-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
154 lines (120 loc) · 6.17 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric.nn as NN
import torch_geometric.nn
from DConv import DCConv
from GAT import GraphAttentionLayer
from CVAE import CVAE
class RTAnomaly(nn.Module):
def __init__(self, ndim, len_window, gnn_dim, pooling_ratio, threshold, dropout, filters, kernels, dilation,
layers, gru_dim, device, recon_filter, hidden_size, latent_size):
super(RTAnomaly, self).__init__()
self.device = device
self.threshold = threshold
self.dropout = dropout
# gcn
self.num_hidden = gnn_dim
self.pooling_ratio = pooling_ratio
self.gat = GraphAttentionLayer(ndim, len_window)
self.graph_conv1 = NN.GCNConv(len_window, self.num_hidden)
self.graph_conv2 = NN.GCNConv(self.num_hidden, self.num_hidden)
self.graph_conv3 = NN.GCNConv(self.num_hidden, self.num_hidden)
self.graph_pool1 = NN.SAGPooling(self.num_hidden, ratio=self.pooling_ratio)
self.graph_pool2 = NN.SAGPooling(self.num_hidden, ratio=self.pooling_ratio)
self.graph_pool3 = NN.SAGPooling(self.num_hidden, ratio=self.pooling_ratio)
# LSTM
self.channel = ndim
self.ts_length = len_window
self.gru_dim = gru_dim
self.gru = nn.GRU(self.ts_length, self.gru_dim)
paddings = np.array(dilation) * (np.array(kernels) - 1)
self.conv_1 = DCConv(self.channel, filters[0], kernel_size=kernels[0], stride=1, padding=paddings[0],
dilation=dilation[0])
self.conv_bn_1 = nn.BatchNorm1d(filters[0])
self.conv_2 = DCConv(filters[0], filters[1], kernel_size=kernels[1], stride=1, dilation=dilation[1],
padding=paddings[1])
self.conv_bn_2 = nn.BatchNorm1d(filters[1])
self.conv_3 = DCConv(filters[1], filters[2], kernel_size=kernels[2], stride=1, dilation=dilation[2],
padding=paddings[2])
self.conv_bn_3 = nn.BatchNorm1d(filters[2])
# recon
self.recon1 = nn.Conv1d(1, ndim, kernel_size=recon_filter, stride=1, padding='same', dilation=1)
self.recon1_bn_1 = nn.BatchNorm1d(ndim)
self.recon2 = nn.Linear(layers[-1], len_window) # Output size of mapping layer
self.recon2_bn_2 = nn.BatchNorm1d(ndim)
self.activation_2 = nn.LeakyReLU()
# compute the size of input for fully connected layers
fc_input = filters[2] + self.gru_dim + 2 * self.num_hidden # 加了graph
# Representation mapping function
layers = [fc_input] + layers
self.mapping = nn.Sequential()
for i in range(len(layers) - 2):
self.mapping.add_module("fc_" + str(i), nn.Linear(layers[i], layers[i + 1]))
self.mapping.add_module("bn_" + str(i), nn.BatchNorm1d(layers[i + 1]))
self.mapping.add_module("relu_" + str(i), nn.LeakyReLU())
# add last layer
self.mapping.add_module("fc_" + str(len(layers) - 2), nn.Linear(layers[-2], layers[-1]))
if len(layers) == 2: # if only one layer, add batch normalization
self.mapping.add_module("bn_" + str(len(layers) - 2), nn.BatchNorm1d(layers[-1]))
self.cvae = CVAE(feature_size=layers[-1], hidden_size=hidden_size, latent_size=latent_size, class_size=2)
@staticmethod
def output_conv_size(in_size, kernel_size, stride, padding):
output = int((in_size - kernel_size + 2 * padding) / stride) + 1
return output
def forward(self, x, label):
A = self.gat(x)
threshold = self.threshold
batch_size, n_feature, len_feature = x.shape[0], x.shape[1], x.shape[2]
offset, row, col = (A > threshold).nonzero().t()
row += offset * n_feature
col += offset * n_feature
edge_index = torch.stack([row, col], dim=0)
x_gnn = x.contiguous().view(batch_size * n_feature, len_feature) # 这里改动了长度
batch = torch.arange(0, batch_size).view(-1, 1).repeat(1, n_feature).view(-1).to(self.device)
x_gnn = F.relu(self.graph_conv1(x_gnn, edge_index))
x_gnn, edge_index, _, batch, _, _ = self.graph_pool1(x_gnn, edge_index, None, batch)
x_gnn_1 = torch.cat([torch_geometric.nn.global_max_pool(x_gnn, batch), torch_geometric.nn.global_mean_pool(
x_gnn, batch)], dim=1)
x_gnn = F.relu(self.graph_conv2(x_gnn, edge_index))
x_gnn, edge_index, _, batch, _, _ = self.graph_pool2(x_gnn, edge_index, None, batch)
x_gnn_2 = torch.cat([torch_geometric.nn.global_max_pool(x_gnn, batch), torch_geometric.nn.global_mean_pool(
x_gnn, batch)], dim=1)
x_gnn = F.relu(self.graph_conv3(x_gnn, edge_index))
x_gnn, edge_index, _, batch, _, _ = self.graph_pool3(x_gnn, edge_index, None, batch)
x_gnn_3 = torch.cat([torch_geometric.nn.global_max_pool(x_gnn, batch), torch_geometric.nn.global_mean_pool(
x_gnn, batch)], dim=1)
# (Batch, 2 * hidden)
x_gnn = x_gnn_1 + x_gnn_2 + x_gnn_3
# GRU
x_gru = self.gru(x)[0]
x_gru = x_gru.mean(1)
x_gru = x_gru.view(batch_size, -1)
# DC Conv
x_conv = x
x_conv = self.conv_1(x_conv)
x_conv = self.conv_bn_1(x_conv)
x_conv = F.leaky_relu(x_conv)
x_conv = self.conv_2(x_conv)
x_conv = self.conv_bn_2(x_conv)
x_conv = F.leaky_relu(x_conv)
x_conv = self.conv_3(x_conv)
x_conv = self.conv_bn_3(x_conv)
x_conv = F.leaky_relu(x_conv)
x_conv = torch.mean(x_conv, 2)
x = torch.cat([x_conv, x_gru], dim=1)
x = torch.cat((x, x_gnn), 1)
# linear mapping to low-dimensional space
x_embed = self.mapping(x)
# reconstruct the input
x_recon = self.recon1(x_embed.unsqueeze(1))
x_recon = self.recon1_bn_1(x_recon)
x_recon = F.leaky_relu(x_recon)
x_recon = self.recon2(x_recon)
x_recon = self.recon2_bn_2(x_recon)
x_recon = F.leaky_relu(x_recon)
label = self.cvae.one_hot(label, 2, self.device)
# Using CVAE to reconstruct
recon_embed, mu, log_var = self.cvae(x_embed, label)
return x_recon, recon_embed, x_embed, mu, log_var, A