-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRiverNetwork.cpp
1161 lines (964 loc) · 32.6 KB
/
RiverNetwork.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//#include "stdafx.h"
#include "RiverNetwork.h"
#include <random>
#include <algorithm>
#include <cmath>
#include <utility>
#include <fstream>
#include <math.h>
#include <set>
#include <maya/MImage.h>
#include <maya/MString.h>
#include "bitmap_image.hpp"
#define EPSILON 0.0001
#define PIXELX 1024
#define SmoothRadius 9
pair<int, int> mapGrid(vec3 pos, double step) {
int i = std::floor(pos[0] / step);
int j = std::floor(pos[1] / step);
return pair<int, int>(i, j);
}
vector<pair<int, int>> branchIndices(vec3 startP, vec3 endP, int NEEDW, double BranchLength, double BranchWidth, double DisRatio, double step, bool pixelwise, int type) {
//vec3 startP = branch->start->position;
//vec3 endP = branch->end->position;
vector<pair<int, int>> res;
double deltax = endP[0] - startP[0];
double deltay = endP[1] - startP[1];
//if the line segment is near perpendicular
if (abs(deltax) < EPSILON) {
//swap(start, end);
swap(deltax, deltay);
swap(startP[0], startP[1]);
swap(endP[0], endP[1]);
pair<int, int> start = mapGrid(startP, step);
pair<int, int> end = mapGrid(endP, step);
if (start.first > end.first) {
std::swap(startP, endP);
std::swap(start, end);
}
int maxX = NEEDW;
double singleStep = BranchLength * DisRatio;
if (pixelwise)
{
maxX = PIXELX;
singleStep = 1.0;
}
if (type == 0 || !pixelwise) {
for (int x = start.first; x <= end.first && x < maxX; ++x) {
double s0 = max(startP[0], x * singleStep);
double s1 = min(endP[0], (x + 1) * singleStep);
double y1 = (s0 - startP[0]) * deltay / deltax + startP[1];
double y2 = (s1 - startP[0]) * deltay / deltax + startP[1];
int ys = std::floor(y1 / step);
int ye = std::floor(y2 / step);
if (ys > ye) {
swap(ys, ye);
}
for (int y = ys; y <= ye && y < maxX; ++y) {
res.push_back(pair<int, int>(y, x));
}
}
}
else if (type == 1) {
swap(start.first, start.second);
swap(end.first, end.second);
vec2 half((start.first + end.first) / 2.0, (start.second + end.second) / 2.0);
vec2 dir(1.0, 0.0);
vec2 m1 = (vec2(start.first, start.second) + half) / 2.0;
vec2 m2 = (vec2(end.first, end.second) + half) / 2.0;
vec2 l = m1 - dir * BranchWidth;
vec2 r = m2 + dir * BranchWidth;
// De Casteljau's algorithm
set<pair<int, int>> points;
int dx = floor(sqrt(deltax * deltax + deltay * deltay) / 2.0);
int num = dx * 20.0;
double dt = 1.0 / (double)num;
double t = 0;
for (int i = 0; i < num; ++i) {
double x = pow(1 - t, 2.0) * start.first + 2.0 * (1 - t) * t * l[0] + pow(t, 2.0) * half[0];
double y = pow(1 - t, 2.0) * start.second + 2.0 * (1 - t) * t * l[1] + pow(t, 2.0) * half[1];
points.insert(pair<int, int>(x, y));
t += dt;
}
t = 0;
for (int i = 0; i < num; ++i) {
double x = pow(1 - t, 2.0) * half[0] + 2.0 * (1 - t) * t * r[0] + pow(t, 2.0) * end.first;
double y = pow(1 - t, 2.0) * half[1] + 2.0 * (1 - t) * t * r[1] + pow(t, 2.0) * end.second;
points.insert(pair<int, int>(x, y));
t += dt;
}
for (auto s : points) {
res.push_back(s);
}
}
return res;
}
//else, as normal
pair<int, int> start = mapGrid(startP, step);
pair<int, int> end = mapGrid(endP, step);
if (start.first > end.first) {
std::swap(startP, endP);
std::swap(start, end);
}
int maxX = NEEDW;
double singleStep = BranchLength * DisRatio;
if (pixelwise)
{
maxX = PIXELX;
singleStep = 1.0;
