forked from iovisor/bcc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
runqslower.py
executable file
·289 lines (247 loc) · 8.71 KB
/
runqslower.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#!/usr/bin/env python
# @lint-avoid-python-3-compatibility-imports
#
# runqslower Trace long process scheduling delays.
# For Linux, uses BCC, eBPF.
#
# This script traces high scheduling delays between tasks being
# ready to run and them running on CPU after that.
#
# USAGE: runqslower [-p PID] [-t TID] [-P] [min_us]
#
# REQUIRES: Linux 4.9+ (BPF_PROG_TYPE_PERF_EVENT support).
#
# This measures the time a task spends waiting on a run queue for a turn
# on-CPU, and shows this time as a individual events. This time should be small,
# but a task may need to wait its turn due to CPU load.
#
# This measures two types of run queue latency:
# 1. The time from a task being enqueued on a run queue to its context switch
# and execution. This traces ttwu_do_wakeup(), wake_up_new_task() ->
# finish_task_switch() with either raw tracepoints (if supported) or kprobes
# and instruments the run queue latency after a voluntary context switch.
# 2. The time from when a task was involuntary context switched and still
# in the runnable state, to when it next executed. This is instrumented
# from finish_task_switch() alone.
#
# Copyright 2016 Cloudflare, Inc.
# Licensed under the Apache License, Version 2.0 (the "License")
#
# 02-May-2018 Ivan Babrou Created this.
# 18-Nov-2019 Gergely Bod BUG fix: Use bpf_probe_read_kernel_str() to extract the
# process name from 'task_struct* next' in raw tp code.
# bpf_get_current_comm() operates on the current task
# which might already be different than 'next'.
from __future__ import print_function
from bcc import BPF
import argparse
from time import strftime
# arguments
examples = """examples:
./runqslower # trace run queue latency higher than 10000 us (default)
./runqslower 1000 # trace run queue latency higher than 1000 us
./runqslower -p 123 # trace pid 123
./runqslower -t 123 # trace tid 123 (use for threads only)
./runqslower -P # also show previous task comm and TID
"""
parser = argparse.ArgumentParser(
description="Trace high run queue latency",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=examples)
parser.add_argument("min_us", nargs="?", default='10000',
help="minimum run queue latency to trace, in us (default 10000)")
parser.add_argument("--ebpf", action="store_true",
help=argparse.SUPPRESS)
thread_group = parser.add_mutually_exclusive_group()
thread_group.add_argument("-p", "--pid", metavar="PID", dest="pid",
help="trace this PID only", type=int)
thread_group.add_argument("-t", "--tid", metavar="TID", dest="tid",
help="trace this TID only", type=int)
thread_group.add_argument("-P", "--previous", action="store_true",
help="also show previous task name and TID")
args = parser.parse_args()
min_us = int(args.min_us)
debug = 0
# define BPF program
bpf_text = """
#include <uapi/linux/ptrace.h>
#include <linux/sched.h>
#include <linux/nsproxy.h>
#include <linux/pid_namespace.h>
BPF_HASH(start, u32);
struct data_t {
u32 pid;
u32 prev_pid;
char task[TASK_COMM_LEN];
char prev_task[TASK_COMM_LEN];
u64 delta_us;
};
BPF_PERF_OUTPUT(events);
// record enqueue timestamp
static int trace_enqueue(u32 tgid, u32 pid)
{
if (FILTER_PID || FILTER_TGID || pid == 0)
return 0;
u64 ts = bpf_ktime_get_ns();
start.update(&pid, &ts);
return 0;
}
"""
bpf_text_kprobe = """
int trace_wake_up_new_task(struct pt_regs *ctx, struct task_struct *p)
{
return trace_enqueue(p->tgid, p->pid);
}
int trace_ttwu_do_wakeup(struct pt_regs *ctx, struct rq *rq, struct task_struct *p,
int wake_flags)
{
return trace_enqueue(p->tgid, p->pid);
}
// calculate latency
int trace_run(struct pt_regs *ctx, struct task_struct *prev)
{
u32 pid, tgid;
// ivcsw: treat like an enqueue event and store timestamp
if (prev->STATE_FIELD == TASK_RUNNING) {
tgid = prev->tgid;
pid = prev->pid;
u64 ts = bpf_ktime_get_ns();
if (pid != 0) {
if (!(FILTER_PID) && !(FILTER_TGID)) {
start.update(&pid, &ts);
}
}
}
pid = bpf_get_current_pid_tgid();
u64 *tsp, delta_us;
// fetch timestamp and calculate delta
tsp = start.lookup(&pid);
if (tsp == 0) {
return 0; // missed enqueue
}
delta_us = (bpf_ktime_get_ns() - *tsp) / 1000;
if (FILTER_US)
return 0;
struct data_t data = {};
data.pid = pid;
data.prev_pid = prev->pid;
data.delta_us = delta_us;
bpf_get_current_comm(&data.task, sizeof(data.task));
bpf_probe_read_kernel_str(&data.prev_task, sizeof(data.prev_task), prev->comm);
// output
events.perf_submit(ctx, &data, sizeof(data));
start.delete(&pid);
return 0;
}
"""
bpf_text_raw_tp = """
RAW_TRACEPOINT_PROBE(sched_wakeup)
{
// TP_PROTO(struct task_struct *p)
struct task_struct *p = (struct task_struct *)ctx->args[0];
return trace_enqueue(p->tgid, p->pid);
}
RAW_TRACEPOINT_PROBE(sched_wakeup_new)
{
// TP_PROTO(struct task_struct *p)
struct task_struct *p = (struct task_struct *)ctx->args[0];
u32 tgid, pid;
bpf_probe_read_kernel(&tgid, sizeof(tgid), &p->tgid);
bpf_probe_read_kernel(&pid, sizeof(pid), &p->pid);
return trace_enqueue(tgid, pid);
}
RAW_TRACEPOINT_PROBE(sched_switch)
{
// TP_PROTO(bool preempt, struct task_struct *prev, struct task_struct *next)
struct task_struct *prev = (struct task_struct *)ctx->args[1];
struct task_struct *next= (struct task_struct *)ctx->args[2];
u32 tgid, pid;
long state;
// ivcsw: treat like an enqueue event and store timestamp
bpf_probe_read_kernel(&state, sizeof(long), (const void *)&prev->STATE_FIELD);
bpf_probe_read_kernel(&pid, sizeof(prev->pid), &prev->pid);
if (state == TASK_RUNNING) {
bpf_probe_read_kernel(&tgid, sizeof(prev->tgid), &prev->tgid);
u64 ts = bpf_ktime_get_ns();
if (pid != 0) {
if (!(FILTER_PID) && !(FILTER_TGID)) {
start.update(&pid, &ts);
}
}
}
u32 prev_pid;
u64 *tsp, delta_us;
prev_pid = pid;
bpf_probe_read_kernel(&pid, sizeof(next->pid), &next->pid);
// fetch timestamp and calculate delta
tsp = start.lookup(&pid);
if (tsp == 0) {
return 0; // missed enqueue
}
delta_us = (bpf_ktime_get_ns() - *tsp) / 1000;
if (FILTER_US)
return 0;
struct data_t data = {};
data.pid = pid;
data.prev_pid = prev_pid;
data.delta_us = delta_us;
bpf_probe_read_kernel_str(&data.task, sizeof(data.task), next->comm);
bpf_probe_read_kernel_str(&data.prev_task, sizeof(data.prev_task), prev->comm);
// output
events.perf_submit(ctx, &data, sizeof(data));
start.delete(&pid);
return 0;
}
"""
is_support_raw_tp = BPF.support_raw_tracepoint()
if is_support_raw_tp:
bpf_text += bpf_text_raw_tp
else:
bpf_text += bpf_text_kprobe
# code substitutions
if BPF.kernel_struct_has_field(b'task_struct', b'__state') == 1:
bpf_text = bpf_text.replace('STATE_FIELD', '__state')
else:
bpf_text = bpf_text.replace('STATE_FIELD', 'state')
if min_us == 0:
bpf_text = bpf_text.replace('FILTER_US', '0')
else:
bpf_text = bpf_text.replace('FILTER_US', 'delta_us <= %s' % str(min_us))
if args.tid:
bpf_text = bpf_text.replace('FILTER_PID', 'pid != %s' % args.tid)
else:
bpf_text = bpf_text.replace('FILTER_PID', '0')
if args.pid:
bpf_text = bpf_text.replace('FILTER_TGID', 'tgid != %s' % args.pid)
else:
bpf_text = bpf_text.replace('FILTER_TGID', '0')
if debug or args.ebpf:
print(bpf_text)
if args.ebpf:
exit()
# process event
def print_event(cpu, data, size):
event = b["events"].event(data)
if args.previous:
print("%-8s %-16s %-6s %14s %-16s %-6s" % (strftime("%H:%M:%S"), event.task, event.pid, event.delta_us, event.prev_task, event.prev_pid))
else:
print("%-8s %-16s %-6s %14s" % (strftime("%H:%M:%S"), event.task, event.pid, event.delta_us))
# load BPF program
b = BPF(text=bpf_text)
if not is_support_raw_tp:
b.attach_kprobe(event="ttwu_do_wakeup", fn_name="trace_ttwu_do_wakeup")
b.attach_kprobe(event="wake_up_new_task", fn_name="trace_wake_up_new_task")
b.attach_kprobe(event_re="^finish_task_switch$|^finish_task_switch\.isra\.\d$",
fn_name="trace_run")
print("Tracing run queue latency higher than %d us" % min_us)
if args.previous:
print("%-8s %-16s %-6s %14s %-16s %-6s" % ("TIME", "COMM", "TID", "LAT(us)", "PREV COMM", "PREV TID"))
else:
print("%-8s %-16s %-6s %14s" % ("TIME", "COMM", "TID", "LAT(us)"))
# read events
b["events"].open_perf_buffer(print_event, page_cnt=64)
while 1:
try:
b.perf_buffer_poll()
except KeyboardInterrupt:
exit()