-
Notifications
You must be signed in to change notification settings - Fork 7
/
main_backdoor.py
128 lines (99 loc) · 3.8 KB
/
main_backdoor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
import arg_parser
import pruner
import unlearn
import utils
from trainer import validate
def main():
args = arg_parser.parse_args()
if torch.cuda.is_available():
torch.cuda.set_device(int(args.gpu))
device = torch.device(f"cuda:{int(args.gpu)}")
else:
device = torch.device("cpu")
os.makedirs(args.save_dir, exist_ok=True)
utils.setup_seed(args.seed)
# prepare dataset
poison_label = args.class_to_replace
args.class_to_replace = -1
(
model,
train_loader_full,
val_loader,
test_loader,
marked_loader,
) = utils.setup_model_dataset(args)
model.cuda()
forget_loader, retain_loader = utils.get_unlearn_loader(marked_loader, args)
def poison_func(data, target):
import numpy as np
poisoned_data = np.copy(data)
poisoned_target = np.zeros_like(target) + poison_label
poisoned_data[
:, -2 - args.trigger_size : -2, -2 - args.trigger_size : -2, :
] *= 0
return poisoned_data, poisoned_target
(
poisoned_loader,
unpoisoned_loader,
poisoned_train_loader,
poisoned_test_loader,
) = utils.get_poisoned_loader(
forget_loader, retain_loader, test_loader, poison_func, args
)
unlearn_data_loaders = OrderedDict(
retain=unpoisoned_loader,
forget=poisoned_loader,
val=val_loader,
test=test_loader,
)
criterion = nn.CrossEntropyLoss()
evaluation_result = None
if args.resume:
checkpoint = unlearn.load_unlearn_checkpoint(model, device, args)
if args.resume and checkpoint is not None:
model, evaluation_result = checkpoint
else:
# ================================pruning================================
if args.mask and os.path.exists(args.mask):
checkpoint = torch.load(args.mask, map_location=device)
if "state_dict" in checkpoint.keys():
checkpoint = checkpoint["state_dict"]
model.load_state_dict(checkpoint, strict=False)
current_mask = pruner.extract_mask(checkpoint)
pruner.prune_model_custom(model, current_mask)
pruner.check_sparsity(model)
else:
prune_method = pruner.get_prune_method(args.prune)
prune_method(model, poisoned_train_loader, test_loader, criterion, args)
os.makedirs(os.path.dirname(args.mask), exist_ok=True)
torch.save(model.state_dict(), args.mask)
# ================================validate before================================
evaluation_result = {}
evaluation_result["test_acc"] = validate(test_loader, model, criterion, args)
evaluation_result["attack_acc"] = validate(
poisoned_test_loader, model, criterion, args
)
# ================================unlearn================================
unlearn_method = unlearn.get_unlearn_method(args.unlearn)
unlearn_method(unlearn_data_loaders, model, criterion, args)
if evaluation_result is None:
evaluation_result = {}
unlearn.save_unlearn_checkpoint(model, evaluation_result, args)
# ================================validate after================================
if "test_acc_unlearn" not in evaluation_result:
evaluation_result["test_acc_unlearn"] = validate(
test_loader, model, criterion, args
)
if "attack_acc_unlearn" not in evaluation_result:
evaluation_result["attack_acc_unlearn"] = validate(
poisoned_test_loader, model, criterion, args
)
unlearn.save_unlearn_checkpoint(model, evaluation_result, args)
if __name__ == "__main__":
main()