}
if (type == 0 || !pixelwise) {
for (int x = start.first; x <= end.first && x < maxX; ++x) {
double s0 = max(startP[0], x * singleStep);
double s1 = min(endP[0], (x + 1) * singleStep);
double y1 = (s0 - startP[0]) * deltay / deltax + startP[1];
double y2 = (s1 - startP[0]) * deltay / deltax + startP[1];
int ys = std::floor(y1 / step);
int ye = std::floor(y2 / step);
if (ys > ye) {
swap(ys, ye);
}
for (int y = ys; y <= ye; ++y) {
res.push_back(pair<int, int>(x, y));
}
}
}
else if (type == 1) {
vec2 half((start.first + end.first) / 2.0, (start.second + end.second) / 2.0);
vec2 dir(deltay, -deltax);
dir.Normalize();
vec2 m1 = (vec2(start.first, start.second) + half) / 2.0;
vec2 m2 = (vec2(end.first, end.second) + half) / 2.0;
vec2 l = m1 - dir * BranchWidth;
vec2 r = m2 + dir * BranchWidth;
// De Casteljau's algorithm
set<pair<int, int>> points;
int dx = floor(sqrt(deltax * deltax + deltay * deltay) / 2.0);
int num = dx * 20.0;
double dt = 1.0 / (double)num;
double t = 0;
for (int i = 0; i < num; ++i) {
double x = pow(1 - t, 2.0) * start.first + 2.0 * (1 - t) * t * l[0] + pow(t, 2.0) * half[0];
double y = pow(1 - t, 2.0) * start.second + 2.0 * (1 - t) * t * l[1] + pow(t, 2.0) * half[1];
points.insert(pair<int, int>(x, y));
t += dt;
}
t = 0;
for (int i = 0; i < num; ++i) {
double x = pow(1 - t, 2.0) * half[0] + 2.0 * (1 - t) * t * r[0] + pow(t, 2.0) * end.first;
double y = pow(1 - t, 2.0) * half[1] + 2.0 * (1 - t) * t * r[1] + pow(t, 2.0) * end.second;
points.insert(pair<int, int>(x, y));
t += dt;
}
for (auto s : points) {
res.push_back(s);
}
}
return res;
}
vector<pair<int, int>> branchIndices(RiverBranch* branch, int NEEDW, double BranchLength, double BranchWidth, double DisRatio, double step, bool pixelwise) {
return branchIndices(branch->start->position, branch->end->position, NEEDW, BranchLength, BranchWidth, DisRatio, step, pixelwise, branch->branchType);
}
int clamp(int a, int l, int r) {
return (a > r ? r : (a < l ? l : a));
}
vector<vector<double>> getKernel(int radius) {
vector<vector<double>> kernel(radius * 2 + 1, vector<double>(radius * 2 + 1, 0.0));
double sigma = 1.0;
double s = 2.0 * sigma * sigma, r;
double sum = 0.0;
for (int x = -radius; x <= radius; ++x) {
for (int y = -radius; y <= radius; ++y) {
r = sqrt(x * x + y * y);
kernel[x + radius][y + radius] = (exp(-(r * r) / s)) / (M_PI * s);
sum += kernel[x + radius][y + radius];
}
}
for (int i = 0; i < radius * 2 + 1; ++i) {
for (int j = 0; j < radius * 2 + 1; ++j) {
kernel[i][j] /= sum;
}
}
return kernel;
}
RiverNetwork::RiverNetwork(int w, int h, double e, double eleC, double eleP,
double disR, double ps, double pa, double rWid, double rH, double bW)
:width(w), height(h), e(e), minElevation(0.0), ElevationConstraint(eleC),
ElevationPercentile(eleP), DisRatio(disR), ps(ps), pa(pa), RiverWidth(rWid),
RiverHeight(rH), BranchWidth(bW)
{
NEEDW = ceil(PIXELX / (e * DisRatio));
numW = std::ceil((double)width / (DisRatio * e));
numH = std::ceil((double)height / (DisRatio * e));
grids.resize(numH * numW, vector<RiverBranch*>());
elevationRange = 25.0;
}
RiverNetwork::~RiverNetwork()
{
//delete all the nodes
for (int i = 0; i < nodes.size(); i++)
{
delete nodes[i];
}
}
//after we import an image, we may need to resize the river map and therefore the underlying grids
void RiverNetwork::Resize(int newWidth, int newHeight)
{
this->width = newWidth;
