-
Notifications
You must be signed in to change notification settings - Fork 0
/
avoid_bump.py
241 lines (202 loc) · 8.99 KB
/
avoid_bump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gurobipy as gp
import matplotlib.pyplot as plt
import numpy as np
from gurobipy import GRB
# Parameters
T = 30 # Prediction horizon (seconds)
dt = 0.3 # Time step (seconds)
N = int(T / dt) # Number of time steps
# Vehicle state bounds
x_min, x_max = 0, np.inf
y_min, y_max = 0, 5 # Road width is 5 meters
v_x_min, v_x_max = 0, 30
v_y_min, v_y_max = -1, 1
a_x_min, a_x_max = -2, 2
a_y_min, a_y_max = -0.5, 0.5
j_x_min, j_x_max = -2.5, 2.5
j_y_min, j_y_max = -1, 1
# Other parameters from Table 1
theta_min, theta_max = -0.4, 0.4 # in radians
omega_min, omega_max = -0.26, 0.26 # in radians/s
# Initial state and reference values
x0, y0 = 0, 2.5 # Starting in the middle of the right lane
v_x0, v_y0 = 10, 0 # Initial speed is 15 m/s
a_x0, a_y0 = 0, 0
v_r = 10.0 # Reference speed
y_r = y0 # Reference lateral position (stay in lane)
# Obstacle parameters (bounding rectangles)
obstacles = [
{'x_center': 80, 'y_center': 1.5, 'L': 10, 'W': 2},
{'x_center': 200, 'y_center': 3.5, 'L': 10, 'W': 3}
]
# Speed bump parameters
x_bump_start, x_bump_end = 120, 150
v_max_bump = 5
# Cost function weights
q1, q2, q3, q4, q5 = 4, 1, 1, 1, 1
r1, r2 = 4, 4
# Create the model
model = gp.Model("Obstacle_Avoidance_MIQP")
# Create variables
x = model.addVars(N + 1, lb=x_min, ub=x_max, name="x")
y = model.addVars(N + 1, lb=y_min, ub=y_max, name="y")
v_x = model.addVars(N + 1, lb=v_x_min, ub=v_x_max, name="v_x")
v_y = model.addVars(N + 1, lb=v_y_min, ub=v_y_max, name="v_y")
a_x = model.addVars(N + 1, lb=a_x_min, ub=a_x_max, name="a_x")
a_y = model.addVars(N + 1, lb=a_y_min, ub=a_y_max, name="a_y")
j_x = model.addVars(N, lb=j_x_min, ub=j_x_max, name="j_x")
j_y = model.addVars(N, lb=j_y_min, ub=j_y_max, name="j_y")
# Binary variables for obstacle avoidance
delta_obs = {}
for obs_id, obs in enumerate(obstacles):
for i in range(4): # 4 ràng buộc cho mỗi chướng ngại vật
delta_obs[obs_id, i] = model.addVars(N + 1, vtype=GRB.BINARY, name=f"delta_obs_{obs_id}_{i}")
delta1 = model.addVars(N+1, vtype=GRB.BINARY, name="delta1")
delta2 = model.addVars(N+1, vtype=GRB.BINARY, name="delta2")
delta3 = model.addVars(N+1, vtype=GRB.BINARY, name="delta3")
# Set initial conditions
model.addConstr(x[0] == x0)
model.addConstr(y[0] == y0)
model.addConstr(v_x[0] == v_x0)
model.addConstr(v_y[0] == v_y0)
model.addConstr(a_x[0] == a_x0)
model.addConstr(a_y[0] == a_y0)
# Add vehicle dynamics constraints
for k in range(N):
model.addConstr(x[k + 1] == x[k] + v_x[k] * dt + 0.5 * a_x[k] * dt ** 2 + (1 / 6) * j_x[k] * dt ** 3)
model.addConstr(y[k + 1] == y[k] + v_y[k] * dt + 0.5 * a_y[k] * dt ** 2 + (1 / 6) * j_y[k] * dt ** 3)
model.addConstr(v_x[k + 1] == v_x[k] + a_x[k] * dt + 0.5 * j_x[k] * dt ** 2)
model.addConstr(v_y[k + 1] == v_y[k] + a_y[k] * dt + 0.5 * j_y[k] * dt ** 2)
model.addConstr(a_x[k + 1] == a_x[k] + j_x[k] * dt)
model.addConstr(a_y[k + 1] == a_y[k] + j_y[k] * dt)
# Add constraints for theta and omega (equations 5 and 6 in the paper)
for k in range(N+1):
model.addConstr(v_y[k] >= v_x[k] * np.tan(theta_min))
model.addConstr(v_y[k] <= v_x[k] * np.tan(theta_max))
model.addConstr(a_y[k] >= -v_x[k] * omega_max)
model.addConstr(a_y[k] <= v_x[k] * omega_max)
epsilon = 1e-6
# Speed bump logical constraints using indicator constraints
for k in range(N+1):
# δ1(k) = 1 ⇔ x(k) ≥ x_bump_start
model.addGenConstrIndicator(delta1[k], True, x[k] >= x_bump_start - epsilon)
model.addGenConstrIndicator(delta1[k], False, x[k] <= x_bump_start)
# δ2(k) = 1 ⇔ x(k) ≤ x_bump_end
model.addGenConstrIndicator(delta2[k], True, x[k] <= x_bump_end)
model.addGenConstrIndicator(delta2[k], False, x[k] >= x_bump_end - epsilon)
# δ3(k) = 1 ⇔ v_x(k) ≤ v_max_bump
model.addGenConstrIndicator(delta3[k], True, v_x[k] <= v_max_bump)
model.addGenConstrIndicator(delta3[k], False, v_x[k] >= v_max_bump - epsilon)
# Logical implications from equation 7
model.addConstr(-delta1[k] + delta3[k] <= 0)
model.addConstr(-delta2[k] + delta3[k] <= 0)
model.addConstr(delta1[k] + delta2[k] - delta3[k] <= 1)
# Obstacle avoidance constraints (Equation 11 from the paper)
# Thay đổi ràng buộc tránh va chạm chướng ngại vật (Eq. 11 từ bài báo)
for obs_id, obs in enumerate(obstacles):
x_obs, y_obs = obs['x_center'], obs['y_center']
L, W = obs['L'], obs['W']
for k in range(N + 1):
# Eq. 11a
model.addGenConstrIndicator(delta_obs[obs_id, 0][k], True, x[k] <= x_obs - L)
# Eq. 11b
model.addGenConstrIndicator(delta_obs[obs_id, 1][k], True, x[k] >= x_obs + L)
# Eq. 11c
model.addGenConstrIndicator(delta_obs[obs_id, 2][k], True, y[k] <= y_obs - W)
# Eq. 11d
model.addGenConstrIndicator(delta_obs[obs_id, 3][k], True, y[k] >= y_obs + W)
# Eq. 11e
model.addConstr(delta_obs[obs_id, 0][k] + delta_obs[obs_id, 1][k] + delta_obs[obs_id, 2][k] + delta_obs[obs_id, 3][k] == 1)
# Objective function: Minimize cost of deviation from reference trajectory and control efforts
obj = gp.QuadExpr()
for k in range(N + 1):
obj += q1 * (v_x[k] - v_r) ** 2 + q2 * a_x[k] ** 2 + q3 * (y[k] - y_r) ** 2 + q4 * v_y[k] ** 2 + q5 * a_y[k] ** 2
for k in range(N):
obj += r1 * j_x[k] ** 2 + r2 * j_y[k] ** 2
model.setObjective(obj, GRB.MINIMIZE)
# Optimize the model
model.optimize()
# Extract results
x_res = [x[k].X for k in range(N + 1)]
y_res = [y[k].X for k in range(N + 1)]
v_x_res = [v_x[k].X for k in range(N + 1)]
v_y_res = [v_y[k].X for k in range(N + 1)]
a_x_res = [a_x[k].X for k in range(N + 1)]
a_y_res = [a_y[k].X for k in range(N + 1)]
j_x_res = [j_x[k].X for k in range(N)]
j_y_res = [j_y[k].X for k in range(N)]
# Plot results
# Sau khi trích xuất kết quả, thêm đoạn mã sau để vẽ các biểu đồ bổ sung
# Tạo lưới biểu đồ
fig, axs = plt.subplots(3, 2, figsize=(15, 20))
# 1. Quỹ đạo xe và chướng ngại vật
# 1. Quỹ đạo xe và chướng ngại vật
axs[0, 0].plot(x_res, y_res, 'b-', linewidth=2, label='Vehicle Trajectory')
axs[0, 0].set_xlabel('x (m)')
axs[0, 0].set_ylabel('y (m)')
axs[0, 0].set_title('Vehicle Trajectory with Obstacles and Speed Bump')
# Vẽ chướng ngại vật
for obs in obstacles:
rect = plt.Rectangle((obs['x_center'] - obs['L'], obs['y_center'] - obs['W']),
2 * obs['L'], 2 * obs['W'], fill=True, facecolor='red', alpha=0.5)
axs[0, 0].add_patch(rect)
# Vẽ khu vực speed bump
axs[0, 0].axvline(x=x_bump_start, color='g', linestyle='--', label='Speed bump start')
axs[0, 0].axvline(x=x_bump_end, color='g', linestyle='--', label='Speed bump end')
axs[0, 0].fill_between([x_bump_start, x_bump_end], 0, 5, alpha=0.2, color='g')
axs[0, 0].set_xlim(0, max(x_res) + 10)
axs[0, 0].set_ylim(0, 5)
axs[0, 0].legend()
axs[0, 0].grid(True)
# Thêm chú thích cho chướng ngại vật và speed bump
axs[0, 0].text(80, 1.5, 'Obstacle 1', ha='center', va='center')
axs[0, 0].text(200, 3.5, 'Obstacle 2', ha='center', va='center')
axs[0, 0].text((x_bump_start + x_bump_end) / 2, 0.5, 'Speed Bump', ha='center', va='center')
# 2. Biểu đồ vận tốc
# Longitudinal speed plot
axs[0, 1].plot(x_res, v_x_res, 'b-', linewidth=2)
axs[0, 1].set_xlabel('x (m)')
axs[0, 1].set_ylabel('v_x (m/s)')
axs[0, 1].set_title('Longitudinal Speed Profile')
axs[0, 1].axvline(x=x_bump_start, color='r', linestyle='--', label='Speed bump zone')
axs[0, 1].axvline(x=x_bump_end, color='r', linestyle='--')
axs[0, 1].axhline(y=v_max_bump, color='g', linestyle=':', label='Speed limit in bump')
axs[0, 1].fill_between([x_bump_start, x_bump_end], 0, v_x_max, alpha=0.2, color='r')
axs[0, 1].set_xlim(0, max(x_res))
axs[0, 1].set_ylim(0, v_x_max)
axs[0, 1].legend()
axs[0, 1].grid(True, linestyle=':', alpha=0.7)
# 3. Biểu đồ gia tốc
axs[1, 0].plot(x_res, a_x_res, 'b-', label='a_x')
axs[1, 0].plot(x_res, a_y_res, 'r-', label='a_y')
axs[1, 0].set_xlabel('x (m)')
axs[1, 0].set_ylabel('Acceleration (m/s²)')
axs[1, 0].set_title('Acceleration Profiles')
axs[1, 0].legend()
axs[1, 0].grid(True)
# 4. Biểu đồ jerk
axs[1, 1].step(x_res[:-1], j_x_res, 'b-', label='j_x', where='post')
axs[1, 1].step(x_res[:-1], j_y_res, 'r-', label='j_y', where='post')
axs[1, 1].set_xlabel('x (m)')
axs[1, 1].set_ylabel('Jerk (m/s³)')
axs[1, 1].set_title('Jerk Profiles')
axs[1, 1].legend()
axs[1, 1].grid(True)
# 5. Góc lái (được tính từ v_y và v_x)
steering_angle = [np.arctan2(v_y_res[i], v_x_res[i]) for i in range(len(v_x_res))]
axs[2, 0].plot(x_res, steering_angle, 'g-')
axs[2, 0].set_xlabel('x (m)')
axs[2, 0].set_ylabel('Steering Angle (rad)')
axs[2, 0].set_title('Steering Angle Profile')
axs[2, 0].grid(True)
# 6. Tốc độ góc (được tính từ a_y và v_x)
yaw_rate = [a_y_res[i] / v_x_res[i] if v_x_res[i] != 0 else 0 for i in range(len(v_x_res))]
axs[2, 1].plot(x_res, yaw_rate, 'm-')
axs[2, 1].set_xlabel('x (m)')
axs[2, 1].set_ylabel('Yaw Rate (rad/s)')
axs[2, 1].set_title('Yaw Rate Profile')
axs[2, 1].grid(True)
plt.tight_layout()
plt.show()
print("Optimization status:", model.status)
print("Objective value:", model.objVal)