This is the official source code repo of paper "Masked Graph Autoencoder with Non-discrete Bandwidths" in TheWebConf(WWW) 2024.
We explore a new paradigm of topological masked graph autoencoders with non-discrete masking strategies, named "bandwidths". We verify its effectiveness in learning network topology by both theory and experiment.
| 📄 Preprint version (full version) | 📖 Published version | 👁️🗨️ OpenReview | 💬 Blog |
See requirements.txt
.
See run.ipynb
for our experiment results.
You can either run the model by this Jupyter file or by commands below in the terminal:
python train_link.py --dataset=<dataset_name> --use_cfg --device=<gpu_id>
<dataset_name>
: Cora, Citeseer, Pubmed, Photo, Computers, CS, PhysicsBy
--use_cfg
, the best hyperparameters in theconfig/<dataset_name>.yml
file are used by default.
python train_link_ogb.py --dataset=<dataset_name> --use_cfg --device=<gpu_id>
<dataset_name>
: ogbl-collab, ogbl-ppa
python train_node.py --dataset=<dataset_name> --use_cfg --device=<gpu_id>
<dataset_name>
: Cora, Citeseer, Pubmed, Photo, Computers, CS, Physics, Wiki-CS, ogbn-arxiv, ogbn-mag
Please cite our paper for your research if our paper helps:
@inproceedings{bandana,
title={Masked Graph Autoencoder with Non-discrete Bandwidths},
author={Ziwen, Zhao and Yuhua, Li and Yixiong, Zou and Jiliang, Tang and Ruixuan, Li},
booktitle={Proceedings of the 33rd ACM Web Conference},
pages={377-–388},
year={2024},
month={May},
publisher={Association for Computing Machinery},
address={Singapore, Singapore},
}