this->height = newHeight;
numW = std::ceil((double)width / (DisRatio * e));
numH = std::ceil((double)height / (DisRatio * e));
grids.resize(numH * numW, vector<RiverBranch*>());
}
//select the nodes to start from
//here is the simplified version, where we choose a random position on each edge
//the initial nodes all have priority of 1, which is the lowest priority
void RiverNetwork::initialNode(bool firstmouth, double firstratio,
bool secondmouth, double secondratio,
bool thirdmouth, double thirdratio,
bool fourthmouth, double fourthratio)
{
//create random real numbers between [0,1]
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis(0.0, 1.0);
//multiply those random numbers by actual dimensions to get random positions on edges
double ratio1 = dis(gen);
double l1 = width * ratio1;
double ratio2 = dis(gen);
double l2 = height * ratio2;
double ratio3 = dis(gen);
double l3 = width * ratio3;
double ratio4 = dis(gen);
double l4 = height * ratio4;
//randomly determine the starting priorities
int p[4];
for (int i = 0; i < 4; i++)
{
double neta = dis(gen);
if (neta >= 0.7) {
p[i] = 10;
}
else {
p[i] = 11;
}
}
//declare the index
vector<pair<int, int>> idx;
//create 4 mouths around the boundary
if (firstmouth)
{
RiverNode* mouth1 = new RiverNode();
if (firstratio >= 0.0 && firstratio <= 1.0)
{
l1 = width * firstratio;
}
//RiverNode* mouth1 = new RiverNode(p[0], vec3(l1, 0, 0), nullptr);
mouth1->priority = p[0];
mouth1->position = vec3(l1, 0, 0);
mouth1->parent = nullptr;
nodes.push_back(mouth1);
RiverNode* mouth11 = new RiverNode(p[0], vec3(l1, e, 0), mouth1);
mouth11->id = mouth1->id;
//mouth11->setElevation(elevationMap[(int)(l1/ (DisRatio * e))][(int)(e/ (DisRatio * e))]);
mouth11->position[2] = mouth11->getElevation(height, width, this->elevationMap);
nodes.push_back(mouth11);
nonTerminalNodes.push_back(mouth11);
RiverBranch* branch1 = new RiverBranch(mouth1, mouth11);
branches.push_back(branch1);
idx = branchIndices(branch1, NEEDW, e, BranchWidth, DisRatio, e * DisRatio, false);
for (auto id : idx) {
grids[id.first * numW + id.second].push_back(branch1);
}
}
if (secondmouth)
{
RiverNode* mouth2 = new RiverNode();
if (secondratio >= 0.0 && secondratio <= 1.0)
{
l2 = height* secondratio;
}
//RiverNode* mouth1 = new RiverNode(p[0], vec3(l1, 0, 0), nullptr);
mouth2->priority = p[1];
mouth2->position = vec3((double)width, l2, 0);
mouth2->parent = nullptr;
nodes.push_back(mouth2);
RiverNode* mouth22 = new RiverNode(p[1], vec3((double)width - e, l2, 0), mouth2);
mouth22->id = mouth2->id;
//mouth22->setElevation(elevationMap[(int)(((double)width - e) / (DisRatio * e))][(int)(l2 / (DisRatio * e))]);
mouth22->position[2] = mouth22->getElevation(height, width, this->elevationMap);
nodes.push_back(mouth22);
nonTerminalNodes.push_back(mouth22);
RiverBranch* branch2 = new RiverBranch(mouth2, mouth22);
branches.push_back(branch2);
idx = branchIndices(branch2, NEEDW, e, BranchWidth, DisRatio, e * DisRatio, false);
for (auto id : idx) {
grids[id.first * numW + id.second].push_back(branch2);
}
}
if (thirdmouth)
{
RiverNode* mouth3 = new RiverNode();
if (thirdratio >= 0.0 && thirdratio <= 1.0)
{
l3 = width * thirdratio;
}
//RiverNode* mouth1 = new RiverNode(p[0], vec3(l1, 0, 0), nullptr);
mouth3->priority = p[2];
mouth3->position = vec3(l3, (double)height, 0);
mouth3->parent = nullptr;
nodes.push_back(mouth3);
