-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_vtab.py
353 lines (271 loc) · 14.3 KB
/
main_vtab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# MoCo v3: https://github.com/facebookresearch/moco-v3
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
from easydict import EasyDict
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
from configs import DATASETS, CHECKPOINTS
import timm
# assert timm.__version__ == "0.3.2" # version check
from timm.models.layers import trunc_normal_
import misc as misc
from util.pos_embed import interpolate_pos_embed_ori as interpolate_pos_embed
from misc import NativeScalerWithGradNormCount as NativeScaler
from datasets.image_datasets_noaug import build_image_dataset
from engine_finetune import train_one_epoch, evaluate
from models.vision_transformer_IN21K import vit_base_patch16_224_in21k
from util.logger import create_logger
from models.losses import AdaLoss
def get_args_parser():
parser = argparse.ArgumentParser('AdaptFormer fine-tuning for action recognition for image classification', add_help=False)
parser.add_argument('--batch_size', default=512, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='vit_base_patch16', type=str, metavar='MODEL',
help='Name of model to train')
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.,
help='weight decay (default: 0 for linear probe following MoCo v1)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=0.1, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# * Finetuning params
parser.add_argument('--finetune', default='',
help='finetune from checkpoint')
parser.add_argument('--global_pool', action='store_true')
parser.set_defaults(global_pool=False)
parser.add_argument('--cls_token', action='store_false', dest='global_pool',
help='Use class token instead of global pool for classification')
# Dataset parameters
# parser.add_argument('--data_path', default='/datasets01/imagenet_full_size/061417/', type=str,
# help='dataset path')
parser.add_argument('--nb_classes', default=1000, type=int,
help='number of the classification types')
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default=None,
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation (recommended during training for faster monitor')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
parser.add_argument('--save_freq', default=1, type=int)
parser.add_argument('--auto_remove', action='store_true', help='automatically remove the last checkpoint.')
parser.add_argument('--eval_freq', default=1, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
# custom configs
parser.add_argument('--dataset', default='imagenet')
parser.add_argument('--drop_path', type=float, default=0.0, metavar='PCT',
help='Drop path rate (default: 0.0)')
parser.add_argument('--inception', default=False, action='store_true', help='whether use INCPETION mean and std'
'(for Jx provided IN-21K pretrain')
# AdaptFormer related parameters
parser.add_argument('--ffn_adapt', default=False, action='store_true', help='whether activate AdaptFormer')
parser.add_argument('--ffn_num', default=8, type=int, help='bottleneck middle dimension')
parser.add_argument('--vpt', default=False, action='store_true', help='whether activate VPT')
parser.add_argument('--vpt_num', default=1, type=int, help='number of VPT prompts')
parser.add_argument('--fulltune', default=False, action='store_true', help='full finetune model')
parser.add_argument('--token_target_ratio', type=float, default=0.5)
return parser
def main(args):
if args.log_dir is None:
args.log_dir = args.output_dir
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
cudnn.benchmark = True
dataset_train, dataset_val, args.nb_classes, args.metric = build_image_dataset(args)
print(dataset_train.transform)
print(dataset_val.transform)
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
if global_rank == 0 and args.log_dir is not None and not args.eval:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.log_dir)
else:
log_writer = None
# logger
logger = create_logger(output_dir=args.output_dir, dist_rank=misc.get_rank(), name=f"{args.model}_{int(time.time())}")
logger.info(f"working dir: {args.output_dir}")
dataloader_train = torch.utils.data.DataLoader(
dataset_train,
batch_size=args.batch_size,
sampler=torch.utils.data.DistributedSampler(dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True),
num_workers=args.num_workers,
pin_memory=True,
)
dataloader_val = torch.utils.data.DataLoader(
torch.utils.data.Subset(dataset_val, range(misc.get_rank(), len(dataset_val), misc.get_world_size())),
batch_size=args.batch_size,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
)
# fine-tuning configs
tuning_config = EasyDict(
# AdaptFormer
ffn_adapt=args.ffn_adapt,
ffn_option="parallel",
ffn_adapter_layernorm_option="none",
ffn_adapter_init_option="lora",
ffn_adapter_scalar=args.scale,
ffn_num=args.ffn_num,
d_model=768,
)
select_config = EasyDict(
open=True,
keep_layers=0,
layer_target_ratio=0.5,
layer_loss_ratio=2.0,
layer_diverse_ratio=0.0,
layer_entropy_weight=0.0,
layer_minimal_weight= 0.0,
layer_minimal=0.0,
token_ratio=2.,
token_target_ratio=args.token_target_ratio,
token_minimal=0.,
token_minimal_weight=0.,
) # 0.0
if os.path.basename(args.finetune).startswith('VIT_BASE_IN21K'):
model = vit_base_patch16_224_in21k(num_classes=args.nb_classes, drop_path_rate=args.drop_path, tuning_config=tuning_config, select_config=select_config)
if args.finetune and not args.eval:
checkpoint = torch.load(args.pretrain_ckpts[args.finetune], map_location='cpu')
logger.info("Load pre-trained checkpoint from: %s" % args.finetune)
checkpoint_model = checkpoint['model'] if 'model' in checkpoint else checkpoint
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
logger.info(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
if "pre_logits.fc.weight" in checkpoint_model: # we will not use pre_logits
for k in ['pre_logits.fc.bias', 'pre_logits.fc.weight']:
logger.info(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
# interpolate_pos_embed(model, checkpoint_model)
# load pre-trained model
msg = model.load_state_dict(checkpoint_model, strict=False)
logger.info(msg)
# manually initialize fc layer: following MoCo v3
trunc_normal_(model.head.weight, std=0.01)
# freeze all but the head
for name, p in model.named_parameters():
if name in msg.missing_keys:
p.requires_grad = True
else:
p.requires_grad = False if not args.fulltune else True
for _, p in model.head.named_parameters():
p.requires_grad = True
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
logger.info("Model = %s" % str(model_without_ddp))
logger.info('number of params (M): %.2f' % (n_parameters / 1.e6))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
logger.info("actual lr: %.2e" % args.lr)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
optimizer = torch.optim.AdamW([p for name, p in model.named_parameters() if p.requires_grad], lr=args.lr, weight_decay=1e-4)
logger.info(optimizer)
loss_scaler = NativeScaler()
base_loss = torch.nn.CrossEntropyLoss()
criterion = AdaLoss(base_criterion=base_loss,
layer_target_ratio=select_config.layer_target_ratio, # 0.5
layer_loss_ratio=select_config.layer_loss_ratio, # 2.0
layer_diverse_ratio=select_config.layer_diverse_ratio, # 0.0
layer_entropy_weight=select_config.layer_entropy_weight, # 0.0
layer_minimal_weight=select_config.layer_minimal_weight, # 0.0
layer_minimal=select_config.layer_minimal,
token_target_ratio=select_config.token_target_ratio,
token_loss_ratio=select_config.token_ratio,
token_minimal=select_config.token_minimal,
token_minimal_weight=select_config.token_minimal_weight
) # 0.0
logger.info("criterion = %s" % str(criterion))
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
if args.eval:
test_stats = evaluate(dataloader_val, model, device, logger)
logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
exit(0)
logger.info(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_metric = 0.0
base_flops = 0.1
flops_dict = 0.1
for epoch in range(args.start_epoch, args.epochs):
dataloader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, dataloader_train,
optimizer, device, epoch, loss_scaler,
max_norm=None,
log_writer=log_writer,
args=args,
logger=logger
)
if (epoch + 1) % args.eval_freq == 0 or (epoch + 1) == args.epochs:
test_stats = evaluate(dataloader_val, model, device, logger, base_flops=base_flops, flops_dict=flops_dict, args=args)
# logger.info(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
if args.output_dir and (test_stats["metric"] >= max_metric):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, save_force=True)
max_metric = max(max_metric, test_stats["metric"])
logger.info(f'Max metric: {max_metric:.2f}%')
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
to_save = {'model': model_without_ddp.state_dict()}
logger.info('Training time {}'.format(total_time_str))
del logger
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
output_dir = args.output_dir
args.data_path = DATASETS
args.pretrain_ckpts = CHECKPOINTS
# these hyperparameters can be searched
args.scale=1
args.lr = 1e-3
main(args)