forked from victorchall/EveryDream2trainer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
caption.py
140 lines (118 loc) · 5.64 KB
/
caption.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""
Copyright [2022-2023] Victor C Hall
Licensed under the GNU Affero General Public License;
You may not use this code except in compliance with the License.
You may obtain a copy of the License at
https://www.gnu.org/licenses/agpl-3.0.en.html
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
from PIL import Image
import argparse
import requests
from transformers import Blip2Processor, Blip2ForConditionalGeneration, GitProcessor, GitForCausalLM, AutoModel, AutoProcessor
import torch
from pynvml import *
import time
from colorama import Fore, Style
SUPPORTED_EXT = [".jpg", ".png", ".jpeg", ".bmp", ".jfif", ".webp"]
def get_gpu_memory_map():
"""Get the current gpu usage.
Returns
-------
usage: dict
Keys are device ids as integers.
Values are memory usage as integers in MB.
"""
nvmlInit()
handle = nvmlDeviceGetHandleByIndex(0)
info = nvmlDeviceGetMemoryInfo(handle)
return info.used/1024/1024
def create_blip2_processor(model_name, device, dtype=torch.float16):
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2ForConditionalGeneration.from_pretrained(
args.model, torch_dtype=dtype
)
model.to(device)
model.eval()
print(f"BLIP2 Model loaded: {model_name}")
return processor, model
def create_git_processor(model_name, device, dtype=torch.float16):
processor = GitProcessor.from_pretrained(model_name)
model = GitForCausalLM.from_pretrained(
args.model, torch_dtype=dtype
)
model.to(device)
model.eval()
print(f"GIT Model loaded: {model_name}")
return processor, model
def create_auto_processor(model_name, device, dtype=torch.float16):
processor = AutoProcessor.from_pretrained(model_name)
model = AutoModel.from_pretrained(
args.model, torch_dtype=dtype
)
model.to(device)
model.eval()
print("Auto Model loaded")
return processor, model
def main(args):
device = "cuda" if torch.cuda.is_available() and not args.force_cpu else "cpu"
dtype = torch.float32 if args.force_cpu else torch.float16
if "salesforce/blip2-" in args.model.lower():
print(f"Using BLIP2 model: {args.model}")
processor, model = create_blip2_processor(args.model, device, dtype)
elif "microsoft/git-" in args.model.lower():
print(f"Using GIT model: {args.model}")
processor, model = create_git_processor(args.model, device, dtype)
else:
# try to use auto model? doesn't work with blip/git
processor, model = create_auto_processor(args.model, device, dtype)
print(f"GPU memory used, after loading model: {get_gpu_memory_map()} MB")
# os.walk all files in args.data_root recursively
for root, dirs, files in os.walk(args.data_root):
for file in files:
#get file extension
ext = os.path.splitext(file)[1]
if ext.lower() in SUPPORTED_EXT:
full_file_path = os.path.join(root, file)
image = Image.open(full_file_path)
start_time = time.time()
inputs = processor(images=image, return_tensors="pt", max_new_tokens=args.max_new_tokens).to(device, dtype)
generated_ids = model.generate(**inputs)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
print(f"file: {file}, caption: {generated_text}")
exec_time = time.time() - start_time
print(f" Time for last caption: {exec_time} sec. GPU memory used: {get_gpu_memory_map()} MB")
# get bare name
name = os.path.splitext(full_file_path)[0]
#name = os.path.join(root, name)
if not os.path.exists(name):
with open(f"{name}.txt", "w") as f:
f.write(generated_text)
if __name__ == "__main__":
print(f"{Fore.CYAN}** Current supported models:{Style.RESET_ALL}")
print(" microsoft/git-base-textcaps")
print(" microsoft/git-large-textcaps")
print(" microsoft/git-large-r-textcaps")
print(" Salesforce/blip2-opt-2.7b - (9GB VRAM or recommend 32GB sys RAM)")
print(" Salesforce/blip2-opt-2.7b-coco - (9GB VRAM or recommend 32GB sys RAM)")
print(" Salesforce/blip2-opt-6.7b - (16.5GB VRAM or recommend 64GB sys RAM)")
print(" Salesforce/blip2-opt-6.7b-coco - (16.5GB VRAM or recommend 64GB sys RAM)")
print()
print(f"{Fore.CYAN} * The following will likely not work on any consumer GPUs or require huge sys RAM on CPU:{Style.RESET_ALL}")
print(" salesforce/blip2-flan-t5-xl")
print(" salesforce/blip2-flan-t5-xl-coco")
print(" salesforce/blip2-flan-t5-xxl")
parser = argparse.ArgumentParser()
parser.add_argument("--data_root", type=str, default="input", help="Path to images")
parser.add_argument("--model", type=str, default="salesforce/blip2-opt-2.7b", help="model from huggingface, ex. 'salesforce/blip2-opt-2.7b'")
parser.add_argument("--force_cpu", action="store_true", default=False, help="force using CPU even if GPU is available, may be useful to run huge models if you have a lot of system memory")
parser.add_argument("--max_new_tokens", type=int, default=24, help="max length for generated captions")
args = parser.parse_args()
print(f"** Using model: {args.model}")
print(f"** Captioning files in: {args.data_root}")
main(args)