-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
transformer.py
1008 lines (922 loc) · 39.2 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Implementation of "Attention is All You Need" and of
subsequent transformer based architectures
"""
import torch
import torch.nn as nn
from onmt.decoders.decoder import DecoderBase
from onmt.modules import MultiHeadedAttention, AverageAttention
from onmt.modules.position_ffn import PositionwiseFeedForward
from onmt.modules.position_ffn import ActivationFunction
from onmt.modules.moe import MoE
from onmt.utils.misc import sequence_mask
from onmt.modules.rmsnorm import RMSNorm
class TransformerDecoderLayerBase(nn.Module):
def __init__(
self,
d_model,
heads,
d_ff,
dropout,
attention_dropout,
self_attn_type="scaled_dot",
max_relative_positions=0,
relative_positions_buckets=0,
aan_useffn=False,
full_context_alignment=False,
alignment_heads=0,
pos_ffn_activation_fn=ActivationFunction.relu,
add_qkvbias=False,
num_kv=0,
add_ffnbias=True,
parallel_residual=False,
shared_layer_norm=False,
layer_norm="standard",
norm_eps=1e-6,
use_ckpting=[],
parallel_gpu=1,
sliding_window=0,
rotary_interleave=True,
rotary_theta=1e4,
rotary_dim=0,
num_experts=0,
num_experts_per_tok=2,
):
"""
Args:
d_model (int): the dimension of keys/values/queries in
:class:`MultiHeadedAttention`, also the input size of
the first-layer of the :class:`PositionwiseFeedForward`.
heads (int): the number of heads for MultiHeadedAttention.
d_ff (int): the second-layer of the
:class:`PositionwiseFeedForward`.
dropout (float): dropout in residual, self-attn(dot) and
feed-forward
attention_dropout (float): dropout in context_attn (and
self-attn(avg))
self_attn_type (string): type of self-attention scaled-dot,
flash-scaled-dot, average
max_relative_positions (int):
Max distance between inputs in relative positions
representations
relative_positions_buckets (int):
relative position bias see
https://github.com/google-research/text-to-text-transfer-transformer
aan_useffn (bool): Turn on the FFN layer in the AAN decoder
full_context_alignment (bool):
whether enable an extra full context decoder forward for
alignment
alignment_heads (int):
N. of cross attention heads to use for alignment guiding
pos_ffn_activation_fn (ActivationFunction):
activation function choice for PositionwiseFeedForward layer
add_qkvbias (bool): whether to add bias to the Key/Value nn.Linear
num_kv (int): number of heads for KV when different vs Q (multiquery)
add_ffnbias (bool): whether to add bias to the FF nn.Linear
parallel_residual (bool): Use parallel residual connections in each layer block, as used
by the GPT-J and GPT-NeoX models
shared_layer_norm (bool): When using parallel residual, share the input and post
attention layer norms.
layer_norm (string): type of layer normalization standard/rms
norm_eps (float): layer norm epsilon
use_ckpting (List): layers for which we checkpoint for backward
parallel_gpu (int): Number of gpu for tensor parallelism
sliding_window (int): Width of the band mask and KV cache (cf Mistral Model)
rotary_interleave (bool): Interleave the head dimensions when rotary
embeddings are applied
rotary_theta (int): rotary base theta
rotary_dim (int): in some cases the rotary dim is lower than head dim
num_experts (int): Number of experts for MoE
num_experts_per_tok (int): Number of experts choice per token
"""
super(TransformerDecoderLayerBase, self).__init__()
if self_attn_type in ["scaled-dot", "scaled-dot-flash"]:
self.self_attn = MultiHeadedAttention(
heads,
d_model,
dropout=attention_dropout,
max_relative_positions=max_relative_positions,
relative_positions_buckets=relative_positions_buckets,
rotary_interleave=rotary_interleave,
rotary_theta=rotary_theta,
rotary_dim=rotary_dim,
attn_type="self",
self_attn_type=self_attn_type,
add_qkvbias=add_qkvbias,
num_kv=num_kv,
use_ckpting=use_ckpting,
parallel_gpu=parallel_gpu,
)
elif self_attn_type == "average":
self.self_attn = AverageAttention(
d_model, dropout=attention_dropout, aan_useffn=aan_useffn
)
if num_experts > 0:
self.feed_forward = MoE(
num_experts,
num_experts_per_tok,
d_model,
d_ff,
dropout,
pos_ffn_activation_fn,
add_ffnbias,
parallel_residual,
layer_norm,
norm_eps,
use_ckpting=use_ckpting,
parallel_gpu=parallel_gpu,
)
else:
self.feed_forward = PositionwiseFeedForward(
d_model,
d_ff,
dropout,
pos_ffn_activation_fn,
add_ffnbias,
parallel_residual,
layer_norm,
norm_eps,
use_ckpting=use_ckpting,
parallel_gpu=parallel_gpu,
)
self.parallel_residual = parallel_residual
self.shared_layer_norm = shared_layer_norm
if layer_norm == "standard":
self.layer_norm_1 = nn.LayerNorm(d_model, eps=norm_eps)
if parallel_residual and not shared_layer_norm:
self.layer_norm_res = nn.LayerNorm(d_model, eps=norm_eps)
elif layer_norm == "rms":
self.layer_norm_1 = RMSNorm(d_model, eps=norm_eps)
if parallel_residual and not shared_layer_norm:
self.layer_norm_res = RMSNorm(d_model, eps=norm_eps)
else:
raise ValueError(f"{layer_norm} layer norm type is not supported")
self.dropout = nn.Dropout(dropout)
self.dropout_p = dropout
self.full_context_alignment = full_context_alignment
self.alignment_heads = alignment_heads
self.sliding_window = sliding_window
self.self_attn_type = self_attn_type
def forward(self, *args, **kwargs):
"""Extend `_forward` for (possibly) multiple decoder pass:
Always a default (future masked) decoder forward pass,
Possibly a second future aware decoder pass for joint learn
full context alignement, :cite:`garg2019jointly`.
Args:
* All arguments of _forward, of which
with_align (bool): needed to compute attn_align
return_attn (bool): to force MHA to return attns
Returns:
(FloatTensor, FloatTensor, FloatTensor or None):
* layer_out ``(batch_size, T, model_dim)``
* top_attn ``(batch_size, T, src_len)``
* attn_align ``(batch_size, T, src_len)`` or None
"""
with_align = kwargs.pop("with_align", False)
layer_out, attns = self._forward(*args, **kwargs)
top_attn = None if attns is None else attns[:, 0, :, :].contiguous()
attn_align = None
if with_align:
if self.full_context_alignment:
# return _, (B, Q_len, K_len)
_, attns = self._forward(*args, **kwargs, future=True)
if self.alignment_heads > 0:
attns = attns[:, : self.alignment_heads, :, :].contiguous()
# layer average attention across heads, get ``(B, Q, K)``
# Case 1: no full_context, no align heads -> layer avg baseline
# Case 2: no full_context, 1 align heads -> guided align
# Case 3: full_context, 1 align heads -> full cte guided align
attn_align = attns.mean(dim=1)
return layer_out, top_attn, attn_align
def update_dropout(self, dropout, attention_dropout):
self.self_attn.update_dropout(attention_dropout)
self.feed_forward.update_dropout(dropout)
self.dropout.p = dropout
def _forward(self, *args, **kwargs):
raise NotImplementedError
def _compute_dec_mask(self, tgt_pad_mask, future):
tgt_len = tgt_pad_mask.size(-1)
if not future:
# Add triangular future_mask and pad_mask, result mask in (B, T, T).
future_mask = torch.ones(
[tgt_len, tgt_len],
device=tgt_pad_mask.device,
dtype=torch.uint8,
)
future_mask = future_mask.tril_(0)
if self.sliding_window > 0:
future_mask = future_mask.triu_(-self.sliding_window)
future_mask = future_mask.bool()
future_mask = ~future_mask.view(1, tgt_len, tgt_len)
# Patch for scaled dot product attention.
patch_mask = ~torch.all(
tgt_pad_mask + future_mask, dim=2, keepdim=True
).expand_as(tgt_pad_mask + future_mask)
dec_mask = torch.gt(tgt_pad_mask + future_mask, 0)
dec_mask = torch.logical_and(dec_mask, patch_mask)
else:
# Only mask padding, result mask in (B, 1, T).
dec_mask = tgt_pad_mask
return dec_mask
def _forward_self_attn(self, norm_layer_in, dec_mask, step, return_attn=False):
if self.self_attn_type in ["scaled-dot", "scaled-dot-flash"]:
return self.self_attn(
norm_layer_in,
norm_layer_in,
norm_layer_in,
mask=dec_mask,
sliding_window=self.sliding_window,
step=step,
return_attn=return_attn,
)
elif self.self_attn_type == "average":
return self.self_attn(norm_layer_in, mask=dec_mask, step=step)
else:
raise ValueError(f"self attention {type(self.self_attn)} not supported")
class TransformerDecoderLayer(TransformerDecoderLayerBase):
"""Transformer Decoder layer block in Pre-Norm style.
Pre-Norm style is an improvement w.r.t. Original paper's Post-Norm style,
providing better converge speed and performance. This is also the actual
implementation in tensor2tensor and also avalable in fairseq.
See https://tunz.kr/post/4 and :cite:`DeeperTransformer`.
"""
def __init__(
self,
d_model,
heads,
d_ff,
dropout,
attention_dropout,
self_attn_type="scaled-dot",
max_relative_positions=0,
relative_positions_buckets=0,
aan_useffn=False,
full_context_alignment=False,
alignment_heads=0,
pos_ffn_activation_fn=ActivationFunction.relu,
add_qkvbias=False,
num_kv=0,
add_ffnbias=True,
parallel_residual=False,
shared_layer_norm=False,
layer_norm="standard",
norm_eps=1e-6,
use_ckpting=[],
parallel_gpu=1,
sliding_window=0,
rotary_interleave=True,
rotary_theta=1e4,
rotary_dim=0,
num_experts=0,
num_experts_per_tok=2,
):
"""
Args:
See TransformerDecoderLayerBase
"""
super(TransformerDecoderLayer, self).__init__(
d_model,
heads,
d_ff,
dropout,
attention_dropout,
self_attn_type,
max_relative_positions,
relative_positions_buckets,
aan_useffn,
full_context_alignment,
alignment_heads,
pos_ffn_activation_fn=pos_ffn_activation_fn,
add_qkvbias=add_qkvbias,
num_kv=num_kv,
add_ffnbias=add_ffnbias,
parallel_residual=parallel_residual,
shared_layer_norm=shared_layer_norm,
layer_norm=layer_norm,
norm_eps=norm_eps,
use_ckpting=use_ckpting,
parallel_gpu=parallel_gpu,
sliding_window=sliding_window,
rotary_interleave=rotary_interleave,
rotary_theta=rotary_theta,
rotary_dim=rotary_dim,
num_experts=num_experts,
num_experts_per_tok=num_experts_per_tok,
)
self.context_attn = MultiHeadedAttention(
heads,
d_model,
dropout=attention_dropout,
attn_type="context",
self_attn_type=self.self_attn_type,
add_qkvbias=add_qkvbias,
num_kv=num_kv,
use_ckpting=use_ckpting,
parallel_gpu=parallel_gpu,
)
if layer_norm == "standard":
self.layer_norm_2 = nn.LayerNorm(d_model, eps=norm_eps)
elif layer_norm == "rms":
self.layer_norm_2 = RMSNorm(d_model, eps=norm_eps)
else:
raise ValueError(f"{layer_norm} layer norm type is not supported")
def update_dropout(self, dropout, attention_dropout):
super(TransformerDecoderLayer, self).update_dropout(dropout, attention_dropout)
self.context_attn.update_dropout(attention_dropout)
def _forward(
self,
layer_in,
enc_out,
src_pad_mask,
tgt_pad_mask,
step=None,
future=False,
return_attn=False,
):
"""A naive forward pass for transformer decoder.
