-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathattention_processor.py
292 lines (226 loc) · 14.2 KB
/
attention_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Not a contribution
# Changes made by NVIDIA CORPORATION & AFFILIATES enabling ConsiStory or otherwise documented as NVIDIA-proprietary
# are not a contribution and subject to the license under the LICENSE file located at the root directory.
from diffusers.utils import USE_PEFT_BACKEND
from typing import Callable, Optional
import torch
from diffusers.models.attention_processor import Attention
from consistory_utils import AnchorCache, FeatureInjector, QueryStore, xformers
class ConsistoryAttnStoreProcessor:
def __init__(self, attnstore, place_in_unet):
super().__init__()
self.attnstore = attnstore
self.place_in_unet = place_in_unet
def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, record_attention=True, **kwargs):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
is_cross = encoder_hidden_states is not None
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
# only need to store attention maps during the Attend and Excite process
# if attention_probs.requires_grad:
if record_attention:
self.attnstore(attention_probs, is_cross, self.place_in_unet, attn.heads)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class ConsistoryExtendedAttnXFormersAttnProcessor:
r"""
Processor for implementing memory efficient attention using xFormers.
Args:
attention_op (`Callable`, *optional*, defaults to `None`):
The base
[operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to
use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best
operator.
"""
def __init__(self, place_in_unet, attnstore, extended_attn_kwargs, attention_op: Optional[Callable] = None):
self.attention_op = attention_op
self.t_range = extended_attn_kwargs.get('t_range', [])
self.extend_kv_unet_parts = extended_attn_kwargs.get('extend_kv_unet_parts', ['down', 'mid', 'up'])
self.place_in_unet = place_in_unet
self.curr_unet_part = self.place_in_unet.split('_')[0]
self.attnstore = attnstore
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
temb: Optional[torch.FloatTensor] = None,
scale: float = 1.0,
perform_extend_attn: bool = False,
query_store: Optional[QueryStore] = None,
feature_injector: Optional[FeatureInjector] = None,
anchors_cache: Optional[AnchorCache] = None,
**kwargs
) -> torch.FloatTensor:
residual = hidden_states
args = () if USE_PEFT_BACKEND else (scale,)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
else:
batch_size, wh, channel = hidden_states.shape
height = width = int(wh ** 0.5)
is_cross = encoder_hidden_states is not None
perform_extend_attn = perform_extend_attn and (not is_cross) and \
any([self.attnstore.curr_iter >= x[0] and self.attnstore.curr_iter <= x[1] for x in self.t_range]) and \
self.curr_unet_part in self.extend_kv_unet_parts
batch_size, key_tokens, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, key_tokens, batch_size)
if attention_mask is not None:
# expand our mask's singleton query_tokens dimension:
# [batch*heads, 1, key_tokens] ->
# [batch*heads, query_tokens, key_tokens]
# so that it can be added as a bias onto the attention scores that xformers computes:
# [batch*heads, query_tokens, key_tokens]
# we do this explicitly because xformers doesn't broadcast the singleton dimension for us.
_, query_tokens, _ = hidden_states.shape
attention_mask = attention_mask.expand(-1, query_tokens, -1)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states, *args)
if (self.curr_unet_part in self.extend_kv_unet_parts) and query_store and query_store.mode == 'cache':
query_store.cache_query(query, self.place_in_unet)
elif perform_extend_attn and query_store and query_store.mode == 'inject':
query = query_store.inject_query(query, self.place_in_unet, self.attnstore.curr_iter)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
query = attn.head_to_batch_dim(query).contiguous()
if perform_extend_attn:
# Anchor Caching
if anchors_cache and anchors_cache.is_cache_mode():
if self.place_in_unet not in anchors_cache.input_h_cache:
anchors_cache.input_h_cache[self.place_in_unet] = {}
# Hidden states inside the mask, for uncond (index 0) and cond (index 1) prompts
subjects_hidden_states = torch.stack([x[self.attnstore.last_mask_dropout[width]] for x in hidden_states.chunk(2)])
anchors_cache.input_h_cache[self.place_in_unet][self.attnstore.curr_iter] = subjects_hidden_states
if anchors_cache and anchors_cache.is_inject_mode():
# We make extended key and value by concatenating the original key and value with the query.
anchors_hidden_states = anchors_cache.input_h_cache[self.place_in_unet][self.attnstore.curr_iter]
anchors_keys = attn.to_k(anchors_hidden_states, *args)
anchors_values = attn.to_v(anchors_hidden_states, *args)
extended_key = torch.cat([torch.cat([key.chunk(2, dim=0)[x], anchors_keys[x].unsqueeze(0)], dim=1) for x in range(2)])
extended_value = torch.cat([torch.cat([value.chunk(2, dim=0)[x], anchors_values[x].unsqueeze(0)], dim=1) for x in range(2)])
extended_key = attn.head_to_batch_dim(extended_key).contiguous()
extended_value = attn.head_to_batch_dim(extended_value).contiguous()
# attn_masks needs to be of shape [batch_size, query_tokens, key_tokens]
hidden_states = xformers.ops.memory_efficient_attention(
query, extended_key, extended_value, op=self.attention_op, scale=attn.scale
)
else:
