-
Notifications
You must be signed in to change notification settings - Fork 69
/
coverage.py
363 lines (253 loc) · 9.76 KB
/
coverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
#
# Copyright (c) 2020, NVIDIA CORPORATION.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from subprocess import Popen, PIPE
import cudf
import cupy as cp
import os
import time
import tabix
import numpy as np
import pandas as pd
from numba import cuda
from atacworks.dl4atac.models.models import DenoisingResNet
from atacworks.dl4atac.models.model_utils import load_model
import torch
def count_fragments(fragment_file):
"""
Counts number of fragments per barcode in fragment file.
Parameters
----------
fragment_file: path to gzipped fragment file
Returns
-------
barcode_counts: pandas DF with number of fragments per barcode.
"""
fragment_barcodes = pd.read_csv(fragment_file, compression='gzip', sep='\t', header=None, usecols=[3])
barcode_counts = fragment_barcodes.iloc[:,0].value_counts().reset_index()
barcode_counts.columns = ['cell', 'fragments']
return barcode_counts
def query_fragments(fragment_file, chrom, start, end):
"""
Counts number of fragments per barcode in fragment file.
Parameters
----------
fragment_file: path to fragment file
chrom: chromosome to query
start: start of query region
end: end of query region
Returns
-------
records: fragments in given region.
"""
tb = tabix.open(fragment_file)
results = tb.querys("%s:%d-%d" % (chrom, start, end))
records = []
for record in results:
records.append(record)
return records
def tabix_query(filename, chrom, start, end):
"""
Calls tabix and generate an array of strings for each line it returns.
Parameters
----------
filename: path to fragment file
chrom: chromosome to query
start: start of query region
end: end of query region
Returns
-------
records: fragments in given region.
"""
query = '{}:{}-{}'.format(chrom, start, end)
process = Popen(['tabix', '-f', filename, query], stdout=PIPE)
records = []
for line in process.stdout:
record = line.decode('utf-8').strip().split('\t')
records.append(record)
return records
def read_fragments(chrom, start, end, fragment_file):
"""
Creates a DF from the output of tabix_query.
Parameters
----------
filename: path to fragment file
chrom: chromosome to query
start: start of query region
end: end of query region
Returns
-------
fragments: DF containing fragments in given region.
"""
fragments = cudf.DataFrame(
data=tabix_query(fragment_file, chrom, start, end),
columns=['chrom', 'start', 'end', 'cell', 'duplicate'])
fragments.drop('duplicate', inplace=True, axis=1)
fragments['row_num'] = fragments.index
fragments = fragments.astype({"start": np.int32, "end": np.int32})
fragments['len'] = fragments['end'] - fragments['start']
return fragments
@cuda.jit
def expand_fragments(start, end, index, end_index,
interval_start, interval_end, interval_index, step):
"""
Expands fragments to high resolution intervals.
Parameters
----------
start: start of fragment
end: end of fragment
index: index of fragment
end_index: index of fragment end
interval_start: array to fill start of each interval
interval_end: array to fill end of each interval
interval_index: array to fill index of each interval
step: step size in bp
"""
i = cuda.grid(1)
# Starting position in the target frame
first_index = end_index[i] - (end[i] - start[i])
chrom_start = start[i]
for j in range(first_index, end_index[i], step):
interval_start[j] = chrom_start
chrom_start = chrom_start + 1
interval_end[j] = chrom_start
interval_index[j] = index[i]
def get_coverages(start, end, fragments):
"""
Calculates per-bp coverage per cluster.
Parameters
----------
start: start of selected region
end: end of selected region
fragments: DF containing fragments for selected region
Returns:
--------
coverage_array: numpy array containing coverage for each cluster
"""
# Copy fragments DF
fragments_copy = fragments.copy()
# Take cumulative sum of fragment lengths
cum_sum = fragments_copy['len'].cumsum()
expanded_size = cum_sum[len(fragments_copy) - 1].tolist()
# Create expanded fragment dataframe
expanded_fragments = cudf.DataFrame()
start_arr = cp.zeros(expanded_size, dtype=cp.int32)
end_arr = cp.zeros(expanded_size, dtype=cp.int32)
rownum_arr = cp.zeros(expanded_size, dtype=cp.int32)
# Expand all fragments to single-bp resolution
expand_fragments.forall(fragments_copy.shape[0], 1)(
fragments_copy['start'],
fragments_copy['end'],
fragments_copy['row_num'],
cum_sum,
start_arr,
end_arr,
rownum_arr,
1)
expanded_fragments['start'] = start_arr
expanded_fragments['end'] = end_arr
expanded_fragments['row_num'] = rownum_arr
fragments_copy.drop(['start', 'end'], inplace=True, axis=1)
expanded_fragments = expanded_fragments.merge(fragments_copy, on='row_num')
# Count number of fragments at each position
coverage_df = expanded_fragments.groupby(['chrom', 'start', 'end', 'cluster'], as_index=False).count()
# List all clusters
clusters = sorted(np.unique(fragments_copy['cluster'].astype(int).to_numpy()))
num_clusters = len(clusters)
# Create empty array
coverage_array = np.zeros(shape=(num_clusters, (end - start)))
# Iterate over clusters to add coverage values
for (i, cluster) in enumerate(clusters):
cluster_df = coverage_df.loc[coverage_df['cluster'] == cluster]
coords = cluster_df['start'] - start
values = cluster_df['row_num']
ind = (coords >= 0) & (coords < (end-start))
coords = coords[ind].values.get()
values = values[ind].values.get()
coverage_array[i][coords] = values
return coverage_array
def load_atacworks_model(weights_path, gpu, interval_size=50000):
"""
Loads pre-trained AtacWorks resnet model.
Parameters
----------
weights_path: path to hdf5 file containing model weights.
gpu: Index of GPU on which to load model.
interval_size: interval size parameter for resnet model
Returns:
--------
model: AtacWorks resnet model to be used for denoising and peak calling.
"""
model = DenoisingResNet(interval_size=interval_size, kernel_size=51, kernel_size_class=51)
model = load_model(model, weights_path=weights_path, rank=0)
model = model.cuda(gpu)
return model
def reshape_with_padding(coverage, interval_size, pad):
"""
Reshapes array of coverage values for AtacWorks model.
Parameters
----------
coverage: array of coverage values per cluster.
interval_size: interval_size parameter for AtacWorks model.
pad: pad parameter for AtacWorks model
Returns:
--------
reshaped coverage: reshaped array of coverage values.
"""
if(len(coverage.shape)==1):
coverage = coverage.reshape((1, coverage.shape[0]))
# Calculate dimensions of empty array
num_clusters = int(coverage.shape[0])
n_intervals = int((coverage.shape[1] - 2*pad) / interval_size)
padded_interval_size = int(interval_size + 2*pad)
# Create empty array to fill in reshaped coverage values
reshaped_coverage = np.zeros(shape=(num_clusters*n_intervals, padded_interval_size))
if n_intervals == 1:
interval_starts = [0]
else:
interval_starts = range(0, coverage.shape[1], interval_size + pad)
# Fill in coverage values
for i in range(num_clusters):
reshaped_cluster_coverage = np.stack([coverage[i, start:start+padded_interval_size] for start in interval_starts])
reshaped_coverage[i*n_intervals:(i+1)*n_intervals, :] = reshaped_cluster_coverage
return reshaped_coverage
def atacworks_denoise(coverage, model, gpu, interval_size=50000, pad=0):
"""
Denoises and calls peaks from coverage values using AtacWorks model.
Parameters
----------
coverage: array of coverage values per cluster.
model: AtacWorks model object.
gpu: Index of GPU for AtacWorks model.
interval_size: interval_size parameter for AtacWorks model.
pad: pad parameter for AtacWorks model
Returns:
--------
pred: Predicted coverage and peaks by AtacWorks model.
"""
# Reshape input
input_arr = reshape_with_padding(coverage, interval_size, pad)
with torch.no_grad():
input_arr = torch.tensor(input_arr, dtype=float)
input_arr = input_arr.unsqueeze(1)
input_arr = input_arr.cuda(gpu, non_blocking=True).float()
# Run model inference
pred = model(input_arr)
# Reshape output and remove padding
pred = np.stack([x.cpu().numpy() for x in pred], axis=-1)
center = range(pad, pred.shape[1] - pad)
pred = pred[:, center, :]
pred = pred.reshape((coverage.shape[0], coverage.shape[1] - 2*pad, pred.shape[2]))
return pred