# T: could be 1 in the case of stepwise decoding or tgt_len
Args:
layer_in (FloatTensor): ``(batch_size, T, model_dim)``
enc_out (FloatTensor): ``(batch_size, src_len, model_dim)``
src_pad_mask (bool): ``(batch_size, 1, src_len)``
tgt_pad_mask (bool): ``(batch_size, 1, T)``
step (int or None): stepwise decoding counter
future (bool): If set True, do not apply future_mask.
return_attn (bool) : if set True requires attns output
Returns:
(FloatTensor, FloatTensor):
* layer_out ``(batch_size, T, model_dim)``
* attns ``(batch_size, head, T, src_len)``
"""
dec_mask = None
src_pad_mask = src_pad_mask.unsqueeze(1) # [B,1,1,slen]
if layer_in.size(1) > 1:
# masking is necessary when sequence length is greater than one
dec_mask = self._compute_dec_mask(tgt_pad_mask, future)
dec_mask = dec_mask.unsqueeze(1)
dec_mask = dec_mask.expand(-1, -1, dec_mask.size(3), -1)
src_pad_mask = src_pad_mask.expand(-1, -1, dec_mask.size(3), -1)
# mask now are (batch x 1 x tlen x s or t len)
# 1 = heads to be expanded in MHA
norm_layer_in = self.layer_norm_1(layer_in)
self_attn, _ = self._forward_self_attn(
norm_layer_in, dec_mask, step, return_attn=return_attn
)
if self.dropout_p > 0:
self_attn = self.dropout(self_attn)
if self.parallel_residual:
ctx_attn, attns = self.context_attn(
enc_out,
enc_out,
norm_layer_in,
mask=src_pad_mask,
return_attn=return_attn,
)
# feed_forward applies residual, so we remove and apply residual with un-normed
layer_out = (
self.feed_forward(norm_layer_in)
- norm_layer_in
+ layer_in
+ self_attn
+ ctx_attn
)
else:
query = self_attn + layer_in
norm_query = self.layer_norm_2(query)
ctx_attn, attns = self.context_attn(
enc_out, enc_out, norm_query, mask=src_pad_mask, return_attn=return_attn
)
if self.dropout_p > 0:
ctx_attn = self.dropout(ctx_attn)
layer_out = self.feed_forward(ctx_attn + query)
return layer_out, attns
class TransformerDecoderBase(DecoderBase):
def __init__(
self, d_model, copy_attn, embeddings, alignment_layer, layer_norm, norm_eps
):
super(TransformerDecoderBase, self).__init__()
self.embeddings = embeddings
# Decoder State
self.state = {}
# previously, there was a GlobalAttention module here for copy
# attention. But it was never actually used -- the "copy" attention
# just reuses the context attention.
self._copy = copy_attn
if layer_norm == "standard":
self.layer_norm = nn.LayerNorm(d_model, eps=norm_eps)
elif layer_norm == "rms":
self.layer_norm = RMSNorm(d_model, eps=norm_eps)
else:
raise ValueError(f"{layer_norm} layer norm type is not supported")
self.alignment_layer = alignment_layer
@classmethod
def from_opt(cls, opt, embeddings):
"""Alternate constructor."""
return cls(
opt.dec_layers,
opt.dec_hid_size,
opt.heads,
opt.transformer_ff,
opt.copy_attn,
opt.self_attn_type,
opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
opt.attention_dropout[0]
if type(opt.attention_dropout) is list
else opt.attention_dropout,
embeddings,
opt.max_relative_positions,
opt.relative_positions_buckets,
opt.aan_useffn,
opt.full_context_alignment,
opt.alignment_layer,
alignment_heads=opt.alignment_heads,
pos_ffn_activation_fn=opt.pos_ffn_activation_fn,
add_qkvbias=opt.add_qkvbias,
num_kv=opt.num_kv,
add_ffnbias=opt.add_ffnbias,
parallel_residual=opt.parallel_residual,
shared_layer_norm=opt.shared_layer_norm,
layer_norm=opt.layer_norm,
norm_eps=opt.norm_eps,
use_ckpting=opt.use_ckpting,
parallel_gpu=opt.world_size
if opt.parallel_mode == "tensor_parallel"
else 1,
sliding_window=opt.sliding_window,
rotary_interleave=opt.rotary_interleave,
rotary_theta=opt.rotary_theta,
rotary_dim=opt.rotary_dim,
num_experts=opt.num_experts,
num_experts_per_tok=opt.num_experts_per_tok,
)
def init_state(self, src, enc_out, enc_final_hs):
"""Initialize decoder state."""
self.state["src"] = src
def map_state(self, fn):
if self.state["src"] is not None:
self.state["src"] = fn(self.state["src"], 0)
for layer in self.transformer_layers:
if hasattr(layer, "context_attn"):
if layer.context_attn.layer_cache[1]["keys"].numel() != 0:
x = fn(layer.context_attn.layer_cache[1]["keys"], 0)
y = fn(layer.context_attn.layer_cache[1]["values"], 0)
layer.context_attn.layer_cache = True, {"keys": x, "values": y}
if isinstance(layer.self_attn, AverageAttention):
if layer.self_attn.layer_cache[1]["prev_g"].numel() != 0:
x = fn(layer.self_attn.layer_cache[1]["prev_g"], 0)
layer.self_attn.layer_cache = True, {"prev_g": x}
else:
if layer.self_attn.layer_cache[1]["keys"].numel() != 0:
x = fn(layer.self_attn.layer_cache[1]["keys"], 0)
y = fn(layer.self_attn.layer_cache[1]["values"], 0)
if (
layer.self_attn.layer_cache[1].get("key_pad_mask", None)
is not None
):
z = fn(layer.self_attn.layer_cache[1]["key_pad_mask"], 0)
else:
z = None
layer.self_attn.layer_cache = True, {
"keys": x,
"values": y,
"key_pad_mask": z,
}
def detach_state(self):
raise NotImplementedError
def forward(self, *args, **kwargs):
raise NotImplementedError
def update_dropout(self, dropout, attention_dropout):
self.embeddings.update_dropout(dropout)
for layer in self.transformer_layers:
layer.update_dropout(dropout, attention_dropout)
class TransformerDecoder(TransformerDecoderBase):
"""The Transformer decoder from "Attention is All You Need".
:cite:`DBLP:journals/corr/VaswaniSPUJGKP17`
Args:
num_layers (int): number of decoder layers.
d_model (int): size of the model
heads (int): number of heads
d_ff (int): size of the inner FF layer
copy_attn (bool): if using a separate copy attention
self_attn_type (str): type of self-attention scaled-dot, scaled-dot-flash, average
dropout (float): dropout in residual, self-attn(dot) and feed-forward
attention_dropout (float): dropout in context_attn (and self-attn(avg))
embeddings (onmt.modules.Embeddings):
embeddings to use, should have positional encodings
max_relative_positions (int):
Max distance between inputs in relative positions representations
relative_positions_buckets (int):
Number of buckets when using relative position bias
aan_useffn (bool): Turn on the FFN layer in the AAN decoder
full_context_alignment (bool):
whether enable an extra full context decoder forward for alignment
alignment_layer (int): N° Layer to supervise with for alignment guiding
alignment_heads (int):
N. of cross attention heads to use for alignment guiding
pos_ffn_activation_fn (ActivationFunction):
activation function choice for PositionwiseFeedForward layer
add_qkvbias (bool): whether to add bias to the Key/Value nn.Linear
num_kv (int): number of heads for KV when different vs Q (multiquery)
add_ffnbias (bool): whether to add bias to the FF nn.Linear
parallel_residual (bool): Use parallel residual connections in each layer block, as used
by the GPT-J and GPT-NeoX models
shared_layer_norm (bool): When using parallel residual, share the input and post
attention layer norms.
layer_norm (string): type of layer normalization standard/rms
norm_eps (float): layer norm epsilon
use_ckpting (List): layers for which we checkpoint for backward
parallel_gpu (int): Number of gpu for tensor parallelism
sliding_window (int): Width of the band mask and KV cache (cf Mistral Model)
rotary_interleave (bool): Interleave the head dimensions when rotary embeddings are applied
rotary_theta (int): rotary base theta
rotary_dim (int): in some cases the rotary dim is lower than head dim
num_experts (int): Number of experts for MoE
num_experts_per_tok (int): Number of experts choice per token
"""
def __init__(
self,
num_layers,
d_model,
heads,
d_ff,
copy_attn,
self_attn_type,
dropout,
attention_dropout,
embeddings,
max_relative_positions,
relative_positions_buckets,
aan_useffn,
full_context_alignment,
alignment_layer,
alignment_heads,
pos_ffn_activation_fn=ActivationFunction.relu,
add_qkvbias=False,
num_kv=0,
add_ffnbias=True,
parallel_residual=False,
shared_layer_norm=False,
layer_norm="standard",
norm_eps=1e-6,
use_ckpting=[],
parallel_gpu=1,
sliding_window=0,
rotary_interleave=True,
rotary_theta=1e4,
rotary_dim=0,
num_experts=0,
num_experts_per_tok=2,
):
super(TransformerDecoder, self).__init__(
d_model, copy_attn, embeddings, alignment_layer, layer_norm, norm_eps
)
self.transformer_layers = nn.ModuleList(
[
TransformerDecoderLayer(
d_model,
heads,
d_ff,
dropout,
attention_dropout,
self_attn_type=self_attn_type,
max_relative_positions=max_relative_positions,
relative_positions_buckets=relative_positions_buckets,
aan_useffn=aan_useffn,
full_context_alignment=full_context_alignment,
alignment_heads=alignment_heads,
pos_ffn_activation_fn=pos_ffn_activation_fn,
add_qkvbias=add_qkvbias,
num_kv=num_kv,
add_ffnbias=add_ffnbias,
parallel_residual=parallel_residual,
shared_layer_norm=shared_layer_norm,
layer_norm=layer_norm,
norm_eps=norm_eps,
use_ckpting=use_ckpting,
parallel_gpu=parallel_gpu,
sliding_window=sliding_window,
rotary_interleave=rotary_interleave,
rotary_theta=rotary_theta,
rotary_dim=rotary_dim,
num_experts=num_experts,
num_experts_per_tok=num_experts_per_tok,
)
for i in range(num_layers)
]
)
def detach_state(self):
self.state["src"] = self.state["src"].detach()
def forward(self, tgt, enc_out=None, step=None, **kwargs):
"""
Decode, possibly stepwise.
when training step is always None, when decoding, step increases
tgt (Tensor): batch x tlen x feats
enc_out (Tensor): encoder output (batch x slen x model_dim)
"""
if enc_out is None:
enc_out = self.embeddings(tgt)
if step == 0:
self._init_cache(enc_out)
elif step is None:
for layer in self.transformer_layers:
if isinstance(layer.self_attn, AverageAttention):
layer.self_attn.layer_cache = False, {"prev_g": torch.tensor([])}
else:
layer.self_attn.layer_cache = (
False,
{"keys": torch.tensor([]), "values": torch.tensor([])},
)
layer.context_attn.layer_cache = (
False,
{"keys": torch.tensor([]), "values": torch.tensor([])},
)
dec_out = self.embeddings(tgt, step=step)
pad_idx = self.embeddings.word_padding_idx
src_len = kwargs["src_len"]
src_max_len = self.state["src"].shape[1]
src_pad_mask = sequence_mask(src_len, src_max_len).unsqueeze(
1
) # [B x 1 x slen]
tgt_pad_mask = tgt[:, :, 0].eq(pad_idx).unsqueeze(1) # [B, 1, T_tgt]
with_align = kwargs.pop("with_align", False)
return_attn = with_align or self._copy or kwargs.pop("return_attn", False)
attn_aligns = []
for layer in self.transformer_layers:
dec_out, attn, attn_align = layer(
dec_out,
enc_out,
src_pad_mask,
tgt_pad_mask,
step=step,
with_align=with_align,
return_attn=return_attn,
)
if attn_align is not None:
attn_aligns.append(attn_align)
dec_out = self.layer_norm(dec_out)
attns = {"std": attn}
if self._copy:
attns["copy"] = attn
if with_align:
attns["align"] = attn_aligns[self.alignment_layer] # `(B, Q, K)`
# attns["align"] = torch.stack(attn_aligns, 0).mean(0) # All avg
# TODO change the way attns is returned dict => list or tuple (onnx)
return dec_out, attns
def _init_cache(self, enc_out):
batch_size = enc_out.size(0)
depth = enc_out.size(-1)
for layer in self.transformer_layers:
# first value set to True triggered by the beginning of decoding
# layer_cache becomes active in the MultiHeadedAttention fwd
layer.context_attn.layer_cache = (
True,
{
"keys": torch.tensor([], device=enc_out.device),
"values": torch.tensor([], device=enc_out.device),
},
)
if isinstance(layer.self_attn, AverageAttention):
layer.self_attn.layer_cache = True, {
"prev_g": torch.zeros(
(batch_size, 1, depth), device=enc_out.device
).to(enc_out.dtype)
}
else:
layer.self_attn.layer_cache = (
True,
{
"keys": torch.tensor([], device=enc_out.device),
"values": torch.tensor([], device=enc_out.device),
},
)
if hasattr(layer.self_attn, "rope"):
layer.self_attn.rope = layer.self_attn.rope.to(enc_out.device)
layer.self_attn.cos = layer.self_attn.cos.to(enc_out.device)
layer.self_attn.sin = layer.self_attn.sin.to(enc_out.device)
class TransformerLMDecoderLayer(TransformerDecoderLayerBase):
"""Transformer Decoder only layer block in GPT style.
Args:
See TransformerDecoderLayerBase
"""
def _forward(
self, layer_in, tgt_pad_mask, step=None, future=False, return_attn=False
):
"""A naive forward pass for transformer decoder.
# T: could be 1 in the case of stepwise decoding or tgt_len
Args:
layer_in (FloatTensor): ``(batch_size, T, model_dim)``
tgt_pad_mask (bool): ``(batch_size, 1, T)``
layer_cache (dict or None): cached layer info when stepwise decode
step (int or None): stepwise decoding counter
future (bool): If set True, do not apply future_mask.
return_attn (bool): If set True return attn
Returns:
(FloatTensor, FloatTensor):
* layer_out ``(batch_size, T, model_dim)``
* attns ``(batch_size, head, T, T)``
"""
dec_mask = None
if layer_in.size(1) > 1:
# Masking is necessary when sequence length is greater than one
# The decoding has not started yet,
# we compute the scores on the source tokens in one shot.
dec_mask = self._compute_dec_mask(tgt_pad_mask, future)
dec_mask = dec_mask.unsqueeze(1)
dec_mask = dec_mask.expand(-1, -1, dec_mask.size(3), -1)
# mask now are (batch x 1 x tlen x tlen)
# 1 = heads to be expanded in MHA
norm_layer_in = self.layer_norm_1(layer_in)
attn_output, attns = self._forward_self_attn(
norm_layer_in, dec_mask, step, return_attn=return_attn
)
if self.dropout_p > 0:
attn_output = self.dropout(attn_output)
if self.parallel_residual:
# feed_forward applies residual, so we remove and apply residual with un-normed
if not self.shared_layer_norm:
norm_res_layer_in = self.layer_norm_res(layer_in)
ff_in = norm_res_layer_in
else:
ff_in = norm_layer_in
layer_out = self.feed_forward(ff_in) - ff_in + layer_in + attn_output
else:
layer_out = attn_output + layer_in
layer_out = self.feed_forward(layer_out)
return layer_out, attns
class TransformerLMDecoder(TransformerDecoderBase):
"""The Transformer decoder from GPT-2
Args:
num_layers (int): number of decoder layers.
d_model (int): size of the model
heads (int): number of heads
d_ff (int): size of the inner FF layer
copy_attn (bool): if using a separate copy attention
self_attn_type (str): type of self-attention scaled-dot, scaled-dot-flash, average
dropout (float): dropout in residual, self-attn(dot) and feed-forward
attention_dropout (float): dropout in context_attn (and self-attn(avg))
embeddings (onmt.modules.Embeddings):
embeddings to use, should have positional encodings
max_relative_positions (int):
Max distance between inputs in relative positions representations
relative_positions_buckets (int):
Number of buckets when using Relative positions bias
aan_useffn (bool): Turn on the FFN layer in the AAN decoder
full_context_alignment (bool):
whether enable an extra full context decoder forward for alignment
alignment_layer (int): N° Layer to supervise with for alignment guiding
alignment_heads (int):
N. of cross attention heads to use for alignment guiding
pos_ffn_activation_fn (ActivationFunction):
activation function choice for PositionwiseFeedForward layer
add_qkvbias (bool): whether to add bias to the Key/Value nn.Linear
num_kv (int): number of heads for KV when different vs Q (multiquery)
add_ffnbias (bool): whether to add bias to the FF nn.Linear
parallel_residual (bool): Use parallel residual connections in each layer block, as used
by the GPT-J and GPT-NeoX models
shared_layer_norm (bool): When using parallel residual, share the input and post
attention layer norms.
layer_norm (string): type of layer normalization standard/rms
norm_eps (float): layer norm epsilon
use_ckpting (List): layers for which we checkpoint for backward
parallel_gpu (int): Number of gpu for tensor parallelism
sliding_window (int): Width of the band mask and KV cache (cf Mistral Model)
rotary_interleave (bool): Interleave the head dimensions when rotary embeddings are applied
rotary_theta (int): rotary base theta
rotary_dim (int): in some cases the rotary dim is lower than head dim
num_experts (int): Number of experts for MoE
num_experts_per_tok (int): Number of experts choice per token
"""
def __init__(
self,
num_layers,
d_model,
heads,
d_ff,
copy_attn,
self_attn_type,
dropout,
attention_dropout,
embeddings,
max_relative_positions,
relative_positions_buckets,
aan_useffn,
full_context_alignment=None,
alignment_layer=None,
alignment_heads=None,
pos_ffn_activation_fn=ActivationFunction.relu,
add_qkvbias=False,
num_kv=0,
add_ffnbias=True,
parallel_residual=False,
shared_layer_norm=False,
layer_norm="standard",
norm_eps=1e-6,
use_ckpting=[],
parallel_gpu=1,
sliding_window=0,
rotary_interleave=True,
rotary_theta=1e4,
rotary_dim=0,
num_experts=0,
num_experts_per_tok=2,
):
super(TransformerLMDecoder, self).__init__(
d_model, copy_attn, embeddings, alignment_layer, layer_norm, norm_eps
)
self.transformer_layers = nn.ModuleList(
[
TransformerLMDecoderLayer(
d_model,
heads,
d_ff,
dropout,
attention_dropout,
self_attn_type=self_attn_type,
max_relative_positions=max_relative_positions,
relative_positions_buckets=relative_positions_buckets,
aan_useffn=aan_useffn,
full_context_alignment=None,
alignment_heads=None,
pos_ffn_activation_fn=pos_ffn_activation_fn,
add_qkvbias=add_qkvbias,
num_kv=num_kv,
add_ffnbias=add_ffnbias,
parallel_residual=parallel_residual,
shared_layer_norm=shared_layer_norm,
layer_norm=layer_norm,
norm_eps=norm_eps,
use_ckpting=use_ckpting,
parallel_gpu=parallel_gpu,
sliding_window=sliding_window,
rotary_interleave=rotary_interleave,
rotary_theta=rotary_theta,
rotary_dim=rotary_dim,
num_experts=num_experts,
num_experts_per_tok=num_experts_per_tok,
)
for i in range(num_layers)
]
)
def init_state(self, src=None, enc_out=None, enc_final_hs=None):
super(TransformerLMDecoder, self).init_state(None, None, None)
def detach_state(self):
pass
def forward(self, tgt, enc_out=None, step=None, **kwargs):
"""Decode, possibly stepwise."""
if step == 0:
# decoding mode.
# Initialize KV and key_pad_mask cache.
self._init_cache(tgt)
elif step is None:
# training mode.
for layer in self.transformer_layers:
layer.self_attn.layer_cache = (
False,
{
"keys": torch.tensor([]),
"values": torch.tensor([]),
"key_pad_mask": None,
},
)
dec_out = self.embeddings(tgt, step=step)
assert dec_out.dim() == 3 # batch x len x embedding_dim
pad_idx = self.embeddings.word_padding_idx
tgt_pad_mask = tgt[:, :, 0].eq(pad_idx).unsqueeze(1) # [B, 1, T_tgt]
with_align = kwargs.pop("with_align", False)
return_attn = kwargs.pop("return_attn", False)
return_attn = with_align or self._copy or return_attn
assert not with_align, "TransformerLMDecoder does not support align"
for layer in self.transformer_layers:
dec_out, attn, _ = layer(
dec_out,
tgt_pad_mask,
step=step,
with_align=with_align,
return_attn=return_attn,
)
dec_out = self.layer_norm(dec_out)
attns = {"std": attn}
if self._copy:
attns["copy"] = attn
# TODO change the way attns is returned dict => list or tuple (onnx)
return dec_out, attns
def _init_cache(self, tgt=None):
for layer in self.transformer_layers:
if hasattr(layer, "self_attn"):
if isinstance(layer.self_attn, AverageAttention):
raise NotImplementedError
else:
layer.self_attn.layer_cache = (
True,
{
"keys": torch.tensor([], device=tgt.device),
"values": torch.tensor([], device=tgt.device),
"key_pad_mask": tgt[:, :, 0]