RiverNode* mouth33 = new RiverNode(p[2], vec3(l3, (double)height - e, 0), mouth3);
mouth33->id = mouth3->id;
//mouth33->setElevation(elevationMap[(int)(l3 / (DisRatio * e))][(int)(((double)height - e) / (DisRatio * e))]);
mouth33->position[2] = mouth33->getElevation(height, width, this->elevationMap);
nodes.push_back(mouth33);
nonTerminalNodes.push_back(mouth33);
RiverBranch* branch3 = new RiverBranch(mouth3, mouth33);
branches.push_back(branch3);
idx = branchIndices(branch3, NEEDW, e, BranchWidth, DisRatio, e * DisRatio, false);
for (auto id : idx) {
grids[id.first * numW + id.second].push_back(branch3);
}
}
if (fourthmouth)
{
RiverNode* mouth4 = new RiverNode();
if (fourthratio >= 0.0 && fourthratio <= 1.0)
{
l4 = height * fourthratio;
}
//RiverNode* mouth1 = new RiverNode(p[0], vec3(l1, 0, 0), nullptr);
mouth4->priority = p[3];
mouth4->position = vec3(0, l4, 0);
mouth4->parent = nullptr;
nodes.push_back(mouth4);
RiverNode* mouth44 = new RiverNode(p[3], vec3(e, l4, 0), mouth4);
mouth44->id = mouth4->id;
//mouth44->setElevation(elevationMap[(int)(e / (DisRatio * e))][(int)(l4 / (DisRatio * e))]);
mouth44->position[2] = mouth44->getElevation(height, width, this->elevationMap);
nodes.push_back(mouth44);
nonTerminalNodes.push_back(mouth44);
RiverBranch* branch4 = new RiverBranch(mouth4, mouth44);
branches.push_back(branch4);
idx = branchIndices(branch4, NEEDW, e, BranchWidth, DisRatio, e * DisRatio, false);
for (auto id : idx) {
grids[id.first * numW + id.second].push_back(branch4);
}
}
//we first apply a continuation for the initial mouths
//initialize the minimum elevation
if (nonTerminalNodes.size() > 0)
{
minElevation = nonTerminalNodes[0]->position[2];
for (int i = 0; i < nonTerminalNodes.size(); i++)
{
if (nonTerminalNodes[i]->position[2] <= minElevation)
minElevation = nonTerminalNodes[i]->position[2];
}
}
else
{
minElevation = -1.0;
}
}
void RiverNetwork::refreshMinele()
{
double tempEle = 10000;
for (int i = 0; i < nonTerminalNodes.size(); ++i)
{
if (nonTerminalNodes[i]->position[2] < tempEle)
tempEle = nonTerminalNodes[i]->position[2];
}
minElevation = tempEle;
//std::cout << "minEle" << minElevation << std::endl;
}
//from all the non-terminal nodes, select exactly one node that is subject to expansion
//based on the elevationRange and priorities
RiverNode * RiverNetwork::selectNode()
{
//loop in all the non-terminal nodes, find the one that has the highest priority that lies within the
//elevation range of [z, z+elevationRange]
if (nonTerminalNodes.size() == 0)
{
return nullptr;
}
//first need to re-compute the min elevation of current non-terminal nodes
this->refreshMinele();
//cadidateNodes is the set of all nodes with z,z+eR
vector<RiverNode*> candidateNodes;
//find the nodes within [z, z+elevationRange]
for (int i = 0; i < nonTerminalNodes.size(); i++)
{
if (nonTerminalNodes[i]->position[2] <= minElevation + elevationRange)
candidateNodes.push_back(nonTerminalNodes[i]);
}
//find the highest priority value in candidateNodes
//if (candidateNodes.size() == 0) {
// elevationRange
//}
int maxP = candidateNodes[0]->priority;
for (int i = 0; i < candidateNodes.size(); i++)
{
if (candidateNodes[i]->priority >= maxP) maxP = candidateNodes[i]->priority;
}
vector<RiverNode*> finalcandidateNodes;
// if all the nonterminal is of priority 1, we increase all their priorities by 1
if (maxP == 1)
{
maxP = 2;
for (int i = 0; i < candidateNodes.size(); i++)
{
candidateNodes[i]->priority = maxP;
finalcandidateNodes.push_back(candidateNodes[i]);
}
}
else
{
//find the set of the nodes with the highest priority value
for (int i = 0; i < candidateNodes.size(); i++)
{
if (candidateNodes[i]->priority == maxP)
finalcandidateNodes.push_back(candidateNodes[i]);
}
}
//if this set has more than one element, select the one with lowest elevation
if (finalcandidateNodes.size() > 1)
{
int finalIndex = 0;
double minele = finalcandidateNodes[0]->position[2];
for (int i = 0; i < finalcandidateNodes.size(); i++)
{
if (finalcandidateNodes[i]->position[2] <= minele) {
finalIndex = i;
minele = finalcandidateNodes[i]->position[2];
}
}
return finalcandidateNodes[finalIndex];
}
else {
return finalcandidateNodes[0];
}
}
//given the selected candidate node, choose from three different situations
//(symmetric/asymmetric/continuation)
//and compute new branches from them
void RiverNetwork::expandNode(RiverNode * node)
{
//if priority >1 we have three different situations
if (node->priority > 1)
{
double prob = (double)std::rand() / (double)RAND_MAX;
// symmetric
if (prob >= 0.0 && prob < ps) {
this->SymmetricBranching(node);
}
// asymmetric
else if (prob > ps && prob <= (ps + pa)) {
this->AsymmetricBranching(node);
}
// continuation
else {
this->Continuation(node);
}
}
//else only continuation
else {
this->Continuation(node);
}
// After expansion part, we need to set this node to terminal(remove it from nonTerminals
int ind = 0;
for (int i = 0; i < nonTerminalNodes.size(); i++)
{
if (nonTerminalNodes[i] == node) {
ind = i;
break;
}
}
nonTerminalNodes.erase(nonTerminalNodes.begin() + ind);
//std::cout << nonTerminalNodes.size() << std::endl;
}
RiverNode* RiverNetwork::getCandidate(RiverNode* node, double angle, int p) {
vec2 ppos = vec2(node->parent->position[0], node->parent->position[1]);
vec2 pos = vec2(node->position[0], node->position[1]);
vec2 dir = pos - ppos;
dir = dir.Normalize();
vec2 perpen = vec2(dir[1], -dir[0]);
vec2 FinalDir = dir * std::sin(Deg2Rad * angle) + perpen * std::cos(Deg2Rad * angle);
//double dx = e * std::cos(Deg2Rad * angle), dy = e * std::sin(Deg2Rad * angle);
RiverNode* resultNode = new RiverNode(p, vec3(pos[0] + e * FinalDir[0], pos[1] + e * FinalDir[1], node->position[2] /*+ elevation*/), node);
resultNode->setElevation(resultNode->getElevation(height, width, this->elevationMap));
return resultNode;
}
//In this function, the input is a possible new node to be added to the network
//this function check if this node is far enough from:
//1.the boundary of terrain and
//2.all other branches
bool RiverNetwork::validateNode(RiverNode * node, double boundary, RiverBranch* branch)
{
// check elevation correctness
if (node->position[2] < node->parent->position[2] * (1.0 - ElevationPercentile)) {
return false;
}
// check if within boundary
if (node->position[0] < boundary ||
node->position[0] > (double)width - boundary ||
node->position[1] < boundary ||
node->position[1] > (double)height - boundary) {
return false;
}
// check collision with other branches
branch = new RiverBranch(node->parent, node);
vector<pair<int, int>> indices = branchIndices(branch, NEEDW, e, BranchWidth, DisRatio, e * DisRatio, false);
pair<int, int> parentIdx = mapGrid(node->parent->position, e * DisRatio);
for (auto id : indices) {
//skip the parent grid
if (id.first == parentIdx.first && id.second == parentIdx.second) continue;
//for all the left indices, check if there are any branches inside
int idx = id.first * numW + id.second;
if (id.first >= 0 && id.first < numW &&
id.second >= 0 && id.second < numH)
{
//if there is a branch inside, then just return false
if (grids[idx].size() != 0)
{
branch = nullptr;
return false;
}
//else we need to check all the surronding grids and compute the distance
else
{
for (int verInd = -1; verInd <= 1; verInd++)
{
for (int horInd = -1; horInd <= 1; horInd++)
{
int subidx = (id.first + horInd) * numW + (id.second + verInd);
if (id.first + horInd >= 0 && id.first + horInd < numW &&
id.second + verInd >= 0 && id.second + verInd< numH)
{
//if there is at least one branch inside, then compute the distance
if (grids[subidx].size() != 0)
{
//iterate the branches inside, compute the distatnce
for (int indBranches = 0; indBranches < grids[subidx].size(); indBranches++)
{
RiverBranch* existBranch = grids[subidx][indBranches];
//we need to check if this branch is his parent or brother/sister
if (existBranch->start == branch->start || existBranch->end == branch->start)continue;
double distance = branch->distance(existBranch);
if (distance < DisRatio * e)
{
branch = nullptr;
return false;
}
}
}
}
//else out of range
else continue;
}
}
}
}
//our of range
else {
branch = nullptr;
return false;
}
}
//no problem, add this branch to branch list
branches.push_back(branch);
//tell grid that this branch is inside
for (auto id : indices) {
grids[id.first * numW + id.second].push_back(branch);
}
return true;
}
//auxiliary functions for branching
int RiverNetwork::SymmetricBranching(RiverNode* node)
{
//check the final # of added nodes
int nodesAdded = 0;
//loop count
int num = 2;
while (num) {
double initialAngle = 45.0 + 90.0 * (num % 2), currentAngle = initialAngle;
double angleStep = 2.5;
RiverNode* newNode = nullptr;
RiverBranch* branch = nullptr;
//currentAngle >= -2.5 && <= 182.5 means that it can surpass the bottom line of 0/180 degree for once.
for (int k = 0; currentAngle >= 0 - angleStep && currentAngle <= 180 + angleStep; k++)
{
currentAngle = currentAngle + pow(-1.0, k) * (k / 2) * angleStep;
int newP = node->priority - 1;
if (newP < 1)newP = 1;
newNode = getCandidate(node, currentAngle, newP);
//if a new node is avaliable at some position, add this node to the node list
//also add this node to its parent's children list
if (validateNode(newNode, e * DisRatio, branch))
{
newNode->id = node->id;
node->children.push_back(newNode);
this->nodes.push_back(newNode);
//add this newNode to nonterminal
this->nonTerminalNodes.push_back(newNode);
break;
}
}
num--;
}
return nodesAdded;
}
int RiverNetwork::AsymmetricBranching(RiverNode* node)
{
//check the final # of added nodes
int nodesAdded = 0;
//loop count
int num = 2;
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis(0.7, 0.99);
double ratio = dis(gen);
int newP = (int)(ratio * node->priority);
if (newP < 1)newP = 1;
//set a random priority for the second node
int p[2] = { node->priority, newP };
while (num) {
//int k = 0;
double initialAngle = 45.0 + 90.0 * (num % 2), currentAngle = initialAngle;
double angleStep = 2.5;
RiverNode* newNode = nullptr;
RiverBranch* branch = nullptr;
//currentAngle >= -2.5 && <= 182.5 means that it can surpass the bottom line of 0/180 degree for once.
for (int k = 0; currentAngle >= 0 - angleStep && currentAngle <= 180 + angleStep; k++)
{
currentAngle = currentAngle + pow(-1.0, k) * (k / 2) * angleStep;
newNode = getCandidate(node, currentAngle, p[num - 1]);
//if a new node is avaliable at some position, add this node to the node list
//also add this node to its parent's children list
//also add the branch to the branch list
if (validateNode(newNode, e * 0.25, branch))
{
newNode->id = node->id;
node->children.push_back(newNode);
this->nodes.push_back(newNode);
//add this to nonterminal
this->nonTerminalNodes.push_back(newNode);
nodesAdded++;
break;
}
}
num--;
}
return nodesAdded;
}
int RiverNetwork::Continuation(RiverNode* node)
{
int k = 0;
double initialAngle = 90.0, currentAngle = initialAngle;
double angleStep = 2.5;
RiverNode* newNode = nullptr;
RiverBranch* branch = nullptr;
//currentAngle >= -2.5 && <= 182.5 means that it can surpass the bottom line of 0/180 degree for once.
for (int k = 0; currentAngle >= 0 - angleStep && currentAngle <= 180 + angleStep; k++)
{
currentAngle = currentAngle + pow(-1, k) * (k / 2) * angleStep;
newNode = getCandidate(node, currentAngle, node->priority);
//if a new node is avaliable at some position, add this node to the node list
//also add this node to its parent's children list
if (validateNode(newNode, e * 0.25, branch))
{
newNode->id = node->id;
node->children.push_back(newNode);
this->nodes.push_back(newNode);
//add this to nonterminal
this->nonTerminalNodes.push_back(newNode);
return 1;
}
}
return 0;
}
void RiverNetwork::readBMP(const std::string file)
{
MImage rawimage;
rawimage.readFromFile(MString(file.c_str()));
unsigned int width, height;
rawimage.getSize(width, height);
unsigned int imagesize = width * height;
unsigned char *pixels = rawimage.pixels();
unsigned int i;
unsigned int j;
ofstream heightValues("C:/Test/Testheightvalues.txt");
for (i = 0; i < height; i++)
{
std::vector<double> oneRow;
for (j = 0; j < width; j++)
{
heightValues << static_cast<int>(*(pixels));
oneRow.push_back(static_cast<double>(*(pixels)));
pixels += 4;
}
this->elevationMap.push_back(oneRow);
}
//for (i = 0; i < imagesize; i++)
//{
// if (i <= imagesize / 2) {
// *(pixels++) = (unsigned char)(0);
// *(pixels++) = (unsigned char)(0);
// *(pixels++) = (unsigned char)(0);
// pixels++;
// }
//}
//bitmap_image image(file);
//if (!image)
//{
// printf("Error - Failed to open: input.bmp\n");
// return;
//}
//unsigned int total_number_of_pixels = 0;
//const unsigned int height = image.height();
//const unsigned int width = image.width();
//ofstream heightValues("heightvalues.txt");
// get the vector <R,G,B> for the pixel at (w,h)
//for (std::size_t y = 0; y < height; ++y)
//{
// std::vector<double> oneRow;
// for (std::size_t x = 0; x < width; ++x)
// {
// // get the vector <R,G,B> for the pixel at (1,1)
// rgb_t colour;
// image.get_pixel(x, y, colour);
// heightValues << static_cast<int>(colour.red) << std::endl;
// oneRow.push_back(static_cast<double>(colour.red));
// }
// this->elevationMap.push_back(oneRow);
//}
}
void RiverNetwork::readElevation(const std::string elevationValues)
{
ifstream elevations(elevationValues, std::ios::in);
for (int i = 0; i < 1024; i++)
{
std::vector<double> oneRow;
for (int j = 0; j < 1024; j++)
{
double toBeInput = 0.0;
elevations >> toBeInput;
oneRow.push_back(toBeInput);
}
this->elevationMap.push_back(oneRow);
}
}
void RiverNetwork::writeRivers(const std::string filename, std::string& alteredFile)
{
MImage rawimage;
rawimage.readFromFile(MString(filename.c_str()));
unsigned int width, height;
rawimage.getSize(width, height);
MImage newimage;
newimage.create(width, height);
unsigned char *newpixels = newimage.pixels();
unsigned int imagesize = width * height;
unsigned char *pixels = rawimage.pixels();
unsigned int i;
unsigned int j;
for (i = 0; i < height; i++)
{
for (j = 0; j < width; j++)
{
*(newpixels++) = *pixels;
*(newpixels++) = *pixels;
*(newpixels++) = *pixels;
newpixels++;
pixels += 4;
}
}
//then for all the branches, we alter the corresponding pixel values
for (auto branch : this->branches)
{
//here for the only time we pass true to the pixelwise argument
std::vector<pair<int, int>> corespondPixels = branchIndices(branch, NEEDW, e, BranchWidth, DisRatio, 1.0, true);
for (auto indices : corespondPixels)
{
//return newpixels to the first pixel!!!!!!!!!!
