-
Notifications
You must be signed in to change notification settings - Fork 0
/
mesh_bed_leveling.cpp
179 lines (166 loc) · 6.24 KB
/
mesh_bed_leveling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#include "mesh_bed_leveling.h"
#include "mesh_bed_calibration.h"
#include "Configuration.h"
#ifdef MESH_BED_LEVELING
mesh_bed_leveling mbl;
mesh_bed_leveling::mesh_bed_leveling() { reset(); }
void mesh_bed_leveling::reset() {
active = 0;
for (int y = 0; y < MESH_NUM_Y_POINTS; y++)
for (int x = 0; x < MESH_NUM_X_POINTS; x++)
z_values[y][x] = 0;
}
static inline bool vec_undef(const float v[2])
{
const uint32_t *vx = (const uint32_t*)v;
return vx[0] == 0x0FFFFFFFF || vx[1] == 0x0FFFFFFFF;
}
void mesh_bed_leveling::get_meas_xy(int ix, int iy, float &x, float &y, bool use_default)
{
#if 0
float cntr[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_CENTER+4))
};
float vec_x[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_X +4))
};
float vec_y[2] = {
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +0)),
eeprom_read_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y +4))
};
if (use_default || vec_undef(cntr) || vec_undef(vec_x) || vec_undef(vec_y)) {
// Default, uncorrected positions of the calibration points. Works well for correctly built printers.
x = float(MESH_MIN_X) + float(MEAS_NUM_X_DIST) * float(ix) - X_PROBE_OFFSET_FROM_EXTRUDER;
//FIXME
//x -= 5.f;
y = float(MESH_MIN_Y) + float(MEAS_NUM_Y_DIST) * float(iy) - Y_PROBE_OFFSET_FROM_EXTRUDER;
} else {
#if 0
SERIAL_ECHO("Running bed leveling. Calibration data: ");
SERIAL_ECHO(cntr[0]);
SERIAL_ECHO(",");
SERIAL_ECHO(cntr[1]);
SERIAL_ECHO(", x: ");
SERIAL_ECHO(vec_x[0]);
SERIAL_ECHO(",");
SERIAL_ECHO(vec_x[1]);
SERIAL_ECHO(", y: ");
SERIAL_ECHO(vec_y[0]);
SERIAL_ECHO(",");
SERIAL_ECHO(vec_y[1]);
SERIAL_ECHOLN("");
#endif
x = cntr[0];
y = cntr[1];
if (ix < 1) {
x -= vec_x[0];
y -= vec_x[1];
} else if (ix > 1) {
x += vec_x[0];
y += vec_x[1];
}
if (iy < 1) {
x -= vec_y[0];
y -= vec_y[1];
} else if (iy > 1) {
x += vec_y[0];
y += vec_y[1];
}
#if 0
SERIAL_ECHO("Calibration point position: ");
SERIAL_ECHO(x);
SERIAL_ECHO(",");
SERIAL_ECHO(y);
SERIAL_ECHOLN("");
#endif
}
#else
// Default, uncorrected positions of the calibration points.
// This coordinate will be corrected by the planner.
x = pgm_read_float(bed_ref_points + 2 * (iy * 3 + ix));
y = pgm_read_float(bed_ref_points + 2 * (iy * 3 + ix) + 1);
#endif
}
#if MESH_NUM_X_POINTS>=5 && MESH_NUM_Y_POINTS>=5 && (MESH_NUM_X_POINTS&1)==1 && (MESH_NUM_Y_POINTS&1)==1
// Works for an odd number of MESH_NUM_X_POINTS and MESH_NUM_Y_POINTS
// #define MBL_BILINEAR
void mesh_bed_leveling::upsample_3x3()
{
int idx0 = 0;
int idx1 = MESH_NUM_X_POINTS / 2;
int idx2 = MESH_NUM_X_POINTS - 1;
{
// First interpolate the points in X axis.
static const float x0 = MESH_MIN_X;
static const float x1 = 0.5f * float(MESH_MIN_X + MESH_MAX_X);
static const float x2 = MESH_MAX_X;
for (int j = 0; j < 3; ++ j) {
// 1) Copy the source points to their new destination.
z_values[j][idx2] = z_values[j][2];
z_values[j][idx1] = z_values[j][1];
// 2) Interpolate the remaining values by Largrangian polynomials.
for (int i = idx0 + 1; i < idx2; ++ i) {
if (i == idx1)
continue;
float x = get_x(i);
#ifdef MBL_BILINEAR
z_values[j][i] = (x < x1) ?
((z_values[j][idx0] * (x - x0) + z_values[j][idx1] * (x1 - x)) / (x1 - x0)) :
((z_values[j][idx1] * (x - x1) + z_values[j][idx2] * (x2 - x)) / (x2 - x1));
#else
z_values[j][i] =
z_values[j][idx0] * (x - x1) * (x - x2) / ((x0 - x1) * (x0 - x2)) +
z_values[j][idx1] * (x - x0) * (x - x2) / ((x1 - x0) * (x1 - x2)) +
z_values[j][idx2] * (x - x0) * (x - x1) / ((x2 - x0) * (x2 - x1));
#endif
}
}
}
{
// Second interpolate the points in Y axis.
static const float y0 = MESH_MIN_Y;
static const float y1 = 0.5f * float(MESH_MIN_Y + MESH_MAX_Y);
static const float y2 = MESH_MAX_Y;
for (int i = 0; i < MESH_NUM_X_POINTS; ++ i) {
// 1) Copy the intermediate points to their new destination.
z_values[idx2][i] = z_values[2][i];
z_values[idx1][i] = z_values[1][i];
// 2) Interpolate the remaining values by Largrangian polynomials.
for (int j = 1; j + 1 < MESH_NUM_Y_POINTS; ++ j) {
if (j == idx1)
continue;
float y = get_y(j);
#ifdef MBL_BILINEAR
z_values[j][i] = (y < y1) ?
((z_values[idx0][i] * (y - y0) + z_values[idx1][i] * (y1 - y)) / (y1 - y0)) :
((z_values[idx1][i] * (y - y1) + z_values[idx2][i] * (y2 - y)) / (y2 - y1));
#else
z_values[j][i] =
z_values[idx0][i] * (y - y1) * (y - y2) / ((y0 - y1) * (y0 - y2)) +
z_values[idx1][i] * (y - y0) * (y - y2) / ((y1 - y0) * (y1 - y2)) +
z_values[idx2][i] * (y - y0) * (y - y1) / ((y2 - y0) * (y2 - y1));
#endif
}
}
}
/*
// Relax the non-measured points.
const float weight = 0.2f;
for (uint8_t iter = 0; iter < 20; ++ iter) {
for (int8_t j = 1; j < 6; ++ j) {
for (int8_t i = 1; i < 6; ++ i) {
if (i == 3 || j == 3)
continue;
if ((i % 3) == 0 && (j % 3) == 0)
continue;
float avg = 0.25f * (z_values[j][i-1]+z_values[j][i+1]+z_values[j-1][i]+z_values[j+1][i]);
z_values[j][i] = (1.f-weight)*z_values[j][i] + weight*avg;
}
}
}
*/
}
#endif
#endif // MESH_BED_LEVELING