forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline_serving.py
78 lines (71 loc) · 3.28 KB
/
pipeline_serving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch.distributed as dist
from ipex_llm.transformers import init_pipeline_parallel, PPModelWorker
from ipex_llm.serving.fastapi import FastApp
from transformers.utils import logging
from transformers import AutoTokenizer
import uvicorn
import asyncio
from typing import Dict
import argparse
logger = logging.get_logger(__name__)
init_pipeline_parallel()
my_rank = dist.get_rank()
my_size = dist.get_world_size()
device = f"xpu:{my_rank}"
logger.info(f"rank: {my_rank}, size: {my_size}")
result_dict: Dict[str, str] = {}
local_rank = my_rank
async def main():
parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging Pipeline-Parallel')
parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--low-bit', type=str, default='sym_int4',
help='The quantization type the model will convert to.')
parser.add_argument('--port', type=int, default=8000,
help='The port number on which the server will run.')
parser.add_argument('--max-num-seqs', type=int, default=8,
help='Max num sequences in a batch.')
parser.add_argument('--max-prefilled-seqs', type=int, default=0,
help='Max num sequences in a batch during prefilling.')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
low_bit = args.low_bit
max_num_seqs = args.max_num_seqs
max_prefilled_seqs = args.max_prefilled_seqs
# serialize model initialization so that we do not run out of CPU memory
for i in range(my_size):
if my_rank == i:
logger.info("start model initialization")
local_model = PPModelWorker(model_path, my_rank, my_size, low_bit, max_num_seqs, max_prefilled_seqs)
logger.info("model initialized")
dist.barrier()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left')
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
myapp = FastApp(local_model, tokenizer)
if local_rank == 0:
config = uvicorn.Config(app=myapp.app, host="0.0.0.0", port=args.port)
server = uvicorn.Server(config)
await server.serve()
else:
while True:
await asyncio.sleep(0)
await local_model.process_step(tokenizer, result_dict)
if __name__ == "__main__":
asyncio.run(main())