We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
It is not able to embed yolov3-tiny to ultra96 due to that model require large RAM at slice operator near by yolo layer.
Verbose log when executing example/yolov3-tiny.
<class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_0 input_rams [(16, 1112), (16, 1112), (16, 1112), (16, 1112), (16, 1112), (16, 1112), (16, 1112), (16, 1112), (16, 1112), (16, 16), (16, 16), (16, 16), (16, 16), (16, 16), (16, 16), (16, 16), (16, 16), (16, 16), (32, 16), (16, 16)] output_rams [(16, 1664)] temp_rams [] <class 'nngen.operator.pool_serial.max_pool_serial'> ====================================================== MaxPool_3 input_rams [(16, 26624)] output_rams [(16, 6656)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_4 input_rams [(16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 64), (16, 64), (16, 64), (16, 64), (16, 64), (16, 64), (16, 64), (16, 64), (16, 64), (32, 32), (16, 32)] output_rams [(16, 832)] temp_rams [] <class 'nngen.operator.pool_serial.max_pool_serial'> ====================================================== MaxPool_7 input_rams [(16, 26624)] output_rams [(16, 6656)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_8 input_rams [(16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 2240), (16, 128), (16, 128), (16, 128), (16, 128), (16, 128), (16, 128), (16, 128), (16, 128), (16, 128), (32, 64), (16, 64)] output_rams [(16, 416)] temp_rams [] <class 'nngen.operator.pool_serial.max_pool_serial'> ====================================================== MaxPool_11 input_rams [(16, 26624)] output_rams [(16, 6656)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_12 input_rams [(16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 256), (16, 256), (16, 256), (16, 256), (16, 256), (16, 256), (16, 256), (16, 256), (16, 256), (32, 128), (16, 128)] output_rams [(16, 208)] temp_rams [] <class 'nngen.operator.pool_serial.max_pool_serial'> ====================================================== MaxPool_15 input_rams [(16, 26624)] output_rams [(16, 6656)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_16 input_rams [(16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 2304), (16, 512), (16, 512), (16, 512), (16, 512), (16, 512), (16, 512), (16, 512), (16, 512), (16, 512), (32, 256), (16, 256)] output_rams [(16, 104)] temp_rams [] <class 'nngen.operator.pool_serial.max_pool_serial'> ====================================================== MaxPool_19 input_rams [(16, 26624)] output_rams [(16, 6656)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_20 input_rams [(16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (32, 512), (16, 512)] output_rams [(16, 52)] temp_rams [] <class 'nngen.operator.pad.pad'> ====================================================== Pad_23 input_rams [(16, 13312)] output_rams [(16, 14336)] temp_rams [] <class 'nngen.operator.pool.max_pool'> ====================================================== MaxPool_24 input_rams [(16, 7168), (16, 7168), (16, 7168), (16, 7168)] output_rams [(16, 13312)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_25 input_rams [(16, 5120), (16, 5120), (16, 5120), (16, 5120), (16, 5120), (16, 5120), (16, 5120), (16, 5120), (16, 5120), (16, 2048), (16, 2048), (16, 2048), (16, 2048), (16, 2048), (16, 2048), (16, 2048), (16, 2048), (16, 2048), (32, 1024), (16, 1024)] output_rams [(16, 52)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_28 input_rams [(16, 26624), (16, 4096), (32, 256), (16, 256)] output_rams [(16, 52)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_55 input_rams [(16, 6656), (16, 1024), (32, 128), (16, 128)] output_rams [(16, 52)] temp_rams [] <class 'nngen.operator.upsampling2d.upsampling2d'> ====================================================== Upsample_59 input_rams [(16, 256)] output_rams [(16, 256)] temp_rams [] <class 'nngen.operator.normalize.scaled_concat'> ====================================================== Concat_60 input_rams [(16, 256)] output_rams [(16, 384)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_61 input_rams [(16, 6912), (16, 6912), (16, 6912), (16, 6912), (16, 6912), (16, 6912), (16, 6912), (16, 6912), (16, 6912), (16, 1536), (16, 1536), (16, 1536), (16, 1536), (16, 1536), (16, 1536), (16, 1536), (16, 1536), (16, 1536), (32, 256), (16, 256)] output_rams [(16, 104)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_64 input_rams [(16, 13312), (16, 1024), (32, 255), (16, 2)] output_rams [(16, 104)] temp_rams [] <class 'nngen.operator.basic._lazy_reshape'> ====================================================== Reshape_66 input_rams [(16, 255)] output_rams [(16, 255)] temp_rams [] <class 'nngen.operator.basic.transpose'> ====================================================== Transpose_67 input_rams [(16, 85)] output_rams [(16, 85)] temp_rams [] <class 'nngen.operator.basic._lazy_reshape'> ====================================================== Reshape_69 input_rams () output_rams () temp_rams () <class 'nngen.operator.slice_.slice_'> ====================================================== None act_shape [2028, 86] self.begins (0, 4) self.ends (2028, 5) self.strides (1, 1) 348816 348816 input_rams [(16, 348816)] output_rams [(16, 8112)] temp_rams [] <class 'nngen.operator.slice_.slice_'> ====================================================== None act_shape [2028, 86] self.begins (0, 5) self.ends (2028, 85) self.strides (1, 1) 348816 348816 input_rams [(16, 348816)] output_rams [(16, 324480)] temp_rams [] <class 'nngen.operator.basic.multiply'> ====================================================== Mul_82 input_rams [(16, 160), (16, 4)] output_rams [(16, 160)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_31 input_rams [(16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 2560), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (16, 1024), (32, 512), (16, 512)] output_rams [(16, 52)] temp_rams [] <class 'nngen.operator.conv2d.conv2d'> ====================================================== Conv_34 input_rams [(16, 13312), (16, 2048), (32, 255), (16, 2)] output_rams [(16, 52)] temp_rams [] <class 'nngen.operator.basic._lazy_reshape'> ====================================================== Reshape_36 input_rams [(16, 255)] output_rams [(16, 255)] temp_rams [] <class 'nngen.operator.basic.transpose'> ====================================================== Transpose_37 input_rams [(16, 85)] output_rams [(16, 85)] temp_rams [] <class 'nngen.operator.basic._lazy_reshape'> ====================================================== Reshape_39 input_rams () output_rams () temp_rams () <class 'nngen.operator.slice_.slice_'> ====================================================== None act_shape [507, 86] self.begins (0, 4) self.ends (507, 5) self.strides (1, 1) 87204 87204 input_rams [(16, 87204)] output_rams [(16, 2028)] temp_rams [] <class 'nngen.operator.slice_.slice_'> ====================================================== None act_shape [507, 86] self.begins (0, 5) self.ends (507, 85) self.strides (1, 1) 87204 87204 input_rams [(16, 87204)] output_rams [(16, 81120)] temp_rams [] <class 'nngen.operator.basic.multiply'> ====================================================== Mul_52 input_rams [(16, 160), (16, 4)] output_rams [(16, 160)] temp_rams [] <class 'nngen.operator.normalize.scaled_concat'> ====================================================== Concat_85 input_rams [(16, 80)] output_rams [(16, 80)] temp_rams [] act_shape [2028, 86] self.begins (0, 5) self.ends (2028, 85) self.strides (1, 1) 348816 348816 act_shape [507, 86] self.begins (0, 4) self.ends (507, 5) self.strides (1, 1) 87204 87204 act_shape [507, 86] self.begins (0, 5) self.ends (507, 85) self.strides (1, 1) 87204 87204 NNgen: Neural Network Accelerator Generator (version 1.2.0) [IP-XACT] Output: yolov3tiny [Configuration] (AXI Master Interface) Data width : 32 Address width: 32 (AXI Slave Interface) Data width : 32 Address width: 32 [Schedule Table] (Stage 0) (Stage 1) <conv2d Conv_0 dtype:int16 shape:(1, 416, 416, 16) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(16,) scale:(16,) cshamt_out:13 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:2 stationary:filter default_addr:19502656 g_index:0 l_index:1 word_alignment:2 aligned_shape:(1, 416, 416, 16) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:434.483748> | <placeholder act dtype:int16 shape:(1, 416, 416, 3) default_addr:405632 g_index:2 word_alignment:2 aligned_shape:(1, 416, 416, 4) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:128.000000> | <variable module_list.0.Conv2d.weight dtype:int16 shape:(16, 3, 3, 3) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(16, 3, 3, 4) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:13903.479945> | <variable onnx_Conv_0_conv.bias dtype:int32 shape:(16,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(16,) scale_factor:1779645.432922> | <variable onnx_Conv_0_conv.scale dtype:int16 shape:(16,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(16,) scale_factor:2.000000> (Stage 2) <max_pool_serial MaxPool_3 dtype:int16 shape:(1, 208, 208, 16) ksize:(1, 2, 2, 1) strides:(1, 2, 2, 1) padding:(0, 0, 0, 0) no_reuse default_addr:25040448 g_index:0 l_index:2 word_alignment:2 aligned_shape:(1, 208, 208, 16) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:434.483748> | <conv2d Conv_0 dtype:int16 shape:(1, 416, 416, 16) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(16,) scale:(16,) cshamt_out:13 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:2 stationary:filter default_addr:19502656 g_index:0 l_index:1 word_alignment:2 aligned_shape:(1, 416, 416, 16) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:434.483748> (Stage 3) <conv2d Conv_4 dtype:int16 shape:(1, 208, 208, 32) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(32,) scale:(32,) cshamt_out:19 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:4 stationary:filter default_addr:26424896 g_index:0 l_index:3 word_alignment:2 aligned_shape:(1, 208, 208, 32) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:845.394497> | <max_pool_serial MaxPool_3 dtype:int16 shape:(1, 208, 208, 16) ksize:(1, 2, 2, 1) strides:(1, 2, 2, 1) padding:(0, 0, 0, 0) no_reuse default_addr:25040448 g_index:0 l_index:2 word_alignment:2 aligned_shape:(1, 208, 208, 16) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:434.483748> | <variable module_list.2.Conv2d.weight dtype:int16 shape:(32, 3, 3, 16) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(32, 3, 3, 16) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:15939.541460> | <variable onnx_Conv_4_conv.bias dtype:int32 shape:(32,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(32,) scale_factor:6925471.719068> | <variable onnx_Conv_4_conv.scale dtype:int16 shape:(32,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(32,) scale_factor:64.000000> (Stage 4) <max_pool_serial MaxPool_7 dtype:int16 shape:(1, 104, 104, 32) ksize:(1, 2, 2, 1) strides:(1, 2, 2, 1) padding:(0, 0, 0, 0) no_reuse default_addr:29193792 g_index:0 l_index:4 word_alignment:2 aligned_shape:(1, 104, 104, 32) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:845.394497> | <conv2d Conv_4 dtype:int16 shape:(1, 208, 208, 32) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(32,) scale:(32,) cshamt_out:19 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:4 stationary:filter default_addr:26424896 g_index:0 l_index:3 word_alignment:2 aligned_shape:(1, 208, 208, 32) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:845.394497> (Stage 5) <conv2d Conv_8 dtype:int16 shape:(1, 104, 104, 64) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(64,) scale:(64,) cshamt_out:19 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:8 stationary:filter default_addr:29886016 g_index:0 l_index:5 word_alignment:2 aligned_shape:(1, 104, 104, 64) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1575.078006> | <max_pool_serial MaxPool_7 dtype:int16 shape:(1, 104, 104, 32) ksize:(1, 2, 2, 1) strides:(1, 2, 2, 1) padding:(0, 0, 0, 0) no_reuse default_addr:29193792 g_index:0 l_index:4 word_alignment:2 aligned_shape:(1, 104, 104, 32) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:845.394497> | <variable module_list.4.Conv2d.weight dtype:int16 shape:(64, 3, 3, 32) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(64, 3, 3, 32) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:15262.743102> | <variable onnx_Conv_8_conv.bias dtype:int32 shape:(64,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(64,) scale_factor:12903039.026557> | <variable onnx_Conv_8_conv.scale dtype:int16 shape:(64,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(64,) scale_factor:64.000000> (Stage 6) <max_pool_serial MaxPool_11 dtype:int16 shape:(1, 52, 52, 64) ksize:(1, 2, 2, 1) strides:(1, 2, 2, 1) padding:(0, 0, 0, 0) no_reuse default_addr:31270464 g_index:0 l_index:6 word_alignment:2 aligned_shape:(1, 52, 52, 64) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1575.078006> | <conv2d Conv_8 dtype:int16 shape:(1, 104, 104, 64) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(64,) scale:(64,) cshamt_out:19 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:8 stationary:filter default_addr:29886016 g_index:0 l_index:5 word_alignment:2 aligned_shape:(1, 104, 104, 64) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1575.078006> (Stage 7) <conv2d Conv_12 dtype:int16 shape:(1, 52, 52, 128) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(128,) scale:(128,) cshamt_out:21 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:16 stationary:filter default_addr:31616576 g_index:0 l_index:7 word_alignment:2 aligned_shape:(1, 52, 52, 128) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1093.161615> | <max_pool_serial MaxPool_11 dtype:int16 shape:(1, 52, 52, 64) ksize:(1, 2, 2, 1) strides:(1, 2, 2, 1) padding:(0, 0, 0, 0) no_reuse default_addr:31270464 g_index:0 l_index:6 word_alignment:2 aligned_shape:(1, 52, 52, 64) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1575.078006> | <variable module_list.6.Conv2d.weight dtype:int16 shape:(128, 3, 3, 64) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(128, 3, 3, 64) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:22742.187791> | <variable onnx_Conv_12_conv.bias dtype:int32 shape:(128,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(128,) scale_factor:35820719.801639> | <variable onnx_Conv_12_conv.scale dtype:int16 shape:(128,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(128,) scale_factor:64.000000> (Stage 8) <max_pool_serial MaxPool_15 dtype:int16 shape:(1, 26, 26, 128) ksize:(1, 2, 2, 1) strides:(1, 2, 2, 1) padding:(0, 0, 0, 0) no_reuse default_addr:32308800 g_index:0 l_index:8 word_alignment:2 aligned_shape:(1, 26, 26, 128) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1093.161615> | <conv2d Conv_12 dtype:int16 shape:(1, 52, 52, 128) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(128,) scale:(128,) cshamt_out:21 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:16 stationary:filter default_addr:31616576 g_index:0 l_index:7 word_alignment:2 aligned_shape:(1, 52, 52, 128) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1093.161615> (Stage 9) <conv2d Conv_16 dtype:int16 shape:(1, 26, 26, 256) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(256,) scale:(256,) cshamt_out:19 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:8 stationary:filter default_addr:32481856 g_index:0 l_index:9 word_alignment:2 aligned_shape:(1, 26, 26, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:2745.399286> | <max_pool_serial MaxPool_15 dtype:int16 shape:(1, 26, 26, 128) ksize:(1, 2, 2, 1) strides:(1, 2, 2, 1) padding:(0, 0, 0, 0) no_reuse default_addr:32308800 g_index:0 l_index:8 word_alignment:2 aligned_shape:(1, 26, 26, 128) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1093.161615> | <variable module_list.8.Conv2d.weight dtype:int16 shape:(256, 3, 3, 128) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(256, 3, 3, 128) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:20573.637640> | <variable onnx_Conv_16_conv.bias dtype:int32 shape:(256,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(256,) scale_factor:22490310.949332> | <variable onnx_Conv_16_conv.scale dtype:int16 shape:(256,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(256,) scale_factor:64.000000> (Stage 10) <max_pool_serial MaxPool_19 dtype:int16 shape:(1, 13, 13, 256) ksize:(1, 2, 2, 1) strides:(1, 2, 2, 1) padding:(0, 0, 0, 0) no_reuse default_addr:32827968 g_index:0 l_index:10 word_alignment:2 aligned_shape:(1, 13, 13, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:2745.399286> | <conv2d Conv_16 dtype:int16 shape:(1, 26, 26, 256) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(256,) scale:(256,) cshamt_out:19 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:8 stationary:filter default_addr:32481856 g_index:0 l_index:9 word_alignment:2 aligned_shape:(1, 26, 26, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:2745.399286> (Stage 11) <conv2d Conv_20 dtype:int16 shape:(1, 13, 13, 512) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(512,) scale:(512,) cshamt_out:20 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:4 stationary:filter keep_input default_addr:32914496 g_index:0 l_index:11 word_alignment:2 aligned_shape:(1, 13, 13, 512) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:7199.522558> | <max_pool_serial MaxPool_19 dtype:int16 shape:(1, 13, 13, 256) ksize:(1, 2, 2, 1) strides:(1, 2, 2, 1) padding:(0, 0, 0, 0) no_reuse default_addr:32827968 g_index:0 l_index:10 word_alignment:2 aligned_shape:(1, 13, 13, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:2745.399286> | <variable module_list.10.Conv2d.weight dtype:int16 shape:(512, 3, 3, 256) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(512, 3, 3, 256) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:42965.326831> | <variable onnx_Conv_20_conv.bias dtype:int32 shape:(512,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(512,) scale_factor:117956977.595654> | <variable onnx_Conv_20_conv.scale dtype:int16 shape:(512,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(512,) scale_factor:64.000000> (Stage 12) <pad Pad_23 dtype:int16 shape:(1, 14, 14, 512) padding:(0, 1, 0, 1) default_addr:33087552 g_index:0 l_index:12 word_alignment:2 aligned_shape:(1, 14, 14, 512) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:7199.522558> | <conv2d Conv_20 dtype:int16 shape:(1, 13, 13, 512) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(512,) scale:(512,) cshamt_out:20 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:4 stationary:filter keep_input default_addr:32914496 g_index:0 l_index:11 word_alignment:2 aligned_shape:(1, 13, 13, 512) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:7199.522558> (Stage 13) <max_pool MaxPool_24 dtype:int16 shape:(1, 13, 13, 512) ksize:(1, 2, 2, 1) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) default_addr:33288256 g_index:0 l_index:13 word_alignment:2 aligned_shape:(1, 13, 13, 512) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:7199.522558> | <pad Pad_23 dtype:int16 shape:(1, 14, 14, 512) padding:(0, 1, 0, 1) default_addr:33087552 g_index:0 l_index:12 word_alignment:2 aligned_shape:(1, 14, 14, 512) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:7199.522558> (Stage 14) <conv2d Conv_25 dtype:int16 shape:(1, 13, 13, 1024) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(1024,) scale:(1024,) cshamt_out:22 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:2 stationary:filter default_addr:33461312 g_index:0 l_index:14 word_alignment:2 aligned_shape:(1, 13, 13, 1024) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1523.915455> | <max_pool MaxPool_24 dtype:int16 shape:(1, 13, 13, 512) ksize:(1, 2, 2, 1) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) default_addr:33288256 g_index:0 l_index:13 word_alignment:2 aligned_shape:(1, 13, 13, 512) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:7199.522558> | <variable module_list.12.Conv2d.weight dtype:int16 shape:(1024, 3, 3, 512) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(1024, 3, 3, 512) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:55487.747957> | <variable onnx_Conv_25_conv.bias dtype:int32 shape:(1024,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(1024,) scale_factor:399485293.128401> | <variable onnx_Conv_25_conv.scale dtype:int16 shape:(1024,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(1024,) scale_factor:16.000000> (Stage 15) <conv2d Conv_28 dtype:int16 shape:(1, 13, 13, 256) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) bias:(256,) scale:(256,) cshamt_out:20 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:4 stationary:filter keep_input default_addr:33807424 g_index:0 l_index:15 word_alignment:2 aligned_shape:(1, 13, 13, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:7965.936386> | <conv2d Conv_25 dtype:int16 shape:(1, 13, 13, 1024) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(1024,) scale:(1024,) cshamt_out:22 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:2 stationary:filter default_addr:33461312 g_index:0 l_index:14 word_alignment:2 aligned_shape:(1, 13, 13, 1024) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1523.915455> | <variable module_list.13.Conv2d.weight dtype:int16 shape:(256, 1, 1, 1024) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(256, 1, 1, 1024) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:42821.897134> | <variable onnx_Conv_28_conv.bias dtype:int32 shape:(256,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(256,) scale_factor:65256950.870254> | <variable onnx_Conv_28_conv.scale dtype:int16 shape:(256,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(256,) scale_factor:128.000000> (Stage 16) <conv2d Conv_55 dtype:int16 shape:(1, 13, 13, 128) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) bias:(128,) scale:(128,) cshamt_out:20 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:16 stationary:filter keep_input default_addr:34411200 g_index:0 l_index:22 word_alignment:2 aligned_shape:(1, 13, 13, 128) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:6841.001736> | <conv2d Conv_28 dtype:int16 shape:(1, 13, 13, 256) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) bias:(256,) scale:(256,) cshamt_out:20 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:4 stationary:filter keep_input default_addr:33807424 g_index:0 l_index:15 word_alignment:2 aligned_shape:(1, 13, 13, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:7965.936386> | <variable module_list.18.Conv2d.weight dtype:int16 shape:(128, 1, 1, 256) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(128, 1, 1, 256) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:56281.128556> | <variable onnx_Conv_55_conv.bias dtype:int32 shape:(128,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(128,) scale_factor:448331889.781508> | <variable onnx_Conv_55_conv.scale dtype:int16 shape:(128,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(128,) scale_factor:16.000000> (Stage 17) <upsampling2d Upsample_59 dtype:int16 shape:(1, 26, 26, 128) default_addr:34454464 g_index:0 l_index:23 word_alignment:2 aligned_shape:(1, 26, 26, 128) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:6841.001736> | <conv2d Conv_55 dtype:int16 shape:(1, 13, 13, 128) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) bias:(128,) scale:(128,) cshamt_out:20 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:16 stationary:filter keep_input default_addr:34411200 g_index:0 l_index:22 word_alignment:2 aligned_shape:(1, 13, 13, 128) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:6841.001736> (Stage 18) <scaled_concat Concat_60 dtype:int16 shape:(1, 26, 26, 384) buffered scales:(128, 319) shamt:8 default_addr:34627520 g_index:0 l_index:24 word_alignment:2 aligned_shape:(1, 26, 26, 384) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:3420.500868> | <upsampling2d Upsample_59 dtype:int16 shape:(1, 26, 26, 128) default_addr:34454464 g_index:0 l_index:23 word_alignment:2 aligned_shape:(1, 26, 26, 128) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:6841.001736> | <conv2d Conv_16 dtype:int16 shape:(1, 26, 26, 256) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(256,) scale:(256,) cshamt_out:19 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:8 stationary:filter default_addr:32481856 g_index:0 l_index:9 word_alignment:2 aligned_shape:(1, 26, 26, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:2745.399286> (Stage 19) <conv2d Conv_61 dtype:int16 shape:(1, 26, 26, 256) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(256,) scale:(256,) cshamt_out:22 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:2 stationary:filter default_addr:35146688 g_index:0 l_index:25 word_alignment:2 aligned_shape:(1, 26, 26, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:4418.436110> | <scaled_concat Concat_60 dtype:int16 shape:(1, 26, 26, 384) buffered scales:(128, 319) shamt:8 default_addr:34627520 g_index:0 l_index:24 word_alignment:2 aligned_shape:(1, 26, 26, 384) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:3420.500868> | <variable module_list.21.Conv2d.weight dtype:int16 shape:(256, 3, 3, 384) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(256, 3, 3, 384) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:84656.206817> | <variable onnx_Conv_61_conv.bias dtype:int32 shape:(256,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(256,) scale_factor:289566628.905870> | <variable onnx_Conv_61_conv.scale dtype:int16 shape:(256,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(256,) scale_factor:64.000000> (Stage 20) <conv2d Conv_64 dtype:int16 shape:(1, 26, 26, 255) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) bias:(255,) scale:(1,) cshamt_out:17 sum_dtype:int64 concur_och:16 stationary:filter keep_input default_addr:35492800 g_index:0 l_index:26 word_alignment:2 aligned_shape:(1, 26, 26, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1457.059043> | <conv2d Conv_61 dtype:int16 shape:(1, 26, 26, 256) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(256,) scale:(256,) cshamt_out:22 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:2 stationary:filter default_addr:35146688 g_index:0 l_index:25 word_alignment:2 aligned_shape:(1, 26, 26, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:4418.436110> | <variable module_list.22.Conv2d.weight dtype:int16 shape:(255, 1, 1, 256) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(255, 1, 1, 256) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:43223.357344> | <variable module_list.22.Conv2d.bias dtype:int32 shape:(255,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(255,) scale_factor:190979642.883883> | <variable onnx_Conv_64_conv.scale dtype:int16 shape:(1,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(2,) scale_factor:1.000000> (Stage 21) <_lazy_reshape Reshape_66 dtype:int16 shape:(1, 26, 26, 3, 85) default_addr:35838912 g_index:0 l_index:27 word_alignment:2 aligned_shape:(1, 26, 26, 3, 86) layout:('N', 'H', 'W', 'X0', 'X1') onnx_layout:('N', 'X0', 'X1', 'H', 'W') scale_factor:1457.059043> | <conv2d Conv_64 dtype:int16 shape:(1, 26, 26, 255) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) bias:(255,) scale:(1,) cshamt_out:17 sum_dtype:int64 concur_och:16 stationary:filter keep_input default_addr:35492800 g_index:0 l_index:26 word_alignment:2 aligned_shape:(1, 26, 26, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1457.059043> (Stage 22) <transpose Transpose_67 dtype:int16 shape:(1, 3, 26, 26, 85) perm:(0, 3, 1, 2, 4) onnx_perm:(0, 1, 3, 4, 2) default_addr:36187776 g_index:0 l_index:28 word_alignment:2 aligned_shape:(1, 3, 26, 26, 86) layout:('N', 'X0', 'H', 'W', 'X1') onnx_layout:('N', 'X0', 'H', 'W', 'X1') scale_factor:1457.059043> | <_lazy_reshape Reshape_66 dtype:int16 shape:(1, 26, 26, 3, 85) default_addr:35838912 g_index:0 l_index:27 word_alignment:2 aligned_shape:(1, 26, 26, 3, 86) layout:('N', 'H', 'W', 'X0', 'X1') onnx_layout:('N', 'X0', 'X1', 'H', 'W') scale_factor:1457.059043> (Stage 23) <_lazy_reshape Reshape_69 dtype:int16 shape:(2028, 85) alias_of:Transpose_67 default_addr:36187776 g_index:0 l_index:28 word_alignment:2 aligned_shape:(2028, 86) onnx_layout:('X0', 'X1') scale_factor:1457.059043> | <transpose Transpose_67 dtype:int16 shape:(1, 3, 26, 26, 85) perm:(0, 3, 1, 2, 4) onnx_perm:(0, 1, 3, 4, 2) default_addr:36187776 g_index:0 l_index:28 word_alignment:2 aligned_shape:(1, 3, 26, 26, 86) layout:('N', 'X0', 'H', 'W', 'X1') onnx_layout:('N', 'X0', 'H', 'W', 'X1') scale_factor:1457.059043> (Stage 24) <slice_ None dtype:int16 shape:(2028, 1) begins:(0, 4) ends:(2028, 5) strides:(1, 1) default_addr:36861120 g_index:0 l_index:30 word_alignment:2 aligned_shape:(2028, 2) onnx_layout:('X0', 'X1') scale_factor:1457.059043> | <_lazy_reshape Reshape_69 dtype:int16 shape:(2028, 85) alias_of:Transpose_67 default_addr:36187776 g_index:0 l_index:28 word_alignment:2 aligned_shape:(2028, 86) onnx_layout:('X0', 'X1') scale_factor:1457.059043> (Stage 25) <slice_ None dtype:int16 shape:(2028, 80) begins:(0, 5) ends:(2028, 85) strides:(1, 1) default_addr:36536640 g_index:0 l_index:29 word_alignment:2 aligned_shape:(2028, 80) onnx_layout:('X0', 'X1') scale_factor:1457.059043> | <_lazy_reshape Reshape_69 dtype:int16 shape:(2028, 85) alias_of:Transpose_67 default_addr:36187776 g_index:0 l_index:28 word_alignment:2 aligned_shape:(2028, 86) onnx_layout:('X0', 'X1') scale_factor:1457.059043> (Stage 26) <multiply Mul_82 dtype:int16 shape:(2028, 80) default_addr:36950400 g_index:0 l_index:32 word_alignment:2 aligned_shape:(2028, 80) onnx_layout:('X0', 'X1') scale_factor:31130.000000> | <sigmoid Sigmoid_79 dtype:int16 shape:(2028, 80) chained default_addr:0 word_alignment:2 aligned_shape:(2028, 80) onnx_layout:('X0', 'X1') scale_factor:31130.000000> | | <slice_ None dtype:int16 shape:(2028, 80) begins:(0, 5) ends:(2028, 85) strides:(1, 1) default_addr:36536640 g_index:0 l_index:29 word_alignment:2 aligned_shape:(2028, 80) onnx_layout:('X0', 'X1') scale_factor:1457.059043> | <sigmoid Sigmoid_81 dtype:int16 shape:(2028, 1) chained default_addr:0 word_alignment:2 aligned_shape:(2028, 2) onnx_layout:('X0', 'X1') scale_factor:31130.000000> | | <slice_ None dtype:int16 shape:(2028, 1) begins:(0, 4) ends:(2028, 5) strides:(1, 1) default_addr:36861120 g_index:0 l_index:30 word_alignment:2 aligned_shape:(2028, 2) onnx_layout:('X0', 'X1') scale_factor:1457.059043> (Stage 27) <conv2d Conv_31 dtype:int16 shape:(1, 13, 13, 512) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(512,) scale:(512,) cshamt_out:21 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:4 stationary:filter keep_input default_addr:33893952 g_index:0 l_index:16 word_alignment:2 aligned_shape:(1, 13, 13, 512) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:4674.111764> | <conv2d Conv_28 dtype:int16 shape:(1, 13, 13, 256) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) bias:(256,) scale:(256,) cshamt_out:20 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:4 stationary:filter keep_input default_addr:33807424 g_index:0 l_index:15 word_alignment:2 aligned_shape:(1, 13, 13, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:7965.936386> | <variable module_list.14.Conv2d.weight dtype:int16 shape:(512, 3, 3, 256) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(512, 3, 3, 256) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:76908.118207> | <variable onnx_Conv_31_conv.bias dtype:int32 shape:(512,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(512,) scale_factor:612645177.166219> | <variable onnx_Conv_31_conv.scale dtype:int16 shape:(512,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(512,) scale_factor:16.000000> (Stage 28) <conv2d Conv_34 dtype:int16 shape:(1, 13, 13, 255) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) bias:(255,) scale:(1,) cshamt_out:17 sum_dtype:int64 concur_och:8 stationary:filter keep_input default_addr:34067008 g_index:0 l_index:17 word_alignment:2 aligned_shape:(1, 13, 13, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1117.906799> | <conv2d Conv_31 dtype:int16 shape:(1, 13, 13, 512) strides:(1, 1, 1, 1) padding:(1, 1, 1, 1) bias:(512,) scale:(512,) cshamt_out:21 act_func:leaky_relu_214748368_31 sum_dtype:int64 concur_och:4 stationary:filter keep_input default_addr:33893952 g_index:0 l_index:16 word_alignment:2 aligned_shape:(1, 13, 13, 512) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:4674.111764> | <variable module_list.15.Conv2d.weight dtype:int16 shape:(255, 1, 1, 512) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(255, 1, 1, 512) layout:('O', 'H', 'W', 'I') onnx_layout:('O', 'I', 'H', 'W') scale_factor:31348.475905> | <variable module_list.15.Conv2d.bias dtype:int32 shape:(255,) default_addr:1790080 g_index:3 word_alignment:1 aligned_shape:(255,) scale_factor:146526280.017658> | <variable onnx_Conv_34_conv.scale dtype:int16 shape:(1,) default_addr:1790080 g_index:3 word_alignment:2 aligned_shape:(2,) scale_factor:1.000000> (Stage 29) <_lazy_reshape Reshape_36 dtype:int16 shape:(1, 13, 13, 3, 85) default_addr:34153536 g_index:0 l_index:18 word_alignment:2 aligned_shape:(1, 13, 13, 3, 86) layout:('N', 'H', 'W', 'X0', 'X1') onnx_layout:('N', 'X0', 'X1', 'H', 'W') scale_factor:1117.906799> | <conv2d Conv_34 dtype:int16 shape:(1, 13, 13, 255) strides:(1, 1, 1, 1) padding:(0, 0, 0, 0) bias:(255,) scale:(1,) cshamt_out:17 sum_dtype:int64 concur_och:8 stationary:filter keep_input default_addr:34067008 g_index:0 l_index:17 word_alignment:2 aligned_shape:(1, 13, 13, 256) layout:('N', 'H', 'W', 'C') onnx_layout:('N', 'C', 'H', 'W') scale_factor:1117.906799> (Stage 30) <transpose Transpose_37 dtype:int16 shape:(1, 3, 13, 13, 85) perm:(0, 3, 1, 2, 4) onnx_perm:(0, 1, 3, 4, 2) default_addr:34240768 g_index:0 l_index:19 word_alignment:2 aligned_shape:(1, 3, 13, 13, 86) layout:('N', 'X0', 'H', 'W', 'X1') onnx_layout:('N', 'X0', 'H', 'W', 'X1') scale_factor:1117.906799> | <_lazy_reshape Reshape_36 dtype:int16 shape:(1, 13, 13, 3, 85) default_addr:34153536 g_index:0 l_index:18 word_alignment:2 aligned_shape:(1, 13, 13, 3, 86) layout:('N', 'H', 'W', 'X0', 'X1') onnx_layout:('N', 'X0', 'X1', 'H', 'W') scale_factor:1117.906799> (Stage 31) <_lazy_reshape Reshape_39 dtype:int16 shape:(507, 85) alias_of:Transpose_37 default_addr:34240768 g_index:0 l_index:19 word_alignment:2 aligned_shape:(507, 86) onnx_layout:('X0', 'X1') scale_factor:1117.906799> | <transpose Transpose_37 dtype:int16 shape:(1, 3, 13, 13, 85) perm:(0, 3, 1, 2, 4) onnx_perm:(0, 1, 3, 4, 2) default_addr:34240768 g_index:0 l_index:19 word_alignment:2 aligned_shape:(1, 3, 13, 13, 86) layout:('N', 'X0', 'H', 'W', 'X1') onnx_layout:('N', 'X0', 'H', 'W', 'X1') scale_factor:1117.906799> (Stage 32) <slice_ None dtype:int16 shape:(507, 1) begins:(0, 4) ends:(507, 5) strides:(1, 1) default_addr:34409152 g_index:0 l_index:21 word_alignment:2 aligned_shape:(507, 2) onnx_layout:('X0', 'X1') scale_factor:1117.906799> | <_lazy_reshape Reshape_39 dtype:int16 shape:(507, 85) alias_of:Transpose_37 default_addr:34240768 g_index:0 l_index:19 word_alignment:2 aligned_shape:(507, 86) onnx_layout:('X0', 'X1') scale_factor:1117.906799> (Stage 33) <slice_ None dtype:int16 shape:(507, 80) begins:(0, 5) ends:(507, 85) strides:(1, 1) default_addr:34328000 g_index:0 l_index:20 word_alignment:2 aligned_shape:(507, 80) onnx_layout:('X0', 'X1') scale_factor:1117.906799> | <_lazy_reshape Reshape_39 dtype:int16 shape:(507, 85) alias_of:Transpose_37 default_addr:34240768 g_index:0 l_index:19 word_alignment:2 aligned_shape:(507, 86) onnx_layout:('X0', 'X1') scale_factor:1117.906799> (Stage 34) <multiply Mul_52 dtype:int16 shape:(507, 80) default_addr:36869248 g_index:0 l_index:31 word_alignment:2 aligned_shape:(507, 80) onnx_layout:('X0', 'X1') scale_factor:31130.000000> | <sigmoid Sigmoid_49 dtype:int16 shape:(507, 80) chained default_addr:0 word_alignment:2 aligned_shape:(507, 80) onnx_layout:('X0', 'X1') scale_factor:31130.000000> | | <slice_ None dtype:int16 shape:(507, 80) begins:(0, 5) ends:(507, 85) strides:(1, 1) default_addr:34328000 g_index:0 l_index:20 word_alignment:2 aligned_shape:(507, 80) onnx_layout:('X0', 'X1') scale_factor:1117.906799> | <sigmoid Sigmoid_51 dtype:int16 shape:(507, 1) chained default_addr:0 word_alignment:2 aligned_shape:(507, 2) onnx_layout:('X0', 'X1') scale_factor:31130.000000> | | <slice_ None dtype:int16 shape:(507, 1) begins:(0, 4) ends:(507, 5) strides:(1, 1) default_addr:34409152 g_index:0 l_index:21 word_alignment:2 aligned_shape:(507, 2) onnx_layout:('X0', 'X1') scale_factor:1117.906799> (Stage 35) <scaled_concat Concat_85 dtype:int16 shape:(2535, 80) buffered scales:(1, 1) shamt:7 default_addr:0 g_index:1 word_alignment:2 aligned_shape:(2535, 80) onnx_layout:('X0', 'X1') scale_factor:243.203125> | <multiply Mul_52 dtype:int16 shape:(507, 80) default_addr:36869248 g_index:0 l_index:31 word_alignment:2 aligned_shape:(507, 80) onnx_layout:('X0', 'X1') scale_factor:31130.000000> | <multiply Mul_82 dtype:int16 shape:(2028, 80) default_addr:36950400 g_index:0 l_index:32 word_alignment:2 aligned_shape:(2028, 80) onnx_layout:('X0', 'X1') scale_factor:31130.000000> [RAM (spec: num)] 32-bit 1024-entry 2-port 1-bank RAM: 1 16-bit 524288-entry 2-port 2-bank RAM: 2 # <= Huge RAM is requested. 16-bit 8192-entry 2-port 2-bank RAM: 9 16-bit 2048-entry 2-port 2-bank RAM: 10 [Substream (spec: num)] ('_max', (16, 0, True, 4)): 1 ('acc_rshift_round_frac', (64, 0, True, 64, 0, True)): 1 ('add_tree', (64, 0, True, 1)): 1 ('add_tree', (64, 0, True, 9)): 1 ('mul_rshift_round_clip', (64, 0, True, 16, 0, True, 80, 0, True, 16, 0, True, False)): 1 ('mul_rshift_round_madd', (16, 0, True, 16, 0, True, 32, 0, True)): 9 ('reduce_max', (16, 0, True)): 1 [Stream (spec: num)] (((<class 'nngen.operator.conv2d.conv2d'>, <dtype int16>, <dtype int16>, <dtype int32>, <dtype int16>), <dtype int16>, 1), 3, 3, None, <dtype int64>, 1, 1, 1, 1, 9, 9): 1 (((<class 'nngen.operator.pool_serial.max_pool_serial'>, <dtype int16>), <dtype int16>, 1), 2, 2, True, 1): 1 (((<class 'nngen.operator.pad.pad'>, <dtype int16>), <dtype int16>, 1), 1, 1, 1): 1 (((<class 'nngen.operator.pool.max_pool'>, <dtype int16>), <dtype int16>, 1), 2, 2, 1): 1 (((<class 'nngen.operator.conv2d.conv2d'>, <dtype int16>, <dtype int16>, <dtype int32>, <dtype int16>), <dtype int16>, 1), 1, 1, None, <dtype int64>, 1, 1, 1, 1, 1, 1): 1 ((<class 'nngen.operator.upsampling2d.upsampling2d'>, <dtype int16>), <dtype int16>, 1): 1 ((<class 'nngen.operator.normalize.scaled_concat'>, <dtype int16>, <dtype int16>), <dtype int16>, 1): 1 (((<class 'nngen.operator.basic._lazy_reshape'>, <dtype int16>), <dtype int16>, 1), False): 1 ((<class 'nngen.operator.basic.transpose'>, <dtype int16>), <dtype int16>, 1): 1 (((<class 'nngen.operator.basic._lazy_reshape'>, <dtype int16>), <dtype int16>, 1), True): 1 (((<class 'nngen.operator.slice_.slice_'>, <dtype int16>), <dtype int16>, 1), 2, 1): 1 ((<class 'nngen.operator.basic.multiply'>, (((<class 'nngen.operator.sigmoid.sigmoid'>, <dtype int16>), <dtype int16>, 1), 8, 6.0, 0.95), (((<class 'nngen.operator.sigmoid.sigmoid'>, <dtype int16>), <dtype int16>, 1), 8, 6.0, 0.95)), <dtype int16>, 1): 1 [State IDs in main_fsm] (3, 4, 'act', 'None') (12, 14, 'Conv_0', 'control_conv2d_73') (19, 21, 'MaxPool_3', 'control_max_pool_serial_75') (29, 31, 'Conv_4', 'control_conv2d_73') (36, 38, 'MaxPool_7', 'control_max_pool_serial_75') (46, 48, 'Conv_8', 'control_conv2d_73') (53, 55, 'MaxPool_11', 'control_max_pool_serial_75') (63, 65, 'Conv_12', 'control_conv2d_73') (70, 72, 'MaxPool_15', 'control_max_pool_serial_75') (80, 82, 'Conv_16', 'control_conv2d_73') (87, 89, 'MaxPool_19', 'control_max_pool_serial_75') (97, 99, 'Conv_20', 'control_conv2d_73') (103, 105, 'Pad_23', 'control_pad_100') (109, 111, 'MaxPool_24', 'control_max_pool_101') (119, 121, 'Conv_25', 'control_conv2d_73') (129, 131, 'Conv_28', 'control_conv2d_108') (139, 141, 'Conv_55', 'control_conv2d_108') (145, 147, 'Upsample_59', 'control_upsampling2d_128') (153, 155, 'Concat_60', 'control_scaled_concat_129') (163, 165, 'Conv_61', 'control_conv2d_73') (173, 175, 'Conv_64', 'control_conv2d_108') (180, 182, 'Reshape_66', 'control__lazy_reshape_136') (187, 189, 'Transpose_67', 'control_transpose_137') (190, 191, 'Reshape_69', 'None') (196, 198, None, 'control_slice__141') (203, 205, None, 'control_slice__141') (211, 213, 'Mul_82', 'control_multiply_143') (221, 223, 'Conv_31', 'control_conv2d_73') (231, 233, 'Conv_34', 'control_conv2d_108') (238, 240, 'Reshape_36', 'control__lazy_reshape_136') (245, 247, 'Transpose_37', 'control_transpose_137') (248, 249, 'Reshape_39', 'None') (254, 256, None, 'control_slice__141') (261, 263, None, 'control_slice__141') (269, 271, 'Mul_52', 'control_multiply_143') (277, 279, 'Concat_85', 'control_scaled_concat_129') [Control (name (# states: num))] main_fsm (# states: 285) control_conv2d_73 (# states: 56) control_max_pool_serial_75 (# states: 26) control_pad_100 (# states: 20) control_max_pool_101 (# states: 28) control_conv2d_108 (# states: 40) control_upsampling2d_128 (# states: 31) control_scaled_concat_129 (# states: 37) control__lazy_reshape_136 (# states: 22) control_transpose_137 (# states: 22) control_slice__141 (# states: 19) control_multiply_143 (# states: 44) [Register Map] 0 (R ): header0 (default: 0x00000000) 4 (R ): header1 (default: 0x00000000) 8 (R ): header2 (default: 0x00000000) 12 (R ): header3 (default: 0x00000000) 16 ( W): Start (set '1' to run) 20 (R ): Busy (returns '1' when running) 24 ( W): Reset (set '1' to initialize internal logic) 28 (R ): Opcode from extern objects to SW (returns '0' when idle) 32 ( W): Resume extern objects (set '1' to resume) 36 (R ): Interrupt Status Register 40 ( W): Interrupt Enable Register 44 ( W): Interrupt Acknowledge Register 48 (R ): State Counter 52 ( W): Count Target 56 ( W): Count Divider 60 (X): reserved .. 120 (X): .. reserved 124 (R ): Address space amount 128 (RW): Global address offset (default: 0) 132 (RW): Address of temporal storages (size: 17356KB) 136 (RW): Address of output (scaled_concat) 'Concat_85' (size: 397KB, dtype: int16, shape: (2535, 80), alignment: 2 words (4 bytes)), aligned shape: (2535, 80) 140 (RW): Address of placeholder 'act' (size: 1352KB, dtype: int16, shape: (1, 416, 416, 3), alignment: 2 words (4 bytes)), aligned shape: (1, 416, 416, 4) 144 (RW): Address of variables 'module_list.0.Conv2d.weight', 'onnx_Conv_0_conv.bias', 'onnx_Conv_0_conv.scale', 'module_list.2.Conv2d.weight', 'onnx_Conv_4_conv.bias', 'onnx_Conv_4_conv.scale', 'module_list.4.Conv2d.weight', 'onnx_Conv_8_conv.bias', 'onnx_Conv_8_conv.scale', 'module_list.6.Conv2d.weight', 'onnx_Conv_12_conv.bias', 'onnx_Conv_12_conv.scale', 'module_list.8.Conv2d.weight', 'onnx_Conv_16_conv.bias', 'onnx_Conv_16_conv.scale', 'module_list.10.Conv2d.weight', 'onnx_Conv_20_conv.bias', 'onnx_Conv_20_conv.scale', 'module_list.12.Conv2d.weight', 'onnx_Conv_25_conv.bias', 'onnx_Conv_25_conv.scale', 'module_list.13.Conv2d.weight', 'onnx_Conv_28_conv.bias', 'onnx_Conv_28_conv.scale', 'module_list.14.Conv2d.weight', 'onnx_Conv_31_conv.bias', 'onnx_Conv_31_conv.scale', 'module_list.15.Conv2d.weight', 'module_list.15.Conv2d.bias', 'onnx_Conv_34_conv.scale', 'module_list.18.Conv2d.weight', 'onnx_Conv_55_conv.bias', 'onnx_Conv_55_conv.scale', 'module_list.21.Conv2d.weight', 'onnx_Conv_61_conv.bias', 'onnx_Conv_61_conv.scale', 'module_list.22.Conv2d.weight', 'module_list.22.Conv2d.bias', 'onnx_Conv_64_conv.scale' (size: 17298KB) [Default Memory Map (start - end)] (entire range: [0 - 37274879], size: 36402KB) [ 0 - 405631]: output (scaled_concat) 'Concat_85' (size: 397KB, dtype: int16, shape: (2535, 80), alignment: 2 words (4 bytes)), aligned shape: (2535, 80) [ 405632 - 1790079]: placeholder 'act' (size: 1352KB, dtype: int16, shape: (1, 416, 416, 3), alignment: 2 words (4 bytes)), aligned shape: (1, 416, 416, 4) [ 1790080 - 1791231]: variable 'module_list.0.Conv2d.weight' (size: 2KB, dtype: int16, shape: (16, 3, 3, 3), alignment: 2 words (4 bytes)), aligned shape: (16, 3, 3, 4) [ 1791232 - 1791295]: variable 'onnx_Conv_0_conv.bias' (size: 64B, dtype: int32, shape: (16,), alignment: 1 words (4 bytes)), aligned shape: (16,) [ 1791296 - 1791359]: variable 'onnx_Conv_0_conv.scale' (size: 64B, dtype: int16, shape: (16,), alignment: 2 words (4 bytes)), aligned shape: (16,) [ 1791360 - 1800575]: variable 'module_list.2.Conv2d.weight' (size: 9KB, dtype: int16, shape: (32, 3, 3, 16), alignment: 2 words (4 bytes)), aligned shape: (32, 3, 3, 16) [ 1800576 - 1800703]: variable 'onnx_Conv_4_conv.bias' (size: 128B, dtype: int32, shape: (32,), alignment: 1 words (4 bytes)), aligned shape: (32,) [ 1800704 - 1800767]: variable 'onnx_Conv_4_conv.scale' (size: 64B, dtype: int16, shape: (32,), alignment: 2 words (4 bytes)), aligned shape: (32,) [ 1800768 - 1837631]: variable 'module_list.4.Conv2d.weight' (size: 36KB, dtype: int16, shape: (64, 3, 3, 32), alignment: 2 words (4 bytes)), aligned shape: (64, 3, 3, 32) [ 1837632 - 1837887]: variable 'onnx_Conv_8_conv.bias' (size: 256B, dtype: int32, shape: (64,), alignment: 1 words (4 bytes)), aligned shape: (64,) [ 1837888 - 1838015]: variable 'onnx_Conv_8_conv.scale' (size: 128B, dtype: int16, shape: (64,), alignment: 2 words (4 bytes)), aligned shape: (64,) [ 1838016 - 1985471]: variable 'module_list.6.Conv2d.weight' (size: 144KB, dtype: int16, shape: (128, 3, 3, 64), alignment: 2 words (4 bytes)), aligned shape: (128, 3, 3, 64) [ 1985472 - 1985983]: variable 'onnx_Conv_12_conv.bias' (size: 512B, dtype: int32, shape: (128,), alignment: 1 words (4 bytes)), aligned shape: (128,) [ 1985984 - 1986239]: variable 'onnx_Conv_12_conv.scale' (size: 256B, dtype: int16, shape: (128,), alignment: 2 words (4 bytes)), aligned shape: (128,) [ 1986240 - 2576063]: variable 'module_list.8.Conv2d.weight' (size: 576KB, dtype: int16, shape: (256, 3, 3, 128), alignment: 2 words (4 bytes)), aligned shape: (256, 3, 3, 128) [ 2576064 - 2577087]: variable 'onnx_Conv_16_conv.bias' (size: 1KB, dtype: int32, shape: (256,), alignment: 1 words (4 bytes)), aligned shape: (256,) [ 2577088 - 2577599]: variable 'onnx_Conv_16_conv.scale' (size: 512B, dtype: int16, shape: (256,), alignment: 2 words (4 bytes)), aligned shape: (256,) [ 2577600 - 4936895]: variable 'module_list.10.Conv2d.weight' (size: 2304KB, dtype: int16, shape: (512, 3, 3, 256), alignment: 2 words (4 bytes)), aligned shape: (512, 3, 3, 256) [ 4936896 - 4938943]: variable 'onnx_Conv_20_conv.bias' (size: 2KB, dtype: int32, shape: (512,), alignment: 1 words (4 bytes)), aligned shape: (512,) [ 4938944 - 4939967]: variable 'onnx_Conv_20_conv.scale' (size: 1KB, dtype: int16, shape: (512,), alignment: 2 words (4 bytes)), aligned shape: (512,) [ 4939968 - 14377151]: variable 'module_list.12.Conv2d.weight' (size: 9216KB, dtype: int16, shape: (1024, 3, 3, 512), alignment: 2 words (4 bytes)), aligned shape: (1024, 3, 3, 512) [14377152 - 14381247]: variable 'onnx_Conv_25_conv.bias' (size: 4KB, dtype: int32, shape: (1024,), alignment: 1 words (4 bytes)), aligned shape: (1024,) [14381248 - 14383295]: variable 'onnx_Conv_25_conv.scale' (size: 2KB, dtype: int16, shape: (1024,), alignment: 2 words (4 bytes)), aligned shape: (1024,) [14383296 - 14907583]: variable 'module_list.13.Conv2d.weight' (size: 512KB, dtype: int16, shape: (256, 1, 1, 1024), alignment: 2 words (4 bytes)), aligned shape: (256, 1, 1, 1024) [14907584 - 14908607]: variable 'onnx_Conv_28_conv.bias' (size: 1KB, dtype: int32, shape: (256,), alignment: 1 words (4 bytes)), aligned shape: (256,) [14908608 - 14909119]: variable 'onnx_Conv_28_conv.scale' (size: 512B, dtype: int16, shape: (256,), alignment: 2 words (4 bytes)), aligned shape: (256,) [14909120 - 17268415]: variable 'module_list.14.Conv2d.weight' (size: 2304KB, dtype: int16, shape: (512, 3, 3, 256), alignment: 2 words (4 bytes)), aligned shape: (512, 3, 3, 256) [17268416 - 17270463]: variable 'onnx_Conv_31_conv.bias' (size: 2KB, dtype: int32, shape: (512,), alignment: 1 words (4 bytes)), aligned shape: (512,) [17270464 - 17271487]: variable 'onnx_Conv_31_conv.scale' (size: 1KB, dtype: int16, shape: (512,), alignment: 2 words (4 bytes)), aligned shape: (512,) [17271488 - 17532607]: variable 'module_list.15.Conv2d.weight' (size: 255KB, dtype: int16, shape: (255, 1, 1, 512), alignment: 2 words (4 bytes)), aligned shape: (255, 1, 1, 512) [17532608 - 17533631]: variable 'module_list.15.Conv2d.bias' (size: 1KB, dtype: int32, shape: (255,), alignment: 1 words (4 bytes)), aligned shape: (255,) [17533632 - 17533695]: variable 'onnx_Conv_34_conv.scale' (size: 64B, dtype: int16, shape: (1,), alignment: 2 words (4 bytes)), aligned shape: (2,) [17533696 - 17599231]: variable 'module_list.18.Conv2d.weight' (size: 64KB, dtype: int16, shape: (128, 1, 1, 256), alignment: 2 words (4 bytes)), aligned shape: (128, 1, 1, 256) [17599232 - 17599743]: variable 'onnx_Conv_55_conv.bias' (size: 512B, dtype: int32, shape: (128,), alignment: 1 words (4 bytes)), aligned shape: (128,) [17599744 - 17599999]: variable 'onnx_Conv_55_conv.scale' (size: 256B, dtype: int16, shape: (128,), alignment: 2 words (4 bytes)), aligned shape: (128,) [17600000 - 19369471]: variable 'module_list.21.Conv2d.weight' (size: 1728KB, dtype: int16, shape: (256, 3, 3, 384), alignment: 2 words (4 bytes)), aligned shape: (256, 3, 3, 384) [19369472 - 19370495]: variable 'onnx_Conv_61_conv.bias' (size: 1KB, dtype: int32, shape: (256,), alignment: 1 words (4 bytes)), aligned shape: (256,) [19370496 - 19371007]: variable 'onnx_Conv_61_conv.scale' (size: 512B, dtype: int16, shape: (256,), alignment: 2 words (4 bytes)), aligned shape: (256,) [19371008 - 19501567]: variable 'module_list.22.Conv2d.weight' (size: 128KB, dtype: int16, shape: (255, 1, 1, 256), alignment: 2 words (4 bytes)), aligned shape: (255, 1, 1, 256) [19501568 - 19502591]: variable 'module_list.22.Conv2d.bias' (size: 1KB, dtype: int32, shape: (255,), alignment: 1 words (4 bytes)), aligned shape: (255,) [19502592 - 19502655]: variable 'onnx_Conv_64_conv.scale' (size: 64B, dtype: int16, shape: (1,), alignment: 2 words (4 bytes)), aligned shape: (2,) [19502656 - 37274879]: temporal storages (size: 17356KB)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
It is not able to embed yolov3-tiny to ultra96 due to that model require large RAM at slice operator near by yolo layer.
Verbose log when executing example/yolov3-tiny.
The text was updated successfully, but these errors were encountered: