Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

File "/home/mona/BundleSDF/nerf_runner.py", line 1511, in mesh_texture_from_train_images locations, distance, index_tri = trimesh.proximity.closest_point(mesh, pts) File "/opt/conda/envs/py38/lib/python3.8/site-packages/trimesh/proximity.py", line 153, in closest_point all_candidates = np.concatenate(candidates) File "<__array_function__ internals>", line 200, in concatenate ValueError: need at least one array to concatenate #118

Closed
monajalal opened this issue Nov 15, 2023 · 8 comments

Comments

@monajalal
Copy link

I get an error in this step. How should I fix this?

(py38) root@ada:/home/mona/BundleSDF# python run_custom.py --mode run_video --video_dir /home/mona/BundleSDF/cup --out_folder /home/mona/BundleSDF/cup/out --use_segmenter 1 --use_gui 1 --debug_level 2


[nerf_runner.py] Iter: 0, valid_samples: 621027/655360, valid_rays: 1964/2048, loss: 28.6001949, rgb_loss: 22.5497475, rgb0_loss: 0.0000000, fs_rgb_loss: 0.0000000, depth_loss: 0.0000000, depth_loss0: 0.0000000, fs_loss: 0.0145888, point_cloud_loss: 0.0000000, point_cloud_normal_loss: 0.0000000, sdf_loss: 5.9261217, eikonal_loss: 0.0000000, variation_loss: 0.0000000, truncation(meter): 0.0100000, pose_reg: 0.0000000, reg_features: 0.1097347, 

[nerf_runner.py] train progress 200/2001
[nerf_runner.py] train progress 400/2001
[nerf_runner.py] train progress 600/2001
[nerf_runner.py] train progress 800/2001
[nerf_runner.py] train progress 1000/2001
[nerf_runner.py] train progress 1200/2001
[nerf_runner.py] train progress 1400/2001
[nerf_runner.py] train progress 1600/2001
[nerf_runner.py] train progress 1800/2001
[nerf_runner.py] train progress 2000/2001
cp: cannot stat '/home/mona/BundleSDF/cup/out//nerf_with_bundletrack_online/image_step_*.png': No such file or directory
[nerf_runner.py] query_pts:torch.Size([166375, 3]), valid:155595
[nerf_runner.py] Running Marching Cubes
[nerf_runner.py] done V:(11050, 3), F:(21770, 3)
[acceleratesupport.py] OpenGL_accelerate module loaded
[arraydatatype.py] Using accelerated ArrayDatatype
project train_images 0/197
/home/mona/BundleSDF/nerf_runner.py:1530: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
  uvs_unique = torch.stack((uvs_flat_unique%(W-1), uvs_flat_unique//(W-1)), dim=-1).reshape(-1,2)
project train_images 1/197
project train_images 2/197
project train_images 3/197
project train_images 4/197
project train_images 5/197
project train_images 6/197
project train_images 7/197
project train_images 8/197
project train_images 9/197
project train_images 10/197
project train_images 11/197
project train_images 12/197
project train_images 13/197
project train_images 14/197
project train_images 15/197
project train_images 16/197
project train_images 17/197
project train_images 18/197
project train_images 19/197
project train_images 20/197
project train_images 21/197
project train_images 22/197
project train_images 23/197
project train_images 24/197
project train_images 25/197
project train_images 26/197
project train_images 27/197
project train_images 28/197
project train_images 29/197
project train_images 30/197
project train_images 31/197
project train_images 32/197
project train_images 33/197
project train_images 34/197
project train_images 35/197
project train_images 36/197
project train_images 37/197
project train_images 38/197
project train_images 39/197
project train_images 40/197
project train_images 41/197
project train_images 42/197
project train_images 43/197
project train_images 44/197
project train_images 45/197
project train_images 46/197
project train_images 47/197
project train_images 48/197
project train_images 49/197
project train_images 50/197
project train_images 51/197
project train_images 52/197
project train_images 53/197
project train_images 54/197
project train_images 55/197
project train_images 56/197
project train_images 57/197
project train_images 58/197
project train_images 59/197
project train_images 60/197
project train_images 61/197
project train_images 62/197
project train_images 63/197
Traceback (most recent call last):
  File "run_custom.py", line 223, in <module>
    run_one_video(video_dir=args.video_dir, out_folder=args.out_folder, use_segmenter=args.use_segmenter, use_gui=args.use_gui)
  File "run_custom.py", line 107, in run_one_video
    run_one_video_global_nerf(out_folder=out_folder)
  File "run_custom.py", line 152, in run_one_video_global_nerf
    tracker.run_global_nerf(reader=reader, get_texture=True, tex_res=512)
  File "/home/mona/BundleSDF/bundlesdf.py", line 790, in run_global_nerf
    mesh = nerf.mesh_texture_from_train_images(mesh, rgbs_raw=rgbs_raw, train_texture=False, tex_res=tex_res)
  File "/home/mona/BundleSDF/nerf_runner.py", line 1511, in mesh_texture_from_train_images
    locations, distance, index_tri = trimesh.proximity.closest_point(mesh, pts)
  File "/opt/conda/envs/py38/lib/python3.8/site-packages/trimesh/proximity.py", line 153, in closest_point
    all_candidates = np.concatenate(candidates)
  File "<__array_function__ internals>", line 200, in concatenate
ValueError: need at least one array to concatenate
Process Process-5:
Traceback (most recent call last):
  File "/opt/conda/envs/py38/lib/python3.8/multiprocessing/process.py", line 315, in _bootstrap
    self.run()
  File "/opt/conda/envs/py38/lib/python3.8/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/home/mona/BundleSDF/bundlesdf.py", line 89, in run_nerf
    join = p_dict['join']
  File "<string>", line 2, in __getitem__
  File "/opt/conda/envs/py38/lib/python3.8/multiprocessing/managers.py", line 835, in _callmethod
    kind, result = conn.recv()
  File "/opt/conda/envs/py38/lib/python3.8/multiprocessing/connection.py", line 250, in recv
    buf = self._recv_bytes()
  File "/opt/conda/envs/py38/lib/python3.8/multiprocessing/connection.py", line 414, in _recv_bytes
    buf = self._recv(4)
  File "/opt/conda/envs/py38/lib/python3.8/multiprocessing/connection.py", line 379, in _recv
    chunk = read(handle, remaining)
ConnectionResetError: [Errno 104] Connection reset by peer
[2023-11-15 11:02:27.858] [warning] [Bundler.cpp:59] Destructor
[2023-11-15 11:02:27.861] [warning] [Bundler.cpp:59] Destructor

I am following ros realsense depth aligned capture and use xmem for segmentation.

Here is one of the depth images:

