forked from adafruit/ArduinoISP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathArduinoISP.ino
678 lines (620 loc) · 16.5 KB
/
ArduinoISP.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
// this sketch turns the Arduino into a AVRISP
// using the following pins:
// 10: slave reset
// 11: MOSI
// 12: MISO
// 13: SCK
// Put an LED (with resistor) on the following pins:
// 8: Error - Lights up if something goes wrong (use red if that makes sense)
// A0: Programming - In communication with the slave
// 6: Heartbeat - shows the programmer is running (removed, see notes below)
// Optional - Piezo speaker on pin A3
//
// October 2009 by David A. Mellis
// - Added support for the read signature command
//
// February 2009 by Randall Bohn
// - Added support for writing to EEPROM (what took so long?)
// Windows users should consider WinAVR's avrdude instead of the
// avrdude included with Arduino software.
//
// January 2008 by Randall Bohn
// - Thanks to Amplificar for helping me with the STK500 protocol
// - The AVRISP/STK500 (mk I) protocol is used in the arduino bootloader
// - The SPI functions herein were developed for the AVR910_ARD programmer
// - More information at http://code.google.com/p/mega-isp
//
// March 2012 - William Phelps
// modify to work with Arduino IDE 1.0 which has a shorter serial port receive buffer
// getEOP() now gets entire request before avrisp() is called to process it
// Serial.print((char) xxx) changed to Serial.write(xxx)
// uint8_t changed to byte
// added support for Piezo speaker
// moved Pmode LED to A0
// removed "heartbeat" on pin 6, added short blip of ERROR LED instead
// Why is it that PROG_FLASH and PROG_DATA don't actually do anything???
// Tested with Arduino IDE 22 and 1.0
// IDE 22 - 5148 bytes
// IDE 1.0 - 5524 bytes!
// SLOW SPEED CHIP ERASE AND FUSE BURNING
//
// Enable LOW_SPEED to allow you to erase chips that would fail otherwise,
// for being running with a clock too slow for the programmer.
//
// This allowed me to recover several ATMega328 that had no boot loader and the
// first instruction was to set the clock to the slowest speed. Usually this
// kind of recovery requires high voltage programming, but this trick will do
// just fine.
//
// How to proceed:
// 1. Enable LOW_SPEED, and load it to the programmer.
// 2. Erase and burn the fuses on the target uC. Example for ATMega328:
// arduino-1.0.1/hardware/tools/avrdude -Carduino-1.0.1/hardware/tools/avrdude.conf -patmega328p -cstk500v1 -P /dev/serial/by-id/usb-FTDI_FT232R_USB_UART_A900cf1Q-if00-port0 -b19200 -e -Ulock:w:0x3F:m -Uefuse:w:0x05:m -Uhfuse:w:0xDA:m -Ulfuse:w:0xF7:m
// 3. Comment LOW_SPEED and load it back to the programmer.
// 4. Program the target uC as usual. Example:
// arduino-1.0.1/hardware/tools/avrdude -Carduino-1.0.1/hardware/tools/avrdude.conf -patmega328p -cstk500v1 -P /dev/serial/by-id/usb-FTDI_FT232R_USB_UART_A900cf1Q-if00-port0 -b19200 -Uflash:w:firmware.hex:i
//
// Note 1: EXTRA_SPI_DELAY was added to let you slow down SPI even more. You can
// play with the value if it does not work with the default.
// Note 2: LOW_SPEED will alow you only to erase the chip and burn the fuses! It
// will fail if you try to program the target uC this way!
//#define LOW_SPEED
#ifdef LOW_SPEED
#define EXTRA_SPI_DELAY 125
#else
#define EXTRA_SPI_DELAY 0
#endif
#include "pins_arduino.h" // defines SS,MOSI,MISO,SCK
#define RESET SS
#define LED_ERR 8
#define LED_PMODE A0
//#define LED_HB 6
#define PIEZO A3
#define HWVER 2
#define SWMAJ 1
#define SWMIN 18
// STK Definitions
const byte STK_OK = 0x10;
const byte STK_FAILED = 0x11;
const byte STK_UNKNOWN = 0x12;
const byte STK_INSYNC = 0x14;
const byte STK_NOSYNC = 0x15;
const byte CRC_EOP = 0x20; //ok it is a space...
const byte STK_GET_SYNC = 0x30;
const byte STK_GET_SIGNON = 0x31;
const byte STK_GET_PARM = 0x41;
const byte STK_SET_PARM = 0x42;
const byte STK_SET_PARM_EXT = 0x45;
const byte STK_PMODE_START = 0x50;
const byte STK_PMODE_END = 0x51;
const byte STK_SET_ADDR = 0x55;
const byte STK_UNIVERSAL = 0x56;
const byte STK_PROG_FLASH = 0x60;
const byte STK_PROG_DATA = 0x61;
const byte STK_PROG_PAGE = 0x64;
const byte STK_READ_PAGE = 0x74;
const byte STK_READ_SIGN = 0x75;
//// TONES ==========================================
//// Start by defining the relationship between
//// note, period, & frequency.
//#define c 3830 // 261 Hz
//#define d 3400 // 294 Hz
//#define e 3038 // 329 Hz
//#define f 2864 // 349 Hz
//#define g 2550 // 392 Hz
//#define a 2272 // 440 Hz
//#define b 2028 // 493 Hz
//#define C 1912 // 523 Hz
//void pulse(int pin, int times);
int error=0;
int pmode=0;
// address for reading and writing, set by STK_SET_ADDR command
int _addr;
byte _buffer[256]; // serial port buffer
int pBuffer = 0; // buffer pointer
int iBuffer = 0; // buffer index
byte buff[256]; // temporary buffer
boolean EOP_SEEN = false;
void setup() {
Serial.begin(19200);
pinMode(PIEZO, OUTPUT);
beep(1700, 40);
EOP_SEEN = false;
iBuffer = pBuffer = 0;
pinMode(LED_PMODE, OUTPUT);
pulse(LED_PMODE, 2);
pinMode(LED_ERR, OUTPUT);
pulse(LED_ERR, 2);
// pinMode(LED_HB, OUTPUT);
// pulse(LED_HB, 2);
pinMode(9, OUTPUT);
// setup high freq PWM on pin 9 (timer 1)
// 50% duty cycle -> 8 MHz
OCR1A = 0;
ICR1 = 1;
// OC1A output, fast PWM
TCCR1A = _BV(WGM11) | _BV(COM1A1);
TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // no clock prescale
}
#define beget16(addr) (*addr * 256 + *(addr+1) )
typedef struct param {
byte devicecode;
byte revision;
byte progtype;
byte parmode;
byte polling;
byte selftimed;
byte lockbytes;
byte fusebytes;
int flashpoll;
int eeprompoll;
int pagesize;
int eepromsize;
int flashsize;
}
parameter;
parameter param;
// this provides a heartbeat on pin 6, so you can tell the software is running.
//byte hbval=128;
//int8_t hbdelta=4;
//void heartbeat() {
//// if (hbval > 192) hbdelta = -hbdelta;
//// if (hbval < 32) hbdelta = -hbdelta;
// if (hbval > 250) hbdelta = -hbdelta;
// if (hbval < 10) hbdelta = -hbdelta;
// hbval += hbdelta;
// analogWrite(LED_HB, hbval);
// delay(20);
//}
void getEOP() {
int minL = 0;
byte avrch = 0;
byte bl = 0;
while (!EOP_SEEN) {
while (Serial.available()>0) {
byte ch = Serial.read();
_buffer[iBuffer] = ch;
iBuffer = (++iBuffer)%256; // increment and wrap
if (iBuffer == 1) avrch = ch; // save command
if ((avrch == STK_PROG_PAGE) && (iBuffer==3)) {
minL = 256*_buffer[1] + _buffer[2] + 4;
}
if ((iBuffer>minL) && (ch == CRC_EOP)) {
EOP_SEEN = true;
}
}
if (!EOP_SEEN) {
// heartbeat(); // light the heartbeat LED
if (bl == 100) {
pulse(LED_ERR,1,10); // blink the red LED
bl = 0;
}
bl++;
delay(10);
}
}
}
// serialEvent not used so sketch would be compatible with older IDE versions
//void serialEvent() {
// int minL = 0;
// byte avrch = 0;
// while (Serial.available()>0)
// {
// byte ch = Serial.read();
// _buffer[iBuffer] = ch;
// iBuffer = (++iBuffer)%256; // increment and wrap
// if (iBuffer == 1) avrch = ch; // save command
// if ((avrch == STK_PROG_PAGE) && (iBuffer==3)) {
// minL = 256*_buffer[1] + _buffer[2] + 4;
// }
// if ((iBuffer>minL) && (ch == CRC_EOP)) {
// EOP_SEEN = true;
// }
// }
//}
void loop(void) {
// is pmode active?
// if (pmode) digitalWrite(LED_PMODE, HIGH);
// else digitalWrite(LED_PMODE, LOW);
digitalWrite(LED_PMODE, LOW);
// is there an error?
if (error) digitalWrite(LED_ERR, HIGH);
else digitalWrite(LED_ERR, LOW);
getEOP();
// have we received a complete request? (ends with CRC_EOP)
if (EOP_SEEN) {
digitalWrite(LED_PMODE, HIGH);
EOP_SEEN = false;
avrisp();
iBuffer = pBuffer = 0; // restart buffer
}
}
byte getch() {
if (pBuffer == iBuffer) { // spin until data available ???
pulse(LED_ERR, 1);
beep(1700, 20);
error++;
return -1;
}
byte ch = _buffer[pBuffer]; // get next char
pBuffer = (++pBuffer)%256; // increment and wrap
return ch;
}
void readbytes(int n) {
for (int x = 0; x < n; x++) {
buff[x] = getch();
}
}
//#define PTIME 20
void pulse(int pin, int times, int ptime) {
do {
digitalWrite(pin, HIGH);
delay(ptime);
digitalWrite(pin, LOW);
delay(ptime);
times--;
}
while (times > 0);
}
void pulse(int pin, int times) {
pulse(pin, times, 50);
}
void spi_init() {
byte x;
SPCR = 0x53;
#ifdef LOW_SPEED
SPCR=SPCR|B00000011;
#endif
x=SPSR;
x=SPDR;
}
void spi_wait() {
do {
}
while (!(SPSR & (1 << SPIF)));
}
byte spi_send(byte b) {
byte reply;
#ifdef LOW_SPEED
cli();
CLKPR=B10000000;
CLKPR=B00000011;
sei();
#endif
SPDR=b;
spi_wait();
reply = SPDR;
#ifdef LOW_SPEED
cli();
CLKPR=B10000000;
CLKPR=B00000000;
sei();
#endif
return reply;
}
byte spi_transaction(byte a, byte b, byte c, byte d) {
byte n;
spi_send(a);
n=spi_send(b);
//if (n != a) error = -1;
n=spi_send(c);
return spi_send(d);
}
void replyOK() {
// if (EOP_SEEN == true) {
if (CRC_EOP == getch()) { // EOP should be next char
Serial.write(STK_INSYNC);
Serial.write(STK_OK);
}
else {
pulse(LED_ERR, 2);
Serial.write(STK_NOSYNC);
error++;
}
}
void breply(byte b) {
if (CRC_EOP == getch()) { // EOP should be next char
Serial.write(STK_INSYNC);
Serial.write(b);
Serial.write(STK_OK);
}
else {
Serial.write(STK_NOSYNC);
error++;
}
}
void get_parameter(byte c) {
switch(c) {
case 0x80:
breply(HWVER);
break;
case 0x81:
breply(SWMAJ);
break;
case 0x82:
breply(SWMIN);
break;
case 0x93:
breply('S'); // serial programmer
break;
default:
breply(0);
}
}
void set_parameters() {
// call this after reading paramter packet into buff[]
param.devicecode = buff[0];
param.revision = buff[1];
param.progtype = buff[2];
param.parmode = buff[3];
param.polling = buff[4];
param.selftimed = buff[5];
param.lockbytes = buff[6];
param.fusebytes = buff[7];
param.flashpoll = buff[8];
// ignore buff[9] (= buff[8])
//getch(); // discard second value
// WARNING: not sure about the byte order of the following
// following are 16 bits (big endian)
param.eeprompoll = beget16(&buff[10]);
param.pagesize = beget16(&buff[12]);
param.eepromsize = beget16(&buff[14]);
// 32 bits flashsize (big endian)
param.flashsize = buff[16] * 0x01000000
+ buff[17] * 0x00010000
+ buff[18] * 0x00000100
+ buff[19];
}
void start_pmode() {
spi_init();
// following delays may not work on all targets...
