You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I find out that there is no label in valid.parquet.
Steps/Code to reproduce bug
While I m running this code:
start_time_window_index = 1
final_time_window_index = 4
for time_index in range(start_time_window_index, final_time_window_index):
# Set data
time_index_train = time_index
time_index_eval = time_index + 1
train_paths = glob.glob(os.path.join(OUTPUT_DIR, f"{time_index_train}/train.parquet"))
eval_paths = glob.glob(os.path.join(OUTPUT_DIR, f"{time_index_eval}/valid.parquet"))
# Train on day related to time_index
print('*'20)
print("Launch training for day %s are:" %time_index)
print(''20 + '\n')
trainer.train_dataset_or_path = train_paths
trainer.reset_lr_scheduler()
trainer.train()
trainer.state.global_step +=1
# Evaluate on the following day
trainer.eval_dataset_or_path = eval_paths
train_metrics = trainer.evaluate(metric_key_prefix='eval')
print(''20)
print("Eval results for day %s are:\t" %time_index_eval)
print('\n' + ''*20 + '\n')
for key in sorted(train_metrics.keys()):
print(" %s = %s" % (key, str(train_metrics[key])))
wipe_memory()
the error appear:
Launch training for day 1 are:
/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:391: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set no_deprecation_warning=True to disable this warning
warnings.warn(
{'train_runtime': 4.0234, 'train_samples_per_second': 3817.691, 'train_steps_per_second': 14.913, 'train_loss': 10.525657145182292, 'epoch': 60.0}
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 60/60 [00:04<00:00, 14.92it/s]
TrainOutput(global_step=60, training_loss=10.525657145182292, metrics={'train_runtime': 4.0234, 'train_samples_per_second': 3817.691, 'train_steps_per_second': 14.913, 'total_flos': 0.0, 'train_loss': 10.525657145182292})
Traceback (most recent call last):
File "", line 17, in
File "/usr/local/lib/python3.10/dist-packages/transformers/trainer.py", line 2932, in evaluate
output = eval_loop(
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/trainer.py", line 515, in evaluation_loop
metrics_results_detailed = model.calculate_metrics(preds, labels)
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/model/base.py", line 616, in calculate_metrics
head.calculate_metrics(
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/model/base.py", line 453, in calculate_metrics
task.calculate_metrics(
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/model/prediction_task.py", line 489, in calculate_metrics
result = metric(predictions, targets)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torchmetrics/metric.py", line 301, in forward
self._forward_cache = self._forward_full_state_update(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torchmetrics/metric.py", line 316, in _forward_full_state_update
self.update(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torchmetrics/metric.py", line 465, in wrapped_func
update(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/ranking_metric.py", line 56, in update
metric = self._metric(
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/ranking_metric.py", line 137, in _metric
if rel_indices.shape[0] > 0:
IndexError: tuple index out of range
Expected behavior
I expected there have label for evaluation
Environment details
Transformers4Rec version: 23.12
Platform:Docker
Python version:3.10
Huggingface Transformers version:4.27.1
PyTorch version (GPU?):2.1.0a0+4136153
Tensorflow version (GPU?):
Additional context
The text was updated successfully, but these errors were encountered:
Bug description
I find out that there is no label in valid.parquet.
Steps/Code to reproduce bug
While I m running this code:
start_time_window_index = 1
final_time_window_index = 4
for time_index in range(start_time_window_index, final_time_window_index):
# Set data
time_index_train = time_index
time_index_eval = time_index + 1
train_paths = glob.glob(os.path.join(OUTPUT_DIR, f"{time_index_train}/train.parquet"))
eval_paths = glob.glob(os.path.join(OUTPUT_DIR, f"{time_index_eval}/valid.parquet"))
# Train on day related to time_index
print('*'20)
print("Launch training for day %s are:" %time_index)
print(''20 + '\n')
trainer.train_dataset_or_path = train_paths
trainer.reset_lr_scheduler()
trainer.train()
trainer.state.global_step +=1
# Evaluate on the following day
trainer.eval_dataset_or_path = eval_paths
train_metrics = trainer.evaluate(metric_key_prefix='eval')
print(''20)
print("Eval results for day %s are:\t" %time_index_eval)
print('\n' + ''*20 + '\n')
for key in sorted(train_metrics.keys()):
print(" %s = %s" % (key, str(train_metrics[key])))
wipe_memory()
the error appear:
Launch training for day 1 are:
/usr/local/lib/python3.10/dist-packages/transformers/optimization.py:391: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set
no_deprecation_warning=True
to disable this warningwarnings.warn(
{'train_runtime': 4.0234, 'train_samples_per_second': 3817.691, 'train_steps_per_second': 14.913, 'train_loss': 10.525657145182292, 'epoch': 60.0}
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 60/60 [00:04<00:00, 14.92it/s]
TrainOutput(global_step=60, training_loss=10.525657145182292, metrics={'train_runtime': 4.0234, 'train_samples_per_second': 3817.691, 'train_steps_per_second': 14.913, 'total_flos': 0.0, 'train_loss': 10.525657145182292})
Traceback (most recent call last):
File "", line 17, in
File "/usr/local/lib/python3.10/dist-packages/transformers/trainer.py", line 2932, in evaluate
output = eval_loop(
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/trainer.py", line 515, in evaluation_loop
metrics_results_detailed = model.calculate_metrics(preds, labels)
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/model/base.py", line 616, in calculate_metrics
head.calculate_metrics(
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/model/base.py", line 453, in calculate_metrics
task.calculate_metrics(
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/model/prediction_task.py", line 489, in calculate_metrics
result = metric(predictions, targets)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torchmetrics/metric.py", line 301, in forward
self._forward_cache = self._forward_full_state_update(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torchmetrics/metric.py", line 316, in _forward_full_state_update
self.update(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torchmetrics/metric.py", line 465, in wrapped_func
update(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/ranking_metric.py", line 56, in update
metric = self._metric(
File "/usr/local/lib/python3.10/dist-packages/transformers4rec/torch/ranking_metric.py", line 137, in _metric
if rel_indices.shape[0] > 0:
IndexError: tuple index out of range
Expected behavior
I expected there have label for evaluation
Environment details
Additional context
The text was updated successfully, but these errors were encountered: