Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Training on custom dataset #15

Open
miscal opened this issue Dec 20, 2023 · 0 comments
Open

Training on custom dataset #15

miscal opened this issue Dec 20, 2023 · 0 comments

Comments

@miscal
Copy link

miscal commented Dec 20, 2023

Certainly! Here's the revised version of your paragraph with grammatical corrections and improved clarity:

Hi!

Thank you for your excellent work. I really appreciate it.

I am currently training EmerNeRF on a custom dataset collected from the Carla simulator. I've slightly modified the code to include depth supervision. While the overall reconstructed geometry appears quite good, the decomposed dynamic field exhibits significant artifacts, and the cars are noticeably distorted. Additionally, the voxelization results seem scattered.

Static RGB field:
https://github.com/NVlabs/EmerNeRF/assets/79851538/c02a167a-16dc-4d79-bee7-63ce910f117f

Static depth:
https://github.com/NVlabs/EmerNeRF/assets/79851538/4d7a603c-0d6b-4d2c-949b-e631c9343e24

Dynamic RGB field:
https://github.com/NVlabs/EmerNeRF/assets/79851538/42c6047a-9a75-4e4a-a9d3-d2117521201b

Dynamic depth:
https://github.com/NVlabs/EmerNeRF/assets/79851538/9f67c6b5-3b30-4828-9d02-6ad9784886cf

Voxelization:
image

Here is my config:
data:
data_root: ../data/carla_v2
dataset: carla_depth
scene_idx: 0
start_timestep: 0
end_timestep: -1
ray_batch_size: 8192
preload_device: cuda
pixel_source:
load_size:
- 644
- 966
downscale: 1
num_cams: 6
test_image_stride: 0
load_rgb: true
load_sky_mask: true
load_dynamic_mask: false
load_features: true
skip_feature_extraction: false
target_feature_dim: 64
feature_model_type: dinov2_vitb14
feature_extraction_stride: 7
feature_extraction_size:
- 644
- 966
delete_features_after_run: false
sampler:
buffer_downscale: 16
buffer_ratio: 0.25
depth_truncate: 70
lidar_source:
load_lidar: true
only_use_top_lidar: false
truncated_max_range: 80
truncated_min_range: -2
lidar_downsample_factor: 4
lidar_percentile: 0.02
occ_source:
voxel_size: 0.1
nerf:
aabb:

  • -20.0
  • -40.0
  • 0
  • 80.0
  • 40.0
  • 20.0
    unbounded: true
    propnet:
    num_samples_per_prop:
    • 128
    • 64
      near_plane: 0.1
      far_plane: 1000.0
      sampling_type: uniform_lindisp
      enable_anti_aliasing_level_loss: true
      anti_aliasing_pulse_width:
    • 0.03
    • 0.003
      xyz_encoder:
      type: HashEncoder
      n_input_dims: 3
      n_levels_per_prop:
      • 8
      • 8
        base_resolutions_per_prop:
      • 16
      • 16
        max_resolution_per_prop:
      • 512
      • 2048
        lgo2_hashmap_size_per_prop:
      • 20
      • 20
        n_features_per_level: 1
        unbounded: true
        sampling:
        num_samples: 64
        model:
        xyz_encoder:
        type: HashEncoder
        n_input_dims: 3
        n_levels: 10
        n_features_per_level: 4
        base_resolution: 16
        max_resolution: 8192
        log2_hashmap_size: 20
        dynamic_xyz_encoder:
        type: HashEncoder
        n_input_dims: 4
        n_levels: 10
        n_features_per_level: 4
        base_resolution: 32
        max_resolution: 8192
        log2_hashmap_size: 18
        neck:
        base_mlp_layer_width: 64
        geometry_feature_dim: 64
        semantic_feature_dim: 64
        head:
        head_mlp_layer_width: 64
        enable_cam_embedding: false
        enable_img_embedding: true
        appearance_embedding_dim: 16
        enable_sky_head: true
        enable_feature_head: true
        feature_embedding_dim: 64
        feature_mlp_layer_width: 64
        enable_learnable_pe: true
        enable_dynamic_branch: true
        enable_shadow_head: true
        interpolate_xyz_encoding: true
        enable_temporal_interpolation: false
        enable_flow_branch: true
        num_cams: 6
        unbounded: true
        resume_from: null
        render:
        render_chunk_size: 16384
        render_novel_trajectory: false
        fps: 24
        render_low_res: true
        render_full: true
        render_test: true
        low_res_downscale: 4
        save_html: false
        vis_voxel_size: 0.3
        supervision:
        rgb:
        loss_type: l2
        loss_coef: 1.0
        depth:
        loss_type: l2
        enable: true
        loss_coef: 1.0
        depth_error_percentile: null
        line_of_sight:
        enable: true
        loss_type: my
        loss_coef: 0.1
        start_iter: 2000
        start_epsilon: 6.0
        end_epsilon: 2.5
        decay_steps: 5000
        decay_rate: 0.5
        sky:
        loss_type: opacity_based
        loss_coef: 0.001
        feature:
        loss_type: l2
        loss_coef: 0.5
        dynamic:
        loss_type: sparsity
        loss_coef: 0.01
        entropy_loss_skewness: 1.1
        shadow:
        loss_type: sparsity
        loss_coef: 0.01
        optim:
        num_iters: 100000
        weight_decay: 1.0e-05
        lr: 0.01
        seed: 0
        check_nan: false
        cache_rgb_freq: 2000
        logging:
        vis_freq: 2000
        print_freq: 200
        saveckpt_freq: 20000
        save_seperate_video: true
        resume_from: null
        eval:
        eval_lidar_flow: false
        remove_ground_when_eval_lidar_flow: true
        eval_occ: false
        occ_annotation_stride: 10

Could you kindly provide some suggestions on how I can improve the quality of the dynamic field?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant