-
Notifications
You must be signed in to change notification settings - Fork 0
/
chien.py
59 lines (47 loc) · 1.94 KB
/
chien.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import cv2
import numpy as np
import os
from matplotlib import pyplot as plt
import time
import mediapipe as mp
from sklearn.model_selection import train_test_split
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import LSTM, Dense
from keras.callbacks import TensorBoard
mp_holistic = mp.solutions.holistic # Holistic model
mp_drawing = mp.solutions.drawing_utils # Drawing utilities
# Path for exported data, numpy arrays
DATA_PATH = os.path.join('MP_Data')
# Actions that we try to detect
actions = np.array(['hello', 'thanks', 'iloveyou'])
# Thirty videos worth of data
no_sequences = 30
# Videos are going to be 30 frames in length
sequence_length = 30
label_map = {label:num for num, label in enumerate(actions)}
sequences, labels = [], []
for action in actions:
for sequence in range(no_sequences):
window = []
for frame_num in range(sequence_length):
res = np.load(os.path.join(DATA_PATH, action, str(sequence), "{}.npy".format(frame_num)))
window.append(res)
sequences.append(window)
labels.append(label_map[action])
X = np.array(sequences)
y = to_categorical(labels).astype(int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.05)
log_dir = os.path.join('Logs')
tb_callback = TensorBoard(log_dir=log_dir)
model = Sequential()
model.add(LSTM(64, return_sequences=True, activation='relu', input_shape=(30,1662)))
model.add(LSTM(128, return_sequences=True, activation='relu'))
model.add(LSTM(64, return_sequences=False, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(actions.shape[0], activation='softmax'))
model.compile(optimizer='Adam', loss='categorical_crossentropy', metrics=['categorical_accuracy'])
model.fit(X_train, y_train, epochs=2000, callbacks=[tb_callback])
model.summary()
model.save('action.h5')