLswQHS8B37Zocc3SUALJ4cXnN0aOST2jDK3jvVWxsLD169CAiIoImTZrw6aef5nSTlMrb4uJkcZmjo9TyGzlSapamncJ99FHCBw1iWlAQkydOJCIiAoDOjRvzw4ABFCxUSGY+NI1DqQemAWBOCw+HBQvkjnbIEAnU9u+XnBiQDctffTW1SPOFCxL0JecAJpdnadBAcgHTFmMOCpLOtX9/m6zZd7/8/f0ZPXo0+/fvp3DhwixZsgRHLQSrVM4JDJS8vgoVZDHaa69J/wSSt9evH+f79mXKX38xe/BgIpNKWdUuW5ZPnnqKjs8+i6lq1VydrqJUdtPfppz0xx+wapWM+vXrJ6t4Dx6Exx+XnL9WrWDgQJg/X3L+SpVKLdR8u5y/ZFeuSEf7ww/wxReSS5iLp0oMw2DTpk18/PHH/P23bAPv6urK4sWLKVGixC1fExsbS8eOHQFYs2aN9W2tdhOrb29srKQpQK7/96Yy4fJl2b3o9GmZeThzBn78USocGAY4OXHjlVdYU7s2P6xcycpOnUhMKuj8SIkSvPvEE/QcOhS7GjUy3sCm+bcWu2wZHbt3B6z09yIXib16lY7lywOw5uRJ3QrOxmkAmBPMZpgyRTqxzz9PDeYWLJBFHfHxUuZl8GAZIezX7962WYuPl+CyY0d5P0i/K0guEh0dzYIFC/jqq684ePAgAI6Ojrz00kv873//o3jx4rd9rcViYdOmTSlfWzurb6/FIoXIk79WeU90tNzEBgXJjERCgmxHuXmzLEBLYu7ViyllyzJpzhwuXbmScrxV+fK81a8fHbt3x1Sz5u1H/NL8W7MkJlr370UuYklMZFN4eMrXyrZpAJjdoqLg44+lWHPydmoJCfDKK7JXL4Cvr5R18fWVRRt3k5Age/cmP06ckNHDXJbYGh8fT2hoKBcuXGD79u38+eefbNmyJWU/Xzc3NwYMGMDo0aMpU6ZMDrdWqTzCYpE+Z/9+uH5dHgEBMtKXXJweJJhr25az9eoxYOlSNi1ZAkBRDw+efuIJBo4YQa169XLgApTKmzQAzE4HD8Ls2fDkk9CunXSc/v7w8sup+TDPPQfNm8sKubTD6xaL5AmGhsqoYHi4BJPJiz4KFpRHqVISOLq7py8EbYMMw2D//v3Mnz+fJUuWcO7cuVueV6FCBYYOHcpzzz1HgQIFsrmVSuVBFosUpd+yRRasBQXJdO/VqxnPLVkS6tcnqls3fjh2jHemTiU8Kgp3Fxe+GD+e5157TXN0lcoBGgBmh/Bw+PlnyYUZNkz2tPznHxgzRrZlMwyp0zdpkuT6de2aukVb8rZvhiHlYXx8pPyBp6cEefcyNWzFEhISuH79OmFhYezevZtdu3axadMm/vvvv3TnOTk54ePjQ/Xq1enQoQMdOnSgatWqmPLQIhelso1hQFiYBHuXL8tj716pWnDxovRPaYvSgwR8NWtC8+YYnTuzNySE77/7jp8GDyYy6dzGDRvy04IFVKxYMQcuSikFGgBmLYtFijqvXg1Vq0q9q8REWe3788+ytRvIoo/p0+VuOm3wFxUltQD79LG5un2GYXD69Gl27NjB7t272b17N+fOncNisWAYBmazmRs3bnDjxg0SEhKIi4u75fs4OzvzxBNP8Mwzz9CsWTMKFiyowZ5SWSkiQraEPHVKqg9YLDLCt3Ej7NuXcWbBw0NSTrp2hYYNMaKiWL96NUvXr+ePyZMJTjMqWLlyZV599VWGDBmCg67oVSpH6W9gVrlwQbZxu3xZAjh7exg1CpYuhfPn5Zxq1WSq9+mnZZQvbfBnscDKlbKQw8qDP4vFwoULFwgKCuLYsWNs374df39/zp49e8/v5enpSa1atWjcuDGNGjWiTZs2eHl5PfxGK6VEfLys0D15Ukb7kgvJBwTIAo60dfpA+qMGDaRvatlS+qygIBIjI/ll0SIm/vorBwIDU053c3OjU6dOvPzyy7Ru3Vpv4JSyEhoAPiyGIQnPx4+nFma+fl2mR/r3l104kleoFSggq3PLl5eNy0NCJAhMW6R5wwaZRilS5MHadbdyMbcRHR3N5s2b+eeffwgJCSEkJISwsDCio6OJjo4mJiaG+Pj4lIfZbM7wHg4ODtStW5eGDRvSsGFDqlSpgr29PXZ2dtjZ2eHo6Jjy8PLywsPDA/tsLlTtdp8/n5xi9e219vYpcfWqFIjfv19G+k6fllG+c+cy5vHZ2Ul90scfl/ziggXh6lVCQkP5d8UKAiIi2B8ays5//yU4adFHvnz5eOaZZ+jSpQutWrXCxcXl4V9Dmn9rVv97kYvoTzr30ADwYdm5UwI5JyfJl/nnH9nyKHlxB0DRolIItV49yeVzc4NmzaS2X1oBAXIXXrPmg7XpHhaCXLt2jV27drFr1y78/f3Zvn07CQkJmf4oe3t7ypUrR6VKlahTpw6PPvooTZo0wd3d/X5bn+Xc3d2JtqGFMlbf3lyw8CjXio2V/mjfPvnvyZMyE3HiRGoqSlolS6Ys3qBFC0LCwth75gz7/vyTvefPs/vQIc6nXeGbpFChQgwbNoxXXnmFgllZIy7NvzV3sO7fi1zEvUgRonX32FxDA8CH4epVyfOrVk1G/aZPl2AQZIVu+/bw7LMyXeLlJcduJSYG/vxT7rA7dHjozQwNDcXf358tW7awdetWQkJCMJvNJCYmpmy5lFaZMmVo1aoVZcuWpVixYhQtWhQPDw/c3NxwdXXFxcUFZ2dnnJ2dKVy4sK7kU8paGIb0QZs2yWzC8ePSN4WGyiMtJyfJUS5ZElxdMby8OJY/P1tjY9l86hSbV6zg9C1W4NvZ2VGtWjXq1q1LnTp1qF27Nn5+fjoap5SN0ADwYZgwAVq3ljp+69fLMXd3KfcyebLsyXs7FovkCZ4/L2Vi2rW78/n3Yd++fXz22WcsWbLkllO1ySpWrIifnx9+fn60bduWihUrar6OUrYiNlYWna1ZA7t2SR5yWJgsJrtZ2bJSMsrLi4Tixdnj5MTmyEi2nT/Pdn9/rqQpzgwS7FWtWhVfX198fX1p0KABdevWJV++fNlzbUqph04DwIehenUYOjQ1d6ZlS/j0U2jY8PaviY6WbeDMZvD2linhfv1uPzqYSRaLhatXr7J37152bdvGhq++wj9NTo+vry8tWrSgRYsWVKpUCQcHBxwcHChYsCCFChV6oM+2NXFxcTz11FMALF26NGvylB4iq29vXBwktY+lS6Wkkco6sbEylbtmjdx4Hj8utUJvGs0Pc3Dgv9KlCXVz46rJxBVXV0Ld3Ag2mQgODeXg+vXE3lTKxcXFhQYNGqT0FX5+fnh4eGTn1d1Zmn9rcQsW8FTS3ulW+XuRi8Rdv85TSZsTLD12DBddoGfTTIahE/r3KyIiAk9PT8ILFiT/1asSyL30ktT3u9Od8cWLMtXbseM9LfKwWCz8999//PPPP/zzzz8EBgYSGRlJdHQ0UVFRhIeHExERwc3/S+2B3r16MXL0aHx9fe/zanOf6OjolBGMqKgoq85XBBtob3R06r/7qCgZBc9iKb+D4eHkt6Gdb+6r3YYhq3VXr5biy4cOSb5xUgmlK8Be4IidHUc9PDhqGByJi+NyJnJ5vb29ad68Oc2bN6dp06bUqVMHJyen+7/ArJbm31r0xYvkK1oUsNLfi1wkOiws9Wd98SLuD7pIMQfZat/xMOkI4MNw9SoULixlXkaMyLhxOcCNG5Ljd+6crLzr0SPTfyBDQkL4/vvv+fbbbzlz5kymXlOxYkUa1q1LwyVL6AqU+f77bPmDrJR6SAxDUkP++EOCvgMHpMKA2YwBBAKbgK0mEzvt7TmevDerxSLF55OYTCbKli1LyZIlKVSoEAUKFMDHx4cSJUpQokQJqlSposXUlcqDbCYAnDlzJp999hkhISE88sgjTJkyhebNm9/2/E2bNjFixAgOHz5M8eLFefvttxk8eHC6c5YuXcq7777LiRMnqFChAuPHj6dbt2733rjixeGjj2Qbt+RO1GyW6ZlDh+Ru1dlZVv0WKAC9e99+k3Nkz9t///2XzZs3s2nTJv7++28Skzp3Nzc36tevT8OGDalVqxZeXl64u7vj7u6Op6cnXl5eeHp64urqKp+btN+mUsoGGIbssjFzJmzezNXTpzlkNnMYOAVcAELs7DhsMnExOZ/XMKTAPHLjV7NmTapVq0a1atV45JFHqFKlii7MUEplYBMB4OLFixk+fDgzZ86kadOmfPPNN3Ts2JEjR45QunTpDOefOnWKxx9/nBdffJH58+ezbds2hg4dSuHChVNyqHbs2EHv3r356KOP6NatG8uXL6dXr15s3bqVRo0a3VsD334bBg6UnJwTJ+QRFSUlX9q0gbsMLxuGwcWLF/nrr79YsWIFa9euzVDWoEmTJgwePJgePXpIcKeUsn2GITeJv/6KZd069h8+zNbwcLYB24Fb7n6dVE/UxcUFPz8/WrRoQePGjWnYsGHWll5RSuUqNpED2KhRI+rWrcusWbNSjlWrVo2uXbsyYcKEDOePGjWKlStXcvTo0ZRjgwcPZv/+/ezYsQOA3r17ExERwZo1a1LOeeyxxyhQoAALFy7MVLtScghOnyb//v1Su69iRQn8khKmExMTCQ8PJyoqiqioKK5cucLhw4fZv38/hw4d4vz584SEhGSouVe4cGFatGhB8+bNadeuHdWrV8/8DyxZDuRk2RKrz6m7idW3V3MAMy253dtcXAiMi2M9sA64dItzy5QqxSM1a1K5cmWKFy9O8eLFKVu2LPXr18fZyncJyjKaA5gjNAcwd7H6EcCEhAT27NnD6NGj0x1v374927dvv+VrduzYQfv27dMd69ChA3PmzOHGjRs4OjqyY8cO3njjjQznTJky5Z7bOLB7d8wFCxJjGCmBXkREBNevXycyMjLT71OzZk26dOlCly5dqFevnubkKJXLNb1pD+x8zs409/Ojadu2NGnShPr161vX6lulVK5h9QHg5cuXMZvNFE2660hWtGhRQm8uaJokNDT0lucnJiZy+fJlihUrdttzbveeQMq2Z8nCkxKtf9u7967X4ezsnJKnV7FiRWrUqEH16tUpW7YsPj4+FC1aNN3d/L0EjreVdho5IkLyElWKtNPsERERd6yRaA2svr058O8tuYC5tU9k3K7vyOfiQs3atWnavDmtW7emYcOG6QqqG4ZxyyLteV6af2vRafpKq/y9yEXS/awjIzHbcMkdW+k7spLVB4DJbh4NMwzjjiNktzr/5uP3+p4TJkzgww8/zHSb00r+A3D16lVOnTrFunXr7ut97ttDLi6d2xS3sZ+P1bc3m9sXGRmJp6dntn7mvbhd3xEVF8eOXbvYsWsXkydPzoGW5QIVK6Z8afW/F7lI8TQ/d1tm7X1HVrL6ANDb2xt7e/sMI3NhYWEZRvCS+fj43PJ8BweHlGLHtzvndu8JMGbMGEaMGJHy/fXr1ylTpgxnz57Nc/+AIiIiKFWqFOfOnctT+RN59brBOq/dMAwiIyOt/g+/9h3CGv8NZZe8eu3Wet220ndkJasPAJ2cnKhXrx7r1q1LV6Jl3bp1dOnS5Zav8fPz4/fff0937K+//qJ+/fop0yt+fn6sW7cuXR7gX3/9RZMmTW7bluR9b2/m6elpVf+ws1P+/Pnz5LXn1esG67t2WwigtO9Iz9r+DWWnvHrt1njdttB3ZCWrDwABRowYQf/+/alfvz5+fn7Mnj2bs2fPptT1GzNmDMHBwfz444+ArPj96quvGDFiBC+++CI7duxgzpw56Vb3Dhs2jBYtWjBp0iS6dOnCihUrWL9+PVu3bs2Ra1RKKaWUyi42EQD27t2bK1euMG7cOEJCQqhRowarV6+mTJkygOyUcfbs2ZTzy5Urx+rVq3njjTeYMWMGxYsXZ9q0aSk1AEHq6i1atIixY8fy7rvvUqFCBRYvXnzvNQCVUkoppWyMTQSAAEOHDmXo0KG3fG7evHkZjrVs2ZK9d1md26NHD3r06HHfbXJ2dub999/Pk7W48uq159Xrhrx97Q9bXv1Z5tXrhrx77Xn1um2BTRSCVkoppZRSD49dTjdAKaWUUkplLw0AlVJKKaXyGA0AlVJKKaXyGA0A79PMmTMpV64cLi4u1KtXjy1btuR0kx66CRMm0KBBAzw8PChSpAhdu3YlMDAw3TmGYfDBBx9QvHhxXF1dadWqFYcPH86hFmeNCRMmYDKZGD58eMqx3HzdwcHBPPPMMxQqVAg3Nzfq1KnDnj17Up7PzdeeHXJ736H9RirtO7TvsGqGumeLFi0yHB0djW+//dY4cuSIMWzYMMPd3d04c+ZMTjftoerQoYMxd+5c49ChQ0ZAQIDRqVMno3Tp0kZUVFTKORMnTjQ8PDyMpUuXGgcPHjR69+5tFCtWzIiIiMjBlj88//zzj1G2bFmjVq1axrBhw1KO59brvnr1qlGmTBnj2WefNXbt2mWcOnXKWL9+vXH8+PGUc3LrtWeHvNB3aL8htO/QvsPaaQB4Hxo2bGgMHjw43bGqVasao0ePzqEWZY+wsDADMDZt2mQYhmFYLBbDx8fHmDhxYso5cXFxhqenp/H111/nVDMfmsjISKNSpUrGunXrjJYtW6Z04rn5ukeNGmU0a9bsts/n5mvPDnmx78hr/YZhaN9xK7n52m2VTgHfo4SEBPbs2UP79u3THW/fvj3bt2/PoVZlj/DwcAAKFiwIwKlTpwgNDU33s3B2dqZly5a54mfxyiuv0KlTJ9q2bZvueG6+7pUrV1K/fn169uxJkSJF8PX15dtvv015Pjdfe1bLq31HXus3QPsO7TtsgwaA9+jy5cuYzWaKFi2a7njRokUJDQ3NoVZlPcMwGDFiBM2aNaNGjRoAKdebG38WixYtYu/evUyYMCHDc7n5uk+ePMmsWbOoVKkSa9euZfDgwbz++usp2yzm5mvPanmx78hr/QZo36F9h+2wmZ1ArI3JZEr3vWEYGY7lJq+++ioHDhy45V7Jue1nce7cOYYNG8Zff/2Fi4vLbc/LbdcNYLFYqF+/Pp988gkAvr6+HD58mFmzZjFgwICU83LjtWeXvPSzy0v9BmjfoX2HbdERwHvk7e2Nvb19hjuWsLCwDHc2ucVrr73GypUr2bhxIyVLlkw57uPjA5DrfhZ79uwhLCyMevXq4eDggIODA5s2bWLatGk4ODikXFtuu26AYsWKUb169XTHqlWrlrLXdm79f54d8lrfkdf6DdC+Q/sO26IB4D1ycnKiXr16rFu3Lt3xdevW0aRJkxxqVdYwDINXX32VZcuWsWHDBsqVK5fu+XLlyuHj45PuZ5GQkMCmTZts+mfRpk0bDh48SEBAQMqjfv36PP300wQEBFC+fPlced0ATZs2zVCy49ixY5QpUwbIvf/Ps0Ne6Tvyar8B2ndo32FjcmbtiW1LLuUwZ84c48iRI8bw4cMNd3d34/Tp0zndtIdqyJAhhqenp+Hv72+EhISkPGJiYlLOmThxouHp6WksW7bMOHjwoNG3b99cuaw/7Uo+w8i91/3PP/8YDg4Oxvjx442goCBjwYIFhpubmzF//vyUc3LrtWeHvNB3aL+RnvYd2ndYKw0A79OMGTOMMmXKGE5OTkbdunVTShzkJsAtH3Pnzk05x2KxGO+//77h4+NjODs7Gy1atDAOHjyYc43OIjd34rn5un///XejRo0ahrOzs1G1alVj9uzZ6Z7PzdeeHXJ736H9Rnrad6TKzddui0yGYRg5M/aolFJKKaVyguYAKqWUUkrlMRoAKqWUUkrlMRoAKqWUUkrlMRoAKqWUUkrlMRoAKqWUUkrlMRoAKqWUUkrlMRoAKqWUUkrlMRoAKqWUUkrlMRoAKqWUUkrlMRoAKqWUUkrlMRoAKqWUUkrlMRoAKqWUUkrlMRoAKqXyrA8++IA6derkdDOUUirbaQColLIpzz77LF27ds3pZmSrvHjNSqmspQGgUkoppVQeowGgUuqhaNWqFa+++iqvvvoqXl5eFCpUiLFjx2IYRso5CQkJvP3225QoUQJ3d3caNWqEv79/yvPz5s3Dy8uLtWvXUq1aNfLly8djjz1GSEgIIFO2P/zwAytWrMBkMmEymVJeP2rUKCpXroybmxvly5fn3Xff5caNG+naOHHiRIoWLYqHhwcvvPACcXFxd72uw4cP06lTJ/Lnz4+HhwfNmzfnxIkTAFgsFsaNG0fJkiVxdnamTp06/Pnnnymv9ff3x2Qycf369ZRjAQEBmEwmTp8+/cDXrJRS90sDQKXUQ/PDDz/g4ODArl27mDZtGl9++SXfffddyvPPPfcc27ZtY9GiRRw4cICePXvy2GOPERQUlHJOTEwMkydP5qeffmLz5s2cPXuWkSNHAjBy5Eh69eqVEiCFhITQpEkTADw8PJg3bx5Hjhxh6tSpfPvtt3z55Zcp77tkyRLef/99xo8fz7///kuxYsWYOXPmHa8nODiYFi1a4OLiwoYNG9izZw/PP/88iYmJAEydOpXPP/+cyZMnc+DAATp06MCTTz6Z7noy436vWSml7puhlFIPQcuWLY1q1aoZFosl5dioUaOMatWqGYZhGMePHzdMJpMRHByc7nVt2rQxxowZYxiGYcydO9cAjOPHj6c8P2PGDKNo0aIp3w8cONDo0qXLXdvz6aefGvXq1Uv53s/Pzxg8eHC6cxo1amTUrl37tu8xZswYo1y5ckZCQsItny9evLgxfvz4dMcaNGhgDB061DAMw9i4caMBGNeuXUt5ft++fQZgnDp1yjCMh3vNSimVWToCqJR6aBo3bozJZEr53s/Pj6CgIMxmM3v37sUwDCpXrky+fPlSHps2bUqZUgVwc3OjQoUKKd8XK1aMsLCwu372r7/+SrNmzfDx8SFfvny8++67nD17NuX5o0eP4ufnl+41N39/s4CAAJo3b46jo2OG5yIiIrhw4QJNmzZNd7xp06YcPXr0ru1N636vWSml7pdDTjdAKZU3WCwW7O3t2bNnD/b29umey5cvX8rXNwdbJpMpXR7hrezcuZM+ffrw4Ycf0qFDBzw9PVm0aBGff/75A7XZ1dX1ruekDXgBDMNIOWZnZ5dyLNnNeYlwf9eslFIPQkcAlVIPzc6dOzN8X6lSJezt7fH19cVsNhMWFkbFihXTPXx8fDL9GU5OTpjN5nTHtm3bRpkyZXjnnXeoX78+lSpV4syZM+nOqVat2i3bdye1atViy5Yttwza8ufPT/Hixdm6dWu649u3b6datWoAFC5cGCBlQQfIqOK9utU1K6XUg9AAUCn10Jw7d44RI0YQGBjIwoULmT59OsOGDQOgcuXKPP300wwYMIBly5Zx6tQpdu/ezaRJk1i9enWmP6Ns2bIcOHCAwMBALl++zI0bN6hYsSJnz55l0aJFnDhxgmnTprF8+fJ0rxs2bBjff/8933//PceOHeP999/n8OHDd/ysV199lYiICPr06cO///5LUFAQP/30E4GBgQC89dZbTJo0icWLFxMYGMjo0aMJCAhIueaKFStSqlQpPvjgA44dO8aqVavua1TyVteslFIPJEczEJVSuUbLli2NoUOHGoMHDzby589vFChQwBg9enS6RSEJCQnGe++9Z5QtW9ZwdHQ0fHx8jG7duhkHDhwwDEMWRHh6eqZ73+XLlxtpu6qwsDCjXbt2Rr58+QzA2Lhxo2EYhvHWW28ZhQoVMvLly2f07t3b+PLLLzO81/jx4w1vb28jX758xsCBA4233377jotADMMw9u/fb7Rv395wc3MzPDw8jObNmxsnTpwwDMMwzGaz8eGHHxolSpQwHB0djdq1axtr1qxJ9/qtW7caNWvWNFxcXIzmzZsbv/zyS4ZFIPd7zUopdb9MhqGJJkqpB9eqVSvq1KnDlClTcropSiml7kKngJVSSiml8hgNAJVSSiml8hidAlZKKaWUymN0BFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/RAFAppZRSKo/5P49+IMFdXt+iAAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "Image(filename=demo_output_directory+\"/monsoon_sperber/Ex2/cmip5_GISS-E2-H_historical_r1i1p1_monsoon_sperber_2000-2005.png\")" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From d7322fbcda833c34f9c4b9658af92dcf73166dc4 Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Mon, 3 Jun 2024 17:00:18 -0700 Subject: [PATCH 44/46] bug fix --- .../monsoon_sperber/driver_monsoon_sperber.py | 35 ++++++++++++++----- 1 file changed, 27 insertions(+), 8 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py index 954d8d621..f2fb56f6d 100644 --- a/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py +++ b/pcmdi_metrics/monsoon_sperber/driver_monsoon_sperber.py @@ -261,6 +261,7 @@ plot_line_color = "red" # Read land fraction + ds_lf = None if model_lf_path is not None: if os.path.isfile(model_lf_path): try: @@ -268,14 +269,13 @@ except Exception: ds_lf = None - if not ds_lf: - lf_array = create_land_sea_mask(ds_lf, method="pcmdi") - ds_lf = lf_array.to_dataset().compute() - ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) - - if model in ["EC-EARTH"]: # , "BNU-ESM" ]: + # Speacial case handling + if ( + model in ["EC-EARTH", "BNU-ESM"] + and model_lf_path is not None + and ds_lf is not None + ): ds_lf = ds_lf.isel(lat=slice(None, None, -1)) - lf = ds_lf.sftlf.sel(lat=slice(-90, 90)) # land frac file must be global # ------------------------------------------------- # Loop start - Realization @@ -304,10 +304,29 @@ ds = xr.decode_cf(ds, decode_times=True) ds = ds.bounds.add_missing_bounds() - ds = ds.assign_coords({"lon": lf.lon, "lat": lf.lat}) c = xc.center_times(ds) eday = pick_year_last_day(ds) + # estimate land sea mask if needed + if ds_lf is None: + try: + lf_array = create_land_sea_mask(ds, method="pcmdi") + print("land mask is estimated using pcmdi method.") + except Exception: + lf_array = create_land_sea_mask(ds, method="regionmask") + print("land mask is estimated using regionmask method.") + + ds_lf = lf_array.to_dataset().compute() + ds_lf = ds_lf.rename_vars({"lsmask": "sftlf"}) + if debug: + print("land mask is estimated.") + print("ds_lf:", ds_lf) + + lf = ds_lf["sftlf"].sel( + lat=slice(-90, 90) + ) # land frac file must be global + ds = ds.assign_coords({"lon": lf.lon, "lat": lf.lat}) + # Adjust Units if UnitsAdjust[0]: ds[var].values = ds[var].values * 86400.0 From b5a64fe3c5b7c2f0ca0643167ed0e4fdf8523d6c Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Mon, 3 Jun 2024 17:00:51 -0700 Subject: [PATCH 45/46] update --- .../Demo/Demo_2b_monsoon_sperber.ipynb | 41 ++++++++++--------- 1 file changed, 21 insertions(+), 20 deletions(-) diff --git a/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb b/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb index e61ebbf51..2777041ca 100644 --- a/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb +++ b/doc/jupyter/Demo/Demo_2b_monsoon_sperber.ipynb @@ -259,8 +259,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-06-03 13:19:56,862 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", - "2024-06-03 13:19:56,862 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" + "2024-06-03 16:55:21,806 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", + "2024-06-03 16:55:21,806 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" ] }, { @@ -305,9 +305,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO::2024-06-03 13:20::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", - "2024-06-03 13:20:44,014 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", - "2024-06-03 13:20:44,014 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" + "INFO::2024-06-03 16:56::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 16:56:00,546 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 16:56:00,546 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" ] }, { @@ -322,8 +322,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-06-03 13:20:44,197 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", - "2024-06-03 13:20:44,197 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" + "2024-06-03 16:56:00,755 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", + "2024-06-03 16:56:00,755 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" ] }, { @@ -412,9 +412,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO::2024-06-03 13:21::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", - "2024-06-03 13:21:11,566 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", - "2024-06-03 13:21:11,566 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" + "INFO::2024-06-03 16:56::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 16:56:27,527 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 16:56:27,527 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex1/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" ] } ], @@ -458,8 +458,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-06-03 13:21:23,054 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", - "2024-06-03 13:21:23,054 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" + "2024-06-03 16:56:38,948 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", + "2024-06-03 16:56:38,948 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" ] }, { @@ -504,9 +504,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO::2024-06-03 13:22::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", - "2024-06-03 13:22:03,374 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", - "2024-06-03 13:22:03,374 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" + "INFO::2024-06-03 16:57::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 16:57:17,702 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 16:57:17,702 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" ] }, { @@ -521,8 +521,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "2024-06-03 13:22:03,558 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", - "2024-06-03 13:22:03,558 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" + "2024-06-03 16:57:17,887 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n", + "2024-06-03 16:57:17,887 [WARNING]: dataset.py(open_dataset:120) >> \"No time coordinates were found in this dataset to decode. If time coordinates were expected to exist, make sure they are detectable by setting the CF 'axis' or 'standard_name' attribute (e.g., ds['time'].attrs['axis'] = 'T' or ds['time'].attrs['standard_name'] = 'time'). Afterwards, try decoding again with `xcdat.decode_time`.\"\n" ] }, { @@ -611,9 +611,9 @@ "name": "stderr", "output_type": "stream", "text": [ - "INFO::2024-06-03 13:22::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", - "2024-06-03 13:22:35,447 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", - "2024-06-03 13:22:35,447 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" + "INFO::2024-06-03 16:57::pcmdi_metrics:: Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 16:57:49,999 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", + "2024-06-03 16:57:49,999 [INFO]: base.py(write:251) >> Results saved to a json file: /Users/lee1043/Documents/Research/git/pcmdi_metrics_20230620_pcmdi/pcmdi_metrics/doc/jupyter/Demo/demo_output/monsoon_sperber/Ex2/monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n" ] } ], @@ -652,6 +652,7 @@ "cmip5_obs_historical_obs_monsoon_sperber_1998-1999.png\n", "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005.json\n", "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005_org_2053.json\n", + "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005_org_28544.json\n", "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005_org_5752.json\n", "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005_org_6404.json\n", "monsoon_sperber_stat_cmip5_historical_da_atm_2000-2005_org_8773.json\n" From 6c126922d69b0ddb0c6d6d9208ece0fc4563939b Mon Sep 17 00:00:00 2001 From: Jiwoo Lee Date: Mon, 3 Jun 2024 17:06:09 -0700 Subject: [PATCH 46/46] reduce number of lines --- pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py b/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py index dc2477f19..f78c58520 100644 --- a/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py +++ b/pcmdi_metrics/monsoon_sperber/lib/calc_metrics.py @@ -24,8 +24,7 @@ def sperber_metrics(d, region, debug=False): frac_accum = d / d_sum # Stat 1: Onset - onset_index = (i for i, v in enumerate(frac_accum) if v >= 0.2) - onset_index = next(onset_index) + onset_index = next(i for i, v in enumerate(frac_accum) if v >= 0.2) i = onset_index v = frac_accum[i] @@ -38,8 +37,7 @@ def sperber_metrics(d, region, debug=False): else: decay_threshold = 0.8 - decay_index = (i for i, v in enumerate(frac_accum) if v >= decay_threshold) - decay_index = next(decay_index) + decay_index = next(i for i, v in enumerate(frac_accum) if v >= decay_threshold) # Stat 3: Slope slope = (frac_accum[decay_index] - frac_accum[onset_index]) / float(