# # We make extended key and value by concatenating the original key and value with the query.
# attention_mask_bias = self.attnstore.get_attn_mask_bias(tgt_size = width, bsz = batch_size)
# if attention_mask_bias is not None:
# attention_mask_bias = torch.cat([x.unsqueeze(0).expand(attn.heads, -1, -1) for x in attention_mask_bias])
# Pre-allocate the output tensor
ex_out = torch.empty_like(query)
for i in range(batch_size):
start_idx = i * attn.heads
end_idx = start_idx + attn.heads
attention_mask = self.attnstore.get_extended_attn_mask_instance(width, i%(batch_size//2))
curr_q = query[start_idx:end_idx]
if i < batch_size//2:
curr_k = key[:batch_size//2]
curr_v = value[:batch_size//2]
else:
curr_k = key[batch_size//2:]
curr_v = value[batch_size//2:]
curr_k = curr_k.flatten(0,1)[attention_mask].unsqueeze(0)
curr_v = curr_v.flatten(0,1)[attention_mask].unsqueeze(0)
curr_k = attn.head_to_batch_dim(curr_k).contiguous()
curr_v = attn.head_to_batch_dim(curr_v).contiguous()
hidden_states = xformers.ops.memory_efficient_attention(
curr_q, curr_k, curr_v,
op=self.attention_op, scale=attn.scale
)
ex_out[start_idx:end_idx] = hidden_states
hidden_states = ex_out
else:
key = attn.head_to_batch_dim(key).contiguous()
value = attn.head_to_batch_dim(value).contiguous()
# attn_masks needs to be of shape [batch_size, query_tokens, key_tokens]
hidden_states = xformers.ops.memory_efficient_attention(
query, key, value, op=self.attention_op, scale=attn.scale
)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if (feature_injector is not None):
output_res = int(hidden_states.shape[1] ** 0.5)
if anchors_cache and anchors_cache.is_inject_mode():
hidden_states[batch_size//2:] = feature_injector.inject_anchors(hidden_states[batch_size//2:], self.attnstore.curr_iter, output_res, self.attnstore.extended_mapping, self.place_in_unet, anchors_cache)
else:
hidden_states[batch_size//2:] = feature_injector.inject_outputs(hidden_states[batch_size//2:], self.attnstore.curr_iter, output_res, self.attnstore.extended_mapping, self.place_in_unet, anchors_cache)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def register_extended_self_attn(unet, attnstore, extended_attn_kwargs):
DICT_PLACE_TO_RES = {'down_0': 64, 'down_1': 64, 'down_2': 64, 'down_3': 64, 'down_4': 64, 'down_5': 64, 'down_6': 64, 'down_7': 64,
'down_8': 32, 'down_9': 32, 'down_10': 32, 'down_11': 32, 'down_12': 32, 'down_13': 32, 'down_14': 32, 'down_15': 32,
'down_16': 32, 'down_17': 32, 'down_18': 32, 'down_19': 32, 'down_20': 32, 'down_21': 32, 'down_22': 32, 'down_23': 32,
'down_24': 32, 'down_25': 32, 'down_26': 32, 'down_27': 32, 'down_28': 32, 'down_29': 32, 'down_30': 32, 'down_31': 32,
'down_32': 32, 'down_33': 32, 'down_34': 32, 'down_35': 32, 'down_36': 32, 'down_37': 32, 'down_38': 32, 'down_39': 32,
'down_40': 32, 'down_41': 32, 'down_42': 32, 'down_43': 32, 'down_44': 32, 'down_45': 32, 'down_46': 32, 'down_47': 32,
'mid_120': 32, 'mid_121': 32, 'mid_122': 32, 'mid_123': 32, 'mid_124': 32, 'mid_125': 32, 'mid_126': 32, 'mid_127': 32,
'mid_128': 32, 'mid_129': 32, 'mid_130': 32, 'mid_131': 32, 'mid_132': 32, 'mid_133': 32, 'mid_134': 32, 'mid_135': 32,
'mid_136': 32, 'mid_137': 32, 'mid_138': 32, 'mid_139': 32, 'up_49': 32, 'up_51': 32, 'up_53': 32, 'up_55': 32, 'up_57': 32,
'up_59': 32, 'up_61': 32, 'up_63': 32, 'up_65': 32, 'up_67': 32, 'up_69': 32, 'up_71': 32, 'up_73': 32, 'up_75': 32,
'up_77': 32, 'up_79': 32, 'up_81': 32, 'up_83': 32, 'up_85': 32, 'up_87': 32, 'up_89': 32, 'up_91': 32, 'up_93': 32,
'up_95': 32, 'up_97': 32, 'up_99': 32, 'up_101': 32, 'up_103': 32, 'up_105': 32, 'up_107': 32, 'up_109': 64, 'up_111': 64,
'up_113': 64, 'up_115': 64, 'up_117': 64, 'up_119': 64}
attn_procs = {}
for i, name in enumerate(unet.attn_processors.keys()):
is_self_attn = (i % 2 == 0)
if name.startswith("mid_block"):
place_in_unet = f"mid_{i}"
elif name.startswith("up_blocks"):
place_in_unet = f"up_{i}"
elif name.startswith("down_blocks"):
place_in_unet = f"down_{i}"
else:
continue
if is_self_attn:
attn_procs[name] = ConsistoryExtendedAttnXFormersAttnProcessor(place_in_unet, attnstore, extended_attn_kwargs)
else:
attn_procs[name] = ConsistoryAttnStoreProcessor(attnstore, place_in_unet)
unet.set_attn_processor(attn_procs)