Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DOCS: Add finetune_depth to tutorial on improving accuracy #497

Merged
merged 1 commit into from
Oct 18, 2024

Conversation

marcopeix
Copy link
Contributor

Showcase the finetune_depth parameter which controls how many parameters in the model get fine-tuned in the tutorial on improving forecast accuracy with TimeGPT.

Copy link

Check out this pull request on  ReviewNB

See visual diffs & provide feedback on Jupyter Notebooks.


Powered by ReviewNB

Copy link
Contributor

Experiment Results

Experiment 1: air-passengers

Description:

variable experiment
h 12
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 12.6793 11.0623 47.8333 76
mape 0.027 0.0232 0.0999 0.1425
mse 213.936 199.132 2571.33 10604.2
total_time 2.8765 4.8933 0.0059 0.0043

Plot:

Experiment 2: air-passengers

Description:

variable experiment
h 24
season_length 12
freq MS
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 58.1031 58.4587 71.25 115.25
mape 0.1257 0.1267 0.1552 0.2358
mse 4040.22 4110.79 5928.17 18859.2
total_time 0.7547 0.7257 0.0046 0.0044

Plot:

Experiment 3: electricity-multiple-series

Description:

variable experiment
h 24
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 178.293 268.121 269.23 1331.02
mape 0.0234 0.0311 0.0304 0.1692
mse 121588 219457 213677 4.68961e+06
total_time 1.1434 5.0147 0.0055 0.0051

Plot:

Experiment 4: electricity-multiple-series

Description:

variable experiment
h 168
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 465.532 346.984 398.956 1119.26
mape 0.062 0.0437 0.0512 0.1583
mse 835120 403787 656723 3.17316e+06
total_time 0.7777 3.0577 0.0056 0.0051

Plot:

Experiment 5: electricity-multiple-series

Description:

variable experiment
h 336
season_length 24
freq H
level None
n_windows 1

Results:

metric timegpt-1 timegpt-1-long-horizon SeasonalNaive Naive
mae 558.649 459.769 602.926 1340.95
mape 0.0697 0.0566 0.0787 0.17
mse 1.22721e+06 739135 1.61572e+06 6.04619e+06
total_time 0.9661 0.7466 0.006 0.0055

Plot:

@marcopeix marcopeix marked this pull request as ready for review October 17, 2024 15:20
Copy link
Member

@AzulGarza AzulGarza left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

thank you, @marcopeix! lgtm:)

it's interesting that in this case fine-tuning more parameters leads to similar performance than adding exogenous variables.

@AzulGarza AzulGarza merged commit dcc7c53 into main Oct 18, 2024
12 checks passed
@AzulGarza AzulGarza deleted the feature/improve_accuracy_tutorial_finetunedepth branch October 18, 2024 01:20
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants