diff --git a/python/metrics/tests/test_metrics.py b/python/metrics/tests/test_metrics.py index 65d2db81..baea6ae8 100644 --- a/python/metrics/tests/test_metrics.py +++ b/python/metrics/tests/test_metrics.py @@ -263,7 +263,7 @@ def test_mean_absolute_error(): MAE = metrics.mean_error(y_true, y_pred) assert MAE == 2.0 -def test_mean_squared_error(): +def test_mean_error(): MSE = metrics.mean_error(y_true, y_pred, power=2.0) assert MSE == 5.0 @@ -286,14 +286,14 @@ def test_nash_sutcliffe_efficiency(): np.exp(y_pred), log=True, normalized=True) assert NNSEL == 0.2 -def test_zero_mean_squared_error(): +def test_zero_mean_error(): MSE = metrics.mean_error(z_true, z_pred, power=2.0) assert MSE == 0.0 RMSE = metrics.mean_error(z_true, z_pred, power=2.0, root=True) assert RMSE == 0.0 -def test_nan_mean_squared_error(): +def test_nan_mean_error(): MSE = metrics.mean_error(n_true, n_pred, power=2.0) assert np.isnan(MSE) @@ -428,3 +428,15 @@ def test_coefficient_of_extrapolation(): COE = metrics.coefficient_of_extrapolation(v, y_pred, log=True) expected = -2.19567503891363 assert np.isclose(COE, expected) + +def test_mean_squared_error(): + MSE = metrics.mean_squared_error(y_true, y_pred) + assert MSE == 5.0 + +def test_root_mean_squared_error(): + RMSE = metrics.root_mean_squared_error(y_true, y_pred) + assert RMSE == np.sqrt(5.0) + +def test_volumetric_efficiency(): + VE = metrics.volumetric_efficiency(y_true, y_pred) + assert np.isclose(VE, 0.2)