-
Notifications
You must be signed in to change notification settings - Fork 626
/
filters.py
1261 lines (1058 loc) · 42.6 KB
/
filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
A collection of routines for use in topology optimization comprising
convolution filters (kernels), projection operators, and morphological
transforms.
"""
import sys
from typing import List, Tuple, Union
import numpy as np
from autograd import numpy as npa
from scipy import signal, special
ArrayLikeType = Union[List, Tuple, np.ndarray]
def _centered(arr: np.ndarray, newshape: ArrayLikeType) -> np.ndarray:
"""Formats the output of an FFT to center the zero-frequency component.
A helper function borrowed from SciPy:
https://github.com/scipy/scipy/blob/v1.4.1/scipy/signal/signaltools.py#L263-L270
Args:
arr: output array from an FFT operation.
newshape: 1d array with two elements (integers) specifying the dimensions
of the array to be returned.
Returns:
The input array with the zero-frequency component as the central element.
"""
newshape = np.asarray(newshape)
currshape = np.array(arr.shape)
startind = (currshape - newshape) // 2
endind = startind + newshape
myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
return arr[tuple(myslice)]
def _quarter_to_full_kernel(arr: np.ndarray, pad_to: np.ndarray) -> np.ndarray:
"""Constructs the full kernel from its nonnegative quadrant.
Args:
arr: 2d input array representing the nonnegative quadrant of a
filter kernel with C4v symmetry.
pad_to: 1d array with two elements (integers) specifying the size
of the zero padding.
Returns:
The complete kernel.
"""
pad_size = pad_to - 2 * np.array(arr.shape) + 1
top = np.zeros((pad_size[0], arr.shape[1]))
bottom = np.zeros((pad_size[0], arr.shape[1] - 1))
middle = np.zeros((pad_to[0], pad_size[1]))
top_left = arr[:, :]
top_right = npa.flipud(arr[1:, :])
bottom_left = npa.fliplr(arr[:, 1:])
bottom_right = npa.flipud(
npa.fliplr(arr[1:, 1:])
) # equivalent to flip, but flip is incompatible with autograd
return npa.concatenate(
(
npa.concatenate((top_left, top, top_right)),
middle,
npa.concatenate((bottom_left, bottom, bottom_right)),
),
axis=1,
)
def _edge_pad(arr: np.ndarray, pad: np.ndarray) -> np.ndarray:
"""Zero-pads the edges of an array.
Used to preprocess the design weights prior to convolution with the filter.
Args:
arr: 2d array representing the nonnegative coordinates of a
filter kernel with C4v symmetry.
pad: 2x2 array of integers indicating the size
of the zero-padded array.
Returns:
A 2d array with zero padding.
"""
# fill sides
left = npa.tile(arr[0, :], (pad[0][0], 1))
right = npa.tile(arr[-1, :], (pad[0][1], 1))
top = npa.tile(arr[:, 0], (pad[1][0], 1)).transpose()
bottom = npa.tile(arr[:, -1], (pad[1][1], 1)).transpose()
# fill corners
top_left = npa.tile(arr[0, 0], (pad[0][0], pad[1][0]))
top_right = npa.tile(arr[-1, 0], (pad[0][1], pad[1][0]))
bottom_left = npa.tile(arr[0, -1], (pad[0][0], pad[1][1]))
bottom_right = npa.tile(arr[-1, -1], (pad[0][1], pad[1][1]))
if pad[0][0] > 0 and pad[0][1] > 0 and pad[1][0] > 0 and pad[1][1] > 0:
return npa.concatenate(
(
npa.concatenate((top_left, top, top_right)),
npa.concatenate((left, arr, right)),
npa.concatenate((bottom_left, bottom, bottom_right)),
),
axis=1,
)
elif pad[0][0] == 0 and pad[0][1] == 0 and pad[1][0] > 0 and pad[1][1] > 0:
return npa.concatenate((top, arr, bottom), axis=1)
elif pad[0][0] > 0 and pad[0][1] > 0 and pad[1][0] == 0 and pad[1][1] == 0:
return npa.concatenate((left, arr, right), axis=0)
elif pad[0][0] == 0 and pad[0][1] == 0 and pad[1][0] == 0 and pad[1][1] == 0:
return arr
else:
raise ValueError("At least one of the padding numbers is invalid.")
def convolve_design_weights_and_kernel(
x: np.ndarray, h: np.ndarray, periodic_axes: ArrayLikeType = None
) -> np.ndarray:
"""Convolves the design weights with the kernel.
Uses a 2d FFT to perform the convolution operation. This approach is
typically faster than a direct calculation. It also preserves the shape
of the input and output arrays. The arrays are zero-padded prior to the
FFT to prevent unwanted effects from the edges.
Args:
x: 2d design weights.
h: filter kernel. Must be same size as `x`
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The convolution of the design weights with the kernel as a 2d array.
"""
(sx, sy) = x.shape
if periodic_axes is None:
h = _quarter_to_full_kernel(h, 3 * np.array([sx, sy]))
x = _edge_pad(x, ((sx, sx), (sy, sy)))
else:
(kx, ky) = h.shape
npx = int(
np.ceil((2 * kx - 1) / sx)
) # 2*kx-1 is the size of a complete kernel in the x direction
npy = int(
np.ceil((2 * ky - 1) / sy)
) # 2*ky-1 is the size of a complete kernel in the y direction
if npx % 2 == 0:
npx += 1 # Ensure npx is an odd number
if npy % 2 == 0:
npy += 1 # Ensure npy is an odd number
periodic_axes = np.array(periodic_axes)
# Repeat the design pattern in periodic directions according to
# the kernel size
x = npa.tile(
x, (npx if 0 in periodic_axes else 1, npy if 1 in periodic_axes else 1)
)
npadx = 0 if 0 in periodic_axes else sx
npady = 0 if 1 in periodic_axes else sy
x = _edge_pad(
x, ((npadx, npadx), (npady, npady))
) # pad only in nonperiodic directions
h = _quarter_to_full_kernel(
h,
np.array(
[
npx * sx if 0 in periodic_axes else 3 * sx,
npy * sy if 1 in periodic_axes else 3 * sy,
]
),
)
h = h / npa.sum(h) # Normalize the kernel
return _centered(
npa.real(npa.fft.ifft2(npa.fft.fft2(x) * npa.fft.fft2(h))), (sx, sy)
)
def _get_resolution(resolution: ArrayLikeType) -> tuple:
"""Converts input design-grid resolution to the acceptable format.
Args:
resolution: number of list of numbers representing design-grid
resolution, allowing anisotropic resolution.
Returns:
A two-element tuple composed of the resolution in x and y directions.
"""
if isinstance(resolution, (tuple, list, np.ndarray)):
if len(resolution) == 2:
return resolution
elif len(resolution) == 1:
return resolution[0], resolution[0]
else:
raise ValueError(
"The dimension of the design-grid resolution is incorrect."
)
elif isinstance(resolution, (int, float)):
return resolution, resolution
else:
raise ValueError("The input for design-grid resolution is invalid.")
def mesh_grid(
radius: float,
Lx: float,
Ly: float,
resolution: ArrayLikeType,
periodic_axes: ArrayLikeType = None,
) -> tuple:
"""Obtains the numbers of grid points and the coordinates of the grid
of the design region.
Args:
radius: filter radius (in Meep units).
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
A four-element tuple composed of the numbers of grid points and
the coordinates of the grid.
"""
resolution = _get_resolution(resolution)
Nx = int(round(Lx * resolution[0])) + 1
Ny = int(round(Ly * resolution[1])) + 1
if Nx <= 1 and Ny <= 1:
raise AssertionError(
"The grid size is improper. Check the size and resolution of the design region."
)
xv = np.arange(0, Lx / 2, 1 / resolution[0]) if resolution[0] > 0 else [0]
yv = np.arange(0, Ly / 2, 1 / resolution[1]) if resolution[1] > 0 else [0]
# If the design weights are periodic in a direction,
# the size of the kernel in that direction needs to be adjusted
# according to the filter radius.
if periodic_axes is not None:
periodic_axes = np.array(periodic_axes)
if 0 in periodic_axes:
xv = (
npa.arange(0, npa.ceil(2 * radius / Lx) * Lx / 2, 1 / resolution[0])
if resolution[0] > 0
else [0]
)
if 1 in periodic_axes:
yv = (
npa.arange(0, npa.ceil(2 * radius / Ly) * Ly / 2, 1 / resolution[1])
if resolution[1] > 0
else [0]
)
X, Y = np.meshgrid(xv, yv, sparse=True, indexing="ij")
return Nx, Ny, X, Y
def cylindrical_filter(
x: np.ndarray,
radius: float,
Lx: float,
Ly: float,
resolution: ArrayLikeType,
periodic_axes: ArrayLikeType = None,
) -> np.ndarray:
"""A cylindrical convolution filter.
Typically allows for sharper features compared to other types of filters.
Ref: B.S. Lazarov, F. Wang, & O. Sigmund, Length scale and
manufacturability in density-based topology optimization,
Archive of Applied Mechanics, 86(1-2), pp. 189-218 (2016).
Args:
x: 2d design weights.
radius: filter radius (in Meep units).
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The filtered design weights.
"""
Nx, Ny, X, Y = mesh_grid(radius, Lx, Ly, resolution, periodic_axes)
x = x.reshape(Nx, Ny) # Ensure the input is 2d
h = np.where(X**2 + Y**2 < radius**2, 1, 0)
return convolve_design_weights_and_kernel(x, h, periodic_axes)
def conic_filter(
x: np.ndarray,
radius: float,
Lx: float,
Ly: float,
resolution: ArrayLikeType,
periodic_axes: ArrayLikeType = None,
) -> np.ndarray:
"""A linear conic (or "hat") filter.
Ref: B.S. Lazarov, F. Wang, & O. Sigmund, Length scale and
manufacturability in density-based topology optimization.
Archive of Applied Mechanics, 86(1-2), pp. 189-218 (2016).
Args:
x: 2d design weights.
radius: filter radius (in Meep units).
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The filtered design weights.
"""
Nx, Ny, X, Y = mesh_grid(radius, Lx, Ly, resolution, periodic_axes)
x = x.reshape(Nx, Ny) # Ensure the input is 2d
h = npa.where(
X**2 + Y**2 < radius**2, (1 - np.sqrt(abs(X**2 + Y**2)) / radius), 0
)
return convolve_design_weights_and_kernel(x, h, periodic_axes)
def gaussian_filter(
x: np.ndarray,
sigma: float,
Lx: float,
Ly: float,
resolution: ArrayLikeType,
periodic_axes: ArrayLikeType = None,
):
"""A Gaussian filter.
Ref: E. W. Wang, D. Sell, T. Phan, & J. A. Fan, Robust design of
topology-optimized metasurfaces, Optical Materials Express, 9(2),
pp. 469-482 (2019).
Args:
x: 2d design weights.
sigma: filter radius (in Meep units).
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The filtered design weights.
"""
Nx, Ny, X, Y = mesh_grid(3 * sigma, Lx, Ly, resolution, periodic_axes)
x = x.reshape(Nx, Ny) # Ensure the input is 2d
h = np.exp(-(X**2 + Y**2) / sigma**2)
return convolve_design_weights_and_kernel(x, h, periodic_axes)
def exponential_erosion(
x: np.ndarray,
radius: float,
beta: float,
Lx: float,
Ly: float,
resolution: int,
periodic_axes: ArrayLikeType = None,
):
"""Morphological erosion using an exponential projection operator.
Refs:
O. Sigmund, Morphology-based black and white filters for topology
optimization. Structural and Multidisciplinary Optimization,
33(4-5), pp. 401-424 (2007).
M. Schevenels & O. Sigmund, On the implementation and effectiveness of
morphological close-open and open-close filters for topology optimization.
Structural and Multidisciplinary Optimization, 54(1), pp. 15-21 (2016).
Args:
x: 2d design weights.
radius: filter radius (in Meep units).
beta: threshold value for projection. Range of [0, inf].
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The eroded design weights.
"""
x_hat = npa.exp(beta * (1 - x))
return (
1
- npa.log(
cylindrical_filter(
x_hat, radius, Lx, Ly, resolution, periodic_axes
).flatten()
)
/ beta
)
def exponential_dilation(x, radius, beta, Lx, Ly, resolution, periodic_axes=None):
"""Morphological dilation using an exponential projection operator.
Refs:
O. Sigmund, Morphology-based black and white filters for topology
optimization. Structural and Multidisciplinary Optimization,
33(4-5), pp. 401-424 (2007).
M. Schevenels & O. Sigmund, On the implementation and effectiveness of
morphological close-open and open-close filters for topology optimization.
Structural and Multidisciplinary Optimization, 54(1), pp. 15-21 (2016).
Args:
x: 2d design weights.
radius: filter radius (in Meep units).
beta: threshold value for projection. Range of [0, inf].
Lx: length of design region in X direction (in Meep units).
Ly: length of design region in Y direction (in Meep units).
resolution: resolution of the design grid (not the Meep grid
resolution).
periodic_axes: list of axes (x, y = 0, 1) that are to be treated as
periodic. Default is None (all axes are non-periodic).
Returns:
The dilated design weights.
"""
x_hat = npa.exp(beta * x)
return (
npa.log(
cylindrical_filter(
x_hat, radius, Lx, Ly, resolution, periodic_axes
).flatten()
)
/ beta
)
def heaviside_erosion(x, radius, beta, Lx, Ly, resolution, periodic_axes=None):
"""Performs a heaviside erosion operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Eroded design parameters.
References
----------
[1] Guest, J. K., Prévost, J. H., & Belytschko, T. (2004). Achieving minimum length scale in topology
optimization using nodal design variables and projection functions. International journal for
numerical methods in engineering, 61(2), 238-254.
"""
x_hat = cylindrical_filter(x, radius, Lx, Ly, resolution, periodic_axes).flatten()
return npa.exp(-beta * (1 - x_hat)) + npa.exp(-beta) * (1 - x_hat)
def heaviside_dilation(x, radius, beta, Lx, Ly, resolution, periodic_axes=None):
"""Performs a heaviside dilation operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Dilated design parameters.
References
----------
[1] Guest, J. K., Prévost, J. H., & Belytschko, T. (2004). Achieving minimum length scale in topology
optimization using nodal design variables and projection functions. International journal for
numerical methods in engineering, 61(2), 238-254.
"""
x_hat = cylindrical_filter(x, radius, Lx, Ly, resolution, periodic_axes).flatten()
return 1 - npa.exp(-beta * x_hat) + npa.exp(-beta) * x_hat
def geometric_erosion(x, radius, alpha, Lx, Ly, resolution, periodic_axes=None):
"""Performs a geometric erosion operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Eroded design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = npa.log(x + alpha)
return (
npa.exp(
cylindrical_filter(x_hat, radius, Lx, Ly, resolution, periodic_axes)
).flatten()
- alpha
)
def geometric_dilation(x, radius, alpha, Lx, Ly, resolution, periodic_axes=None):
"""Performs a geometric dilation operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Dilated design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = npa.log(1 - x + alpha)
return (
-npa.exp(
cylindrical_filter(x_hat, radius, Lx, Ly, resolution, periodic_axes)
).flatten()
+ alpha
+ 1
)
def harmonic_erosion(x, radius, alpha, Lx, Ly, resolution, periodic_axes=None):
"""Performs a harmonic erosion operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Eroded design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = 1 / (x + alpha)
return (
1
/ cylindrical_filter(x_hat, radius, Lx, Ly, resolution, periodic_axes).flatten()
- alpha
)
def harmonic_dilation(x, radius, alpha, Lx, Ly, resolution, periodic_axes=None):
"""Performs a harmonic dilation operation.
Parameters
----------
x : array_like
Design parameters
radius : float
Filter radius (in "meep units")
beta : float
Thresholding parameter
Lx : float
Length of design region in X direction (in "meep units")
Ly : float
Length of design region in Y direction (in "meep units")
resolution : int
Resolution of the design grid (not the meep simulation resolution)
periodic_axes: array_like (1D)
List of axes (x, y = 0, 1) that are to be treated as periodic (default is none: all axes are non-periodic)
Returns
-------
array_like
Dilated design parameters.
References
----------
[1] Svanberg, K., & Svärd, H. (2013). Density filters for topology optimization based on the
Pythagorean means. Structural and Multidisciplinary Optimization, 48(5), 859-875.
"""
x_hat = 1 / (1 - x + alpha)
return (
1
- 1
/ cylindrical_filter(x_hat, radius, Lx, Ly, resolution, periodic_axes).flatten()
+ alpha
)
def tanh_projection(x: np.ndarray, beta: float, eta: float) -> np.ndarray:
"""Sigmoid projection filter.
Ref: F. Wang, B. S. Lazarov, & O. Sigmund, On projection methods,
convergence and robust formulations in topology optimization.
Structural and Multidisciplinary Optimization, 43(6), pp. 767-784 (2011).
Args:
x: 2d design weights to be filtered.
beta: thresholding parameter in the range [0, inf]. Determines the
degree of binarization of the output.
eta: threshold point in the range [0, 1].
Returns:
The filtered design weights.
"""
if beta == npa.inf:
# Note that backpropagating through here can produce NaNs. So we
# manually specify the step function to keep the gradient clean.
return npa.where(x > eta, 1.0, 0.0)
else:
return (npa.tanh(beta * eta) + npa.tanh(beta * (x - eta))) / (
npa.tanh(beta * eta) + npa.tanh(beta * (1 - eta))
)
def smoothed_projection(
x_smoothed: ArrayLikeType,
beta: float,
eta: float,
resolution: float,
):
"""Project using subpixel smoothing, which allows for β→∞.
This technique integrates out the discontinuity within the projection
function, allowing the user to smoothly increase β from 0 to ∞ without
losing the gradient. Effectively, a level set is created, and from this
level set, first-order subpixel smoothing is applied to the interfaces (if
any are present).
In order for this to work, the input array must already be smooth (e.g. by
filtering).
While the original approach involves numerical quadrature, this approach
performs a "trick" by assuming that the user is always infinitely projecting
(β=∞). In this case, the expensive quadrature simplifies to an analytic
fill-factor expression. When to use this fill factor requires some careful
logic.
For one, we want to make sure that the user can indeed project at any level
(not just infinity). So in these cases, we simply check if in interface is
within the pixel. If not, we revert to the standard filter plus project
technique.
If there is an interface, we want to make sure the derivative remains
continuous both as the interface leaves the cell, *and* as it crosses the
center. To ensure this, we need to account for the different possibilities.
Args:
x: The (2D) input design parameters.
beta: The thresholding parameter in the range [0, inf]. Determines the
degree of binarization of the output.
eta: The threshold point in the range [0, 1].
resolution: resolution of the design grid (not the Meep grid
resolution).
Returns:
The projected and smoothed output.
Example:
>>> Lx = 2; Ly = 2
>>> resolution = 50
>>> eta_i = 0.5; eta_e = 0.75
>>> lengthscale = 0.1
>>> filter_radius = get_conic_radius_from_eta_e(lengthscale, eta_e)
>>> Nx = onp.round(Lx * resolution) + 1
>>> Ny = onp.round(Ly * resolution) + 1
>>> A = onp.random.rand(Nx, Ny)
>>> beta = npa.inf
>>> A_smoothed = conic_filter(A, filter_radius, Lx, Ly, resolution)
>>> A_projected = smoothed_projection(A_smoothed, beta, eta_i, resolution)
"""
# Note that currently, the underlying assumption is that the smoothing
# kernel is a circle, which means dx = dy.
dx = dy = 1 / resolution
pixel_radius = dx / 2
x_projected = tanh_projection(x_smoothed, beta=beta, eta=eta)
# Compute the spatial gradient (using finite differences) of the *filtered*
# field, which will always be smooth and is the key to our approach. This
# gradient essentially represents the normal direction pointing the the
# nearest inteface.
x_grad = npa.gradient(x_smoothed)
x_grad_helper = (x_grad[0] / dx) ** 2 + (x_grad[1] / dy) ** 2
# Note that a uniform field (norm=0) is problematic, because it creates
# divide by zero issues and makes backpropagation difficult, so we sanitize
# and determine where smoothing is actually needed. The value where we don't
# need smoothings doesn't actually matter, since all our computations our
# purely element-wise (no spatial locality) and those pixels will instead
# rely on the standard projection. So just use 1, since it's well behaved.
nonzero_norm = npa.abs(x_grad_helper) > 0
x_grad_norm = npa.sqrt(npa.where(nonzero_norm, x_grad_helper, 1))
x_grad_norm_eff = npa.where(nonzero_norm, x_grad_norm, 1)
# The distance for the center of the pixel to the nearest interface
d = (eta - x_smoothed) / x_grad_norm_eff
# Only need smoothing if an interface lies within the voxel. Since d is
# actually an "effective" d by this point, we need to ignore values that may
# have been sanitized earlier on.
needs_smoothing = nonzero_norm & (npa.abs(d) <= pixel_radius)
# The fill factor is used to perform simple, first-order subpixel smoothing.
# We use the (2D) analytic expression that comes when assuming the smoothing
# kernel is a circle. Note that because the kernel contains some
# expressions that are sensitive to NaNs, we have to use the "double where"
# trick to avoid the Nans in the backward trace. This is a common problem
# with array-based AD tracers, apparently. See here:
# https://github.com/google/jax/issues/1052#issuecomment-5140833520
arccos_term = pixel_radius**2 * npa.arccos(
npa.where(
needs_smoothing,
d / pixel_radius,
0.0,
)
)
sqrt_term = d * npa.sqrt(
npa.where(
needs_smoothing,
pixel_radius**2 - d**2,
1,
)
)
fill_factor = npa.where(
needs_smoothing,
(1 / (npa.pi * pixel_radius**2)) * (arccos_term - sqrt_term),
1,
)
# Determine the upper and lower bounds of materials in the current pixel (before projection).
x_minus = x_smoothed - x_grad_norm * pixel_radius
x_plus = x_smoothed + x_grad_norm * pixel_radius
# Create an "effective" set of materials that will ensure everything is
# piecewise differentiable, even if an interface moves out of a pixel, or
# through the pixel center.
x_minus_eff_pert = (x_smoothed * d + x_minus * (pixel_radius - d)) / pixel_radius
x_minus_eff = npa.where(
(d > 0),
x_minus_eff_pert,
x_minus,
)
x_plus_eff_pert = (-x_smoothed * d + x_plus * (pixel_radius + d)) / pixel_radius
x_plus_eff = npa.where(
(d > 0),
x_plus,
x_plus_eff_pert,
)
# Finally, we project the extents of our range.
x_plus_eff_projected = tanh_projection(x_plus_eff, beta=beta, eta=eta)
x_minus_eff_projected = tanh_projection(x_minus_eff, beta=beta, eta=eta)
# Only apply smoothing to interfaces
x_projected_smoothed = (1 - fill_factor) * x_minus_eff_projected + (
fill_factor
) * x_plus_eff_projected
return npa.where(
needs_smoothing,
x_projected_smoothed,
x_projected,
)
def heaviside_projection(x, beta, eta):
"""Projection filter that thresholds the input parameters between 0 and 1.
Parameters
----------
x : array_like
Design parameters
beta : float
Thresholding parameter (0 to infinity). Dictates how "binary" the output will be.
eta: float
Threshold point (0 to 1)
Returns
-------
array_like
Projected and flattened design parameters.
References
----------
[1] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
case1 = eta * npa.exp(-beta * (eta - x) / eta) - (eta - x) * npa.exp(-beta)
case2 = (
1
- (1 - eta) * npa.exp(-beta * (x - eta) / (1 - eta))
- (eta - x) * npa.exp(-beta)
)
return npa.where(x < eta, case1, case2)
"""
# ------------------------------------------------------------------------------------ #
Length scale operations
"""
def get_threshold_wang(delta, sigma):
"""Calculates the threshold point according to the gaussian filter radius (`sigma`) and
the perturbation parameter (`sigma`) needed to ensure the proper length
scale and morphological transformation according to Wang et. al. [2].
Parameters
----------
sigma : float
Smoothing radius (in meep units)
delta : float
Perturbation parameter (in meep units)
Returns
-------
float
Threshold point (`eta`)
References
----------
[1] Wang, F., Jensen, J. S., & Sigmund, O. (2011). Robust topology optimization of
photonic crystal waveguides with tailored dispersion properties. JOSA B, 28(3), 387-397.
[2] Wang, E. W., Sell, D., Phan, T., & Fan, J. A. (2019). Robust design of
topology-optimized metasurfaces. Optical Materials Express, 9(2), 469-482.
"""
return 0.5 - special.erf(delta / sigma)
def get_eta_from_conic(b, R):
"""Extracts the eroded threshold point (`eta_e`) for a conic filter given the desired
minimum length (`b`) and the filter radius (`R`). This only works for conic filters.
Note that the units for `b` and `R` can be arbitrary so long as they are consistent.
Results in paper were thresholded using a "tanh" Heaviside projection.
Parameters
----------
b : float
Desired minimum length scale.
R : float
Conic filter radius
Returns
-------
float
The eroded threshold point (1-eta)
References
----------
[1] Qian, X., & Sigmund, O. (2013). Topological design of electromechanical actuators with
robustness toward over-and under-etching. Computer Methods in Applied
Mechanics and Engineering, 253, 237-251.
[2] Wang, F., Lazarov, B. S., & Sigmund, O. (2011). On projection methods, convergence and
robust formulations in topology optimization. Structural and Multidisciplinary
Optimization, 43(6), 767-784.
[3] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
norm_length = b / R
if norm_length < 0:
return 0
elif norm_length < 1:
return 0.25 * norm_length**2 + 0.5
elif norm_length < 2:
return -0.25 * norm_length**2 + norm_length
else:
return 1
def get_conic_radius_from_eta_e(b, eta_e):
"""Calculates the corresponding filter radius given the minimum length scale (b)
and the desired eroded threshold point (eta_e).
Parameters
----------
b : float
Desired minimum length scale.
eta_e : float
Eroded threshold point (1-eta)
Returns
-------
float
Conic filter radius.
References
----------
[1] Qian, X., & Sigmund, O. (2013). Topological design of electromechanical actuators with
robustness toward over-and under-etching. Computer Methods in Applied
Mechanics and Engineering, 253, 237-251.
[2] Wang, F., Lazarov, B. S., & Sigmund, O. (2011). On projection methods, convergence and
robust formulations in topology optimization. Structural and Multidisciplinary
Optimization, 43(6), 767-784.
[3] Lazarov, B. S., Wang, F., & Sigmund, O. (2016). Length scale and manufacturability in
density-based topology optimization. Archive of Applied Mechanics, 86(1-2), 189-218.
"""
if (eta_e >= 0.5) and (eta_e < 0.75):
return b / (2 * np.sqrt(eta_e - 0.5))