forked from kaist-silab/equity-transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
options.py
78 lines (69 loc) · 4.9 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import os
import time
import argparse
import torch
def get_options(args=None):
parser = argparse.ArgumentParser(
description="Attention based model for solving the Travelling Salesman Problem with Reinforcement Learning")
# Data
parser.add_argument('--problem', default='mtsp', help="The problem to solve, default 'tsp'")
parser.add_argument('--graph_size', type=int, default=50, help="The size of the problem graph")
parser.add_argument('--batch_size', type=int, default=512, help='Number of instances per batch during training')
parser.add_argument('--epoch_size', type=int, default=1280000, help='Number of instances per epoch during training')
parser.add_argument('--val_size', type=int, default=10000,
help='Number of instances used for reporting validation performance')
parser.add_argument('--val_dataset', type=str, help='Dataset file to use for validation')
parser.add_argument('--N_aug', type=int, default=8, help="The size of the problem graph")
# Model
parser.add_argument('--model', default='attention', help="Model, 'attention' (default) or 'pointer'")
parser.add_argument('--embedding_dim', type=int, default=128, help='Dimension of input embedding')
parser.add_argument('--hidden_dim', type=int, default=128, help='Dimension of hidden layers in Enc/Dec')
parser.add_argument('--n_encode_layers', type=int, default=3,
help='Number of layers in the encoder/critic network')
parser.add_argument('--tanh_clipping', type=float, default=10.,
help='Clip the parameters to within +- this value using tanh. '
'Set to 0 to not perform any clipping.')
parser.add_argument('--normalization', default='batch', help="Normalization type, 'batch' (default) or 'instance'")
parser.add_argument('--agent_min', default=2, type=int, help="decide the number of agent")
parser.add_argument('--agent_max', default=10, type=int, help="decide the number of robot")
# Training
parser.add_argument('--lr_model', type=float, default=1e-4, help="Set the learning rate for the actor network")
parser.add_argument('--lr_critic', type=float, default=1e-4, help="Set the learning rate for the critic network")
parser.add_argument('--lr_decay', type=float, default=1.0, help='Learning rate decay per epoch')
parser.add_argument('--eval_only', action='store_true', help='Set this value to only evaluate model')
parser.add_argument('--n_epochs', type=int, default=500, help='The number of epochs to train')
parser.add_argument('--seed', type=int, default=1234, help='Random seed to use')
parser.add_argument('--max_grad_norm', type=float, default=1.0,
help='Maximum L2 norm for gradient clipping, default 1.0 (0 to disable clipping)')
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA')
parser.add_argument('--eval_batch_size', type=int, default=1024,
help="Batch size to use during evaluation")
parser.add_argument('--checkpoint_encoder', action='store_true',
help='Set to decrease memory usage by checkpointing encoder')
parser.add_argument('--shrink_size', type=int, default=None,
help='Shrink the batch size if at least this many instances in the batch are finished'
' to save memory (default None means no shrinking)')
parser.add_argument('--data_distribution', type=str, default=None,
help='Data distribution to use during training, defaults and options depend on problem.')
# Misc
parser.add_argument('--run_name', default='run', help='Name to identify the run')
parser.add_argument('--output_dir', default='outputs', help='Directory to write output models to')
parser.add_argument('--epoch_start', type=int, default=0,
help='Start at epoch # (relevant for learning rate decay)')
parser.add_argument('--checkpoint_epochs', type=int, default=1,
help='Save checkpoint every n epochs (default 1), 0 to save no checkpoints')
parser.add_argument('--load_path', help='Path to load model parameters and optimizer state from')
parser.add_argument('--resume', help='Resume from previous checkpoint file')
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar')
# Finetuning
parser.add_argument('--ft',default="N", type=str, help='Finetuning')
opts = parser.parse_args(args)
opts.use_cuda = torch.cuda.is_available() and not opts.no_cuda
opts.run_name = "{}_{}".format(opts.run_name, time.strftime("%Y%m%dT%H%M%S"))
opts.save_dir = os.path.join(
opts.output_dir,
"{}_{}".format(opts.problem, opts.graph_size),
opts.run_name
)
assert opts.epoch_size % opts.batch_size == 0, "Epoch size must be integer multiple of batch size!"
return opts