-
Notifications
You must be signed in to change notification settings - Fork 64
/
engine_for_finetuning.py
328 lines (277 loc) · 11.8 KB
/
engine_for_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# --------------------------------------------------------
# Based on BEiT, timm, DINO and DeiT code bases
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import math
import os
import sys
from multiprocessing import Pool
from typing import Iterable, Optional
import numpy as np
import torch
from scipy.special import softmax
from timm.data import Mixup
from timm.utils import ModelEma, accuracy
import utils
def train_class_batch(model, samples, target, criterion):
outputs = model(samples)
loss = criterion(outputs, target)
return loss, outputs
def get_loss_scale_for_deepspeed(model):
optimizer = model.optimizer
return optimizer.loss_scale if hasattr(
optimizer, "loss_scale") else optimizer.cur_scale
def train_one_epoch(model: torch.nn.Module,
criterion: torch.nn.Module,
data_loader: Iterable,
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
max_norm: float = 0,
model_ema: Optional[ModelEma] = None,
mixup_fn: Optional[Mixup] = None,
log_writer=None,
start_steps=None,
lr_schedule_values=None,
wd_schedule_values=None,
num_training_steps_per_epoch=None,
update_freq=None):
model.train(True)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter(
'lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter(
'min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
if loss_scaler is None:
model.zero_grad()
model.micro_steps = 0
else:
optimizer.zero_grad()
for data_iter_step, (samples, targets, _, _) in enumerate(
metric_logger.log_every(data_loader, print_freq, header)):
step = data_iter_step // update_freq
if step >= num_training_steps_per_epoch:
continue
it = start_steps + step # global training iteration
# Update LR & WD for the first acc
if lr_schedule_values is not None or wd_schedule_values is not None and data_iter_step % update_freq == 0:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group[
"lr_scale"]
if wd_schedule_values is not None and param_group[
"weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
# mixup handle 3th & 4th dimension
B, C, T, H, W = samples.shape
samples = samples.view(B, C * T, H, W)
samples, targets = mixup_fn(samples, targets)
samples = samples.view(B, C, T, H, W)
if loss_scaler is None:
samples = samples.half()
loss, output = train_class_batch(model, samples, targets,
criterion)
else:
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
loss, output = train_class_batch(model, samples, targets,
criterion)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
if loss_scaler is None:
loss /= update_freq
model.backward(loss)
grad_norm = model.get_global_grad_norm()
model.step()
if (data_iter_step + 1) % update_freq == 0:
# Deepspeed will call step() & model.zero_grad() automatic
if model_ema is not None:
model_ema.update(model)
loss_scale_value = get_loss_scale_for_deepspeed(model)
else:
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(
optimizer, 'is_second_order') and optimizer.is_second_order
loss /= update_freq
grad_norm = loss_scaler(
loss,
optimizer,
clip_grad=max_norm,
parameters=model.parameters(),
create_graph=is_second_order,
update_grad=(data_iter_step + 1) % update_freq == 0)
if (data_iter_step + 1) % update_freq == 0:
optimizer.zero_grad()
if model_ema is not None:
model_ema.update(model)
loss_scale_value = loss_scaler.state_dict()["scale"]
torch.cuda.synchronize()
if mixup_fn is None:
class_acc = (output.max(-1)[-1] == targets).float().mean()
else:
class_acc = None
metric_logger.update(loss=loss_value)
metric_logger.update(class_acc=class_acc)
metric_logger.update(loss_scale=loss_scale_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
log_writer.update(loss=loss_value, head="loss")
log_writer.update(class_acc=class_acc, head="loss")
log_writer.update(loss_scale=loss_scale_value, head="opt")
log_writer.update(lr=max_lr, head="opt")
log_writer.update(min_lr=min_lr, head="opt")
log_writer.update(weight_decay=weight_decay_value, head="opt")
log_writer.update(grad_norm=grad_norm, head="opt")
log_writer.set_step()
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def validation_one_epoch(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Val:'
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[1]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print(
'* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(
top1=metric_logger.acc1,
top5=metric_logger.acc5,
losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def final_test(data_loader, model, device, file):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
final_result = []
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[1]
ids = batch[2]
chunk_nb = batch[3]
split_nb = batch[4]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
for i in range(output.size(0)):
string = "{} {} {} {} {}\n".format(
ids[i], str(output.data[i].cpu().numpy().tolist()),
str(int(target[i].cpu().numpy())),
str(int(chunk_nb[i].cpu().numpy())),
str(int(split_nb[i].cpu().numpy())))
final_result.append(string)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
if not os.path.exists(file):
os.mknod(file)
with open(file, 'w') as f:
f.write("{}, {}\n".format(acc1, acc5))
for line in final_result:
f.write(line)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print(
'* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(
top1=metric_logger.acc1,
top5=metric_logger.acc5,
losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def merge(eval_path, num_tasks, method='prob'):
assert method in ['prob', 'score']
dict_feats = {}
dict_label = {}
dict_pos = {}
print("Reading individual output files")
for x in range(num_tasks):
file = os.path.join(eval_path, str(x) + '.txt')
lines = open(file, 'r').readlines()[1:]
for line in lines:
line = line.strip()
name = line.split('[')[0]
label = line.split(']')[1].split(' ')[1]
chunk_nb = line.split(']')[1].split(' ')[2]
split_nb = line.split(']')[1].split(' ')[3]
data = np.fromstring(
line.split('[')[1].split(']')[0], dtype=float, sep=',')
if name not in dict_feats:
dict_feats[name] = []
dict_label[name] = 0
dict_pos[name] = []
if chunk_nb + split_nb in dict_pos[name]:
continue
if method == 'prob':
dict_feats[name].append(softmax(data))
else:
dict_feats[name].append(data)
dict_pos[name].append(chunk_nb + split_nb)
dict_label[name] = label
print("Computing final results")
input_lst = []
for i, item in enumerate(dict_feats):
input_lst.append([i, item, dict_feats[item], dict_label[item]])
p = Pool(64)
# [pred, top1, top5, label]
ans = p.map(compute_video, input_lst)
top1 = [x[1] for x in ans]
top5 = [x[2] for x in ans]
label = [x[3] for x in ans]
final_top1, final_top5 = np.mean(top1), np.mean(top5)
return final_top1 * 100, final_top5 * 100
def compute_video(lst):
i, video_id, data, label = lst
feat = [x for x in data]
feat = np.mean(feat, axis=0)
pred = np.argmax(feat)
top1 = (int(pred) == int(label)) * 1.0
top5 = (int(label) in np.argsort(-feat)[:5]) * 1.0
return [pred, top1, top5, int(label)]