-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
circ_pad_plugin_multi_tactic.py
318 lines (248 loc) · 10.2 KB
/
circ_pad_plugin_multi_tactic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import onnx_graphsurgeon as gs
import numpy as np
import onnx
import cupy as cp
import logging
import tensorrt as trt
from polygraphy.backend.trt import (
CreateConfig,
EngineFromNetwork,
NetworkFromOnnxPath,
TrtRunner,
)
import triton
import triton.language as tl
from enum import IntEnum
from polygraphy.json import to_json, from_json
import torch
from utils import volume, parseArgs
logger = logging.getLogger("CircPadMultiTactic")
class Tactic(IntEnum):
TORCH = 1
TRITON = 2
@triton.jit
def circ_pad(X,
all_pads_0, all_pads_2, all_pads_4, all_pads_6,
orig_dims_0, orig_dims_1, orig_dims_2, orig_dims_3,
Y,
Y_shape_1, Y_shape_2, Y_shape_3,
X_len, Y_len, BLOCK_SIZE: tl.constexpr,):
pid = tl.program_id(0)
i = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
mask_y = i < Y_len
i3 = i % Y_shape_3
i2 = (i // Y_shape_3) % Y_shape_2
i1 = (i // Y_shape_3 // Y_shape_2) % Y_shape_1
i0 = i // Y_shape_3 // Y_shape_2 // Y_shape_1
j0 = (i0 - all_pads_0 + orig_dims_0) % orig_dims_0
j1 = (i1 - all_pads_2 + orig_dims_1) % orig_dims_1
j2 = (i2 - all_pads_4 + orig_dims_2) % orig_dims_2
j3 = (i3 - all_pads_6 + orig_dims_3) % orig_dims_3
load_idx = orig_dims_3 * orig_dims_2 * orig_dims_1 * j0 + orig_dims_3 * orig_dims_2 * j1 + orig_dims_3 * j2 + j3
mask_x = load_idx < X_len
x = tl.load(X + load_idx, mask=mask_x)
tl.store(Y + i, x, mask=mask_y)
class CircPadPlugin(trt.IPluginV3, trt.IPluginV3OneCore, trt.IPluginV3OneBuild, trt.IPluginV3OneRuntime):
def __init__(self, fc=None, phase=None):
trt.IPluginV3.__init__(self)
trt.IPluginV3OneCore.__init__(self)
trt.IPluginV3OneBuild.__init__(self)
trt.IPluginV3OneRuntime.__init__(self)
self.pads = []
self.X_shape = []
self.num_outputs = 1
self.plugin_namespace = ""
self.plugin_name = "CircPadPlugin"
self.plugin_version = "1"
# Set the timing cache ID to prevent unnecessary timing of second plugin instance
self.timing_cache_id = ""
self.tactic = None
if fc is not None:
assert fc[0].name == "pads"
self.pads = fc[0].data
if phase is not None:
self.phase = phase
def get_capability_interface(self, type):
return self
def get_output_data_types(self, input_types):
return [input_types[0]]
def get_output_shapes(self, inputs, shape_inputs, exprBuilder):
output_dims = trt.DimsExprs(inputs[0])
for i in range(np.size(self.pads) // 2):
output_dims[len(output_dims) - i - 1] = exprBuilder.operation(
trt.DimensionOperation.SUM,
inputs[0][len(output_dims) - i - 1],
exprBuilder.constant(self.pads[i * 2] + self.pads[i * 2 + 1]),
)
return [output_dims]
def get_fields_to_serialize(self):
return trt.PluginFieldCollection([
trt.PluginField("pads", self.pads, trt.PluginFieldType.INT32)
])
def configure_plugin(self, inp, out):
pass
def on_shape_change(self, inp, out):
X_dims = inp[0].dims
self.X_shape = np.zeros((len(X_dims),))
for i in range(len(X_dims)):
self.X_shape[i] = X_dims[i]
def supports_format_combination(self, pos, in_out, num_inputs):
assert num_inputs == 1
assert pos < len(in_out)
desc = in_out[pos].desc
if desc.format != trt.TensorFormat.LINEAR:
return False
# first input should be float16 or float32
if pos == 0:
return desc.type == trt.DataType.FLOAT or desc.type == trt.DataType.HALF
# output should have the same type as the input
if pos == 1:
return in_out[0].desc.type == desc.type
assert False
def enqueue(self, input_desc, output_desc, inputs, outputs, workspace, stream):
inp_dtype = trt.nptype(input_desc[0].type)
a_mem = cp.cuda.UnownedMemory(
inputs[0], volume(input_desc[0].dims) * cp.dtype(inp_dtype).itemsize, self
)
c_mem = cp.cuda.UnownedMemory(
outputs[0],
volume(output_desc[0].dims) * cp.dtype(inp_dtype).itemsize,
self,
)
a_ptr = cp.cuda.MemoryPointer(a_mem, 0)
c_ptr = cp.cuda.MemoryPointer(c_mem, 0)
c_d = cp.ndarray((volume(output_desc[0].dims)), dtype=inp_dtype, memptr=c_ptr)
if self.phase == trt.TensorRTPhase.BUILD:
logger.info(f"Timing tactic: {self.tactic}")
if self.tactic == Tactic.TORCH:
# Use PyTorch functional op - no need to write kernel
a_d = cp.ndarray(tuple(input_desc[0].dims), dtype=inp_dtype, memptr=a_ptr)
a_t = torch.as_tensor(a_d, device='cuda')
out = torch.nn.functional.pad(a_t, self.pads.tolist(), mode='circular')
cp.copyto(c_d, cp.reshape(cp.asarray(out), (-1,)))
elif self.tactic == Tactic.TRITON:
a_d = cp.ndarray((volume(input_desc[0].dims)), dtype=inp_dtype, memptr=a_ptr)
a_t = torch.as_tensor(a_d, device='cuda')
c_t = torch.as_tensor(c_d, device='cuda')
N = len(self.X_shape)
all_pads = np.zeros((N * 2,), dtype=np.int32)
orig_dims = np.array(self.X_shape, dtype=np.int32)
out_dims = np.array(self.X_shape, dtype=np.int32)
for i in range(np.size(pads) // 2):
out_dims[N - i - 1] += pads[i * 2] + pads[i * 2 + 1]
all_pads[N * 2 - 2 * i - 2] = pads[i * 2]
all_pads[N * 2 - 2 * i - 1] = pads[i * 2 + 1]
all_pads = all_pads.tolist()
orig_dims = orig_dims.tolist()
out_dims = out_dims.tolist()
blockSize = 256
numBlocks = tuple(int((np.prod(out_dims) + blockSize - 1) // blockSize))
circ_pad[numBlocks](a_t,
all_pads[0], all_pads[2], all_pads[4], all_pads[6],
orig_dims[0], orig_dims[1], orig_dims[2], orig_dims[3],
c_t,
out_dims[1], out_dims[2], out_dims[3],
int(np.prod(orig_dims)), int(np.prod(out_dims)), BLOCK_SIZE=256
)
else:
raise RuntimeError("Invalid tactic")
def attach_to_context(self, context):
return self.clone()
def get_valid_tactics(self):
return [int(Tactic.TORCH), int(Tactic.TRITON)]
def set_tactic(self, tactic):
self.tactic = Tactic(tactic)
if self.phase == trt.TensorRTPhase.RUNTIME:
logger.info(f"Best tactic chosen: {self.tactic}")
def clone(self):
cloned_plugin = CircPadPlugin()
cloned_plugin.__dict__.update(self.__dict__)
return cloned_plugin
#
# The following defaults take effect since the respective methods are not overriden
#
# def get_workspace_size(self, input_desc, output_desc):
# return 0
# def destroy(self):
# pass
class CircPadPluginCreator(trt.IPluginCreatorV3One):
def __init__(self):
trt.IPluginCreatorV3One.__init__(self)
self.name = "CircPadPlugin"
self.plugin_namespace = ""
self.plugin_version = "1"
self.field_names = trt.PluginFieldCollection([
trt.PluginField("pads", np.array([]), trt.PluginFieldType.INT32)
])
def create_plugin(self, name, fc, phase):
return CircPadPlugin(fc, phase)
if __name__ == "__main__":
logging.basicConfig()
logger.setLevel(logging.INFO)
args = parseArgs()
precision = np.float32 if args.precision == "fp32" else np.float16
inp_shape = (10, 3, 32, 32)
X_A = np.random.normal(size=inp_shape).astype(precision)
X_B = np.random.normal(size=inp_shape).astype(precision)
pads = (1, 1, 1, 1)
# Register plugin creator
plg_registry = trt.get_plugin_registry()
my_plugin_creator = CircPadPluginCreator()
plg_registry.register_creator(my_plugin_creator, "")
# create ONNX model
onnx_path = "test_CircPadPlugin.onnx"
inputA = gs.Variable(name="X_A", shape=inp_shape, dtype=precision)
inputB = gs.Variable(name="X_B", shape=inp_shape, dtype=precision)
Y_A = gs.Variable(name="Y_A", dtype=precision)
Y_B = gs.Variable(name="Y_B", dtype=precision)
myPluginNode_A = gs.Node(
name="CircPadPlugin_A",
op="CircPadPlugin",
inputs=[inputA],
outputs=[Y_A],
attrs={"pads": pads},
)
myPluginNode_B = gs.Node(
name="CircPadPlugin_B",
op="CircPadPlugin",
inputs=[inputB],
outputs=[Y_B],
attrs={"pads": pads},
)
graph = gs.Graph(nodes=[myPluginNode_A, myPluginNode_B], inputs=[inputA, inputB], outputs=[Y_A, Y_B], opset=16)
onnx.save(gs.export_onnx(graph), onnx_path)
# build engine
build_engine = EngineFromNetwork(
NetworkFromOnnxPath(onnx_path), CreateConfig(fp16=precision==np.float16)
)
Y_A_ref = np.pad(X_A, [[0, 0], [0, 0], [pads[0], pads[1]], [pads[2], pads[3]]], "wrap")
Y_B_ref = np.pad(X_B, [[0, 0], [0, 0], [pads[0], pads[1]], [pads[2], pads[3]]], "wrap")
# Run
with TrtRunner(build_engine, "trt_runner")as runner:
outputs = runner.infer({"X_A": X_A, "X_B": X_B})
Y_A_out = outputs["Y_A"]
Y_B_out = outputs["Y_B"]
if np.allclose(Y_A_out, Y_A_ref):
print("Inference result A correct!")
else:
print("Inference result A incorrect!")
if np.allclose(Y_B_out, Y_B_ref):
print("Inference result B correct!")
else:
print("Inference result B incorrect!")