-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.Rmd
146 lines (122 loc) · 3.88 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```
# R Interface for Interior Point OPTimizer (IPOPT)
[![Travis-CI Build Status](https://travis-ci.org/Non-Contradiction/ipoptjlr.svg?branch=master)](https://travis-ci.org/Non-Contradiction/ipoptjlr)
[![AppVeyor Build Status](https://ci.appveyor.com/api/projects/status/github/Non-Contradiction/ipoptjlr?branch=master&svg=true)](https://ci.appveyor.com/project/Non-Contradiction/ipoptjlr)
Package `ipoptjlr` is an R interface to the Ipopt nonlinear solver.
It provides a simple high-level wrapper for
'Julia' package 'Ipopt.jl' (see <https://github.com/JuliaOpt/Ipopt.jl>
for more information).
## Installation
`ipoptjlr` can be installed from `Github` by using `devtools`:
```{r, eval=FALSE}
devtools::install_github("Non-Contradiction/ipoptjlr")
```
## Usage
Here is one small example in using `ipoptjlr`:
```{r}
x <- c(1.0, 5.0, 5.0, 1.0)
x_L <- c(1.0, 1.0, 1.0, 1.0)
x_U = c(5.0, 5.0, 5.0, 5.0)
g_L <- c(25.0, 40.0)
g_U <- c(2.0e19, 40.0)
eval_f <- function(x){
x[1] * x[4] * (x[1] + x[2] + x[3]) + x[3]
}
eval_g <- function(x){
g = rep(0, 2)
g[1] = x[1] * x[2] * x[3] * x[4]
g[2] = x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2
g
}
eval_grad_f <- function(x){
grad_f = rep(0, 4)
grad_f[1] = x[1] * x[4] + x[4] * (x[1] + x[2] + x[3])
grad_f[2] = x[1] * x[4]
grad_f[3] = x[1] * x[4] + 1
grad_f[4] = x[1] * (x[1] + x[2] + x[3])
grad_f
}
jac_g1 <- function(x){
rows = rep(0, 8)
cols = rep(0, 8)
rows[1] = 1; cols[1] = 1
rows[2] = 1; cols[2] = 2
rows[3] = 1; cols[3] = 3
rows[4] = 1; cols[4] = 4
# Constraint (row) 2
rows[5] = 2; cols[5] = 1
rows[6] = 2; cols[6] = 2
rows[7] = 2; cols[7] = 3
rows[8] = 2; cols[8] = 4
list(rows, cols)
}
jac_g2 <- function(x){
values = rep(0, 8)
# Constraint (row) 1
values[1] = x[2]*x[3]*x[4] # 1,1
values[2] = x[1]*x[3]*x[4] # 1,2
values[3] = x[1]*x[2]*x[4] # 1,3
values[4] = x[1]*x[2]*x[3] # 1,4
# Constraint (row) 2
values[5] = 2*x[1] # 2,1
values[6] = 2*x[2] # 2,2
values[7] = 2*x[3] # 2,3
values[8] = 2*x[4] # 2,4
values
}
h1 <- function(x){
# Symmetric matrix, fill the lower left triangle only
rows = rep(0, 10)
cols = rep(0, 10)
idx = 1
for (row in 1:4) {
for (col in 1:row) {
rows[idx] = row
cols[idx] = col
idx = idx + 1
}
}
list(rows, cols)
}
h2 <- function(x, obj_factor, lambda){
values = rep(0, 10)
# Again, only lower left triangle
# Objective
values[1] = obj_factor * (2*x[4]) # 1,1
values[2] = obj_factor * ( x[4]) # 2,1
values[3] = 0 # 2,2
values[4] = obj_factor * ( x[4]) # 3,1
values[5] = 0 # 3,2
values[6] = 0 # 3,3
values[7] = obj_factor * (2*x[1] + x[2] + x[3]) # 4,1
values[8] = obj_factor * ( x[1]) # 4,2
values[9] = obj_factor * ( x[1]) # 4,3
values[10] = 0 # 4,4
# First constraint
values[2] = values[2] + lambda[1] * (x[3] * x[4]) # 2,1
values[4] = values[4] + lambda[1] * (x[2] * x[4]) # 3,1
values[5] = values[5] + lambda[1] * (x[1] * x[4]) # 3,2
values[7] = values[7] + lambda[1] * (x[2] * x[3]) # 4,1
values[8] = values[8] + lambda[1] * (x[1] * x[3]) # 4,2
values[9] = values[9] + lambda[1] * (x[1] * x[2]) # 4,3
# Second constraint
values[1] = values[1] + lambda[2] * 2 # 1,1
values[3] = values[3] + lambda[2] * 2 # 2,2
values[6] = values[6] + lambda[2] * 2 # 3,3
values[10] = values[10] + lambda[2] * 2 # 4,4
values
}
library(ipoptjlr)
ipopt_setup()
IPOPT(x, x_L, x_U, g_L, g_U, eval_f, eval_g, eval_grad_f, jac_g1, jac_g2, h1, h2)
```