pinMode(RESET, OUTPUT);
digitalWrite(RESET, HIGH);
pinMode(SCK, OUTPUT);
digitalWrite(SCK, LOW);
delay(50+EXTRA_SPI_DELAY);
digitalWrite(RESET, LOW);
delay(50+EXTRA_SPI_DELAY);
pinMode(MISO, INPUT);
pinMode(MOSI, OUTPUT);
spi_transaction(0xAC, 0x53, 0x00, 0x00);
pmode = 1;
}
void end_pmode() {
pinMode(MISO, INPUT);
pinMode(MOSI, INPUT);
pinMode(SCK, INPUT);
pinMode(RESET, INPUT);
pmode = 0;
}
void universal() {
// int w;
byte ch;
// for (w = 0; w < 4; w++) {
// buff[w] = getch();
// }
readbytes(4);
ch = spi_transaction(buff[0], buff[1], buff[2], buff[3]);
breply(ch);
}
void flash(byte hilo, int addr, byte data) {
spi_transaction(0x40+8*hilo, addr>>8 & 0xFF, addr & 0xFF, data);
}
void commit(int addr) {
spi_transaction(0x4C, (addr >> 8) & 0xFF, addr & 0xFF, 0);
}
//#define _current_page(x) (here & 0xFFFFE0)
int current_page(int addr) {
if (param.pagesize == 32) return addr & 0xFFFFFFF0;
if (param.pagesize == 64) return addr & 0xFFFFFFE0;
if (param.pagesize == 128) return addr & 0xFFFFFFC0;
if (param.pagesize == 256) return addr & 0xFFFFFF80;
return addr;
}
byte write_flash(int length) {
if (param.pagesize < 1) {
return STK_FAILED;
}
//if (param.pagesize != 64) return STK_FAILED;
int page = current_page(_addr);
int x = 0;
while (x < length) {
if (page != current_page(_addr)) {
commit(page);
page = current_page(_addr);
}
flash(LOW, _addr, buff[x++]);
flash(HIGH, _addr, buff[x++]);
_addr++;
}
commit(page);
return STK_OK;
}
byte write_eeprom(int length) {
// here is a word address, so we use here*2
// this writes byte-by-byte,
// page writing may be faster (4 bytes at a time)
for (int x = 0; x < length; x++) {
spi_transaction(0xC0, 0x00, _addr*2+x, buff[x]);
delay(45);
}
return STK_OK;
}
void program_page() {
byte result = STK_FAILED;
int length = 256 * getch() + getch();
if (length > 256) {
Serial.write(STK_FAILED);
error++;
return;
}
char memtype = (char)getch();
// for (int x = 0; x < length; x++) {
// buff[x] = getch();
// }
readbytes(length);
if (CRC_EOP == getch()) {
Serial.write(STK_INSYNC);
switch (memtype) {
case 'E':
result = (byte)write_eeprom(length);
break;
case 'F':
result = (byte)write_flash(length);
break;
}
Serial.write(result);
if (result != STK_OK) {
error++;
}
}
else {
Serial.write(STK_NOSYNC);
error++;
}
}
byte flash_read(byte hilo, int addr) {
return spi_transaction(0x20 + hilo * 8,
(addr >> 8) & 0xFF,
addr & 0xFF,
0);
}
char flash_read_page(int length) {
for (int x = 0; x < length; x+=2) {
byte low = flash_read(LOW, _addr);
Serial.write( low);
byte high = flash_read(HIGH, _addr);
Serial.write( high);
_addr++;
}
return STK_OK;
}
char eeprom_read_page(int length) {
// here again we have a word address
for (int x = 0; x < length; x++) {
byte ee = spi_transaction(0xA0, 0x00, _addr*2+x, 0xFF);
Serial.write( ee);
}
return STK_OK;
}
void read_page() {
byte result = (byte)STK_FAILED;
int length = 256 * getch() + getch();
char memtype = getch();
if (CRC_EOP != getch()) {
Serial.write(STK_NOSYNC);
return;
}
Serial.write(STK_INSYNC);
if (memtype == 'F') result = flash_read_page(length);
if (memtype == 'E') result = eeprom_read_page(length);
Serial.write(result);
return;
}
void read_signature() {
if (CRC_EOP != getch()) {
Serial.write(STK_NOSYNC);
error++;
return;
}
Serial.write(STK_INSYNC);
byte high = spi_transaction(0x30, 0x00, 0x00, 0x00);
Serial.write(high);
byte middle = spi_transaction(0x30, 0x00, 0x01, 0x00);
Serial.write(middle);
byte low = spi_transaction(0x30, 0x00, 0x02, 0x00);
Serial.write(low);
Serial.write(STK_OK);
}
//////////////////////////////////////////
//////////////////////////////////////////
////////////////////////////////////
////////////////////////////////////
int avrisp() {
byte data, low, high;
byte avrch = getch();
switch (avrch) {
case STK_GET_SYNC: // get in sync
replyOK();
break;
case STK_GET_SIGNON: // get sign on
if (getch() == CRC_EOP) {
Serial.write(STK_INSYNC);
Serial.write("AVR ISP");
Serial.write(STK_OK);
}
break;
case STK_GET_PARM: // 0x41
get_parameter(getch());
break;
case STK_SET_PARM: // 0x42
readbytes(20);
set_parameters();
replyOK();
break;
case STK_SET_PARM_EXT: // extended parameters - ignore for now
readbytes(5);
replyOK();
break;
case STK_PMODE_START: // 0x50
beep(2272, 20);
start_pmode();
replyOK();
break;
case STK_PMODE_END: //0x51
beep(1912, 50);
error=0;
end_pmode();
replyOK();
break;
case STK_SET_ADDR: // 0x55
_addr = getch() + 256 * getch();
replyOK();
break;
case STK_UNIVERSAL: //UNIVERSAL 0x56
universal();
break;
case STK_PROG_FLASH: //STK_PROG_FLASH ???
low = getch();
high = getch();
replyOK();
break;
case STK_PROG_DATA: //STK_PROG_DATA ???
data = getch();
replyOK();
break;
case STK_PROG_PAGE: //STK_PROG_PAGE
// beep(1912, 20);
program_page();
break;
case STK_READ_PAGE: //STK_READ_PAGE
read_page();
break;
case STK_READ_SIGN: //STK_READ_SIGN
read_signature();
break;
// expecting a command, not CRC_EOP
// this is how we can get back in sync
case CRC_EOP:
Serial.write(STK_NOSYNC);
break;
// anything else we will return STK_UNKNOWN
default:
if (CRC_EOP == getch())
Serial.write(STK_UNKNOWN);
else
Serial.write(STK_NOSYNC);
}
}
// beep without using PWM
void beep(int tone, long duration){
long elapsed = 0;
while (elapsed < (duration * 10000)) {
digitalWrite(PIEZO, HIGH);
delayMicroseconds(tone / 2);
digitalWrite(PIEZO, LOW);
delayMicroseconds(tone / 2);
// Keep track of how long we pulsed
elapsed += tone;
}
}