newpixels = newimage.pixels();
unsigned int offset = indices.first * width + indices.second ;
*(newpixels + offset * 4) = (unsigned char)(0);
*(newpixels + offset * 4 + 1) = (unsigned char)(0);
*(newpixels + offset * 4 + 2) = (unsigned char)(0);
}
}
alteredFile = filename;
std::size_t pos = alteredFile.size() - (std::size_t)(4);
alteredFile = alteredFile.substr(0, pos);
alteredFile += "Altered.jpg";
newimage.writeToFile(MString(alteredFile.c_str()), "jpg");
return;
}
void RiverNetwork::writeRiversFromElevation(const std::string filename, std::string& carved, std::string carvedSmoothed) {
MImage rawimage;
rawimage.readFromFile(MString(filename.c_str()));
unsigned int width, height;
rawimage.getSize(width, height);
MImage newimage;
newimage.create(width, height);
unsigned char *newpixels = newimage.pixels();
unsigned int i;
unsigned int j;
for (i = 0; i < height; i++)
{
for (j = 0; j < width; j++)
{
*(newpixels++) = (unsigned char)(elevationMapSmoothed[i][j]);
*(newpixels++) = (unsigned char)(elevationMapSmoothed[i][j]);
*(newpixels++) = (unsigned char)(elevationMapSmoothed[i][j]);
newpixels++;
}
}
carved = filename;
std::size_t pos = carved.size() - (std::size_t)(4);
carved = carved.substr(0, pos);
carved += "Carved.jpg";
newimage.writeToFile(MString(carved.c_str()), "jpg");
//MImage newimage2;
//newimage2.create(width, height);
//unsigned char *newpixels2 = newimage2.pixels();
//unsigned int i;
//unsigned int j;
//for (i = 0; i < height; i++)
//{
// for (j = 0; j < width; j++)
// {
// *(newpixels2++) = (unsigned char)(elevationMapSmoothed[i][j]);
// *(newpixels2++) = (unsigned char)(elevationMapSmoothed[i][j]);
// *(newpixels2++) = (unsigned char)(elevationMapSmoothed[i][j]);
// newpixels2++;
// }
//}
//carvedSmoothed = filename;
//std::size_t pos = carvedSmoothed.size() - (std::size_t)(4);
//carvedSmoothed = carvedSmoothed.substr(0, pos);
//carvedSmoothed += "CarvedSmoothed.jpg";
//newimage2.writeToFile(MString(carvedSmoothed.c_str()), "jpg");
return;
}
// carve away river
void RiverNetwork::carveRiver() {
vector<vector<double>> tmpMap = elevationMap;
// for each branch, find rightmost point and leftmost point for every pixel along its carving direction
for (auto branch : branches) {
vec2 dir;
dir = branch->getCarveDirection();
std::vector<pair<int, int>> pixels = branchIndices(branch, NEEDW, e, BranchWidth, DisRatio, 1.0, true);
double startW = log(branch->start->priority * 5.0), endW = log(branch->end->priority * 5.0);