(base) mona@ada:~/BundleSDF/cup/depth$ identify -verbose 1700072993.020334.png
Image:
  Filename: 1700072993.020334.png
  Format: PNG (Portable Network Graphics)
  Mime type: image/png
  Class: DirectClass
  Geometry: 640x480+0+0
  Units: Undefined
  Colorspace: Gray
  Type: Grayscale
  Base type: Undefined
  Endianness: Undefined
  Depth: 16-bit
  Channel depth:
    gray: 16-bit
  Channel statistics:
    Pixels: 307200
    Gray:
      min: 0  (0)
      max: 3776 (0.0576181)
      mean: 1099.04 (0.0167702)
      standard deviation: 646.808 (0.00986966)
      kurtosis: 1.31164
      skewness: 0.991703
      entropy: 0.919741
  Colors: 898
  Histogram:
    22415: (0,0,0) #000000000000 gray(0)
    90: (481,481,481) #01E101E101E1 gray(0.733959%)
    145: (482,482,482) #01E201E201E2 gray(0.735485%)
    168: (483,483,483) #01E301E301E3 gray(0.737011%)
    117: (484,484,484) #01E401E401E4 gray(0.738537%)
    193: (485,485,485) #01E501E501E5 gray(0.740063%)
    115: (486,486,486) #01E601E601E6 gray(0.741588%)
    194: (487,487,487) #01E701E701E7 gray(0.743114%)
    221: (488,488,488) #01E801E801E8 gray(0.74464%)
    114: (489,489,489) #01E901E901E9 gray(0.746166%)
    171: (490,490,490) #01EA01EA01EA gray(0.747692%)
    131: (491,491,491) #01EB01EB01EB gray(0.749218%)
    192: (492,492,492) #01EC01EC01EC gray(0.750744%)
    118: (493,493,493) #01ED01ED01ED gray(0.75227%)
    234: (494,494,494) #01EE01EE01EE gray(0.753796%)
    169: (495,495,495) #01EF01EF01EF gray(0.755322%)
    224: (496,496,496) #01F001F001F0 gray(0.756847%)
    142: (497,497,497) #01F101F101F1 gray(0.758373%)
    266: (498,498,498) #01F201F201F2 gray(0.759899%)
    182: (499,499,499) #01F301F301F3 gray(0.761425%)
    259: (500,500,500) #01F401F401F4 gray(0.762951%)
    168: (501,501,501) #01F501F501F5 gray(0.764477%)
    266: (502,502,502) #01F601F601F6 gray(0.766003%)
    183: (503,503,503) #01F701F701F7 gray(0.767529%)
    234: (504,504,504) #01F801F801F8 gray(0.769055%)
    286: (505,505,505) #01F901F901F9 gray(0.770581%)
    283: (506,506,506) #01FA01FA01FA gray(0.772107%)
    436: (507,507,507) #01FB01FB01FB gray(0.773632%)
    272: (508,508,508) #01FC01FC01FC gray(0.775158%)
    401: (509,509,509) #01FD01FD01FD gray(0.776684%)
    385: (510,510,510) #01FE01FE01FE gray(0.77821%)
    227: (511,511,511) #01FF01FF01FF gray(0.779736%)
    368: (512,512,512) #020002000200 gray(0.781262%)
    228: (513,513,513) #020102010201 gray(0.782788%)
    276: (514,514,514) #020202020202 gray(2)
    288: (515,515,515) #020302030203 gray(0.78584%)
    186: (516,516,516) #020402040204 gray(0.787366%)
    179: (517,517,517) #020502050205 gray(0.788891%)
    311: (518,518,518) #020602060206 gray(0.790417%)
    135: (519,519,519) #020702070207 gray(0.791943%)
    161: (520,520,520) #020802080208 gray(0.793469%)
    173: (521,521,521) #020902090209 gray(0.794995%)
    176: (522,522,522) #020A020A020A gray(0.796521%)
    121: (523,523,523) #020B020B020B gray(0.798047%)
    124: (524,524,524) #020C020C020C gray(0.799573%)
    111: (525,525,525) #020D020D020D gray(0.801099%)
    178: (526,526,526) #020E020E020E gray(0.802625%)
    84: (527,527,527) #020F020F020F gray(0.80415%)
    122: (528,528,528) #021002100210 gray(0.805676%)
    60: (529,529,529) #021102110211 gray(0.807202%)
    107: (530,530,530) #021202120212 gray(0.808728%)
    96: (531,531,531) #021302130213 gray(0.810254%)
    91: (532,532,532) #021402140214 gray(0.81178%)
    70: (533,533,533) #021502150215 gray(0.813306%)
    80: (534,534,534) #021602160216 gray(0.814832%)
    46: (535,535,535) #021702170217 gray(0.816358%)
    62: (536,536,536) #021802180218 gray(0.817884%)
    80: (537,537,537) #021902190219 gray(0.819409%)
    73: (538,538,538) #021A021A021A gray(0.820935%)
    70: (539,539,539) #021B021B021B gray(0.822461%)
    53: (540,540,540) #021C021C021C gray(0.823987%)
    74: (541,541,541) #021D021D021D gray(0.825513%)
    72: (542,542,542) #021E021E021E gray(0.827039%)
    61: (543,543,543) #021F021F021F gray(0.828565%)
    60: (544,544,544) #022002200220 gray(0.830091%)
    39: (545,545,545) #022102210221 gray(0.831617%)
    9: (546,546,546) #022202220222 gray(0.833143%)
    7: (547,547,547) #022302230223 gray(0.834668%)
    15: (548,548,548) #022402240224 gray(0.836194%)
    9: (549,549,549) #022502250225 gray(0.83772%)
    6: (550,550,550) #022602260226 gray(0.839246%)
    2: (551,551,551) #022702270227 gray(0.840772%)
    3: (552,552,552) #022802280228 gray(0.842298%)
    2: (556,556,556) #022C022C022C gray(0.848402%)
    4: (558,558,558) #022E022E022E gray(0.851453%)
    4: (561,561,561) #023102310231 gray(0.856031%)
    6: (562,562,562) #023202320232 gray(0.857557%)
    12: (563,563,563) #023302330233 gray(0.859083%)
    5: (567,567,567) #023702370237 gray(0.865187%)
    2: (569,569,569) #023902390239 gray(0.868238%)
    4: (570,570,570) #023A023A023A gray(0.869764%)
    2: (575,575,575) #023F023F023F gray(0.877394%)
    2: (576,576,576) #024002400240 gray(0.87892%)
    2: (582,582,582) #024602460246 gray(0.888075%)
    6: (584,584,584) #024802480248 gray(0.891127%)
    4: (587,587,587) #024B024B024B gray(0.895705%)
    12: (588,588,588) #024C024C024C gray(0.89723%)
    6: (590,590,590) #024E024E024E gray(0.900282%)
    4: (591,591,591) #024F024F024F gray(0.901808%)
    2: (592,592,592) #025002500250 gray(0.903334%)
    2: (593,593,593) #025102510251 gray(0.90486%)
    6: (594,594,594) #025202520252 gray(0.906386%)
    6: (595,595,595) #025302530253 gray(0.907912%)
    15: (598,598,598) #025602560256 gray(0.91249%)
    6: (599,599,599) #025702570257 gray(0.914015%)
    2: (601,601,601) #025902590259 gray(0.917067%)
    2: (603,603,603) #025B025B025B gray(0.920119%)
    6: (605,605,605) #025D025D025D gray(0.923171%)
    13: (606,606,606) #025E025E025E gray(0.924697%)
    2: (607,607,607) #025F025F025F gray(0.926223%)
    12: (609,609,609) #026102610261 gray(0.929274%)
    16: (610,610,610) #026202620262 gray(0.9308%)
    12: (611,611,611) #026302630263 gray(0.932326%)
    7: (612,612,612) #026402640264 gray(0.933852%)
    8: (613,613,613) #026502650265 gray(0.935378%)
    17: (614,614,614) #026602660266 gray(0.936904%)
    22: (615,615,615) #026702670267 gray(0.93843%)
    8: (616,616,616) #026802680268 gray(0.939956%)
    12: (617,617,617) #026902690269 gray(0.941482%)
    4: (618,618,618) #026A026A026A gray(0.943008%)
    14: (619,619,619) #026B026B026B gray(0.944533%)
    14: (620,620,620) #026C026C026C gray(0.946059%)
    16: (621,621,621) #026D026D026D gray(0.947585%)
    13: (622,622,622) #026E026E026E gray(0.949111%)
    5: (623,623,623) #026F026F026F gray(0.950637%)
    15: (624,624,624) #027002700270 gray(0.952163%)
    21: (625,625,625) #027102710271 gray(0.953689%)
    8: (626,626,626) #027202720272 gray(0.955215%)
    13: (627,627,627) #027302730273 gray(0.956741%)
    16: (628,628,628) #027402740274 gray(0.958267%)
    20: (629,629,629) #027502750275 gray(0.959792%)
    2: (630,630,630) #027602760276 gray(0.961318%)
    16: (631,631,631) #027702770277 gray(0.962844%)
    20: (632,632,632) #027802780278 gray(0.96437%)
    5: (633,633,633) #027902790279 gray(0.965896%)
    25: (634,634,634) #027A027A027A gray(0.967422%)
    15: (635,635,635) #027B027B027B gray(0.968948%)
    12: (636,636,636) #027C027C027C gray(0.970474%)
    7: (637,637,637) #027D027D027D gray(0.972%)
    25: (638,638,638) #027E027E027E gray(0.973526%)
    19: (639,639,639) #027F027F027F gray(0.975051%)
    14: (640,640,640) #028002800280 gray(0.976577%)
    12: (641,641,641) #028102810281 gray(0.978103%)
    39: (642,642,642) #028202820282 gray(0.979629%)
    2: (643,643,643) #028302830283 gray(0.981155%)
    24: (644,644,644) #028402840284 gray(0.982681%)
    33: (645,645,645) #028502850285 gray(0.984207%)
    12: (646,646,646) #028602860286 gray(0.985733%)
    4: (647,647,647) #028702870287 gray(0.987259%)
    30: (648,648,648) #028802880288 gray(0.988785%)
    24: (649,649,649) #028902890289 gray(0.990311%)
    19: (650,650,650) #028A028A028A gray(0.991836%)
    25: (651,651,651) #028B028B028B gray(0.993362%)
    6: (652,652,652) #028C028C028C gray(0.994888%)
    34: (653,653,653) #028D028D028D gray(0.996414%)
    9: (654,654,654) #028E028E028E gray(0.99794%)
    67: (655,655,655) #028F028F028F gray(0.999466%)
    84: (656,656,656) #029002900290 gray(1.00099%)
    128: (657,657,657) #029102910291 gray(1.00252%)
    248: (658,658,658) #029202920292 gray(1.00404%)
    114: (659,659,659) #029302930293 gray(1.00557%)
    243: (660,660,660) #029402940294 gray(1.0071%)
    144: (661,661,661) #029502950295 gray(1.00862%)
    266: (662,662,662) #029602960296 gray(1.01015%)
    148: (663,663,663) #029702970297 gray(1.01167%)
    136: (664,664,664) #029802980298 gray(1.0132%)
    334: (665,665,665) #029902990299 gray(1.01472%)
    138: (666,666,666) #029A029A029A gray(1.01625%)
    177: (667,667,667) #029B029B029B gray(1.01778%)
    322: (668,668,668) #029C029C029C gray(1.0193%)
    140: (669,669,669) #029D029D029D gray(1.02083%)
    314: (670,670,670) #029E029E029E gray(1.02235%)
    227: (671,671,671) #029F029F029F gray(1.02388%)
    216: (672,672,672) #02A002A002A0 gray(1.02541%)
    365: (673,673,673) #02A102A102A1 gray(1.02693%)
    224: (674,674,674) #02A202A202A2 gray(1.02846%)
    205: (675,675,675) #02A302A302A3 gray(1.02998%)
    484: (676,676,676) #02A402A402A4 gray(1.03151%)
    228: (677,677,677) #02A502A502A5 gray(1.03304%)
    240: (678,678,678) #02A602A602A6 gray(1.03456%)
    530: (679,679,679) #02A702A702A7 gray(1.03609%)
    228: (680,680,680) #02A802A802A8 gray(1.03761%)
    263: (681,681,681) #02A902A902A9 gray(1.03914%)
    501: (682,682,682) #02AA02AA02AA gray(1.04067%)
    275: (683,683,683) #02AB02AB02AB gray(1.04219%)
    261: (684,684,684) #02AC02AC02AC gray(1.04372%)
    517: (685,685,685) #02AD02AD02AD gray(1.04524%)
    296: (686,686,686) #02AE02AE02AE gray(1.04677%)
    245: (687,687,687) #02AF02AF02AF gray(1.04829%)
    533: (688,688,688) #02B002B002B0 gray(1.04982%)
    245: (689,689,689) #02B102B102B1 gray(1.05135%)
    283: (690,690,690) #02B202B202B2 gray(1.05287%)
    285: (691,691,691) #02B302B302B3 gray(1.0544%)
    552: (692,692,692) #02B402B402B4 gray(1.05592%)
    280: (693,693,693) #02B502B502B5 gray(1.05745%)
    288: (694,694,694) #02B602B602B6 gray(1.05898%)
    622: (695,695,695) #02B702B702B7 gray(1.0605%)
    306: (696,696,696) #02B802B802B8 gray(1.06203%)
    298: (697,697,697) #02B902B902B9 gray(1.06355%)
    279: (698,698,698) #02BA02BA02BA gray(1.06508%)
    635: (699,699,699) #02BB02BB02BB gray(1.06661%)
    305: (700,700,700) #02BC02BC02BC gray(1.06813%)
    313: (701,701,701) #02BD02BD02BD gray(1.06966%)
    322: (702,702,702) #02BE02BE02BE gray(1.07118%)
    600: (703,703,703) #02BF02BF02BF gray(1.07271%)
    302: (704,704,704) #02C002C002C0 gray(1.07424%)
    305: (705,705,705) #02C102C102C1 gray(1.07576%)
    282: (706,706,706) #02C202C202C2 gray(1.07729%)
    555: (707,707,707) #02C302C302C3 gray(1.07881%)
    293: (708,708,708) #02C402C402C4 gray(1.08034%)
    248: (709,709,709) #02C502C502C5 gray(1.08186%)
    344: (710,710,710) #02C602C602C6 gray(1.08339%)
    1104: (711,711,711) #02C702C702C7 gray(1.08492%)
    770: (712,712,712) #02C802C802C8 gray(1.08644%)
    659: (713,713,713) #02C902C902C9 gray(1.08797%)
    700: (714,714,714) #02CA02CA02CA gray(1.08949%)
    723: (715,715,715) #02CB02CB02CB gray(1.09102%)
    1452: (716,716,716) #02CC02CC02CC gray(1.09255%)
    614: (717,717,717) #02CD02CD02CD gray(1.09407%)
    597: (718,718,718) #02CE02CE02CE gray(1.0956%)
    590: (719,719,719) #02CF02CF02CF gray(1.09712%)
    535: (720,720,720) #02D002D002D0 gray(1.09865%)
    714: (721,721,721) #02D102D102D1 gray(1.10018%)
    1603: (722,722,722) #02D202D202D2 gray(1.1017%)
    867: (723,723,723) #02D302D302D3 gray(1.10323%)
    852: (724,724,724) #02D402D402D4 gray(1.10475%)
    750: (725,725,725) #02D502D502D5 gray(1.10628%)
    762: (726,726,726) #02D602D602D6 gray(1.1078%)
    1541: (727,727,727) #02D702D702D7 gray(1.10933%)
    806: (728,728,728) #02D802D802D8 gray(1.11086%)
    824: (729,729,729) #02D902D902D9 gray(1.11238%)
    849: (730,730,730) #02DA02DA02DA gray(1.11391%)
    804: (731,731,731) #02DB02DB02DB gray(1.11543%)
    978: (732,732,732) #02DC02DC02DC gray(1.11696%)
    942: (733,733,733) #02DD02DD02DD gray(1.11849%)
    1812: (734,734,734) #02DE02DE02DE gray(1.12001%)
    1028: (735,735,735) #02DF02DF02DF gray(1.12154%)
    970: (736,736,736) #02E002E002E0 gray(1.12306%)
    1160: (737,737,737) #02E102E102E1 gray(1.12459%)
    935: (738,738,738) #02E202E202E2 gray(1.12612%)
    949: (739,739,739) #02E302E302E3 gray(1.12764%)
    840: (740,740,740) #02E402E402E4 gray(1.12917%)
    1577: (741,741,741) #02E502E502E5 gray(1.13069%)
    811: (742,742,742) #02E602E602E6 gray(1.13222%)
    706: (743,743,743) #02E702E702E7 gray(1.13375%)
    726: (744,744,744) #02E802E802E8 gray(1.13527%)
    783: (745,745,745) #02E902E902E9 gray(1.1368%)
    761: (746,746,746) #02EA02EA02EA gray(1.13832%)
    695: (747,747,747) #02EB02EB02EB gray(1.13985%)
    716: (748,748,748) #02EC02EC02EC gray(1.14137%)
    682: (749,749,749) #02ED02ED02ED gray(1.1429%)
    566: (750,750,750) #02EE02EE02EE gray(1.14443%)
    1220: (751,751,751) #02EF02EF02EF gray(1.14595%)
    647: (752,752,752) #02F002F002F0 gray(1.14748%)
    635: (753,753,753) #02F102F102F1 gray(1.149%)
    563: (754,754,754) #02F202F202F2 gray(1.15053%)
    614: (755,755,755) #02F302F302F3 gray(1.15206%)
    608: (756,756,756) #02F402F402F4 gray(1.15358%)
    633: (757,757,757) #02F502F502F5 gray(1.15511%)
    713: (758,758,758) #02F602F602F6 gray(1.15663%)
    720: (759,759,759) #02F702F702F7 gray(1.15816%)
    661: (760,760,760) #02F802F802F8 gray(1.15969%)
    677: (761,761,761) #02F902F902F9 gray(1.16121%)
    596: (762,762,762) #02FA02FA02FA gray(1.16274%)
    662: (763,763,763) #02FB02FB02FB gray(1.16426%)
    771: (764,764,764) #02FC02FC02FC gray(1.16579%)
    1434: (765,765,765) #02FD02FD02FD gray(1.16732%)
    816: (766,766,766) #02FE02FE02FE gray(1.16884%)
    698: (767,767,767) #02FF02FF02FF gray(1.17037%)
    734: (768,768,768) #030003000300 gray(1.17189%)
    803: (769,769,769) #030103010301 gray(1.17342%)
    748: (770,770,770) #030203020302 gray(1.17494%)
    713: (771,771,771) #030303030303 gray(3)
    644: (772,772,772) #030403040304 gray(1.178%)
    634: (773,773,773) #030503050305 gray(1.17952%)
    572: (774,774,774) #030603060306 gray(1.18105%)
    547: (775,775,775) #030703070307 gray(1.18257%)
    603: (776,776,776) #030803080308 gray(1.1841%)
    517: (777,777,777) #030903090309 gray(1.18563%)
    558: (778,778,778) #030A030A030A gray(1.18715%)
    578: (779,779,779) #030B030B030B gray(1.18868%)
    486: (780,780,780) #030C030C030C gray(1.1902%)
    534: (781,781,781) #030D030D030D gray(1.19173%)
    493: (782,782,782) #030E030E030E gray(1.19326%)
    701: (783,783,783) #030F030F030F gray(1.19478%)
    588: (784,784,784) #031003100310 gray(1.19631%)
    943: (785,785,785) #031103110311 gray(1.19783%)
    788: (786,786,786) #031203120312 gray(1.19936%)
    663: (787,787,787) #031303130313 gray(1.20089%)
    550: (788,788,788) #031403140314 gray(1.20241%)
    564: (789,789,789) #031503150315 gray(1.20394%)
    516: (790,790,790) #031603160316 gray(1.20546%)
    500: (791,791,791) #031703170317 gray(1.20699%)
    532: (792,792,792) #031803180318 gray(1.20851%)
    628: (793,793,793) #031903190319 gray(1.21004%)
    657: (794,794,794) #031A031A031A gray(1.21157%)
    719: (795,795,795) #031B031B031B gray(1.21309%)
    687: (796,796,796) #031C031C031C gray(1.21462%)
    718: (797,797,797) #031D031D031D gray(1.21614%)
    613: (798,798,798) #031E031E031E gray(1.21767%)
    669: (799,799,799) #031F031F031F gray(1.2192%)
    636: (800,800,800) #032003200320 gray(1.22072%)
    700: (801,801,801) #032103210321 gray(1.22225%)
    615: (802,802,802) #032203220322 gray(1.22377%)
    678: (803,803,803) #032303230323 gray(1.2253%)
    657: (804,804,804) #032403240324 gray(1.22683%)
    758: (806,806,806) #032603260326 gray(1.22988%)
    719: (807,807,807) #032703270327 gray(1.2314%)
    802: (808,808,808) #032803280328 gray(1.23293%)
    1055: (809,809,809) #032903290329 gray(1.23445%)
    1237: (810,810,810) #032A032A032A gray(1.23598%)
    795: (811,811,811) #032B032B032B gray(1.23751%)
    653: (812,812,812) #032C032C032C gray(1.23903%)
    571: (813,813,813) #032D032D032D gray(1.24056%)
    562: (814,814,814) #032E032E032E gray(1.24208%)
    514: (815,815,815) #032F032F032F gray(1.24361%)
    474: (816,816,816) #033003300330 gray(1.24514%)
    542: (817,817,817) #033103310331 gray(1.24666%)
    500: (818,818,818) #033203320332 gray(1.24819%)
    592: (819,819,819) #033303330333 gray(1.24971%)
    481: (821,821,821) #033503350335 gray(1.25277%)
    498: (822,822,822) #033603360336 gray(1.25429%)
    422: (823,823,823) #033703370337 gray(1.25582%)
    522: (824,824,824) #033803380338 gray(1.25734%)
    414: (825,825,825) #033903390339 gray(1.25887%)
    417: (826,826,826) #033A033A033A gray(1.2604%)
    442: (827,827,827) #033B033B033B gray(1.26192%)
    359: (828,828,828) #033C033C033C gray(1.26345%)
    350: (829,829,829) #033D033D033D gray(1.26497%)
    345: (831,831,831) #033F033F033F gray(1.26802%)
    376: (832,832,832) #034003400340 gray(1.26955%)
    334: (833,833,833) #034103410341 gray(1.27108%)
    374: (834,834,834) #034203420342 gray(1.2726%)
    314: (835,835,835) #034303430343 gray(1.27413%)
    315: (836,836,836) #034403440344 gray(1.27565%)
    343: (837,837,837) #034503450345 gray(1.27718%)
    366: (838,838,838) #034603460346 gray(1.27871%)
    295: (840,840,840) #034803480348 gray(1.28176%)
    365: (841,841,841) #034903490349 gray(1.28328%)
    295: (842,842,842) #034A034A034A gray(1.28481%)
    384: (843,843,843) #034B034B034B gray(1.28634%)
    292: (844,844,844) #034C034C034C gray(1.28786%)
    317: (845,845,845) #034D034D034D gray(1.28939%)
    345: (847,847,847) #034F034F034F gray(1.29244%)
    228: (848,848,848) #035003500350 gray(1.29397%)
    262: (849,849,849) #035103510351 gray(1.29549%)
    248: (850,850,850) #035203520352 gray(1.29702%)
    235: (851,851,851) #035303530353 gray(1.29854%)
    228: (852,852,852) #035403540354 gray(1.30007%)
    285: (854,854,854) #035603560356 gray(1.30312%)
    263: (855,855,855) #035703570357 gray(1.30465%)
    280: (856,856,856) #035803580358 gray(1.30617%)
    257: (857,857,857) #035903590359 gray(1.3077%)
    358: (858,858,858) #035A035A035A gray(1.30922%)
    387: (860,860,860) #035C035C035C gray(1.31228%)
    280: (861,861,861) #035D035D035D gray(1.3138%)
    270: (862,862,862) #035E035E035E gray(1.31533%)
    331: (863,863,863) #035F035F035F gray(1.31685%)
    247: (864,864,864) #036003600360 gray(1.31838%)
    284: (866,866,866) #036203620362 gray(1.32143%)
    302: (867,867,867) #036303630363 gray(1.32296%)
    360: (868,868,868) #036403640364 gray(1.32448%)
    310: (869,869,869) #036503650365 gray(1.32601%)
    313: (870,870,870) #036603660366 gray(1.32753%)
    377: (872,872,872) #036803680368 gray(1.33059%)
    338: (873,873,873) #036903690369 gray(1.33211%)
    361: (874,874,874) #036A036A036A gray(1.33364%)
    299: (875,875,875) #036B036B036B gray(1.33516%)
    401: (877,877,877) #036D036D036D gray(1.33822%)
    523: (878,878,878) #036E036E036E gray(1.33974%)
    557: (879,879,879) #036F036F036F gray(1.34127%)
    535: (880,880,880) #037003700370 gray(1.34279%)
    626: (882,882,882) #037203720372 gray(1.34585%)
    739: (883,883,883) #037303730373 gray(1.34737%)
    1159: (884,884,884) #037403740374 gray(1.3489%)
    1064: (886,886,886) #037603760376 gray(1.35195%)
    1012: (887,887,887) #037703770377 gray(1.35348%)
    618: (888,888,888) #037803780378 gray(1.355%)
    561: (889,889,889) #037903790379 gray(1.35653%)
    486: (891,891,891) #037B037B037B gray(1.35958%)
    388: (892,892,892) #037C037C037C gray(1.3611%)
    392: (893,893,893) #037D037D037D gray(1.36263%)
    355: (895,895,895) #037F037F037F gray(1.36568%)
    418: (896,896,896) #038003800380 gray(1.36721%)
    356: (897,897,897) #038103810381 gray(1.36873%)
    313: (898,898,898) #038203820382 gray(1.37026%)
    298: (900,900,900) #038403840384 gray(1.37331%)
    346: (901,901,901) #038503850385 gray(1.37484%)
    289: (902,902,902) #038603860386 gray(1.37636%)
    325: (904,904,904) #038803880388 gray(1.37942%)
    338: (905,905,905) #038903890389 gray(1.38094%)
    524: (906,906,906) #038A038A038A gray(1.38247%)
    409: (908,908,908) #038C038C038C gray(1.38552%)
    307: (909,909,909) #038D038D038D gray(1.38705%)
    283: (910,910,910) #038E038E038E gray(1.38857%)
    319: (912,912,912) #039003900390 gray(1.39162%)
    243: (913,913,913) #039103910391 gray(1.39315%)
    261: (914,914,914) #039203920392 gray(1.39467%)
    243: (916,916,916) #039403940394 gray(1.39773%)
    214: (917,917,917) #039503950395 gray(1.39925%)
    281: (919,919,919) #039703970397 gray(1.4023%)
    288: (920,920,920) #039803980398 gray(1.40383%)
    273: (921,921,921) #039903990399 gray(1.40536%)
    203: (923,923,923) #039B039B039B gray(1.40841%)
    281: (924,924,924) #039C039C039C gray(1.40993%)
    233: (925,925,925) #039D039D039D gray(1.41146%)
    254: (927,927,927) #039F039F039F gray(1.41451%)
    232: (928,928,928) #03A003A003A0 gray(1.41604%)
    273: (930,930,930) #03A203A203A2 gray(1.41909%)
    236: (931,931,931) #03A303A303A3 gray(1.42061%)
    230: (932,932,932) #03A403A403A4 gray(1.42214%)
    205: (934,934,934) #03A603A603A6 gray(1.42519%)
    251: (935,935,935) #03A703A703A7 gray(1.42672%)
    231: (937,937,937) #03A903A903A9 gray(1.42977%)
    247: (938,938,938) #03AA03AA03AA gray(1.4313%)
    196: (940,940,940) #03AC03AC03AC gray(1.43435%)
    192: (941,941,941) #03AD03AD03AD gray(1.43587%)
    216: (942,942,942) #03AE03AE03AE gray(1.4374%)
    188: (944,944,944) #03B003B003B0 gray(1.44045%)
    200: (945,945,945) #03B103B103B1 gray(1.44198%)
    209: (947,947,947) #03B303B303B3 gray(1.44503%)
    198: (948,948,948) #03B403B403B4 gray(1.44656%)
    169: (950,950,950) #03B603B603B6 gray(1.44961%)
    176: (951,951,951) #03B703B703B7 gray(1.45113%)
    168: (953,953,953) #03B903B903B9 gray(1.45418%)
    124: (954,954,954) #03BA03BA03BA gray(1.45571%)
    208: (956,956,956) #03BC03BC03BC gray(1.45876%)
    151: (957,957,957) #03BD03BD03BD gray(1.46029%)
    142: (959,959,959) #03BF03BF03BF gray(1.46334%)
    153: (960,960,960) #03C003C003C0 gray(1.46487%)
    143: (962,962,962) #03C203C203C2 gray(1.46792%)
    130: (963,963,963) #03C303C303C3 gray(1.46944%)
    188: (965,965,965) #03C503C503C5 gray(1.4725%)
    173: (966,966,966) #03C603C603C6 gray(1.47402%)
    205: (968,968,968) #03C803C803C8 gray(1.47707%)
    219: (969,969,969) #03C903C903C9 gray(1.4786%)
    228: (971,971,971) #03CB03CB03CB gray(1.48165%)
    244: (972,972,972) #03CC03CC03CC gray(1.48318%)
    221: (974,974,974) #03CE03CE03CE gray(1.48623%)
    165: (975,975,975) #03CF03CF03CF gray(1.48775%)
    201: (977,977,977) #03D103D103D1 gray(1.49081%)
    181: (978,978,978) #03D203D203D2 gray(1.49233%)
    171: (980,980,980) #03D403D403D4 gray(1.49538%)
    201: (982,982,982) #03D603D603D6 gray(1.49844%)
    143: (983,983,983) #03D703D703D7 gray(1.49996%)
    173: (985,985,985) #03D903D903D9 gray(1.50301%)
    123: (986,986,986) #03DA03DA03DA gray(1.50454%)
    114: (988,988,988) #03DC03DC03DC gray(1.50759%)
    126: (989,989,989) #03DD03DD03DD gray(1.50912%)
    107: (991,991,991) #03DF03DF03DF gray(1.51217%)
    105: (993,993,993) #03E103E103E1 gray(1.51522%)
    119: (994,994,994) #03E203E203E2 gray(1.51675%)
    95: (996,996,996) #03E403E403E4 gray(1.5198%)
    103: (997,997,997) #03E503E503E5 gray(1.52132%)
    148: (999,999,999) #03E703E703E7 gray(1.52438%)
    109: (1001,1001,1001) #03E903E903E9 gray(1.52743%)
    110: (1002,1002,1002) #03EA03EA03EA gray(1.52895%)
    152: (1004,1004,1004) #03EC03EC03EC gray(1.53201%)
    127: (1006,1006,1006) #03EE03EE03EE gray(1.53506%)
    134: (1007,1007,1007) #03EF03EF03EF gray(1.53658%)
    152: (1009,1009,1009) #03F103F103F1 gray(1.53964%)
    141: (1011,1011,1011) #03F303F303F3 gray(1.54269%)
    118: (1012,1012,1012) #03F403F403F4 gray(1.54421%)
    184: (1014,1014,1014) #03F603F603F6 gray(1.54726%)
    159: (1016,1016,1016) #03F803F803F8 gray(1.55032%)
    121: (1017,1017,1017) #03F903F903F9 gray(1.55184%)
    151: (1019,1019,1019) #03FB03FB03FB gray(1.55489%)
    128: (1021,1021,1021) #03FD03FD03FD gray(1.55795%)
    123: (1022,1022,1022) #03FE03FE03FE gray(1.55947%)
    143: (1024,1024,1024) #040004000400 gray(1.56252%)
    134: (1026,1026,1026) #040204020402 gray(1.56558%)
    164: (1027,1027,1027) #040304030403 gray(1.5671%)
    123: (1029,1029,1029) #040504050405 gray(1.57015%)
    166: (1031,1031,1031) #040704070407 gray(1.57321%)
    111: (1033,1033,1033) #040904090409 gray(1.57626%)
    84: (1034,1034,1034) #040A040A040A gray(1.57778%)
    145: (1036,1036,1036) #040C040C040C gray(1.58083%)
    109: (1038,1038,1038) #040E040E040E gray(1.58389%)
    85: (1040,1040,1040) #041004100410 gray(1.58694%)
    100: (1041,1041,1041) #041104110411 gray(1.58846%)
    71: (1043,1043,1043) #041304130413 gray(1.59152%)
    87: (1045,1045,1045) #041504150415 gray(1.59457%)
    64: (1047,1047,1047) #041704170417 gray(1.59762%)
    62: (1048,1048,1048) #041804180418 gray(1.59915%)
    61: (1050,1050,1050) #041A041A041A gray(1.6022%)
    69: (1052,1052,1052) #041C041C041C gray(1.60525%)
    69: (1054,1054,1054) #041E041E041E gray(1.6083%)
    94: (1056,1056,1056) #042004200420 gray(1.61135%)
    57: (1057,1057,1057) #042104210421 gray(1.61288%)
    94: (1059,1059,1059) #042304230423 gray(1.61593%)
    98: (1061,1061,1061) #042504250425 gray(1.61898%)
    104: (1063,1063,1063) #042704270427 gray(1.62203%)
    128: (1065,1065,1065) #042904290429 gray(1.62509%)
    139: (1067,1067,1067) #042B042B042B gray(1.62814%)
    114: (1068,1068,1068) #042C042C042C gray(1.62966%)
    136: (1070,1070,1070) #042E042E042E gray(1.63272%)
    105: (1072,1072,1072) #043004300430 gray(1.63577%)
    116: (1074,1074,1074) #043204320432 gray(1.63882%)
    142: (1076,1076,1076) #043404340434 gray(1.64187%)
    116: (1078,1078,1078) #043604360436 gray(1.64492%)
    151: (1080,1080,1080) #043804380438 gray(1.64797%)
    162: (1082,1082,1082) #043A043A043A gray(1.65103%)
    148: (1084,1084,1084) #043C043C043C gray(1.65408%)
    130: (1085,1085,1085) #043D043D043D gray(1.6556%)
    123: (1087,1087,1087) #043F043F043F gray(1.65866%)
    101: (1089,1089,1089) #044104410441 gray(1.66171%)
    116: (1091,1091,1091) #044304430443 gray(1.66476%)
    114: (1093,1093,1093) #044504450445 gray(1.66781%)
    73: (1095,1095,1095) #044704470447 gray(1.67086%)
    141: (1097,1097,1097) #044904490449 gray(1.67391%)
    130: (1099,1099,1099) #044B044B044B gray(1.67697%)
    83: (1101,1101,1101) #044D044D044D gray(1.68002%)
    99: (1103,1103,1103) #044F044F044F gray(1.68307%)
    125: (1105,1105,1105) #045104510451 gray(1.68612%)
    147: (1107,1107,1107) #045304530453 gray(1.68917%)
    141: (1109,1109,1109) #045504550455 gray(1.69223%)
    127: (1111,1111,1111) #045704570457 gray(1.69528%)
    123: (1113,1113,1113) #045904590459 gray(1.69833%)
    150: (1115,1115,1115) #045B045B045B gray(1.70138%)
    128: (1117,1117,1117) #045D045D045D gray(1.70443%)
    178: (1119,1119,1119) #045F045F045F gray(1.70748%)
    125: (1121,1121,1121) #046104610461 gray(1.71054%)
    157: (1123,1123,1123) #046304630463 gray(1.71359%)
    147: (1125,1125,1125) #046504650465 gray(1.71664%)
    107: (1127,1127,1127) #046704670467 gray(1.71969%)
    130: (1129,1129,1129) #046904690469 gray(1.72274%)
    147: (1131,1131,1131) #046B046B046B gray(1.7258%)
    117: (1133,1133,1133) #046D046D046D gray(1.72885%)
    110: (1135,1135,1135) #046F046F046F gray(1.7319%)
    132: (1138,1138,1138) #047204720472 gray(1.73648%)
    173: (1140,1140,1140) #047404740474 gray(1.73953%)
    145: (1142,1142,1142) #047604760476 gray(1.74258%)
    135: (1144,1144,1144) #047804780478 gray(1.74563%)
    147: (1146,1146,1146) #047A047A047A gray(1.74868%)
    159: (1148,1148,1148) #047C047C047C gray(1.75174%)
    194: (1150,1150,1150) #047E047E047E gray(1.75479%)
    157: (1153,1153,1153) #048104810481 gray(1.75937%)
    167: (1155,1155,1155) #048304830483 gray(1.76242%)
    119: (1157,1157,1157) #048504850485 gray(1.76547%)
    154: (1159,1159,1159) #048704870487 gray(1.76852%)
    185: (1161,1161,1161) #048904890489 gray(1.77157%)
    188: (1163,1163,1163) #048B048B048B gray(1.77462%)
    204: (1166,1166,1166) #048E048E048E gray(1.7792%)
    208: (1168,1168,1168) #049004900490 gray(1.78225%)
    230: (1170,1170,1170) #049204920492 gray(1.78531%)
    290: (1172,1172,1172) #049404940494 gray(1.78836%)
    289: (1175,1175,1175) #049704970497 gray(1.79294%)
    411: (1177,1177,1177) #049904990499 gray(1.79599%)
    413: (1179,1179,1179) #049B049B049B gray(1.79904%)
    378: (1181,1181,1181) #049D049D049D gray(1.80209%)
    496: (1184,1184,1184) #04A004A004A0 gray(1.80667%)
    516: (1186,1186,1186) #04A204A204A2 gray(1.80972%)
    605: (1188,1188,1188) #04A404A404A4 gray(1.81277%)
    696: (1190,1190,1190) #04A604A604A6 gray(1.81582%)
    930: (1193,1193,1193) #04A904A904A9 gray(1.8204%)
    990: (1195,1195,1195) #04AB04AB04AB gray(1.82345%)
    742: (1197,1197,1197) #04AD04AD04AD gray(1.8265%)
    948: (1200,1200,1200) #04B004B004B0 gray(1.83108%)
    1170: (1202,1202,1202) #04B204B204B2 gray(1.83413%)
    822: (1204,1204,1204) #04B404B404B4 gray(1.83719%)
    859: (1207,1207,1207) #04B704B704B7 gray(1.84176%)
    672: (1209,1209,1209) #04B904B904B9 gray(1.84482%)
    805: (1211,1211,1211) #04BB04BB04BB gray(1.84787%)
    773: (1214,1214,1214) #04BE04BE04BE gray(1.85245%)
    766: (1216,1216,1216) #04C004C004C0 gray(1.8555%)
    652: (1219,1219,1219) #04C304C304C3 gray(1.86007%)
    709: (1221,1221,1221) #04C504C504C5 gray(1.86313%)
    687: (1224,1224,1224) #04C804C804C8 gray(1.8677%)
    643: (1226,1226,1226) #04CA04CA04CA gray(1.87076%)
    634: (1228,1228,1228) #04CC04CC04CC gray(1.87381%)
    582: (1231,1231,1231) #04CF04CF04CF gray(1.87839%)
    632: (1233,1233,1233) #04D104D104D1 gray(1.88144%)
    560: (1236,1236,1236) #04D404D404D4 gray(1.88602%)
    617: (1238,1238,1238) #04D604D604D6 gray(1.88907%)
    575: (1241,1241,1241) #04D904D904D9 gray(1.89364%)
    587: (1243,1243,1243) #04DB04DB04DB gray(1.8967%)
    634: (1246,1246,1246) #04DE04DE04DE gray(1.90127%)
    671: (1248,1248,1248) #04E004E004E0 gray(1.90433%)
    654: (1251,1251,1251) #04E304E304E3 gray(1.9089%)
    695: (1253,1253,1253) #04E504E504E5 gray(1.91196%)
    712: (1256,1256,1256) #04E804E804E8 gray(1.91653%)
    735: (1259,1259,1259) #04EB04EB04EB gray(1.92111%)
    822: (1261,1261,1261) #04ED04ED04ED gray(1.92416%)
    836: (1264,1264,1264) #04F004F004F0 gray(1.92874%)
    906: (1266,1266,1266) #04F204F204F2 gray(1.93179%)
    943: (1269,1269,1269) #04F504F504F5 gray(1.93637%)
    840: (1272,1272,1272) #04F804F804F8 gray(1.94095%)
    945: (1274,1274,1274) #04FA04FA04FA gray(1.944%)
    739: (1277,1277,1277) #04FD04FD04FD gray(1.94858%)
    933: (1280,1280,1280) #050005000500 gray(1.95315%)
    969: (1282,1282,1282) #050205020502 gray(1.95621%)
    701: (1285,1285,1285) #050505050505 gray(5)
    773: (1288,1288,1288) #050805080508 gray(1.96536%)
    775: (1290,1290,1290) #050A050A050A gray(1.96841%)
    713: (1293,1293,1293) #050D050D050D gray(1.97299%)
    633: (1296,1296,1296) #051005100510 gray(1.97757%)
    704: (1298,1298,1298) #051205120512 gray(1.98062%)
    627: (1301,1301,1301) #051505150515 gray(1.9852%)
    638: (1304,1304,1304) #051805180518 gray(1.98978%)
    618: (1307,1307,1307) #051B051B051B gray(1.99435%)
    606: (1309,1309,1309) #051D051D051D gray(1.99741%)
    614: (1312,1312,1312) #052005200520 gray(2.00198%)
    591: (1315,1315,1315) #052305230523 gray(2.00656%)
    610: (1318,1318,1318) #052605260526 gray(2.01114%)
    564: (1321,1321,1321) #052905290529 gray(2.01572%)
    579: (1324,1324,1324) #052C052C052C gray(2.02029%)
    530: (1326,1326,1326) #052E052E052E gray(2.02335%)
    399: (1329,1329,1329) #053105310531 gray(2.02792%)
    426: (1332,1332,1332) #053405340534 gray(2.0325%)
    417: (1335,1335,1335) #053705370537 gray(2.03708%)
    338: (1338,1338,1338) #053A053A053A gray(2.04166%)
    419: (1341,1341,1341) #053D053D053D gray(2.04623%)
    403: (1344,1344,1344) #054005400540 gray(2.05081%)
    279: (1347,1347,1347) #054305430543 gray(2.05539%)
    414: (1350,1350,1350) #054605460546 gray(2.05997%)
    424: (1353,1353,1353) #054905490549 gray(2.06455%)
    395: (1356,1356,1356) #054C054C054C gray(2.06912%)
    399: (1359,1359,1359) #054F054F054F gray(2.0737%)
    440: (1362,1362,1362) #055205520552 gray(2.07828%)
    471: (1365,1365,1365) #055505550555 gray(2.08286%)
    455: (1368,1368,1368) #055805580558 gray(2.08743%)
    404: (1371,1371,1371) #055B055B055B gray(2.09201%)
    497: (1374,1374,1374) #055E055E055E gray(2.09659%)
    519: (1377,1377,1377) #056105610561 gray(2.10117%)
    479: (1380,1380,1380) #056405640564 gray(2.10575%)
    457: (1383,1383,1383) #056705670567 gray(2.11032%)
    428: (1386,1386,1386) #056A056A056A gray(2.1149%)
    372: (1389,1389,1389) #056D056D056D gray(2.11948%)
    388: (1392,1392,1392) #057005700570 gray(2.12406%)
    373: (1396,1396,1396) #057405740574 gray(2.13016%)
    357: (1399,1399,1399) #057705770577 gray(2.13474%)
    354: (1402,1402,1402) #057A057A057A gray(2.13931%)
    391: (1405,1405,1405) #057D057D057D gray(2.14389%)
    300: (1408,1408,1408) #058005800580 gray(2.14847%)
    327: (1412,1412,1412) #058405840584 gray(2.15457%)
    295: (1415,1415,1415) #058705870587 gray(2.15915%)
    365: (1418,1418,1418) #058A058A058A gray(2.16373%)
    393: (1421,1421,1421) #058D058D058D gray(2.16831%)
    360: (1425,1425,1425) #059105910591 gray(2.17441%)
    379: (1428,1428,1428) #059405940594 gray(2.17899%)
    385: (1431,1431,1431) #059705970597 gray(2.18357%)
    336: (1435,1435,1435) #059B059B059B gray(2.18967%)
    375: (1438,1438,1438) #059E059E059E gray(2.19425%)
    432: (1441,1441,1441) #05A105A105A1 gray(2.19883%)
    524: (1445,1445,1445) #05A505A505A5 gray(2.20493%)
    491: (1448,1448,1448) #05A805A805A8 gray(2.20951%)
    449: (1452,1452,1452) #05AC05AC05AC gray(2.21561%)
    406: (1455,1455,1455) #05AF05AF05AF gray(2.22019%)
    490: (1458,1458,1458) #05B205B205B2 gray(2.22477%)
    405: (1462,1462,1462) #05B605B605B6 gray(2.23087%)
    434: (1465,1465,1465) #05B905B905B9 gray(2.23545%)
    439: (1469,1469,1469) #05BD05BD05BD gray(2.24155%)
    454: (1472,1472,1472) #05C005C005C0 gray(2.24613%)
    367: (1476,1476,1476) #05C405C405C4 gray(2.25223%)
    451: (1479,1479,1479) #05C705C705C7 gray(2.25681%)
    322: (1483,1483,1483) #05CB05CB05CB gray(2.26291%)
    344: (1487,1487,1487) #05CF05CF05CF gray(2.26902%)
    299: (1490,1490,1490) #05D205D205D2 gray(2.27359%)
    324: (1494,1494,1494) #05D605D605D6 gray(2.2797%)
    255: (1497,1497,1497) #05D905D905D9 gray(2.28428%)
    268: (1501,1501,1501) #05DD05DD05DD gray(2.29038%)
    286: (1505,1505,1505) #05E105E105E1 gray(2.29648%)
    222: (1508,1508,1508) #05E405E405E4 gray(2.30106%)
    282: (1512,1512,1512) #05E805E805E8 gray(2.30716%)
    234: (1516,1516,1516) #05EC05EC05EC gray(2.31327%)
    170: (1520,1520,1520) #05F005F005F0 gray(2.31937%)
    258: (1523,1523,1523) #05F305F305F3 gray(2.32395%)
    289: (1527,1527,1527) #05F705F705F7 gray(2.33005%)
    203: (1531,1531,1531) #05FB05FB05FB gray(2.33616%)
    278: (1535,1535,1535) #05FF05FF05FF gray(2.34226%)
    275: (1539,1539,1539) #060306030603 gray(2.34836%)
    297: (1542,1542,1542) #060606060606 gray(6)
    241: (1546,1546,1546) #060A060A060A gray(2.35904%)
    272: (1550,1550,1550) #060E060E060E gray(2.36515%)
    247: (1554,1554,1554) #061206120612 gray(2.37125%)
    296: (1558,1558,1558) #061606160616 gray(2.37736%)
    325: (1562,1562,1562) #061A061A061A gray(2.38346%)
    302: (1566,1566,1566) #061E061E061E gray(2.38956%)
    278: (1570,1570,1570) #062206220622 gray(2.39567%)
    292: (1574,1574,1574) #062606260626 gray(2.40177%)
    334: (1578,1578,1578) #062A062A062A gray(2.40787%)
    299: (1582,1582,1582) #062E062E062E gray(2.41398%)
    238: (1586,1586,1586) #063206320632 gray(2.42008%)
    326: (1590,1590,1590) #063606360636 gray(2.42618%)
    184: (1594,1594,1594) #063A063A063A gray(2.43229%)
    247: (1599,1599,1599) #063F063F063F gray(2.43992%)
    321: (1603,1603,1603) #064306430643 gray(2.44602%)
    239: (1607,1607,1607) #064706470647 gray(2.45212%)
    203: (1611,1611,1611) #064B064B064B gray(2.45823%)
    272: (1615,1615,1615) #064F064F064F gray(2.46433%)
    191: (1620,1620,1620) #065406540654 gray(2.47196%)
    182: (1624,1624,1624) #065806580658 gray(2.47807%)
    222: (1628,1628,1628) #065C065C065C gray(2.48417%)
    191: (1632,1632,1632) #066006600660 gray(2.49027%)
    208: (1637,1637,1637) #066506650665 gray(2.4979%)
    193: (1641,1641,1641) #066906690669 gray(2.50401%)
    193: (1646,1646,1646) #066E066E066E gray(2.51164%)
    162: (1650,1650,1650) #067206720672 gray(2.51774%)
    150: (1654,1654,1654) #067606760676 gray(2.52384%)
    142: (1659,1659,1659) #067B067B067B gray(2.53147%)
    137: (1663,1663,1663) #067F067F067F gray(2.53758%)
    182: (1668,1668,1668) #068406840684 gray(2.5452%)
    143: (1672,1672,1672) #068806880688 gray(2.55131%)
    187: (1677,1677,1677) #068D068D068D gray(2.55894%)
    230: (1682,1682,1682) #069206920692 gray(2.56657%)
    172: (1686,1686,1686) #069606960696 gray(2.57267%)
    158: (1691,1691,1691) #069B069B069B gray(2.5803%)
    184: (1695,1695,1695) #069F069F069F gray(2.5864%)
    171: (1700,1700,1700) #06A406A406A4 gray(2.59403%)
    143: (1705,1705,1705) #06A906A906A9 gray(2.60166%)
    234: (1710,1710,1710) #06AE06AE06AE gray(2.60929%)
    206: (1714,1714,1714) #06B206B206B2 gray(2.6154%)
    231: (1719,1719,1719) #06B706B706B7 gray(2.62303%)
    252: (1724,1724,1724) #06BC06BC06BC gray(2.63066%)
    254: (1729,1729,1729) #06C106C106C1 gray(2.63828%)
    410: (1734,1734,1734) #06C606C606C6 gray(2.64591%)
    249: (1739,1739,1739) #06CB06CB06CB gray(2.65354%)
    256: (1743,1743,1743) #06CF06CF06CF gray(2.65965%)
    376: (1748,1748,1748) #06D406D406D4 gray(2.66728%)
    236: (1753,1753,1753) #06D906D906D9 gray(2.67491%)
    228: (1758,1758,1758) #06DE06DE06DE gray(2.68254%)
    255: (1763,1763,1763) #06E306E306E3 gray(2.69017%)
    236: (1769,1769,1769) #06E906E906E9 gray(2.69932%)
    264: (1774,1774,1774) #06EE06EE06EE gray(2.70695%)
    182: (1779,1779,1779) #06F306F306F3 gray(2.71458%)
    165: (1784,1784,1784) #06F806F806F8 gray(2.72221%)
    156: (1789,1789,1789) #06FD06FD06FD gray(2.72984%)
    186: (1794,1794,1794) #070207020702 gray(2.73747%)
    172: (1800,1800,1800) #070807080708 gray(2.74662%)
    151: (1805,1805,1805) #070D070D070D gray(2.75425%)
    161: (1810,1810,1810) #071207120712 gray(2.76188%)
    135: (1815,1815,1815) #071707170717 gray(2.76951%)
    143: (1821,1821,1821) #071D071D071D gray(2.77867%)
    121: (1826,1826,1826) #072207220722 gray(2.7863%)
    151: (1832,1832,1832) #072807280728 gray(2.79545%)
    131: (1837,1837,1837) #072D072D072D gray(2.80308%)
    153: (1843,1843,1843) #073307330733 gray(2.81224%)
    176: (1848,1848,1848) #073807380738 gray(2.81987%)
    157: (1854,1854,1854) #073E073E073E gray(2.82902%)
    182: (1859,1859,1859) #074307430743 gray(2.83665%)
    217: (1865,1865,1865) #074907490749 gray(2.84581%)
    190: (1871,1871,1871) #074F074F074F gray(2.85496%)
    183: (1876,1876,1876) #075407540754 gray(2.86259%)
    268: (1882,1882,1882) #075A075A075A gray(2.87175%)
    336: (1888,1888,1888) #076007600760 gray(2.8809%)
    238: (1894,1894,1894) #076607660766 gray(2.89006%)
    298: (1900,1900,1900) #076C076C076C gray(2.89921%)
    371: (1905,1905,1905) #077107710771 gray(2.90684%)
    266: (1911,1911,1911) #077707770777 gray(2.916%)
    280: (1917,1917,1917) #077D077D077D gray(2.92515%)
    338: (1923,1923,1923) #078307830783 gray(2.93431%)
    235: (1929,1929,1929) #078907890789 gray(2.94347%)
    308: (1935,1935,1935) #078F078F078F gray(2.95262%)
    255: (1941,1941,1941) #079507950795 gray(2.96178%)
    302: (1948,1948,1948) #079C079C079C gray(2.97246%)
    247: (1954,1954,1954) #07A207A207A2 gray(2.98161%)
    339: (1960,1960,1960) #07A807A807A8 gray(2.99077%)
    335: (1966,1966,1966) #07AE07AE07AE gray(2.99992%)
    298: (1973,1973,1973) #07B507B507B5 gray(3.01061%)
    399: (1979,1979,1979) #07BB07BB07BB gray(3.01976%)
    263: (1985,1985,1985) #07C107C107C1 gray(3.02892%)
    374: (1992,1992,1992) #07C807C807C8 gray(3.0396%)
    260: (1998,1998,1998) #07CE07CE07CE gray(3.04875%)
    248: (2005,2005,2005) #07D507D507D5 gray(3.05943%)
    287: (2011,2011,2011) #07DB07DB07DB gray(3.06859%)
    286: (2018,2018,2018) #07E207E207E2 gray(3.07927%)
    252: (2024,2024,2024) #07E807E807E8 gray(3.08843%)
    314: (2031,2031,2031) #07EF07EF07EF gray(3.09911%)
    254: (2038,2038,2038) #07F607F607F6 gray(3.10979%)
    293: (2045,2045,2045) #07FD07FD07FD gray(3.12047%)
    307: (2051,2051,2051) #080308030803 gray(3.12963%)
    299: (2058,2058,2058) #080A080A080A gray(3.14031%)
    290: (2065,2065,2065) #081108110811 gray(3.15099%)
    378: (2072,2072,2072) #081808180818 gray(3.16167%)
    301: (2079,2079,2079) #081F081F081F gray(3.17235%)
    315: (2086,2086,2086) #082608260826 gray(3.18303%)
    347: (2093,2093,2093) #082D082D082D gray(3.19371%)
    386: (2100,2100,2100) #083408340834 gray(3.20439%)
    349: (2108,2108,2108) #083C083C083C gray(3.2166%)
    425: (2115,2115,2115) #084308430843 gray(3.22728%)
    338: (2122,2122,2122) #084A084A084A gray(3.23796%)
    412: (2130,2130,2130) #085208520852 gray(3.25017%)
    266: (2137,2137,2137) #085908590859 gray(3.26085%)
    253: (2144,2144,2144) #086008600860 gray(3.27153%)
    202: (2152,2152,2152) #086808680868 gray(3.28374%)
    191: (2159,2159,2159) #086F086F086F gray(3.29442%)
    231: (2167,2167,2167) #087708770877 gray(3.30663%)
    191: (2175,2175,2175) #087F087F087F gray(3.31884%)
    157: (2182,2182,2182) #088608860886 gray(3.32952%)
    148: (2190,2190,2190) #088E088E088E gray(3.34173%)
    195: (2198,2198,2198) #089608960896 gray(3.35393%)
    160: (2206,2206,2206) #089E089E089E gray(3.36614%)
    198: (2214,2214,2214) #08A608A608A6 gray(3.37835%)
    151: (2222,2222,2222) #08AE08AE08AE gray(3.39055%)
    154: (2230,2230,2230) #08B608B608B6 gray(3.40276%)
    183: (2238,2238,2238) #08BE08BE08BE gray(3.41497%)
    161: (2246,2246,2246) #08C608C608C6 gray(3.42718%)
    126: (2254,2254,2254) #08CE08CE08CE gray(3.43938%)
    140: (2263,2263,2263) #08D708D708D7 gray(3.45312%)
    158: (2271,2271,2271) #08DF08DF08DF gray(3.46532%)
    182: (2279,2279,2279) #08E708E708E7 gray(3.47753%)
    156: (2288,2288,2288) #08F008F008F0 gray(3.49126%)
    217: (2296,2296,2296) #08F808F808F8 gray(3.50347%)
    130: (2305,2305,2305) #090109010901 gray(3.5172%)
    222: (2314,2314,2314) #090A090A090A gray(3.53094%)
    129: (2322,2322,2322) #091209120912 gray(3.54314%)
    156: (2331,2331,2331) #091B091B091B gray(3.55688%)
    224: (2340,2340,2340) #092409240924 gray(3.57061%)
    175: (2349,2349,2349) #092D092D092D gray(3.58434%)
    180: (2358,2358,2358) #093609360936 gray(3.59808%)
    222: (2367,2367,2367) #093F093F093F gray(3.61181%)
    263: (2376,2376,2376) #094809480948 gray(3.62554%)
    222: (2385,2385,2385) #095109510951 gray(3.63928%)
    215: (2395,2395,2395) #095B095B095B gray(3.65454%)
    265: (2404,2404,2404) #096409640964 gray(3.66827%)
    207: (2413,2413,2413) #096D096D096D gray(3.682%)
    239: (2423,2423,2423) #097709770977 gray(3.69726%)
    250: (2433,2433,2433) #098109810981 gray(3.71252%)
    298: (2442,2442,2442) #098A098A098A gray(3.72625%)
    254: (2452,2452,2452) #099409940994 gray(3.74151%)
    306: (2462,2462,2462) #099E099E099E gray(3.75677%)
    355: (2472,2472,2472) #09A809A809A8 gray(3.77203%)
    880: (2482,2482,2482) #09B209B209B2 gray(3.78729%)
    1019: (2492,2492,2492) #09BC09BC09BC gray(3.80255%)
    541: (2502,2502,2502) #09C609C609C6 gray(3.81781%)
    461: (2512,2512,2512) #09D009D009D0 gray(3.83307%)
    466: (2522,2522,2522) #09DA09DA09DA gray(3.84833%)
    468: (2533,2533,2533) #09E509E509E5 gray(3.86511%)
    485: (2543,2543,2543) #09EF09EF09EF gray(3.88037%)
    447: (2554,2554,2554) #09FA09FA09FA gray(3.89715%)
    422: (2564,2564,2564) #0A040A040A04 gray(3.91241%)
    504: (2575,2575,2575) #0A0F0A0F0A0F gray(3.9292%)
    500: (2586,2586,2586) #0A1A0A1A0A1A gray(3.94598%)
    677: (2597,2597,2597) #0A250A250A25 gray(3.96277%)
    569: (2608,2608,2608) #0A300A300A30 gray(3.97955%)
    586: (2619,2619,2619) #0A3B0A3B0A3B gray(3.99634%)
    568: (2630,2630,2630) #0A460A460A46 gray(4.01312%)
    719: (2641,2641,2641) #0A510A510A51 gray(4.02991%)
    853: (2653,2653,2653) #0A5D0A5D0A5D gray(4.04822%)
    527: (2664,2664,2664) #0A680A680A68 gray(4.065%)
    453: (2676,2676,2676) #0A740A740A74 gray(4.08331%)
    342: (2688,2688,2688) #0A800A800A80 gray(4.10163%)
    293: (2699,2699,2699) #0A8B0A8B0A8B gray(4.11841%)
    351: (2711,2711,2711) #0A970A970A97 gray(4.13672%)
    492: (2723,2723,2723) #0AA30AA30AA3 gray(4.15503%)
    538: (2735,2735,2735) #0AAF0AAF0AAF gray(4.17334%)
    606: (2747,2747,2747) #0ABB0ABB0ABB gray(4.19165%)
    492: (2760,2760,2760) #0AC80AC80AC8 gray(4.21149%)
    511: (2772,2772,2772) #0AD40AD40AD4 gray(4.2298%)
    412: (2785,2785,2785) #0AE10AE10AE1 gray(4.24964%)
    424: (2797,2797,2797) #0AED0AED0AED gray(4.26795%)
    340: (2810,2810,2810) #0AFA0AFA0AFA gray(4.28779%)
    297: (2823,2823,2823) #0B070B070B07 gray(4.30762%)
    170: (2836,2836,2836) #0B140B140B14 gray(4.32746%)
    139: (2849,2849,2849) #0B210B210B21 gray(4.3473%)
    74: (2863,2863,2863) #0B2F0B2F0B2F gray(4.36866%)
    33: (2876,2876,2876) #0B3C0B3C0B3C gray(4.38849%)
    47: (2889,2889,2889) #0B490B490B49 gray(4.40833%)
    36: (2903,2903,2903) #0B570B570B57 gray(4.42969%)
    45: (2917,2917,2917) #0B650B650B65 gray(4.45106%)
    35: (2931,2931,2931) #0B730B730B73 gray(4.47242%)
    40: (2945,2945,2945) #0B810B810B81 gray(4.49378%)
    32: (2959,2959,2959) #0B8F0B8F0B8F gray(4.51514%)
    44: (2973,2973,2973) #0B9D0B9D0B9D gray(4.53651%)
    30: (2988,2988,2988) #0BAC0BAC0BAC gray(4.5594%)
    30: (3002,3002,3002) #0BBA0BBA0BBA gray(4.58076%)
    47: (3017,3017,3017) #0BC90BC90BC9 gray(4.60365%)
    33: (3032,3032,3032) #0BD80BD80BD8 gray(4.62654%)
    20: (3047,3047,3047) #0BE70BE70BE7 gray(4.64942%)
    18: (3062,3062,3062) #0BF60BF60BF6 gray(4.67231%)
    32: (3077,3077,3077) #0C050C050C05 gray(4.6952%)
    22: (3093,3093,3093) #0C150C150C15 gray(4.71962%)
    29: (3108,3108,3108) #0C240C240C24 gray(4.7425%)
    33: (3124,3124,3124) #0C340C340C34 gray(4.76692%)
    19: (3140,3140,3140) #0C440C440C44 gray(4.79133%)
    21: (3156,3156,3156) #0C540C540C54 gray(4.81575%)
    29: (3172,3172,3172) #0C640C640C64 gray(4.84016%)
    26: (3189,3189,3189) #0C750C750C75 gray(4.8661%)
    26: (3205,3205,3205) #0C850C850C85 gray(4.89052%)
    28: (3222,3222,3222) #0C960C960C96 gray(4.91646%)
    20: (3239,3239,3239) #0CA70CA70CA7 gray(4.9424%)
    23: (3256,3256,3256) #0CB80CB80CB8 gray(4.96834%)
    32: (3274,3274,3274) #0CCA0CCA0CCA gray(4.9958%)
    30: (3291,3291,3291) #0CDB0CDB0CDB gray(5.02174%)
    56: (3309,3309,3309) #0CED0CED0CED gray(5.04921%)
    22: (3327,3327,3327) #0CFF0CFF0CFF gray(5.07668%)
    31: (3345,3345,3345) #0D110D110D11 gray(5.10414%)
    48: (3363,3363,3363) #0D230D230D23 gray(5.13161%)
    50: (3382,3382,3382) #0D360D360D36 gray(5.1606%)
    42: (3400,3400,3400) #0D480D480D48 gray(5.18807%)
    44: (3419,3419,3419) #0D5B0D5B0D5B gray(5.21706%)
    55: (3438,3438,3438) #0D6E0D6E0D6E gray(5.24605%)
    44: (3458,3458,3458) #0D820D820D82 gray(5.27657%)
    42: (3477,3477,3477) #0D950D950D95 gray(5.30556%)
    62: (3497,3497,3497) #0DA90DA90DA9 gray(5.33608%)
    51: (3517,3517,3517) #0DBD0DBD0DBD gray(5.3666%)
    52: (3537,3537,3537) #0DD10DD10DD1 gray(5.39712%)
    60: (3557,3557,3557) #0DE50DE50DE5 gray(5.42763%)
    57: (3578,3578,3578) #0DFA0DFA0DFA gray(5.45968%)
    60: (3599,3599,3599) #0E0F0E0F0E0F gray(5.49172%)
    43: (3620,3620,3620) #0E240E240E24 gray(5.52377%)
    46: (3642,3642,3642) #0E3A0E3A0E3A gray(5.55734%)
    51: (3663,3663,3663) #0E4F0E4F0E4F gray(5.58938%)
    66: (3685,3685,3685) #0E650E650E65 gray(5.62295%)
    160: (3707,3707,3707) #0E7B0E7B0E7B gray(5.65652%)
    191: (3730,3730,3730) #0E920E920E92 gray(5.69162%)
    136: (3753,3753,3753) #0EA90EA90EA9 gray(5.72671%)
    40: (3776,3776,3776) #0EC00EC00EC0 gray(5.76181%)
  Rendering intent: Undefined
  Gamma: 0.454545
  Background color: gray(255)
  Border color: gray(223)
  Matte color: gray(189)
  Transparent color: gray(0)
  Interlace: None
  Intensity: Undefined
  Compose: Over
  Page geometry: 640x480+0+0
  Dispose: Undefined
  Iterations: 0
  Compression: Zip
  Orientation: Undefined
  Properties:
    date:create: 2023-11-15T18:37:03+00:00
    date:modify: 2023-11-15T18:37:03+00:00
    png:IHDR.bit-depth-orig: 16
    png:IHDR.bit_depth: 16
    png:IHDR.color-type-orig: 0
    png:IHDR.color_type: 0 (Grayscale)
    png:IHDR.interlace_method: 0 (Not interlaced)
    png:IHDR.width,height: 640, 480
    signature: 9342afc9aeb34eb6dbc1651ed881b82f8cd3890eccfcb6fd096f5ce62d7adf68
  Artifacts:
    filename: 1700072993.020334.png
    verbose: true
  Tainted: False
  Filesize: 125602B
  Number pixels: 307200
  Pixels per second: 48.6842MB
  User time: 0.010u
  Elapsed time: 0:01.006
  Version: ImageMagick 6.9.11-60 Q16 x86_64 2021-01-25 https://imagemagick.org

here is the mesh_cleaned.obj that is created that doesn't resemble an espresso cup.

Screenshot from 2023-11-15 14-09-24

@wenbowen123
Copy link
Collaborator

duplicate of #111

@monajalal
Copy link
Author

@wenbowen123 this is not a duplicate. For me, it does happen in the first step. Also, my masks have no problem. Could you please open the issue? I will close it once it gets fixed.

@wenbowen123 wenbowen123 reopened this Nov 21, 2023
@wenbowen123
Copy link
Collaborator

@monajalal have you tried the latest commit as mentioned in #111 ?

@monajalal
Copy link
Author

yes it worked (I didn't get the error in second step though and got it in first step)

[bundlesdf.py] frame_pairs: 1
[loftr_wrapper.py] image0: torch.Size([1, 1, 400, 400])
[loftr_wrapper.py] net forward
[loftr_wrapper.py] mconf, 0.2004760205745697 0.9993301630020142
[loftr_wrapper.py] pair_ids (1373,)
[loftr_wrapper.py] corres: (1373, 5)
[2023-11-21 11:19:00.265] [warning] [FeatureManager.cpp:1589] start multi pair ransac GPU, pairs#=1
[2023-11-21 11:19:00.266] [warning] [FeatureManager.cpp:1699] ransac makes match betwee frame 1700074151.983942 1700074151.917228 #inliers=687, #prev 1187
[bundlesdf.py] frame 1700074151.983942 pose update before
[[ 0.11  -0.988  0.107  0.136]
 [-0.774 -0.152 -0.615  0.931]
 [ 0.624 -0.015 -0.781  0.868]
 [ 0.     0.     0.     1.   ]]
[2023-11-21 11:19:00.268] [warning] [FeatureManager.cpp:1095] procrustesByCorrespondence err per point between 1700074151.983942 and 1700074151.917228: 0.000204096
[bundlesdf.py] frame 1700074151.983942 pose update after
[[ 0.096 -0.995  0.022  0.237]
 [-0.757 -0.087 -0.647  0.954]
 [ 0.646  0.046 -0.762  0.836]
 [ 0.     0.     0.     1.   ]]
[2023-11-21 11:19:00.269] [warning] [Bundler.cpp:67] forgetting frame 1700074150.182662
[2023-11-21 11:19:00.269] [warning] [FeatureManager.cpp:469] forgetting frame 1700074150.182662
[bundlesdf.py] exceed window size, forget frame 1700074150.182662
[2023-11-21 11:19:00.272] [warning] [Bundler.cpp:435] total keyframes=187, want to select 10
[2023-11-21 11:19:00.300] [warning] [Bundler.cpp:516] ids#=187, max_BA_frames-frames.size()=9
[2023-11-21 11:19:00.300] [warning] [Bundler.cpp:525] frames#=10
[2023-11-21 11:19:00.301] [warning] [Bundler.cpp:793] frame 1700074150.115947 and 1700074149.849090 visible=0.811631
[2023-11-21 11:19:00.301] [warning] [Bundler.cpp:802] add frame (1700074150.115947, 1700074149.849090) into pairs
[2023-11-21 11:19:00.301] [warning] [Bundler.cpp:793] frame 1700074150.449519 and 1700074149.849090 visible=0.923981
[2023-11-21 11:19:00.301] [warning] [Bundler.cpp:802] add frame (1700074150.449519, 1700074149.849090) into pairs
[2023-11-21 11:19:00.301] [warning] [Bundler.cpp:793] frame 1700074151.983942 and 1700074149.849090 visible=0.914919
[2023-11-21 11:19:00.301] [warning] [Bundler.cpp:802] add frame (1700074151.983942, 1700074149.849090) into pairs
[2023-11-21 11:19:00.301] [warning] [Bundler.cpp:793] frame 1700074150.115947 and 1700074149.915804 visible=0.838338
[2023-11-21 11:19:00.301] [warning] [Bundler.cpp:802] add frame (1700074150.115947, 1700074149.915804) into pairs
[2023-11-21 11:19:00.302] [warning] [Bundler.cpp:793] frame 1700074150.449519 and 1700074149.915804 visible=0.905004
[2023-11-21 11:19:00.302] [warning] [Bundler.cpp:802] add frame (1700074150.449519, 1700074149.915804) into pairs
[2023-11-21 11:19:00.302] [warning] [Bundler.cpp:793] frame 1700074151.983942 and 1700074149.915804 visible=0.932489
[2023-11-21 11:19:00.302] [warning] [Bundler.cpp:802] add frame (1700074151.983942, 1700074149.915804) into pairs
[2023-11-21 11:19:00.302] [warning] [Bundler.cpp:793] frame 1700074150.115947 and 1700074149.982519 visible=0.8317
[2023-11-21 11:19:00.302] [warning] [Bundler.cpp:802] add frame (1700074150.115947, 1700074149.982519) into pairs
[2023-11-21 11:19:00.302] [warning] [Bundler.cpp:793] frame 1700074150.449519 and 1700074149.982519 visible=0.846832
[2023-11-21 11:19:00.302] [warning] [Bundler.cpp:802] add frame (1700074150.449519, 1700074149.982519) into pairs
[2023-11-21 11:19:00.302] [warning] [Bundler.cpp:793] frame 1700074151.983942 and 1700074149.982519 visible=0.949846
[2023-11-21 11:19:00.302] [warning] [Bundler.cpp:802] add frame (1700074151.983942, 1700074149.982519) into pairs
[2023-11-21 11:19:00.303] [warning] [Bundler.cpp:793] frame 1700074150.249376 and 1700074150.115947 visible=0.775355
[2023-11-21 11:19:00.303] [warning] [Bundler.cpp:802] add frame (1700074150.249376, 1700074150.115947) into pairs
[2023-11-21 11:19:00.303] [warning] [Bundler.cpp:793] frame 1700074150.449519 and 1700074150.115947 visible=0.737151
[2023-11-21 11:19:00.303] [warning] [Bundler.cpp:802] add frame (1700074150.449519, 1700074150.115947) into pairs
[2023-11-21 11:19:00.303] [warning] [Bundler.cpp:793] frame 1700074151.316803 and 1700074150.115947 visible=0.875138
[2023-11-21 11:19:00.303] [warning] [Bundler.cpp:802] add frame (1700074151.316803, 1700074150.115947) into pairs
[2023-11-21 11:19:00.303] [warning] [Bundler.cpp:793] frame 1700074151.516945 and 1700074150.115947 visible=0.881712
[2023-11-21 11:19:00.303] [warning] [Bundler.cpp:802] add frame (1700074151.516945, 1700074150.115947) into pairs
[2023-11-21 11:19:00.304] [warning] [Bundler.cpp:793] frame 1700074151.650373 and 1700074150.115947 visible=0.859779
[2023-11-21 11:19:00.304] [warning] [Bundler.cpp:802] add frame (1700074151.650373, 1700074150.115947) into pairs
[2023-11-21 11:19:00.304] [warning] [Bundler.cpp:793] frame 1700074151.983942 and 1700074150.115947 visible=0.935683
[2023-11-21 11:19:00.304] [warning] [Bundler.cpp:802] add frame (1700074151.983942, 1700074150.115947) into pairs
[2023-11-21 11:19:00.304] [warning] [Bundler.cpp:793] frame 1700074150.449519 and 1700074150.249376 visible=0.767536
[2023-11-21 11:19:00.304] [warning] [Bundler.cpp:802] add frame (1700074150.449519, 1700074150.249376) into pairs
[2023-11-21 11:19:00.304] [warning] [Bundler.cpp:793] frame 1700074151.983942 and 1700074150.249376 visible=0.946971
[2023-11-21 11:19:00.304] [warning] [Bundler.cpp:802] add frame (1700074151.983942, 1700074150.249376) into pairs
[2023-11-21 11:19:00.305] [warning] [Bundler.cpp:793] frame 1700074151.316803 and 1700074150.449519 visible=0.90125
[2023-11-21 11:19:00.305] [warning] [Bundler.cpp:802] add frame (1700074151.316803, 1700074150.449519) into pairs
[2023-11-21 11:19:00.305] [warning] [Bundler.cpp:793] frame 1700074151.516945 and 1700074150.449519 visible=0.907337
[2023-11-21 11:19:00.305] [warning] [Bundler.cpp:802] add frame (1700074151.516945, 1700074150.449519) into pairs
[2023-11-21 11:19:00.306] [warning] [Bundler.cpp:793] frame 1700074151.650373 and 1700074150.449519 visible=0.905742
[2023-11-21 11:19:00.306] [warning] [Bundler.cpp:802] add frame (1700074151.650373, 1700074150.449519) into pairs
[2023-11-21 11:19:00.306] [warning] [Bundler.cpp:793] frame 1700074151.983942 and 1700074150.449519 visible=0.889362
[2023-11-21 11:19:00.306] [warning] [Bundler.cpp:802] add frame (1700074151.983942, 1700074150.449519) into pairs
[2023-11-21 11:19:00.306] [warning] [Bundler.cpp:793] frame 1700074151.983942 and 1700074151.316803 visible=0.888084
[2023-11-21 11:19:00.306] [warning] [Bundler.cpp:802] add frame (1700074151.983942, 1700074151.316803) into pairs
[2023-11-21 11:19:00.306] [warning] [Bundler.cpp:793] frame 1700074151.983942 and 1700074151.516945 visible=0.891172
[2023-11-21 11:19:00.306] [warning] [Bundler.cpp:802] add frame (1700074151.983942, 1700074151.516945) into pairs
[2023-11-21 11:19:00.306] [warning] [Bundler.cpp:793] frame 1700074151.983942 and 1700074151.650373 visible=0.890534
[2023-11-21 11:19:00.306] [warning] [Bundler.cpp:802] add frame (1700074151.983942, 1700074151.650373) into pairs
[bundlesdf.py] frame_pairs: 24
[2023-11-21 11:19:00.306] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074150.115947, 1700074149.849090)
[2023-11-21 11:19:00.307] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074150.449519, 1700074149.849090)
[2023-11-21 11:19:00.308] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074150.115947, 1700074149.915804)
[2023-11-21 11:19:00.308] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074150.449519, 1700074149.915804)
[2023-11-21 11:19:00.309] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074150.115947, 1700074149.982519)
[2023-11-21 11:19:00.309] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074150.449519, 1700074149.982519)
[2023-11-21 11:19:00.311] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074150.249376, 1700074150.115947)
[2023-11-21 11:19:00.311] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074150.449519, 1700074150.115947)
[2023-11-21 11:19:00.311] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074151.316803, 1700074150.115947)
[2023-11-21 11:19:00.311] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074151.516945, 1700074150.115947)
[2023-11-21 11:19:00.311] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074151.650373, 1700074150.115947)
[2023-11-21 11:19:00.312] [warning] [FeatureManager.cpp:2690] _raw_matches found exsting pair (1700074150.449519, 1700074150.249376)
[loftr_wrapper.py] image0: torch.Size([12, 1, 400, 400])
[loftr_wrapper.py] net forward
[loftr_wrapper.py] mconf, 0.20008717477321625 0.9882730841636658
[loftr_wrapper.py] pair_ids (2947,)
[loftr_wrapper.py] corres: (2947, 5)
[2023-11-21 11:19:00.457] [warning] [FeatureManager.cpp:1589] start multi pair ransac GPU, pairs#=12
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1695] after ransac, frame 1700074151.983942 and 1700074149.849090 has too few matches #0, ignore
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1695] after ransac, frame 1700074151.983942 and 1700074149.915804 has too few matches #0, ignore
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1695] after ransac, frame 1700074151.983942 and 1700074149.982519 has too few matches #3, ignore
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1699] ransac makes match betwee frame 1700074151.983942 1700074150.115947 #inliers=7, #prev 153
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1699] ransac makes match betwee frame 1700074151.983942 1700074150.249376 #inliers=19, #prev 197
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1695] after ransac, frame 1700074151.316803 and 1700074150.449519 has too few matches #2, ignore
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1695] after ransac, frame 1700074151.516945 and 1700074150.449519 has too few matches #3, ignore
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1695] after ransac, frame 1700074151.650373 and 1700074150.449519 has too few matches #4, ignore
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1699] ransac makes match betwee frame 1700074151.983942 1700074150.449519 #inliers=6, #prev 179
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1699] ransac makes match betwee frame 1700074151.983942 1700074151.316803 #inliers=86, #prev 280
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1699] ransac makes match betwee frame 1700074151.983942 1700074151.516945 #inliers=11, #prev 194
[2023-11-21 11:19:00.484] [warning] [FeatureManager.cpp:1699] ransac makes match betwee frame 1700074151.983942 1700074151.650373 #inliers=77, #prev 363
#optimizeGPU frames=10, #keyframes=187, #_frames=193
1700074149.849090 1700074149.915804 1700074149.982519 1700074150.115947 1700074150.249376 1700074150.449519 1700074151.316803 1700074151.516945 1700074151.650373 1700074151.983942 
[2023-11-21 11:19:00.486] [warning] [Bundler.cpp:920] OptimizerGPU begin, global_corres#=206
global_corres=206
maxNumResiduals / maxNumberOfImages = 216206 / 10 = 21620
m_maxNumberOfImages*m_maxCorrPerImage = 10 x 206 = 2060
m_solver->solve Time difference = 4.021[ms]
[2023-11-21 11:19:00.496] [warning] [Bundler.cpp:924] OptimizerGPU finish
[2023-11-21 11:19:00.496] [warning] [Bundler.cpp:302] frame 1700074151.983942 not selected as keyframe since its rot diff with frame 1700074151.516945 is 3.48706 deg
[bundlesdf.py] processNewFrame done 1700074151.983942
[bundlesdf.py] rematch_after_nerf: True
[2023-11-21 11:19:00.497] [warning] [Bundler.cpp:961] Welcome saveNewframeResult
[2023-11-21 11:19:00.532] [warning] [Bundler.cpp:1110] saveNewframeResult done
[2023-11-21 11:19:04.973] [warning] [Bundler.cpp:49] Connected to nerf_port 9999
[2023-11-21 11:19:04.973] [warning] [FeatureManager.cpp:2084] Connected to port 5555
default_cfg {'backbone_type': 'ResNetFPN', 'resolution': (8, 2), 'fine_window_size': 5, 'fine_concat_coarse_feat': True, 'resnetfpn': {'initial_dim': 128, 'block_dims': [128, 196, 256]}, 'coarse': {'d_model': 256, 'd_ffn': 256, 'nhead': 8, 'layer_names': ['self', 'cross', 'self', 'cross', 'self', 'cross', 'self', 'cross'], 'attention': 'linear', 'temp_bug_fix': False}, 'match_coarse': {'thr': 0.2, 'border_rm': 2, 'match_type': 'dual_softmax', 'dsmax_temperature': 0.1, 'skh_iters': 3, 'skh_init_bin_score': 1.0, 'skh_prefilter': True, 'train_coarse_percent': 0.4, 'train_pad_num_gt_min': 200}, 'fine': {'d_model': 128, 'd_ffn': 128, 'nhead': 8, 'layer_names': ['self', 'cross'], 'attention': 'linear'}}
[bundlesdf.py] last_stamp 1700074151.983942
[bundlesdf.py] keyframes#: 187
[tool.py] compute_scene_bounds_worker start
[tool.py] compute_scene_bounds_worker done
[tool.py] merge pcd
[tool.py] compute_translation_scales done
translation_cvcam=[-0.00473613 -0.00114112  0.01014452], sc_factor=2.0600853021701306
[nerf_runner.py] Octree voxel dilate_radius:1
level 0, resolution: 16
level 1, resolution: 20
level 2, resolution: 24
level 3, resolution: 28
level 4, resolution: 34
level 5, resolution: 41
level 6, resolution: 49
level 7, resolution: 59
level 8, resolution: 71
level 9, resolution: 85
level 10, resolution: 102
level 11, resolution: 123
level 12, resolution: 148
level 13, resolution: 177
level 14, resolution: 213
level 15, resolution: 256
GridEncoder: input_dim=3 n_levels=16 level_dim=2 resolution=16 -> 256 per_level_scale=1.2030 params=(20411696, 2) gridtype=hash align_corners=False
sc_factor 2.0600853021701306
translation [-0.00473613 -0.00114112  0.01014452]
[nerf_runner.py] denoise cloud
[nerf_runner.py] Denoising rays based on octree cloud
[nerf_runner.py] bad_mask#=47409
rays torch.Size([8815005, 12])
Start training
[nerf_runner.py] train progress 0/2001
[nerf_runner.py] Iter: 0, valid_samples: 654784/655360, valid_rays: 2047/2048, loss: 19.2875576, rgb_loss: 18.9341164, rgb0_loss: 0.0000000, fs_rgb_loss: 0.0000000, depth_loss: 0.0000000, depth_loss0: 0.0000000, fs_loss: 0.0718253, point_cloud_loss: 0.0000000, point_cloud_normal_loss: 0.0000000, sdf_loss: 0.1769290, eikonal_loss: 0.0000000, variation_loss: 0.0000000, truncation(meter): 0.0100000, pose_reg: 0.0000000, reg_features: 0.1046863, 

[nerf_runner.py] train progress 200/2001
[nerf_runner.py] train progress 400/2001
[nerf_runner.py] train progress 600/2001
[nerf_runner.py] train progress 800/2001
[nerf_runner.py] train progress 1000/2001
[nerf_runner.py] train progress 1200/2001
[nerf_runner.py] train progress 1400/2001
[nerf_runner.py] train progress 1600/2001
[nerf_runner.py] train progress 1800/2001
[nerf_runner.py] train progress 2000/2001
cp: cannot stat '/home/mona/BundleSDF/pallet/out//nerf_with_bundletrack_online/image_step_*.png': No such file or directory
[nerf_runner.py] query_pts:torch.Size([114084125, 3]), valid:45562520
[nerf_runner.py] Running Marching Cubes
[nerf_runner.py] done V:(86787, 3), F:(171710, 3)
[acceleratesupport.py] OpenGL_accelerate module loaded
[arraydatatype.py] Using accelerated ArrayDatatype
project train_images 0/187
project train_images 1/187
project train_images 2/187
project train_images 3/187
project train_images 4/187
project train_images 5/187
project train_images 6/187
/home/mona/BundleSDF/nerf_runner.py:1532: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').
  uvs_unique = torch.stack((uvs_flat_unique%(W-1), uvs_flat_unique//(W-1)), dim=-1).reshape(-1,2)
project train_images 7/187
project train_images 8/187
project train_images 9/187
project train_images 10/187
project train_images 11/187
project train_images 12/187
project train_images 13/187
project train_images 14/187
project train_images 15/187
project train_images 16/187
project train_images 17/187
project train_images 18/187
project train_images 19/187
project train_images 20/187
project train_images 21/187
project train_images 22/187
project train_images 23/187
project train_images 24/187
project train_images 25/187
project train_images 26/187
project train_images 27/187
project train_images 28/187
project train_images 29/187
project train_images 30/187
project train_images 31/187
project train_images 32/187
project train_images 33/187
project train_images 34/187
project train_images 35/187
project train_images 36/187
project train_images 37/187
project train_images 38/187
project train_images 39/187
project train_images 40/187
project train_images 41/187
project train_images 42/187
project train_images 43/187
project train_images 44/187
project train_images 45/187
project train_images 46/187
project train_images 47/187
project train_images 48/187
project train_images 49/187
project train_images 50/187
project train_images 51/187
project train_images 52/187
project train_images 53/187
project train_images 54/187
project train_images 55/187
project train_images 56/187
project train_images 57/187
project train_images 58/187
project train_images 59/187
project train_images 60/187
project train_images 61/187
project train_images 62/187
project train_images 63/187
project train_images 64/187
project train_images 65/187
project train_images 66/187
project train_images 67/187
project train_images 68/187
project train_images 69/187
project train_images 70/187
project train_images 71/187
project train_images 72/187
project train_images 73/187
project train_images 74/187
project train_images 75/187
project train_images 76/187
project train_images 77/187
project train_images 78/187
project train_images 79/187
project train_images 80/187
project train_images 81/187
project train_images 82/187
project train_images 83/187
project train_images 84/187
project train_images 85/187
project train_images 86/187
project train_images 87/187
project train_images 88/187
project train_images 89/187
project train_images 90/187
project train_images 91/187
project train_images 92/187
project train_images 93/187
project train_images 94/187
project train_images 95/187
project train_images 96/187
project train_images 97/187
project train_images 98/187
project train_images 99/187
project train_images 100/187
project train_images 101/187
project train_images 102/187
project train_images 103/187
project train_images 104/187
project train_images 105/187
project train_images 106/187
project train_images 107/187
project train_images 108/187
project train_images 109/187
project train_images 110/187
project train_images 111/187
project train_images 112/187
project train_images 113/187
project train_images 114/187
project train_images 115/187
project train_images 116/187
project train_images 117/187
project train_images 118/187
project train_images 119/187
project train_images 120/187
project train_images 121/187
project train_images 122/187
project train_images 123/187
project train_images 124/187
project train_images 125/187
project train_images 126/187
project train_images 127/187
project train_images 128/187
project train_images 129/187
project train_images 130/187
project train_images 131/187
project train_images 132/187
project train_images 133/187
project train_images 134/187
project train_images 135/187
project train_images 136/187
project train_images 137/187
project train_images 138/187
project train_images 139/187
project train_images 140/187
project train_images 141/187
project train_images 142/187
project train_images 143/187
project train_images 144/187
project train_images 145/187
project train_images 146/187
project train_images 147/187
project train_images 148/187
project train_images 149/187
project train_images 150/187
project train_images 151/187
project train_images 152/187
project train_images 153/187
project train_images 154/187
project train_images 155/187
project train_images 156/187
project train_images 157/187
project train_images 158/187
project train_images 159/187
project train_images 160/187
project train_images 161/187
project train_images 162/187
project train_images 163/187
project train_images 164/187
project train_images 165/187
project train_images 166/187
project train_images 167/187
project train_images 168/187
project train_images 169/187
project train_images 170/187
project train_images 171/187
project train_images 172/187
project train_images 173/187
project train_images 174/187
project train_images 175/187
project train_images 176/187
project train_images 177/187
project train_images 178/187
project train_images 179/187
project train_images 180/187
project train_images 181/187
project train_images 182/187
project train_images 183/187
project train_images 184/187
project train_images 185/187
project train_images 186/187
/home/mona/BundleSDF/nerf_runner.py:1539: RuntimeWarning: invalid value encountered in cast
  tex_image = np.clip(tex_image,0,255).astype(np.uint8)
Done
[2023-11-21 11:21:03.507] [warning] [Bundler.cpp:59] Destructor
[2023-11-21 11:21:03.909] [warning] [Bundler.cpp:59] Destructor

my created mesh looks very weird though (my object looks like a rectangular cuboid itself)
image

For now, I close this issue since the main problem is resolved.

Could you please tell what is the order you have used for your cam_K.txt file? Thank you so much for the new push to code.

@monajalal
Copy link
Author

@wenbowen123 I think I got it figured IntelRealSense/realsense-ros#2935 (comment)

@Wahaha-code
Copy link

Hello, I encountered the same problem, how did you solve it(ValueError: need at least one array to concatenate)?

@monajalal
Copy link
Author

@Wahaha-code you need depth-aligned depth and rgb capture. I used ros realsense for this purpose in a ros noetic docker. My camera is D435.

@Wahaha-code
Copy link

Thank you for your guidance. In fact, I have always had a problem. During my reconstruction process, which is the first step, due to the small number of matching points between the two frames, it will often be interrupted. I have to press the c key frequently to continue running. . I want to know how I can better collect my data. At the same time, I found that when using xmem to split image files, frames often skip. Is this the cause of this problem? I don't know how to solve this problem.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants