From 1f42d3c2e8596e31b096e8943d51dc7dbb8785e5 Mon Sep 17 00:00:00 2001 From: Justin Richling Date: Wed, 20 Nov 2024 08:43:09 -0700 Subject: [PATCH] Add sample Jupyter notebook --- adf_quick_run.ipynb | 1467 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1467 insertions(+) create mode 100644 adf_quick_run.ipynb diff --git a/adf_quick_run.ipynb b/adf_quick_run.ipynb new file mode 100644 index 000000000..a3ec2fbcb --- /dev/null +++ b/adf_quick_run.ipynb @@ -0,0 +1,1467 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "1ca2a6f5-bd5a-4520-8380-baf5cb536d41", + "metadata": {}, + "source": [ + "## ADF Diagnostics In Jupyter\n", + "This notebook will run the Atmospheric Diagnostic Framework using the settings in a config.yaml file in your ADF directory. \n", + "\n", + "Note that it was developed to run on Cheyenne/Caspar *with the NPL (conda) kernel*" + ] + }, + { + "cell_type": "markdown", + "id": "7eea8d1a-d6a7-4464-bd6d-8194aa2368d0", + "metadata": { + "tags": [] + }, + "source": [ + "### Setup\n", + "#### Required packages" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "4d0264e2-c116-4e18-af33-0ce3adabcd60", + "metadata": {}, + "outputs": [], + "source": [ + "import os.path\n", + "from pathlib import Path\n", + "import sys" + ] + }, + { + "cell_type": "markdown", + "id": "6566766f-9d8f-4428-bf01-3c36a1ffeb63", + "metadata": {}, + "source": [ + "#### Paths" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "66a55cfa-2d81-4298-8623-4ceaf3c0fb1f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "current working directory = /glade/work/richling/ADF/adf-tutorials/multiscale_modeling\n", + "ADF path = /glade/work/richling/ADF/ADF/\n" + ] + } + ], + "source": [ + "# Determine ADF directory path\n", + "# If it is in your cwd, set adf_path = local_path, \n", + "# otherwise set adf_path appropriately\n", + "\n", + "local_path = os.path.abspath('')\n", + "adf_path = \"/glade/work/richling/ADF/ADF/\"\n", + "\n", + "# Set up the ADF for your location/user name\n", + "#user = \"richling\" \n", + "#adf_path = f\"/glade/work/{user}/ADF/\"\n", + "\n", + "print(f\"current working directory = {local_path}\")\n", + "print(f\"ADF path = {adf_path}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "1689b448-daf6-44ca-9c9e-b1345490b552", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The lib scripts live here, right? /glade/work/richling/ADF/ADF/lib\n" + ] + } + ], + "source": [ + "#set path to ADF lib\n", + "lib_path = os.path.join(adf_path,\"lib\")\n", + "print(f\"The lib scripts live here, right? {lib_path}\")\n", + "\n", + "#Add paths to python path:\n", + "sys.path.append(lib_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f927cc3e-7fa9-4347-b44e-956c7ebdc742", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The plotting scripts live here, right? /glade/work/richling/ADF/ADF/scripts/plotting\n" + ] + } + ], + "source": [ + "#set path to ADF plotting scripts directory\n", + "plotting_scripts_path = os.path.join(adf_path,\"scripts\",\"plotting\")\n", + "print(f\"The plotting scripts live here, right? {plotting_scripts_path}\")\n", + "\n", + "#Add paths to python path:\n", + "sys.path.append(plotting_scripts_path)" + ] + }, + { + "cell_type": "markdown", + "id": "159be7f2-8593-483a-b200-daf8c3c992c8", + "metadata": {}, + "source": [ + "#### Import config file into ADF object\n", + "If there are errors, here, it is likely due to path errors above" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "f553607f-cd31-4aa3-8142-4959b3569a1a", + "metadata": {}, + "outputs": [], + "source": [ + "#import ADF diagnostics object\n", + "from adf_diag import AdfDiag\n", + "\n", + "# If this fails, check your paths output in the cells above,\n", + "# and that you are running the NPL (conda) Kernel\n", + "# You can see all the paths being examined by un-commenting the following:\n", + "#sys.path" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "cd4918d2-dcc0-417b-8867-d368c4cb1d78", + "metadata": {}, + "outputs": [], + "source": [ + "# Set path for config YAML file\n", + "#config_path = \"/path/to/your/yaml/file/\"\n", + "config_path = \"/glade/work/richling/NCAR-ADF/ADF/\"\n", + "\n", + "#Your config file path\n", + "#/glade/work/${user}/adf-tutorial/ \n", + "\n", + "# Set name of config YAML file:\n", + "config_fil_str = \"config_quick_run.yaml\n", + "\"\n", + "\n", + "config_file=os.path.join(config_path,config_fil_str)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "4ac46243-f980-41e1-9f8c-8d8ad361bb89", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Initialize ADF object\n", + "adf = AdfDiag(config_file)\n", + "adf" + ] + }, + { + "cell_type": "markdown", + "id": "c7d266a8-f006-468d-96d5-51d9a93dd6dd", + "metadata": { + "tags": [] + }, + "source": [ + "### ADF Standard Work Flow" + ] + }, + { + "cell_type": "markdown", + "id": "1b1d075b-232d-4466-a6be-192c457ae5a9", + "metadata": {}, + "source": [ + "#### Calculate the Time Series files\n", + "\n", + "* NOTE: If not comparing against observations, you must run _create_time_series()_ again with baseline flag" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "5f056e6d-5828-434d-b70b-f60627f30ba1", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Generating CAM time series files...\n", + "\t Processing time series for case 'f.cam6_3_106.FLTHIST_v0a.ne30.dcs_effgw_rdg.001' :\n", + " ...CAM time series file generation has finished successfully.\n", + "\n", + " Generating CAM time series files...\n", + "\t Processing time series for case 'f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001' :\n", + " ...CAM time series file generation has finished successfully.\n" + ] + } + ], + "source": [ + "#Create model time series.\n", + "adf.create_time_series()\n", + "\n", + "#Create model baseline time series (if needed):\n", + "if not adf.compare_obs:\n", + " adf.create_time_series(baseline=True)" + ] + }, + { + "cell_type": "markdown", + "id": "4ec72ce9-8167-435c-8334-728e2df24a01", + "metadata": {}, + "source": [ + "#### Calculate the Climo files\n", + "\n", + "* NOTE: Do not need to specify or repeat for baseline case unlike time series generation" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "85a611c7-a90b-4d24-a518-046407564e35", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Calculating CAM climatologies...\n", + "\t Calculating climatologies for case 'f.cam6_3_106.FLTHIST_v0a.ne30.dcs_effgw_rdg.001' :\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDHGH and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDICE and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDLIQ and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDLOW and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDMED and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDTOT and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLOUD and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FLNS and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FLNT and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FLNTC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FSNS and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FSNT and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FSNTC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping LHFLX and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping LWCF and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping OMEGA500 and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PBLH and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECL and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECT and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECSL and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECSC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECSC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PS and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PSL and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping QFLX and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping Q and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping RELHUM and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping SHFLX and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping SST and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping SWCF and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping T and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TAUX and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TAUY and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TGCLDIWP and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TGCLDLWP and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TMQ and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TREFHT and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TS and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping U and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping U10 and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping ICEFRAC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping OCNFRAC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping LANDFRAC and moving to next variable.\n", + "\t Calculating climatologies for case 'f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001' :\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDHGH and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDICE and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDLIQ and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDLOW and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDMED and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLDTOT and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping CLOUD and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FLNS and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FLNT and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FLNTC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FSNS and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FSNT and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping FSNTC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping LHFLX and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping LWCF and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping OMEGA500 and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PBLH and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECL and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECT and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECSL and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECSC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECSC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PRECC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PS and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping PSL and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping QFLX and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping Q and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping RELHUM and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping SHFLX and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping SST and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping SWCF and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping T and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TAUX and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TAUY and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TGCLDIWP and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TGCLDLWP and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TMQ and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TREFHT and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping TS and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping U and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping U10 and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping ICEFRAC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping OCNFRAC and moving to next variable.\n", + "\t INFO: Found climo file and clobber is False, so skipping LANDFRAC and moving to next variable.\n", + " ...CAM climatologies have been calculated successfully.\n" + ] + } + ], + "source": [ + "#Create model climatology (climo) files.\n", + "adf.create_climo()" + ] + }, + { + "cell_type": "markdown", + "id": "0dc28ffb-f501-4a42-8e21-cd8b993163ea", + "metadata": {}, + "source": [ + "#### Regrid the Climo files" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "9673eada-6eeb-4c68-b59a-bd7baf62aca1", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " Regridding CAM climatologies...\n", + "\t Regridding case 'f.cam6_3_106.FLTHIST_v0a.ne30.dcs_effgw_rdg.001' :\n", + "\t - regridding PS (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding CLDHGH (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding CLDICE (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding CLDLIQ (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding CLDLOW (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding CLDMED (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding CLDTOT (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding CLOUD (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding FLNS (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding FLNT (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding FLNTC (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding FSNS (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding FSNT (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding FSNTC (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding LHFLX (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding LWCF (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding OMEGA500 (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding PBLH (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding PRECL (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding PRECT (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding PRECSL (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding PRECSC (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding PRECSC (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding PRECC (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding PSL (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding QFLX (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding Q (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding RELHUM (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding SHFLX (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding SST (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding SWCF (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding T (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding TAUX (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding TAUY (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding TGCLDIWP (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding TGCLDLWP (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding TMQ (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding TREFHT (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding TS (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding U (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding U10 (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding ICEFRAC (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding OCNFRAC (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + "\t - regridding LANDFRAC (known targets: ['f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001'])\n", + "\t Regridded file already exists, so skipping...\n", + " ...CAM climatologies have been regridded successfully.\n" + ] + } + ], + "source": [ + "#Regrid model climatology files to match either\n", + "#observations or CAM baseline climatologies.\n", + "#This call uses the \"regridding_scripts\" specified in the config file:\n", + "adf.regrid_climo()" + ] + }, + { + "cell_type": "markdown", + "id": "56434dfe-187d-43a8-967c-5cf027e1b05b", + "metadata": {}, + "source": [ + "#### Run statistics on Time Series files" + ] + }, + { + "cell_type": "markdown", + "id": "e40c90be-b041-46b6-b268-3f3f02ea855a", + "metadata": { + "tags": [] + }, + "source": [ + "#Perform analyses on the simulation(s).\n", + "#This call uses the \"analysis_scripts\" specified in the config file:\n", + "adf.perform_analyses()" + ] + }, + { + "cell_type": "markdown", + "id": "e12c5b56-2a54-49c9-816c-9d447d511a9d", + "metadata": {}, + "source": [ + "#### Create Plots" + ] + }, + { + "cell_type": "markdown", + "id": "386acebc-2654-4889-9a01-306948928881", + "metadata": { + "tags": [] + }, + "source": [ + "#Create plots.\n", + "#This call uses the \"plotting_scripts\" specified in the config file:\n", + "adf.create_plots()\n" + ] + }, + { + "cell_type": "markdown", + "id": "898b1090-aad9-45b2-a0f2-2882ae8f9834", + "metadata": {}, + "source": [ + "#### Generate HTML files\n", + "\n", + "* This will create html files that you can view via webbrower either:\n", + " - in Casper/Cheyenne\n", + " - pushing it to CGD projects webpage through Tungsten" + ] + }, + { + "cell_type": "markdown", + "id": "f391772b-8f17-40bc-b87d-d9b27b0a8bba", + "metadata": { + "tags": [] + }, + "source": [ + "#Create website.\n", + "if adf.create_html:\n", + " adf.create_website()" + ] + }, + { + "cell_type": "markdown", + "id": "11d4e7cd-49f5-4a68-85a1-ad18fa2a6706", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "29b2605d-519c-4305-ab2b-47c5c053a00c", + "metadata": {}, + "source": [ + "## ADF Helpful Methods and Structures \n", + "\n", + "Demonstration of a few methods to get information from the ADF object" + ] + }, + { + "cell_type": "markdown", + "id": "cdd8063d-195b-42bc-99a4-37ea0f9a62a0", + "metadata": {}, + "source": [ + "#### List all adf object related methods" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "d3d9703e-5053-4a3f-9745-2a6cddfa4f6c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['_AdfBase__debug_log',\n", + " '_AdfConfig__config_dict',\n", + " '_AdfConfig__create_search_dict',\n", + " '_AdfConfig__expand_yaml_var_ref',\n", + " '_AdfConfig__kword_pattern',\n", + " '_AdfConfig__search_dict',\n", + " '_AdfDiag__analysis_scripts',\n", + " '_AdfDiag__cvdp_info',\n", + " '_AdfDiag__diag_scripts_caller',\n", + " '_AdfDiag__function_caller',\n", + " '_AdfDiag__plotting_scripts',\n", + " '_AdfDiag__regridding_scripts',\n", + " '_AdfDiag__time_averaging_scripts',\n", + " '_AdfInfo__base_nickname',\n", + " '_AdfInfo__basic_info',\n", + " '_AdfInfo__cam_bl_climo_info',\n", + " '_AdfInfo__cam_climo_info',\n", + " '_AdfInfo__compare_obs',\n", + " '_AdfInfo__diag_var_list',\n", + " '_AdfInfo__eyear_baseline',\n", + " '_AdfInfo__eyears',\n", + " '_AdfInfo__num_cases',\n", + " '_AdfInfo__num_procs',\n", + " '_AdfInfo__plot_location',\n", + " '_AdfInfo__syear_baseline',\n", + " '_AdfInfo__syears',\n", + " '_AdfInfo__test_nicknames',\n", + " '_AdfObs__var_obs_dict',\n", + " '_AdfObs__variable_defaults',\n", + " '_AdfWeb__case_web_paths',\n", + " '_AdfWeb__plot_type_multi',\n", + " '_AdfWeb__plot_type_order',\n", + " '_AdfWeb__website_data',\n", + " '__class__',\n", + " '__delattr__',\n", + " '__dict__',\n", + " '__dir__',\n", + " '__doc__',\n", + " '__eq__',\n", + " '__format__',\n", + " '__ge__',\n", + " '__getattribute__',\n", + " '__gt__',\n", + " '__hash__',\n", + " '__init__',\n", + " '__init_subclass__',\n", + " '__le__',\n", + " '__lt__',\n", + " '__module__',\n", + " '__ne__',\n", + " '__new__',\n", + " '__reduce__',\n", + " '__reduce_ex__',\n", + " '__repr__',\n", + " '__setattr__',\n", + " '__sizeof__',\n", + " '__str__',\n", + " '__subclasshook__',\n", + " '__weakref__',\n", + " 'add_diag_var',\n", + " 'add_website_data',\n", + " 'baseline_climo_dict',\n", + " 'basic_info_dict',\n", + " 'cam_climo_dict',\n", + " 'case_nicknames',\n", + " 'climo_yrs',\n", + " 'compare_obs',\n", + " 'create_climo',\n", + " 'create_html',\n", + " 'create_plots',\n", + " 'create_time_series',\n", + " 'create_website',\n", + " 'debug_log',\n", + " 'diag_var_list',\n", + " 'end_diag_fail',\n", + " 'expand_references',\n", + " 'get_baseline_info',\n", + " 'get_basic_info',\n", + " 'get_cam_info',\n", + " 'get_cvdp_info',\n", + " 'num_cases',\n", + " 'num_procs',\n", + " 'perform_analyses',\n", + " 'plot_location',\n", + " 'plotting_scripts',\n", + " 'read_config_var',\n", + " 'regrid_climo',\n", + " 'setup_run_cvdp',\n", + " 'var_obs_dict',\n", + " 'variable_defaults']" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dir(adf)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "b6f3971d-14de-4d7d-996b-39e4bda99d1d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "adf.num_procs" + ] + }, + { + "cell_type": "markdown", + "id": "4583376e-6ac3-4f0f-81d0-f4e92ce13124", + "metadata": {}, + "source": [ + "### Get information from the subsections of the config yaml file\n", + "\n", + "Remember the different sub-sections?" + ] + }, + { + "cell_type": "markdown", + "id": "ad924a19-81ba-49dc-8e3b-2bb44f2b5114", + "metadata": {}, + "source": [ + "#### Basic Info Section" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "e3904cb9-a618-43af-9605-e6fcd4e7fd59", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "diag_loc: /glade/scratch/${user}/ADF_output/\n", + "climo_loc: /glade/scratch/richling/ADF/tutorials/data/output/climos/\n", + "ts_loc: /glade/scratch/richling/ADF/tutorials/data/output/timeseries/\n", + "hist_str: cam.h0\n", + "compare_obs: False\n", + "create_html: True\n", + "obs_data_loc: /glade/work/nusbaume/SE_projects/model_diagnostics/ADF_obs\n", + "cam_regrid_loc: /glade/scratch/richling/ADF/tutorials/data/output/regrid/\n", + "cam_overwrite_regrid: False\n", + "cam_diag_plot_loc: ${diag_loc}diag-plot/\n", + "use_defaults: True\n", + "plot_press_levels: [200, 850]\n", + "central_longitude: 180\n", + "weight_season: True\n", + "num_procs: 8\n", + "redo_plot: False\n" + ] + } + ], + "source": [ + "basic_info_dict = adf.read_config_var(\"diag_basic_info\")\n", + "\n", + "for key,val in basic_info_dict.items():\n", + " print(f\"{key}: {val}\")" + ] + }, + { + "cell_type": "markdown", + "id": "e8b1de2f-2a36-472f-b0ae-517845245473", + "metadata": {}, + "source": [ + "#### Test Case Info Section" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "cccdb0b2-ba50-45d5-8ce5-af6a9161c762", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calc_cam_climo: True\n", + "cam_overwrite_climo: False\n", + "cam_case_name: f.cam6_3_106.FLTHIST_v0a.ne30.dcs_effgw_rdg.001\n", + "case_nickname: ${diag_cam_climo.cam_case_name}\n", + "cam_hist_loc: /glade/scratch/richling/ADF/tutorials/data/${diag_cam_climo.cam_case_name}/\n", + "cam_climo_loc: ${climo_loc}${diag_cam_climo.cam_case_name}/\n", + "start_year: 1995\n", + "end_year: 2012\n", + "cam_ts_done: False\n", + "cam_ts_save: True\n", + "cam_overwrite_ts: False\n", + "cam_ts_loc: ${ts_loc}${diag_cam_climo.cam_case_name}/\n" + ] + } + ], + "source": [ + "test_dict = adf.read_config_var(\"diag_cam_climo\")\n", + "\n", + "for key,val in test_dict.items():\n", + " print(f\"{key}: {val}\")" + ] + }, + { + "cell_type": "markdown", + "id": "33a7da55-13a0-49a6-988b-ab7451b49dac", + "metadata": {}, + "source": [ + "#### Baseline Case Info Section" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "9cf8b802-300f-41f6-b6ad-32c4f08c463f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calc_cam_climo: True\n", + "cam_overwrite_climo: False\n", + "cam_case_name: f.cam6_3_106.FLTHIST_v0a.ne30.dcs_non-ogw.001\n", + "case_nickname: ${diag_cam_baseline_climo.cam_case_name}\n", + "cam_hist_loc: /glade/scratch/richling/ADF/tutorials/data/${diag_cam_baseline_climo.cam_case_name}/\n", + "cam_climo_loc: ${climo_loc}${diag_cam_baseline_climo.cam_case_name}/\n", + "start_year: 1995\n", + "end_year: 2012\n", + "cam_ts_done: False\n", + "cam_ts_save: True\n", + "cam_overwrite_ts: False\n", + "cam_ts_loc: ${ts_loc}${diag_cam_baseline_climo.cam_case_name}/\n" + ] + } + ], + "source": [ + "baseline_dict = adf.read_config_var(\"diag_cam_baseline_climo\")\n", + "\n", + "for key,val in baseline_dict.items():\n", + " print(f\"{key}: {val}\")" + ] + }, + { + "cell_type": "markdown", + "id": "b878fc07-a39a-4ef6-a04c-499280d3d6cb", + "metadata": {}, + "source": [ + "### Get information not directly from the subsections of the config yaml file\n", + "\n", + "This just represents a different way to get some ADF info" + ] + }, + { + "cell_type": "markdown", + "id": "721ba2f9-29c8-40ee-a813-181194f46b40", + "metadata": {}, + "source": [ + "#### Get Case/Baseline Names\n", + "\n", + "This is a different wat to get case names than from the *adf.read_config_var()* method that read in data from sub-sections above" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "55b72978-0af4-4d04-87d6-0c56de58400b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['f.cam6_3_119.FLTHIST_ne30.r328_gamma0.33_soae_numcin3.001']\n", + "f.cam6_3_119.FLTHIST_ne30.r328_gamma0.33_soae.001\n" + ] + } + ], + "source": [ + "#List of case names (list by default)\n", + "case_names = adf.get_cam_info(\"cam_case_name\",required=True)\n", + "print(case_names)\n", + "\n", + "base_name = adf.get_baseline_info(\"cam_case_name\")\n", + "print(base_name)" + ] + }, + { + "cell_type": "markdown", + "id": "898f441c-b001-4165-a614-766183b638ed", + "metadata": {}, + "source": [ + "#### Get Case/Baseline Climo file locations\n", + "\n", + "Here we are calling directly from the config file, no subsection " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "77ba4bcb-70d7-47cd-a7c5-0b1827baaaf3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(['/glade/scratch/richling/adf-output/ADF-data/climos/f.cam6_3_119.FLTHIST_ne30.r328_gamma0.33_soae_numcin3.001/1995-2005/'],\n", + " '/glade/scratch/richling/adf-output/ADF-data/climos/f.cam6_3_119.FLTHIST_ne30.r328_gamma0.33_soae.001/1995-2005/')" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "case_climo_loc = adf.get_cam_info('cam_climo_loc', required=True)\n", + "base_climo_loc = adf.get_baseline_info(\"cam_climo_loc\")\n", + "case_climo_loc,base_climo_loc" + ] + }, + { + "cell_type": "markdown", + "id": "864e9b1f-fef8-4d45-94b6-5e4cc8e099c9", + "metadata": {}, + "source": [ + "#### Get Desired Variable Names\n", + "\n", + "Here we are calling directly from the config file, no subsection " + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "ff7a34b1-6795-46f3-a3b5-a40507b6aa52", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['CLDHGH', 'CLDICE', 'CLDLIQ', 'CLDLOW', 'CLDMED', 'CLDTOT', 'CLOUD', 'FLNS', 'FLNT', 'FLNTC', 'FSNS', 'FSNT', 'FSNTC', 'LHFLX', 'LWCF', 'OMEGA500', 'PBLH', 'PRECL', 'PRECT', 'PRECSL', 'PRECSC', 'PRECSC', 'PRECC', 'PS', 'PSL', 'QFLX', 'Q', 'RELHUM', 'SHFLX', 'SST', 'SWCF', 'T', 'TAUX', 'TAUY', 'TGCLDIWP', 'TGCLDLWP', 'TMQ', 'TREFHT', 'TS', 'U', 'U10', 'ICEFRAC', 'OCNFRAC', 'LANDFRAC']\n" + ] + } + ], + "source": [ + "var_list = adf.diag_var_list\n", + "print(var_list)" + ] + }, + { + "cell_type": "markdown", + "id": "e8504642-fcfc-482c-b5a8-7494f9fde680", + "metadata": {}, + "source": [ + "#### Get variable defaults from adf_variable_defaults.yaml\n", + "\n", + "Take a look at what defaults are for TS" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "a3a780fd-6234-4574-8535-ebf6e7bba3fc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'colormap': 'Blues',\n", + " 'contour_levels_range': [220, 320, 5],\n", + " 'diff_colormap': 'BrBG',\n", + " 'diff_contour_range': [-10, 10, 1],\n", + " 'scale_factor': 1,\n", + " 'add_offset': 0,\n", + " 'new_unit': 'K',\n", + " 'mpl': {'colorbar': {'label': 'K'}},\n", + " 'obs_file': 'ERAI_all_climo.nc',\n", + " 'obs_name': 'ERAI',\n", + " 'obs_var_name': 'TS',\n", + " 'category': 'Surface variables'}" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "adf.variable_defaults[\"TS\"]" + ] + }, + { + "cell_type": "markdown", + "id": "b2701110-87da-44be-8cc5-a67fe759870e", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "id": "4e847946-aed1-4226-be42-46b46fc945ea", + "metadata": {}, + "source": [ + "## Exploration of the Output Data\n", + "\n", + "Now that the ADF has created all the necessary timeseries/climo/regridded data let's run a quick set of functions to plot time series for RESTOM, TS, SST, and ICEFRAC" + ] + }, + { + "cell_type": "markdown", + "id": "5eddc165-065b-4874-a53d-0a53486c1817", + "metadata": {}, + "source": [ + "##### Let's grab the case names, time series locations, variable defaults dictionary and climo years" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "001f31de-2897-4cfd-a7a2-a63a47b63827", + "metadata": {}, + "outputs": [], + "source": [ + "case_names = adf.get_cam_info('cam_case_name', required=True)\n", + "case_names_len = len(case_names)\n", + "data_name = adf.get_baseline_info('cam_case_name', required=False)\n", + "\n", + "case_ts_locs = adf.get_cam_info(\"cam_ts_loc\", required=True)\n", + "data_ts_loc = adf.get_baseline_info(\"cam_ts_loc\", required=False)\n", + "\n", + "res = adf.variable_defaults # dict of variable-specific plot preferences\n", + "# or an empty dictionary if use_defaults was not specified in YAML.\n", + "\n", + "start_year = adf.climo_yrs[\"syears\"]\n", + "end_year = adf.climo_yrs[\"eyears\"]" + ] + }, + { + "cell_type": "markdown", + "id": "40e35c52-2044-4677-8b7c-d8266bd19b20", + "metadata": {}, + "source": [ + "### Time Series Plotting Functions" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "a123c21a-e27b-4b2b-b674-c77b7912d996", + "metadata": {}, + "outputs": [], + "source": [ + "def _load_dataset(fils):\n", + " if len(fils) == 0:\n", + " print(\"Input file list is empty.\")\n", + " return None\n", + " elif len(fils) > 1:\n", + " return xr.open_mfdataset(fils, combine='by_coords')\n", + " else:\n", + " sfil = str(fils[0])\n", + " return xr.open_dataset(sfil)\n", + " #End if\n", + "#End def" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "eff599aa-4ad7-43b0-8381-a94177e40c6e", + "metadata": {}, + "outputs": [], + "source": [ + "def _data_calcs(ts_loc,var,subset=None):\n", + " \"\"\"\n", + " args\n", + " ----\n", + " - ts_loc: Path\n", + " path to time series file\n", + " \n", + " - var: str\n", + " name of variable\n", + " \n", + " - subset (optional): dict \n", + " lat/lon extents (south, north, east, west)\n", + " \"\"\"\n", + " fils = sorted(list(Path(ts_loc).glob(f\"*{var}*.nc\")))\n", + "\n", + " ts_ds = _load_dataset(fils)\n", + " \n", + " time = ts_ds['time']\n", + " time = xr.DataArray(ts_ds['time_bnds'].load().mean(dim='nbnd').values, dims=time.dims, attrs=time.attrs)\n", + " ts_ds['time'] = time\n", + " ts_ds.assign_coords(time=time)\n", + " ts_ds = xr.decode_cf(ts_ds)\n", + " \n", + " if subset != None:\n", + " ts_ds = ts_ds.sel(lat=slice(subset[\"s\"],subset[\"n\"]), lon=slice(subset[\"w\"],subset[\"e\"])) \n", + " \n", + " data = ts_ds[var].squeeze()\n", + " unit = data.units\n", + " \n", + " # global weighting\n", + " w = np.cos(np.radians(data.lat))\n", + " avg = data.weighted(w).mean(dim=(\"lat\",\"lon\"))\n", + " \n", + " yrs = np.unique([str(val.item().timetuple().tm_year).zfill(4) for _,val in enumerate(ts_ds[\"time\"])])\n", + "\n", + " return avg,yrs,unit" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "8141a995-7a66-4562-9ea6-472cde4e21f2", + "metadata": {}, + "outputs": [], + "source": [ + "def ts_plot(ax, name, vals, yrs, unit, color_dict,linewidth=None,zorder=1):\n", + " \"\"\"\n", + " args\n", + " ----\n", + " - color_dict: dict\n", + " color and marker style for variable\n", + " \"\"\"\n", + "\n", + " ax.plot(yrs, vals, color_dict[\"marker\"], c=color_dict[\"color\"],label=name,linewidth=linewidth,zorder=zorder)\n", + "\n", + " ax.set_xlabel(\"Years\",fontsize=15,labelpad=20)\n", + " ax.set_ylabel(unit,fontsize=15,labelpad=20) \n", + "\n", + " # For the minor ticks, use no labels; default NullFormatter.\n", + " ax.tick_params(which='major', length=7)\n", + " ax.tick_params(which='minor', length=5)\n", + " \n", + " return ax" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "d7aaeed2-b21f-4610-8b2e-0530d5556b69", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_var_details(ax, var, vals_cases, vals_base):\n", + " \n", + " mins = []\n", + " maxs = []\n", + " for i,val in enumerate(vals_cases):\n", + "\n", + " mins.append(np.nanmin(vals_cases[i]))\n", + " maxs.append(np.nanmax(vals_cases[i]))\n", + "\n", + " mins.append(np.nanmin(vals_base))\n", + " maxs.append(np.nanmax(vals_base))\n", + "\n", + " if var == \"SST\": \n", + " ax.set_ylabel(\"K\",fontsize=20,labelpad=12)\n", + " tick_spacing = 0.5\n", + " ax.yaxis.set_major_locator(MultipleLocator(1))\n", + " ax.set_title(f\"Time Series Global: {var} - ANN\",loc=\"left\",fontsize=22)\n", + " \n", + " if var == \"TS\":\n", + " ax.set_ylabel(\"K\",fontsize=20,labelpad=12)\n", + " tick_spacing = 0.5\n", + " ax.yaxis.set_minor_locator(MultipleLocator(0.5))\n", + " ax.set_title(f\"Time Series Global: {var} - ANN\",loc=\"left\",fontsize=22)\n", + "\n", + " if var == \"ICEFRAC\":\n", + " ax.set_ylabel(\"frac\",fontsize=20,labelpad=12)\n", + " tick_spacing = 0.1\n", + " ax.set_ylim(np.floor(min(mins)),np.ceil(max(maxs)))\n", + " ax.set_title(f\"Time Series LabSea: {var} - ANN\",loc=\"left\",fontsize=22)\n", + "\n", + " if var == \"RESTOM\":\n", + " ax.set_ylabel(\"W/m2\",fontsize=20,labelpad=12)\n", + " tick_spacing = 0.5\n", + " ax.yaxis.set_minor_locator(MultipleLocator(0.1))\n", + " ax.set_title(f\"Time Series Global: {var} - ANN\",loc=\"left\",fontsize=22)\n", + " \n", + " # Set label to show if RESTOM is 1 or 5-yr avg\n", + " line_1yr = Line2D([], [], label='1-yr avg', color='k', linewidth=1,marker='*',) \n", + " line_5yr = Line2D([], [], label='5-yr avg', color='k', linewidth=1,)\n", + " ax.legend(handles=[line_1yr,line_5yr], bbox_to_anchor=(0.99, 0.99))\n", + " \n", + " # Add extra space on the y-axis, except for ICEFRAC\n", + " if var != \"ICEFRAC\":\n", + " ax.set_ylim(np.floor(min(mins)),np.ceil(max(maxs))+tick_spacing)\n", + " \n", + " ax.yaxis.set_major_locator(MultipleLocator(tick_spacing))\n", + " \n", + " ax.tick_params(axis='y', which='major', labelsize=16)\n", + " ax.tick_params(axis='y', which='minor', labelsize=16)\n", + " \n", + " ax.tick_params(axis='x', which='major', labelsize=14)\n", + " ax.tick_params(axis='x', which='minor', labelsize=14)\n", + " \n", + " return ax" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "26eb6dfb-eec3-4c89-9964-6495891ca572", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "1fa7a0d8-6d8f-45e1-b606-9507a11764dc", + "metadata": {}, + "source": [ + "### Plot the time series!" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "67e22347-a3b8-4b3c-a68f-38a84ff58454", + "metadata": {}, + "outputs": [], + "source": [ + "ts_var_list = [\"RESTOM\",\"TS\",\"SST\",\"ICEFRAC\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "90848bf6-403d-4a3b-a69a-b4ff12f3891b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting variable: RESTOM\n", + "Plotting variable: TS\n", + "Plotting variable: SST\n", + "Plotting variable: ICEFRAC\n", + "CPU times: user 14.6 s, sys: 8.64 s, total: 23.3 s\n", + "Wall time: 26 s\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACYcAAAUHCAYAAAALIk/wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xO9///8eeVHYnE3hlWBUVRVFFqdKD2KkWMtlr9dGtRm6JD10eq/WjtWYq0lJbWaKnYVSMEMWqlVoZIIsn5/ZFfzjeXrCtLIh732+3cXDnnfd7nda5c1+W8cr3O+20xDMMQAAAAAAAAAAAAAAAAAKBQscvvAAAAAAAAAAAAAAAAAAAAuY/iMAAAAAAAAAAAAAAAAAAohCgOAwAAAAAAAAAAAAAAAIBCiOIwAAAAAAAAAAAAAAAAACiEKA4DAAAAAAAAAAAAAAAAgEKI4jAAAAAAAAAAAAAAAAAAKIQoDgMAAAAAAAAAAAAAAACAQojiMAAAAAAAAAAAAAAAAAAohCgOAwAAAAAAAAAAAAAAAIBCiOKw+8yECRNksVhksVi0ZcuW/A4HucTX11cWi0W+vr75Hco9YcuWLeb7YMKECYXmWFmVHFerVq3yOxQAAACbkdMUTuQ0WUNOk4ScBgAA3IvIaQoncpqsIadJQk4DALhbKA4r4E6fPm1eGOR04cIibTdv3tScOXPUrVs3ValSRUWLFpWDg4M8PT3l5+enjh07aty4cfr5559169at/A73vpWQkKB169bpzTffVJMmTeTt7S03Nze5uLiobNmyatCggQYNGqQ5c+bo6tWr+R0u0pAyAbtzsbOzk6enp6pXr64ePXpowYIFNr/fsvuZeOPGjXT7vHbtmr744gt16NBBXl5ecnNzk6Ojo4oXL64HH3xQ3bp105QpU7Rt2zbdvn3b3G/evHm59pmdUZIaHx+vVatWaejQoXrwwQdVunRpOTk5qWzZsnrooYf0yiuvaP369TIMw6bnMOUfpJKX4OBgm/aVpGbNmlnte6/8ASQsLExOTk5m3E899VSW9m/VqpXVeb/99ts27de8eXNzn9OnT6fZJvmPScnLzJkzbeq7UqVK5j4AUFCQ0+Q9cpp7AznNvSmvr/Gzm3sUZPv377c672HDhmVp/7y8Fr7zd7J27dpM+42Pj7/nch0AQO4ip8l75DT3BnKawiMxMVE//fST/P399eCDD6p48eJycHCQu7u7fH191bp1a73xxhtavny5rly5kml/ISEhGjNmjFq2bKmyZcvK2dlZzs7OKlOmjBo1aqQBAwboiy++0KFDh6z28/f3z7XP14JcbFuvXj0zzuLFi2fpc+zO728aNWpk03c/Y8aMMfeZN29emm3ufP579OhhU0zPPffcPfG8A7DmkN8BAPlp/fr1Gjp0qC5cuJBqW0REhCIiInTs2DGtW7dOktS4cWMFBQXd7TDve4sXL9bEiRMVEhKS5vawsDCFhYVp//79mjdvnl588UX16NFDY8aMUe3ate9ytMgOwzDM99yJEyf0/fffa+LEiVq2bJkaNWp0V2NZsGCBXnvttTSLx27cuKEbN27o8OHDWr16tSSpV69eWr58+V2LLzAwUCNGjEjz/ZD8Xvjrr78UEBCgBg0a6LPPPlOLFi2yfJw5c+boww8/zLTdsWPHtGPHjiz3XxDMnz/f6gu2jRs36uzZs/L29s5WfzNnztSrr76a7f0zMmnSJA0cOFBFixbN9b4BAPc2cpp7AzkN0lLQc4/s+uabb6x+Xrp0qT755BMVKVIkW/3l5bXwyJEj1b59e9nZcf8sAAD5hZzm3kBOU3iEhIToueee065du1Jtu3nzpm7evKkzZ85o8+bNkiQ7OztFRETIzc0tVfv4+Hi9++67+vzzz5WQkJBq+7///qt///1Xe/bs0cKFCyVJX375pV566aVcPquCa/fu3Tp48KD5840bN7Rq1Sr169cvW/3t2bNH3333nXr37p1bIZq+//57BQUFqUmTJrneN4D8R3FYAVemTBnzj4BpOXTokMaOHStJql27tqZMmZJu21KlSql58+YFbsjU/LJu3Tp16dJF8fHxkqTKlSura9euql27tjw8PMyLn927d+u3335TdHR0mhc2BUF6I8/c62JjY/XSSy9p7ty55royZcqoTZs2atSokUqWLCkXFxdduXJFZ8+e1datW7Vnzx7Fx8dr2bJlCgkJ0Z49e/LxDJCeOz+vDMPQjRs3tGfPHi1evFjh4eE6deqUnnrqKR04cEBeXl429ZvR5+Wd0kpkvv76a6u72mvXrq3OnTurRo0aKlKkiCIjI3XixAnt2rVL27ZtU1xcnNXnQuvWrTOMYdmyZeaXOb1791afPn3Sbevn55dq3aRJkzR+/Hjz54oVK6pLly6qU6eOihcvritXrmjfvn0KDAw0H7du3VqzZs3S0KFDM35C/j8HBwfFx8dr4cKFmjp1qhwcMr5UmDNnjtV+95Lk2JMlJiZq3rx5GjduXLb6i42N1dixYzV//vzcCM/Kv//+q48//lgTJ07M9b4BIK+R0+QdcpqCj5zm3pdX1/g5zT0KqpiYGC1ZssRqXUREhFauXKkBAwZkq8+8vBY+fPiw5s+fr0GDBuV63wCAwoOcJu+Q0xR85DSFy9mzZ/XYY4/p0qVLkiRPT091795dDz/8sEqVKqW4uDhdvHhR+/fv16+//qrLly8rMTEx3ZGqBgwYoKVLl5o/t2nTRm3btpW3t7ccHR117do1HT58WNu3b9e+ffskyeo9/Oqrr6pLly7pxjtmzBgdPnxYkjR58mQ9+OCD6bbNaFt++vbbb9Ncl93iMEl677331K1bNzk6OuYktDS988472rp1a673CyD/URxWwBUpUiTD/xSLFStmPi5VqlSGbfF/YmNj9fzzz5sJxzvvvKP3338/3SKImJgYrV279p4dHedeNWjQIPOi0s3NTR9++KGGDBkiZ2fndPe5ePGivvzyS/33v/+9W2EiG9L7vBo0aJDee+89tWrVSiEhIbp27ZqmTJmir7/+2qZ+c/IZeOnSJb355pvmz1988YVeeeWVdKckiYyM1MqVK3X+/Hlznbe3d4ajRh04cMB87Ofnl6V4P/roI7MwzM7OThMnTtQ777wjJyenVG0/++wzvffee/riiy8UHx+v559/XsWKFbNpSOD27dvrhx9+0KVLl7R+/Xo988wz6bZNSEgw7/bp0KGDAgMDbT6f/LZ9+3Zz6sxevXrpp59+UlRUlObOnauxY8dmeVpGNzc33bx5U4sWLdJbb72lunXr5lqsyX3PmDFDL7/8ssqWLZtrfQPA3UBOkzfIae4N5DT3vry4xs+N3KOg+v77782R0Pz9/TV//nwZhqFvv/02W8VheXUt7OLiori4OCUmJmrcuHF69tln5eLikit9AwAKH3KavEFOc28gpylc3njjDbMwrE2bNvruu+9UokSJNNsahqHt27fr66+/TnOk3R9//NF8bRQrVkyBgYF67LHH0j32P//8o3nz5ql8+fLmugYNGqhBgwbp7vPZZ5+Zj5s3b37PTc0bHR1tPkdVqlSRl5eXtm7dqi1btujkyZOqWrVqlvpLzo9Onjypr7/+Wq+88kquxZrc97Zt27R27Vp17Ngx1/oGUDAwZjruS7/++qsuXrwoKWkI4g8++CDD0XFcXFzUo0cPffLJJ3crxPvezJkzrS4qt2/frpdffjnDhEOSypcvr8mTJ+vIkSPq1KnT3QgVuaxChQr6+OOPzZ/vVsHRqlWrFB0dLUnq2bOn/vOf/2RYIFS0aFENGjRIY8aMyfPYdu/erdGjR5s/z58/X2PGjEmzMEyS3N3d9fnnn1vdpThkyBCdPXs202O1b9/eTM7uHFnrTj/99JP5WTp48OBM+y5IUt6t8/LLL6t79+6Sku7w+/XXX7Pc3xtvvCEpafSxkSNH5k6Qd/R98+ZNRg4DAJjIaQo+chqkpyDnHjmVfJ1tsVg0btw488uhbdu2pTsFUUby6lq4ZMmSZrHaP//8oy+++CLX+gYAALYhpyn4yGkKl/DwcP3444+Skt5Py5cvT7cwTEq6pm/evLkWLlyY5hTxyTeOS9L777+fYWGYJFWqVEljxowx/xZ/P1i5cqUiIiIkJY2y5u/vLymp8C7laHy2euWVV8zRwiZPnqzIyMhcizXlDUyjRo1SYmJirvUNoGCgOOw+M2HCBFksFlksFm3ZsiXV9tOnT5vbk/+DCgsL0/jx41W3bl15enqqePHiatKkib799ttUU4idPXtW7777rh588EEVLVpUnp6eatasmXmnqC1iYmL09ddfq2PHjvLy8pKLi4s8PT314IMP6tVXX9Xx48dz+jSYo8VIyvUq8/DwcM2YMUNt27ZVhQoV5OzsrBIlSqhhw4YaNWpUpnf6+vv7m7+D5GGI16xZo27dusnHx0fOzs5W2yTJ19dXFotFvr6+mcZ36dIlTZo0Sc2bN1e5cuXk5OSkUqVK6dFHH9WUKVN0/fr1TPs4efKk3nnnHTVq1EjFixeXo6OjSpYsKT8/P7Vp00aTJ09Oc65yW0VHR2vy5Mnmz//73/9Ur169LPVRoUKFbE8Nl1JsbKxmzZqlp556yur3Wb9+fb3zzjsKDQ3Ncp/Hjh3Tf/7zH9WoUUNubm4qXry4mjZtqs8++0xxcXGZ7n/gwAFNnTpVHTp0UOXKlVWkSBE5OzurfPnyeuKJJ/TZZ58pKioqO6dbYKR8X16+fFnh4eF5fsyUnwuPP/54nh8vK8aNG2d+3g4ePFjPPfecTfuNHj1arVu3lpQ0lcv06dMz3cfe3l79+/eXlDSse1hYWLptk4vHKlasqCeffNKmmAqCqKgofffdd5IkHx8fPfbYY+b/eVLawzxnpn///uZoYevXr0/z/9jseuutt8wREmbPnp2tL9UAoDAhp0lCTkNOYytymoKnIOceOXHq1Cnzc7lFixaqXLmy1XV2ZjefpCUvr4UnTZpkjhY2bdo0mz47AADIDeQ0SchpyGlsRU6TO06ePKnbt29LkurWrauSJUvmqL/CmtfkppQ3z/Tv3189evSQm5ubJGnevHlZnia3WrVqeuGFFyQl/b+QcqCFnHrsscfUoUMHSUnTJc+fPz/X+gZQQBi4p23evNmQZEgyWrZsmWn78ePHm+03b96cantoaKi5feDAgcaff/5plC9f3lx359KpUycjLi7OMAzDWLduneHh4ZFu2wEDBmQa35YtW4yKFSum24ckw97e3pg6dWpWnyorH3zwgdnfoEGDctRXSt99951RokSJDON3cXEx5s2bl24fAwcONNseO3bM6N69e5r9hIaGmvv4+PgYkgwfH58M4/viiy+MIkWKZBhf8eLFjQ0bNqTbx7fffms4Oztn2Ickw83NLatPn+nrr782+6lTp062+0lPyvfN+PHj0223d+9e87lNb3FycjI++ugjm4+1bNmyDH8HtWrVMs6ePZtufxMnTsz0uZdkVKhQwQgKCsrwebDls6Nly5Zmu7lz52bYX2ay8nkVExNjdT6XLl1Kt23Kdjnx0ksvmf1MnDgxR32lJ+VncEavvZSCg4OtPv8yen2kZfv27VafPzdu3MgwrtmzZ1sdc8aMGWn2e/nyZcPR0dGQZIwaNcq4ffu2uU9mn0X5bfbs2WasY8eONQzDMBITEw1fX19DkuHs7GxcvXo1035Svj9CQkKMdevWmT83atTISExMTHO/Zs2apflZnlLKz57bt28bAQEB5s89evRIN6aU/4cCwL2CnCZ7yGnIachp7n5Ok5bsXOPfjdwjP7z33nvmeX377beGYRhGZGSk4ebmZkgyypcvb8THx2faT15eCydvr1ixomEYhjFixAhz3dtvv53mPvdSrgMAyB/kNNlDTkNOQ05zd3OaoKAgs5/KlStnu59kNWvWNPvbunVrjvtLS8pzT+vzsiA7fvy4GXuLFi3M9QMGDDDXr1u3LtN+7vz+5vLly4a7u7shyXB3d0/3+7OU+Vl6r5uUn3UbN240/v77b8POzs6QZHh5eRm3bt1Kc79+/frds78X4H6W/visuO+dO3dOnTp10rVr19SvXz+1bt1abm5u+vvvvxUQEKAbN27ohx9+0AcffKAnnnhCnTt3lqOjo1588UU1bdpUzs7O2rlzp77++mvFxMRowYIFat26tQYOHJjm8davX6/OnTvr9u3bslgsatu2rZ588klVqlRJcXFx2rNnjxYsWKAbN26Y06uNGjUqW+dWrVo18/GaNWs0fvx4+fj4ZKuvZLNnz9aLL74owzDk4OCgjh07qnXr1ipXrpxu3ryp7du3a/Hixbp165b8/f3l5OSkZ599NsM+X3/9da1fv14+Pj4aMGCA/Pz8FBcXp127dmU6bO+dxowZo/fff19S0nCx3bt3V/PmzVWqVCldv35dv/32m1auXKnr16+rY8eO+u2339SiRQurPg4cOKAXXnhBCQkJsre315NPPql27dqpTJkysrOzU1hYmP766y9t3LhR165dy9oTmMIvv/xiPk6e5uFuO3TokFq2bGne2VGjRg31799f1apVU3h4uH766ScFBgYqLi5OI0aMUGxsrN57770M+9y7d6+mT5+u27dvq2/fvmrTpo1cXV116NAhzZkzR5cuXdKRI0fUunVr7du3T0WLFk3VR3R0tOzt7dW4cWM1a9ZMDzzwgIoVK6aEhASdPn1aa9eu1fbt23XhwgU9/fTTOnDggLy8vPLkOcpLhw4dMh+7uLioTJkyeX7MlJ8L8+bN02uvvSZPT888P25mUr4f2rRpk+Xf56OPPqrq1asrJCREMTEx+v333zOdK75GjRp69NFHtWPHDs2ZM8dqOOFkCxcuNO8yGjRoUJZiym8pRwZL/oyxWCwaMGCAJk2apNjYWC1evFj/+c9/stRv+/bt1apVK23ZskW7d+/WihUr1KtXr1yJ+YUXXtBnn32mkJAQrVy5Urt27VLjxo1zpW8AKMzIabKGnIachpzm7iiouUdOJCQkaN68eZKkIkWKqGfPnpKSprzv3r27FixYoIsXL+qnn37SM888k6W+8/JaeNSoUfrmm290/fp1/fe//9V//vMfeXt750rfAADkBnKarCGnIachp0lf1apVZbFYZBiGQkND9cMPP+Ro2s9q1arp6NGjkqQvvvgi02kl7zcpR05O+Znr7++vBQsWSEr6rqJ9+/ZZ6rdMmTJ66623NHHiREVFRWnixIn68ssvcyXmBx98UP3799f8+fN17tw5ffHFF3rnnXdypW8ABUD+1qYhp/LyjhRJhqenp7Fjx45U7Q4dOmS4uLiYdzBUrVrV8Pb2No4fP56q7aZNm8z+HnzwwTTjunDhgnknh6enp/Hrr7+m265u3brmnSlHjx7N9JzTEhkZaZQqVcqMq3Tp0sbEiRONAwcOGAkJCVnu76+//jLv0vDy8jIOHDiQZrvg4GCjUqVKhiSjaNGiaY5Mk7JKW5LRpUuXdCuzk2V2R8r69esNi8ViSDLq1q1rnDp1Ks12O3bsMO8q8vHxMW7fvm21ffjw4WZcP/74Y7rxJCYm5ugugTJlypjH+eOPP7LdT3oyuyMlMTHRfJ1JSXdnJd95ldKqVavMkZPs7e2NPXv2ZHgsSUaRIkXSfO9du3bNaNy4sdlu+PDhaca+a9cu4/z58xme36JFi8zK/iFDhqTbzpbPjvwYOSwxMdHo0qWL2fbxxx/PsN+Uz29OnDlzxnBycjL78vX1NT7++GPj2LFjOeo3peyMKtC7d29znwkTJmTruCk/V959990M45o9e7ZhGIbxzTffmOvSurupdu3aVne83Ct30x8+fNiMs1mzZlbbTp48aX5W1qtXL9O+7hw5zDCs776qVq1amp8d2Rk5zDCS7nrM7D3EyGEA7kXkNOQ0hkFOk1XkNEnudk6Tluxc49+N3ONuSzmKbr9+/ay2/frrr+a2zp07Z9pXXl4LJ29PHjnMMAzjww8/tHqv3OleyXUAAPmHnIacxjDIabKKnCbJ3c5pnnzySbMvJycn48UXXzQ2b96c6es7LUuXLrV6Xh999FFjwYIFxsWLF3MUY0r36shh8fHx5oiPrq6uRnh4uLktMTHR/LxwdHQ0Ll++nGFfaX1/ExkZaZQtW9aQZDg4OKT5uZ+dkcMMwzDOnj1r9X/LtWvXUu3HyGHAvYlvDu9xeZ10ZDSs7pAhQ6zabtu2Ld22bdq0MdudO3cu1fY33njD3B4YGJjhOQQHBxv29vaGJGPYsGEZts3I6tWrDQcHB6tzkJKG4HzssceMN954w1ixYoVx5cqVTPvq2rWreeG5b9++DNtu3LjRPNb06dNTbU/5H3HFihWNyMjITI+fWdLRoEEDM9H5559/Muwr5XRry5Yts9qWfNFYunTpTGPKrtu3b5sJkqRcvYhMllnSsXbtWqtE+c7kK6WUwwf36tUrw2NJMr744ot0+zp79qw53YaLi4tNr7309O/f30xy0kqYDKNgFYclJiYa169fNzZu3GiVnEgyfvnllwz7vfM9bMuS1h/8DcMw/vvf/6bZvkSJEkbbtm2NkSNHGj/88IMRERGRrecgO18cpSwkWrp0abaOO23aNLOP5557LsO4UiYXyUMTv/jii1btd+7cmer/iXvlC5M333zTjPPrr79Otb1Fixbm9rT+kJBSWsVhhmEYPXr0MNcHBASk2i+7xWGGYVj9cSKtIacpDgNwLyKnIacxDHKarCKnSXK3c5q0ZOca3zDyPve427p162aew88//2y1LeWXHw4ODulOe5IsL6+FU342Jbt165bh5eVlSDLs7OyMgwcPWu1zr+Q6AID8Q05DTmMY5DRZRU6T5G7nNCdOnDCLilIujo6ORv369Y2hQ4ca33zzjXHixIlM+0pMTDR69uyZZl7j7e1tdO3a1Zg6daqxbds2m6aXT8u9Whz2ww8/mHE/++yzqbaPHTvW3P7xxx9n2Fda398YhmHMnDnTXN+zZ89U+2W3OMwwDOPtt982148YMSLVfhSHAfcmOwHpKFWqlPr165fu9pRD2davXz/V0LbptT18+LDVNsMwtHDhQklJQ8JmNoRpjRo1zOkDfv755wzbZqRLly7atm2bGjVqZLU+KipK27Zt06effqqePXuqfPny6tatm/7+++80+7lx44YCAwMlSe3atVP9+vUzPG7btm1VoUIFm+IfPHiw3N3dbT2lNP3999/at2+fJKlfv36qWLFihu2fffZZOTg4pBmfm5ubJOnq1as6ffp0juJKz7Vr12QYhvlzsWLFMmz/yiuvyGKxpLskT2uRFd9//735+O233zafj7S8/vrrKlKkiCTpxx9/NKfZS4unp6eef/75dLd7eXmpT58+kqSYmBitW7cuq6GbmjVrJilpeOODBw9mu58tW7bISCoklr+/f7b7udPWrVutfk92dnYqXry42rVrZ77uLBaLZs6cqXbt2uXacTPzyiuv6Mcff1SNGjWs1l+7dk2bNm3S9OnT1alTJ5UtW1b+/v559j5I6erVq+bjzN4P6Um5X8r+MuLu7m5OBbNs2TLdunXL3JY8HHLRokXVo0ePbMWUH27fvm3+f+Pi4pLmlI8ph3dOOf1kVkydOtX83Jg0aZI57Hlu+OCDD8zHI0eOVGJiYq71DQCFETkNOQ05DTlNXuU0OVUQc4/sCgsL048//ihJqlixotq2bWu13WKxqH///pKk+Ph4zZ8/P1vHyatrYRcXF02aNEmSlJiYqJEjR+ZKvwAA5AZyGnIachpymtzMaapWraq9e/eqR48eslgs5vrbt29r//79+uabbzR06FBVq1ZNTZo0Ma/z02KxWLRs2TJ99NFHKlGihNW2s2fPavXq1Ro9erQee+wxVahQQRMmTMjVv5UXZN988435OK1pfHPje4gXXnjBnJ53xYoV2r17d7b6Scvo0aNVvHhxSdJ///tfnTt3Ltf6BpB/0v+fFPe9Ro0aZXixVa5cOfPxI488kmFfKdtev37datuRI0d05coVs92aNWsyjc3e3l6SFBoaqpiYGLm4uGS6T1qaNm2qXbt2affu3VqzZo1+//137du3Tzdv3jTb3L59W6tXr9a6dev01VdfadCgQVZ9bN++3fyDZNGiRW2KPzmROHLkSIbtMkrkbLVt2zbzsb29vc3x3bhxI1V8TzzxhFatWqXExES1atVKI0eOVJcuXax+vzmVMuHILzt37jQfP/nkkxm29fDw0KOPPqpNmzbp1q1b+uuvv/Twww+n2bZFixaZvlbbtm1rXgju2rVLAwYMSNXGMAytX79eK1eu1N69e3Xu3DlFRkYqPj4+zT7/+ecfNWzYMMPjFjSPPvqovv32W/n5+WVpv9WrV9vUztvbO91tHTt2VPv27bVt2zb9+OOP+uOPP/TXX38pNjbWbHPr1i3Nnz9fq1at0vLly/X0009nKc7sSpmsZUV231eDBw/W3LlzFR4erlWrVqlfv366deuWli9fLknq3bu3+ceIe0FgYKD+/fdfSVLnzp3T/KNGr1699Oqrryo6OlpLly7VjBkz5OrqmqXjVK9eXc8//7xmzZqly5cva8aMGRo/fnxunIJatWqlp59+WuvXr9fff/+thQsXpplcAgCSkNMkIaf5P+Q0qZHT5J+CnHtkxYIFC8wv4J577jnZ2aW+F9Xf319TpkyRlHSzyTvvvJPl4+TltfCAAQM0Y8YMHTp0SD/99JO2bt2qli1b5krfAADkBDlNEnKa/0NOkxo5TdZUrFhRK1as0JkzZ7Ry5Upt2bJFQUFB5t/Ok+3atUudOnXS888/r6+//jrN7yfs7Oz09ttva/jw4Vq7dq02bNigHTt26Pjx41Y3c4SFhWnixIlaunSp1q9frypVquT5eeaXS5cu6aeffpIkVahQIdXNM1JSkV7z5s31xx9/6OjRo9q5c2emn+F3cnR01Pvvv6/evXtLkt555x1t3rw55ycgqXjx4ho5cqTeffddxcTEaNy4cZo7d26u9A0g/1AchnSVKlUqw+3Ozs7ZahsTE2O1LeWdDVu3btXWrVuzEGXSHQzJd3hkV6NGjcw7UxITExUcHKw///xTgYGBWrdunRITExUXF6fnn39e1atXV/PmzdOMf8WKFVqxYkWWYs9IpUqVsnYiaUgZX0BAgAICAmze9874Bg8erBUrVujXX3/VmTNn9NJLL+mll14yn5OWLVuqffv2Kl26dLbjLVmypNXPN27cyDCpeeGFF1JdWH3xxRc5ugC6ePGipKQk0paEqkaNGtq0aZMk6cKFC+m2q169eqZ9pWyTVl+XLl1Sjx49tH379kz7ShYREWFz27uldu3a5hcDUlKMJ0+e1Lx583T27Fnt2LFDX3/9tT755JMsFUR16dIlV+Kzs7NTq1at1KpVK0lJf3w4fPiwtm/fbiZLkhQZGamePXvqwIED5h0auS3le+LOP9rYKjw8PM3+MtO8eXM98MADOn78uObMmaN+/fpp5cqVZn+DBw/OVjwZ+eWXXxQdHZ3u9ieeeMK8CyyrUt6Bk96XSEWLFlXXrl21ePFi3bhxwyyKy6rx48dr4cKFioqK0scff6yXXnpJZcqUyVbcd/rggw/0888/KzExUWPHjlXv3r2z/cc3ACjsyGnIachpyGkKuruVe2T2BWROcqnkkYUlpfnFmZT05UezZs20fft2HTt2TNu3bzdHUsiKvLoWtrOz0/Tp09WxY0dJSV+sBAUF5bhfAAByipyGnIachpwmr/j4+Oitt97SW2+9JUk6d+6cgoKC9PPPP2vZsmXmKF+zZ89W5cqVNWrUqHT7cnV1Vc+ePc3ZSKKiorRv3z5t3bpVixcv1rFjxyRJx48fV6dOnXTgwIEMC1/z2r59+3T27Nl0tzdo0CDDQQYyMn/+fLNI8LnnnjMLae80cOBA/fHHH5KSvrvIanGYJPXs2VMff/yxdu/erS1btuinn35S+/btsxX3nV599VXNnDlT586d04IFC/TWW2/pwQcfzJW+AeQPppVEutK60zM32t7pxo0b2d5XkuLi4nK0/53s7OxUq1YtDRkyRD/88IN2796t8uXLS5ISEhLMqQaS5ST+jIa2lZTl0WrSkpP47nxuHR0dtWHDBn322WdWf4wOCQnR3Llz5e/vrwoVKqhfv37mhXtWOTg4WBVQnDx5MsP2devWVZcuXayW7F6wJYuMjJQkm0dESjmkdPK+abGlv5Rt7uwrPj5eTz31lJlwFC9eXAMGDNBHH32khQsXauXKlVq9erVWr16t//znP+Z+CQkJNp3H3VSqVCmr39mAAQM0ceJEnThxwkwePvvss1Tvt/zi6Oiohx56SMOHD9fmzZv1888/m7/3mzdv6sMPP8yzY6f848Px48ez1Udy4nVnf7ZIvgtv8+bNOn36tPnFj5+fn5o2bZqteDLywgsvqGvXrukuYWFh2er3n3/+0S+//CIp6e7HJ554It22KYfmzu6QzmXLltWbb74pKSkRzs3Xcp06dfTcc89JSkrYZ86cmWt9A0BhQ05DTkNOQ05zr8mr3COja+yuXbtmO94dO3bo6NGjkqSHH35YtWrVSrdtblxn5+W1cIcOHczRwnbt2qWVK1fmWt8AAGQXOQ05DTkNOc3d4uXlpR49emj27Nk6efKk1ah506dPT1VUmhF3d3c99thjGjt2rI4cOaLp06eb2w4fPqzvvvsuV2PPqi+++CLD/Oi3337Ldt+23DwjJc1iknwj/LJly6xGS7SVxWKxyhFHjhxpNWJbTri4uGjixImSkgp2R44cmSv9Asg/FIch36W8YHv99dfNebNtXXx9ffM0vgYNGljdxbF161arZCFl/J999lmW489rKeNbs2ZNlmJLa756BwcHvfbaawoJCVFwcLC+/fZbDRkyRJUrV5aUdGG8ZMkSPfzwwxnenZGRlBecf/75Z7b6yImiRYtKks0XYinnSE/eNy229JeyzZ19LV++XH/99ZckqU2bNjpz5ozmz5+vt99+W88995y6d+9uJl41atSwKfaCxtHRUfPnzzeT2smTJ2vPnj35HFVqTzzxhNUfIDZu3Jhnx0p5N31W7kRKaceOHebjlHfU2WLgwIGyt7eXYRgaN26ceddgXowalpfmzp1rJkWXLl2Sg4ODLBZLmku7du3M/bZs2ZLpHz/SM2LECPOPKP/73/904sSJnJ/I/zd58mTzbs+pU6fm+A94AICcIafJW+Q0WUdOU3jczdwjO1IWee3Zsyfda2yLxaLnn3/ebPvdd99l+KVdRvLyWviDDz4wH48ePTrdaYEAAChsyGnyFjlN1pHT5K8yZcrou+++k5OTk6Skkc+yO7KunZ2d3n33XXXq1MlcV9Dymtzy+++/W93k/+CDD6abH3l6epqzqERFRWW7YK5Vq1Z66qmnJEl///23Fi5cmPMT+f8GDhxojha2bt06qylyAdx7KA5Dvks5is2hQ4fyMZL0pRxhJi4uTleuXDF/Lujx52V8NWrU0ODBg/XNN9/o1KlT2rlzp+rUqSMpaajdadOmZavflPPH5+ZFjK2S70CKjIzUpUuXMm2f8kIvo6GzbSkMSdnmzr6SRz2SkhLcjBKc0NDQTI9VULm6uurjjz+WlHQ3TfLoSwVNys+F7CbYWT3Or7/+qn/++SdL++/YscN8jbq6ulol9bYoX768mVgsXLhQhmHIwcEhwztecuL06dO5/ocmwzA0d+7cbMWTk33d3d01duxYSUl3IL733nvZ6ict3t7eeuWVVyQlTTea3c9bAEDuKOg5gUROkx5ymiTkNAVbbuQeefGFaE6+wLh586aWL1+erX3z8lq4SZMm6t69u6Sk0Tdmz56da30DAFCQFfScQCKnSQ85TRJymtxXrlw51a1b1/w5p9+D3K3vVGwxb968DPOjlKMeZ0V2R0jO6b4ffPCBOXrkuHHjFBsbm+2+UrKzs7P6DHnnnXdypV8A+YPiMOS7hx56SMWKFZOUVFGd8oK+oLhzWOGUd3m0bNlSFotFkrR27dpcHz45p1q1amU+XrVqVZ4eq0mTJlqwYIH58++//56tfvr162eOtnPw4EF9//33uRKfrVLO6/3zzz9n2DYyMtIclcnV1VX16tVLt+3vv/+e6QXZpk2bzMdNmjSx2pYyAUo5XHRa1q9fn+H2gq5z585q0KCBpKTnbd26dfkcUWrp3ZmW22rUqGEWZyUkJGj8+PE275s82leyQYMGycPDI8sx3DlKWPv27VW2bNks95NffvvtNzMRr1y5ssaPH5/pMmrUKHP/efPmZXvY7xdffFFVq1aVJK1YsSJXR8IbPXq0+f/nF198keXCQQBA7iGnyVvkNFlHTlO43K3cI6uWL19ujtBQv359m66zX3rpJXP/nHz5kZfXwlOnTpWDg4MkadKkSdma3gUAgHsNOU3eIqfJOnKagiE3c5GCmtfklsjISK1YsUKSZG9vr7Fjx9qUIyUXQm7fvl3BwcHZOnbdunXVr18/SdLZs2c1c+bM3DkpSR07dtRjjz0mSQoKCrrrnwUAcg/FYch39vb2eu655yRJsbGxuTqySnquXLmSpTmXAwMDzcfe3t5WdwKUKlVKHTp0kJR0UThjxozcCzQXNGjQwLxLZN++fVq6dGmeHi952GJJ2Z5+oUiRIlYFLc8///xdvdunR48e5uMZM2ZkeB6ff/65+YfiTp06ydHRMd22N27c0DfffJPu9vPnz5u/HxcXF/N1lSzlPPcZ3d2ybNkyHTlyJN3t94qUnwVZKYjKrsuXL2epfcrPheRhdfPKpEmTzC8n5syZo8WLF9u039SpU/Xrr79Kkjw8PPTuu+9m6/jPPPOMHn/8cTVp0kRNmjTR8OHDs9VPfkn5pdNLL72kCRMmZLpMnTpVTZs2lZT03szsDxDpcXR01Pvvvy8pqVgvN++sKVGihEaOHClJiomJsfrcBADcXeQ0eYucJuvIaQq2gpx7ZEXK6+xRo0bZdJ09c+ZMc+SMnTt3Zvv3nJfXwg888ICGDh0qqWB+JgIAkBfIafIWOU3WkdPkvujo6CxN7X7q1Cn9/fff5s+1a9e22p7VvOaHH34wHxekvCa3LF261Jwm8sknn9SkSZNsypFSjlI2Z86cbB9/8uTJcnZ2lpT03dCNGzdycjpWPvjgA/Px6NGjs/25AiB/URyGAmH06NEqUaKEJOl///uf3n333VR3gaR069YtzZ07V8uWLcvW8VauXCk/Pz999dVXunbtWoZtN2/erDfeeMP8Oa2p1KZMmWL+hztmzBh9/vnnGU7LEB4ers8++8zq7oO8YrFY9OGHH5p3zQwdOjTT5+3y5cuaNGmSDh48aLX+zTffNO++SE9AQID5+KGHHspe0JKGDx+uZ599VlLSNBGPPvqovv7660zv+Ll8+bJCQkKyfVxJevrpp807S/7++2+98MILab4ef/jhB02ePFlSUvJsS9HHu+++m+adOjdu3FDPnj3NBGbo0KHmeyJZo0aNzMfvvfdemiMZbd68WS+++GKmcdiqVatW5vzn8+bNy7V+bdG1a1cz2di7d69V8p8XPv30UzVs2FCLFi3K9M7w5cuXWw2lm1dTLCZr1KiRpk6danW8999/P933Q1RUlF5//XWNGTPGXPftt9/K29s7W8d3dHTUb7/9pp07d2rnzp1Wwz8XdNevX9fq1aslJb1Pk++escXAgQPNxzkZ1aBXr156+OGHJSW9Rw8cOJDtvu702muvmV+uLViwQFevXs21vgEAWUNOk3fIabKOnOb/5GdOk56CnHvY6ujRo/rzzz8lScWKFVOnTp1s2s/Ozs784lnK2XV2Xl4Ljx8/3vzi75NPPsm1fgEAKMjIafIOOU3WkdP8n9zKac6ePSsfHx+NHTtWJ0+ezLDt6dOn1a1bN7OAs3nz5qpSpYpVm65du6pr167atGlThjNvxMXF6Z133tHmzZslSQ4ODubrqjBJmduk/G4hMynbLliwINuFVz4+PuaN/deuXcvV/PeRRx5Rt27dJCVN4bp27dpc6xvA3eOQ3wEAUtLc4StWrFCHDh0UExOjDz/8UIsXL1bPnj1Vt25dFS1aVDdv3tSZM2e0Z88e/frrr4qOjjYv+LIjJCREL730kl599VU1b95cjzzyiKpUqaJixYopLi5Op06d0qZNm7R161Zznzp16lhNNZasXr16+uabbzRw4EAlJibq9ddf15dffqmuXbuqZs2acnNzU2RkpE6ePKldu3Zp69atiouLu2vztD/11FOaMmWK3nvvPUVHR+vZZ5/Vhx9+qE6dOqlatWpydnZWeHi4jh8/rp07d2r79u1KTExU69atrfpZtWqVPv30U/n4+Khdu3aqW7euypQpo/j4eJ0/f15r1qwx/zjs6OioESNG5CjuOXPmyNnZWfPmzVNkZKSGDRum8ePHq23btnr44YdVqlQpubq6KioqSqdPn1ZQUJB+++03c0hgBwcHlStXLsvHtVgsWrx4sR555BFFRUVp7ty5+vPPPzVgwABVqVJFERERWr9+vVlwIkkTJ040p0FMT8eOHbVx40Y9/vjjevbZZ9W6dWu5urrq0KFD+vbbb83hiKtVq2ZVCJRsyJAhmjZtmiIjI/XDDz+oXr16GjBggHx8fHT9+nX9/PPPCgwMNP/YvmjRoiyfe0FisVg0evRos5hn/Pjx6tSpk5lAp2XNmjU299+gQYNUxVL79u1T//79VaRIEbVs2VKNGzeWt7e3PD09FR0drZCQEP3000/au3evuU+7du00aNCgrJ1cNowYMUI3b97UxIkTlZiYqDFjxmjWrFnq2rWr6tSpo+LFi+vq1avau3ev1qxZYw797uDgoFmzZlndaXU/Wbx4sWJiYiRJbdu2VYUKFWzet3fv3nrttdcUGxurH3/8UWFhYeZQ6llhsVj0wQcfqE2bNpKUq9PSuLi4aOLEiRoyZIgSEhKyPf0lACDnyGnyFjlN1pDTFHwFOfewRcovPnr37m1+EWuLgQMHavr06ZKkhQsXavr06RmO7pCevLwWLleunN58801NnjyZaSUBAPcNcpq8RU6TNeQ0eeP69euaMmWKpkyZovr16+vRRx9VrVq1VLJkSUnShQsX9Oeff+qHH34wf4eenp6aNWtWqr4SExO1Zs0arVmzRmXLllWrVq3UsGFDlStXTkWKFNGNGzf0999/a9WqVTp37py53/jx4+Xn53d3TvguOXTokHbt2iUp6fmy9eYZSapRo4YaN26sXbt26fLly1q7dq26dOmSrTjee+89zZkzRzdu3Mj1PGbq1Kn64YcfFB8fT44E3KsM3NM2b95sSDIkGS1btsy0/fjx4832mzdvTrU9NDTU3D5w4ECbjz1+/PgM286dO9dsO3fu3HTb7du3z/Dz8zPbZrTY29sbs2fPzvSc07Ju3TqjRIkSNh0neenRo4dx7dq1DPv95ZdfjEqVKtnUn7Ozs7F+/fpUfQwcONBsExoaatP5+Pj4GJIMHx+fDNstWrTI5vMuWrSocfDgQav9K1eubNO+JUuWNH766SebYrfFggULjGrVqtn8u3JycjJ69uxpHD16NM3+bH3t7tmzx3xuMzrWBx98kG4fdx7ru+++M4oUKZJufzVr1jTOnDmTbn8//fRThvu7uroa8+fPt+k9Z8tnR8uWLW1679oiq59XhmEY8fHxRvXq1c39VqxYkapNVt7HKZc7z2f27NmGu7u7zfvb2dkZw4YNM27dumXzc5DyMzizz830rF692ub3Q/369Y2tW7dmKa7sfq7evn3b7COzz6K76aGHHjLjWrJkSZb379mzp7n/xx9/bLUt5fsjJCQk076efPLJVL+j9D7nU3723L59O8N+4+Pjjdq1a6fqGwDuFeQ05DSGQU5z50JOUzBzmrRk5xr/buQeeSkuLs4oU6aMGd+OHTuy3EejRo3M/VeuXGm1LS+vhZO3V6xYMdMYIyIijNKlS1v1W5ByHQBAwUFOQ05jGOQ05DQFP6f5559/jKpVq2bpPVe/fn3jr7/+SrO/IUOGGPb29jb35eHhYcycOTNLMac897Q+LwuK119/3YzzhRdeyPL+AQEB5v4dO3a02pbV72+mTZuW6rlP73WT8rNu48aNmfb94osvpuq7IP9eAFhj5DAUKPXr19fhw4e1evVqBQYGaufOnbp8+bJu3rwpd3d3eXl5qU6dOnr88cf1zDPPZOtuA0lq3769Ll++rO3bt2vr1q3avXu3jh8/rosXLyo6OlrOzs4qVqyYatSooUceeUS9e/c2h6/NSLt27XTy5EktXbpU69at0549e/Tvv/8qJiZGRYsWla+vr+rVq6fWrVvrmWeeUbFixbIVf3b169dPnTt31vz58/Xzzz/rwIEDunLliuLj4+Xp6akqVaqoQYMGatOmjdq3b68iRYpY7b9//35t3bpVmzdv1s6dO3Xq1Cldv35dFotFJUqUUO3atfX0009r8ODBKl68eK7F3b9/f/Xt21fr16/Xpk2btGPHDl24cEFXr16VYRgqVqyYypcvrwYNGqhp06bq1q1bqqF+s6Nhw4Y6duyYvv32WwUGBurgwYO6evWq3NzczLtyXn75ZVWuXNnmPpPvsvrvf/+rX375RefPn5ejo6P8/PzUp08fvfTSSxnecf3000/rr7/+0kcffaSNGzfq/PnzcnV1VcWKFfXUU09p2LBhql69eoGZLiWn7O3tNXLkSA0ZMkSSNGHCBHXr1k12drk/K/LQoUPVv39/bdmyRdu2bdOePXt04sQJhYWFKTo6WkWKFFGJEiVUs2ZNNW/eXH369FG1atVyPY7MdOnSRR07dlRgYKDWrVunnTt3KiwsTBERESpWrJjKlSun5s2b65lnntFTTz2V4Uhrhd2+ffvMKRw9PDyydbfNwIEDtWLFCklJoyO89dZb2Y7ngw8+0MaNG82huHOLvb29pk2blqW7kQAAeYecJm+R02QNOU3BdK/kHulJHlVXkqpXr66mTZtmuY+BAwdq9+7dkpKus7t3756tWPLyWrho0aIaO3asXn311VzvGwCAgoycJm+R02QNOU3uqVixok6cOKG///5bv/32m/78808FBwfr3LlzioiIkL29vTw8PFS5cmU1aNBAXbt2Vdu2bdP9Puabb74x/+b9xx9/6ODBgzp58qSuX7+uuLg4ubu7q2zZsqpTp47atWunnj175sproqCJi4uzGiEurWlvM9OnTx+98cYbiouL0/r163XhwoUszYKS0muvvaaZM2fq/Pnz2do/IxMmTNCiRYsYOQy4R1kMI4MJtwuZhIQEzZkzR4sWLdLhw4cVFRWlsmXLqn79+ho0aJA6d+5sUz8TJkzQxIkTM2xz9OjRQjckJgAAAADJMAxt375dgYGB+v333xUcHKzo6GiVKlVKTZs21SuvvKLHH388zX0jIyP16aefavXq1QoJCVFcXJzKlSunFi1a6K233kp3+oPY2FjNnDlTS5Ys0bFjx2SxWOTn56dBgwZp2LBhWS6c3rJlS7oxJps1a5aGDRuWpX4BAAAAFGx3O5/x9fXVmTNnMo1rwoQJGj9+vE3nQD4DAAAAZM19M3LY9evX1b59e+3cuVMWi0UPPPCAfH19deHCBQUGBsrBwcHm4rBkXl5e8vb2TnPbnZX8AAAAAAqH3377TW3btpUk2dnZqVq1anJzc1NISIhWrVqlVatWacyYMZo8ebLVfmFhYWrRooWOHz8uOzs7Va5cWe7u7jp58qSWLFmi5cuXa+HChXr22Wet9ouMjFS7du0UFBQki8WimjVrytHRUfv379eePXu0fv16rV69Wg4OWU/vPDw8VKdOnTS3lS9fPsv9AQAAACjY7nY+06hRI1WqVCnNWKKjo7V//35JytZIlOQzAAAAgG3ui+KwxMREderUSTt37lS3bt30+eefWyUj//zzj06dOpXlfgcPHqwJEybkYqQAAAAACjrDMFStWjW9+eab6tOnjzlNQ1xcnCZMmKBp06ZpypQpatKkiTp27GjuN3r0aB0/flw1atTQmjVrzJGGb968qTfffFP/+9//NGzYMHXo0EEeHh7mfq+99pqCgoJUoUIF/fTTT+Y0GqdPn1bHjh21du1aTZs2TWPHjs3yudSvX19btmzJwbMBAAAA4F5yt/OZFStWpBvLN998o+eff17ly5dXmzZtsnwu5DMAAACAbbI298g96n//+5/++OMPPf7441qxYkWqu1QqVaqkxx57LJ+iAwAAAHAvady4sY4ePaqXXnrJ/CJFkpycnDR16lQ9/fTTkqTZs2db7bdu3TpJ0kcffWQ1Bb2bm5sCAgJUqlQpRUREaPv27ea2q1evasGCBZKkTz75xCwMk5KmZ/nmm2/MPm/evJnLZwoAAACgsLmb+UxmFi5cKEnq27ev7O3ts31OAAAAADJ2XxSHff7555KkyZMny87uvjhlAAAAAHnEw8Mjwykc27VrJ0k6fvy41fpbt25JkqpUqZJqHwcHB/n4+EiS4uPjzfVBQUFKSEiQnZ2dunbtmmq/Rx55RBUrVlRkZKQ2bNiQ9ZMBAAAAcF+5m/lMRs6cOaPff/9dktS/f3+b9gEAAACQPYV+WsmQkBAFBwerRIkSevTRRxUYGKgVK1bo4sWLKl26tNq2bav+/fvL2dk5y31v3rxZhw8f1tWrV1WiRAk1btxYAwYMULly5fLgTAAAAADcC2JiYiRJrq6uVuvr1q2r33//XTt27FDt2rWttl27dk3BwcFycHDQQw89ZK6/fv26JKl06dJycnJK83gVK1bU+fPntXPnTnXv3j1LsZ49e1b+/v46d+6cihQpogcffFC9e/e2igEAAADA/SM385mMLF68WIZhqE6dOlYjJGcF+QwAAABgm0JfHLZ3715Jkp+fn/r376/FixdbbV++fLlmzJihDRs2mHe22Grbtm1WP3///feaMGGCvvzyS/n7++cobgAAAAD3HsMwtGLFCklSs2bNrLZNmDBBTz31lEaMGCEHBwe1b99e7u7uOnDggEaMGKGbN29qzJgx8vLyMvfx9PSUJF25ckVxcXFpFoidP39eknTs2LEsxxsaGqrQ0FDz57Vr12r69OkaPny4Pv/8c6Z2AQAAAO4juZ3PZGTRokWScjZqGPkMAAAAYJtCXxx28eJFSdLu3bu1Y8cODR06VGPGjFG5cuX0xx9/6IUXXlBwcLC6d++uXbt22TTtZPny5TV69Gh17dpVVapUkaurq/bv368pU6Zo/fr1Gjx4sEqWLKlnnnkmw35iY2MVGxubYZvExERdu3ZNJUuWlMVisf3EAQAAgDxmGIYiIyNVoUIFpm///2bPnq39+/fLyclJr7/+utW21q1ba+PGjRo7dqwGDx5stc3X11eLFi1Sv379rNY//PDDslgsSkhIUGBgoHr27Gm1fdeuXWZxWPIoY7ZwdXXVoEGD9Nxzz8nPz0+lSpXSqVOn9PXXX+vzzz9XQECAXFxc9PHHH6fbB/kMAAAA7nXkNNZyO59Jz549e3T06FHZ2dmpb9++WY4zN/IZiZwGAAAA9z6bcxqjkJs8ebIhyZBktGjRItX2AwcOGBaLxZBk/PDDDzk6VmJiotG1a1dDklG1alUjMTExw/bjx483Y2NhYWFhYWFhYWG5V5dz587l6Dq6sNi7d6/h4uJiSDI+/PDDNNvMnTvXqFGjhmGxWAwfHx+jTp06hqurqyHJaNWqlREaGppqn27duhmSjAoVKhg7d+401x87dsyoWbOm+Xto2LBhrpzHZ599Zkgy7O3tjVOnTqXbjnyGhYWFhYWFhYWlsCzkNHmXz6TltddeMyQZbdu2zcUzSGJrPmMY5DQsLCwsLCwsLCyFZ8ksp7EYhmGoEPv44481YsQISdLKlSvVvXv3VG3atGmj3377TS+//LICAgJydLzjx4+rRo0akqQDBw6oXr166ba15a6U8PBweXt769y5c/Lw8MhRbAAAAEBuioiIkJeXl27cuGFOf3i/Cg0NVbNmzXTx4kX17dtXixYtSnVX+bRp0zR69Gj5+flp+fLlqlu3riQpKipKr7/+ur799ltVqFBBR44csXo+w8LC9Nhjj5nTRvr6+srJyUknTpyQg4ODunTpou+++04tW7bUli1bcnwuCQkJ8vX11T///KPPPvtMr732WprtyGcAAABwryOnSZKX+cyd4uPjVbFiRYWFhWnBggU5mlYyLbbmMxI5DQAAAO59tuY0hX5ayeLFi5uP/fz80mxTs2ZN/fbbbzp9+nSOj/fAAw+oRIkSunbtmk6cOJFhcZizs7OcnZ1t6tfDw4PEAwAAAAXS/T61xqVLl9SuXTtdvHhRHTp00Lx581I9J2FhYZo0aZIkad68eeYXKZLk7u6ur776Sn/++aeOHDmiL7/8UqNGjTK3lylTRkFBQfr444/1/fffKzQ0VC4uLurYsaMmTpyolStXSpLKlSuXK+djb2+vxo0b659//tGJEyfSbUc+AwAAgMLifs5p8jqfudMvv/yisLAwubm5qWvXrrl+PrbmMxI5DQAAAAqPzHKaDCacLBySR/GSlO5FfvL6hISEXDmmo6OjpKQ7YAAAAAAUXteuXVO7du108uRJtWzZUitWrDDzgZT27NmjmJgYubu7q3Hjxqm2Ozg4qFWrVmbbO3l6emry5Mk6cuSIbt26pevXryswMFAPPfSQ2b5hw4a5dl7kNAAAAEDhd7fymZQWLVokSeratavc3d1zfhJpIJ8BAAAArBX64rD69evLxcVFknTq1Kk02ySvr1ixYo6Pd+XKFYWFhUmSKlWqlOP+AAAAABRMUVFRat++vQ4dOqRGjRrpxx9/lKura5ptIyMjM+3PMAxJUkxMjM0xXLt2zZxKsmPHjjbvl5nDhw9LIqcBAAAACqv8yGciIyMVGBgoSbk+nWRK5DMAAACAtUJfHObm5qb27dtLkubPn59q+6VLl/Tzzz9Lklq3bp3j433yyScyDEOenp5q1KhRjvsDAAAAUPDExsaqc+fOCgoKUu3atbVhwwYVLVo03fbVq1eXlPQFzK5du1Jtj4+P19atWyUlTVVvq/Hjxys2NlZt2rRRzZo1s3gWafvll1906NAhSVLbtm1zpU8AAAAABUd+5TPff/+9oqOjVb58ebVp0yaHZ5E28hkAAAAgtUJfHCZJ48aNk729vZYtW2ZVIHbjxg35+/vr1q1bqlKlinr27Glu++yzz+Tr66s+ffpY9XX48GG9/PLL5p0nyWJiYjR16lR98MEHkqR3331XTk5OeXhWAAAAAPJDQkKC+vTpo99++01Vq1bVxo0bVaJEiQz3qV+/vmrVqiVJ8vf318GDB81tkZGRGjZsmI4cOSJJeu6556z2/fvvv7VmzRqrKVGioqI0cuRIzZw5U0WKFFFAQECqY+7cuVO+vr7y9fVNtS05/sTERHOdYRhavXq1mQM98cQTatKkSSbPBgAAAIB7yd3OZ1JKnlKyb9++sre3z/CY5DMAAABA7nHI7wDuhnr16mnmzJl6+eWX5e/vr3HjxqlMmTI6cuSIoqOjVapUKX3//fdWxVw3btzQmTNnUiUet2/f1qxZszRr1iyVLl1a3t7ekqSjR48qOjpakjRkyBCNHDnyrp0fAAAAgLvnu+++05o1ayRJdnZ2VjeZpFS+fHmtWLFCkmSxWLRw4UK1bdtWwcHBeuihh+Tj4yMPDw+FhITo1q1bkqQpU6aoYcOGVv2cPHlSXbt2laurqypXriwnJycFBwcrJiZGxYoV06pVq1SjRo1Ux4+JidGZM2fSjG3Dhg1avny53NzcVK1aNTk7Oys0NFT//vuvJKlRo0ZavHhxtp4fAAAAAAXX3c5nkp0/f16bN2+WZNuUkuQzAAAAQO65L4rDJGnYsGGqXbu2PvroI/355586ePCgKlSooA4dOmjUqFGqWLGiTf34+vpq8uTJ2rFjh4KDg3Xs2DHFxcWpTJkyat++vYYOHaonn3wyj88GAAAAQH6JjY01H4eEhCgkJCTNdj4+PlY/N2jQQIcOHdKMGTO0YcMGhYaG6vz58ypdurTat2+v4cOH6/HHH0/VT7169fTiiy/q999/17lz5xQfHy8fHx917NhRb7/9tsqVK5flc5g+fbq2bNmiv/76S2fPnlVkZKSKFSumNm3aqE+fPho4cKAcHR2z3C8AAACAgu1u5zPJFi9erMTERNWpU0f16tXL0TmQzwAAAABZYzEMw8jvIJC+iIgIeXp6Kjw8XB4eHvkdDgAAAGDiWhWZ4TUCAACAgozrVWSG1wgAAAAKMluvV+3uYkwAAAAAAAAAAAAAAAAAgLvkvplWEgAAAPnDMAzFx8crISEhv0NBOuzt7eXg4CCLxZLfoQAAAAAAAAAAACAXURwGAACAPBMXF6eLFy8qOjo6v0NBJooUKaLy5cvLyckpv0MBAAAAAAAAAABALqE4DAAAAHkiMTFRoaGhsre3V4UKFeTk5MTIVAWQYRiKi4vTv//+q9DQUFWvXl12dsw+DwAAAAAAAAAAUBhQHFZABAQEKCAgINV6pl8CAAD3qri4OCUmJsrLy0tFihTJ73CQAVdXVzk6OurMmTOKi4uTi4tLfocEAAAAAAAAAACAXEBxWAExfPhwDR8+PNX6iIgIeXp65kNEAAAAuYNRqO4N/J4AAAAAAAAAAAAKH74BAgAAAAAAAAAAAAAAAIBCiOIwAAAAAAAAAAAAAAAAACiEKA4DAAAAAAAAAAAAAAAAgEKI4jAAAAAUeHv27FHr1q21Z8+ePD/Wtm3b9Mwzz6hChQqyWCxas2ZNnh8TAAAAAAAAAAAAyAsUhwEAAKDAW7BggTZv3qyFCxfm+bFu3rypevXqaebMmXl6nNu3b+dp/wAAAAAAAAAAAADFYQAAACiQzpw5o71792rfvn1avny5JGnZsmXat2+f9u7dqzNnzuTJcZ9++mlNmTJF3bp1s6m9YRiqVq2aPv74Y6v1hw4dkp2dnU6ePClJslgs+uqrr9S5c2e5ublpypQpafa3aNEiPfzwwypatKjKlSunvn37KiwsTJKUmJioSpUq6auvvrLaZ9++fbJYLDp16pQkKTg4WM2bN5eLi4tq1aqlTZs2MQoaAAAAAAAAAADAfcghvwMAAADA/SM6OlrBwcE2tW3YsGGqdWFhYVbr9+7da1Nffn5+KlKkiG1BZpHFYtHgwYM1d+5cvf322+b6OXPmqEWLFqpataq5bvz48Zo2bZo+/fRT2dvbp9lfXFycJk+erBo1aigsLExvvPGG/P399dNPP8nOzk59+vTR4sWLNWzYMHOfJUuWqGnTpqpSpYoSExPVpUsXeXt7KygoSJGRkXrrrbfy5NwBAAAAAAAAAABQsFEcBgAAgLsmODg4zaKv7LK1r71796pBgwa5dtw7DRo0SOPGjdOuXbvUuHFj3b59W4sWLdJHH31k1a5v374aPHhwhn2l3F6lShV98cUXaty4saKiouTu7q5+/frpk08+0ZkzZ+Tj46PExEQtW7ZMo0ePliT98ssvOnnypLZs2aJy5cpJkt5//321a9cul88aAAAAAAAAAAAABR3FYQAAALhr/Pz8bB7tS5KOHj2q5557LtX6RYsWqWbNmlk6bm6ZOnWqpk6dav585MgReXt7q0OHDpozZ44aN26stWvXKiYmRj179rTa9+GHH860//3792vChAk6cOCArl27psTEREnS2bNnVatWLdWvX19+fn5aunSpRo4cqa1btyosLEy9evWSJB07dkxeXl5mYZgkNW7cODdOHQAAAAAAAAAAAPcYisMAAABw1xQpUiRbI3jZ2dkpMTHR/LdmzZp5OhJYRoYNG2YWYklShQoVJElDhw5V//799emnn2ru3Lnq3bt3qqks3dzcMuz75s2beuKJJ/TEE09o0aJFKl26tM6ePasnn3xScXFxZrt+/fppyZIlGjlypJYsWaInn3xSpUqVkiQZhiGLxZJbpwsAAAAAAAAAAIB7GMVhAAAAKLDKlCmjcuXKycvLS0OGDNG3336rc+fOqUyZMvkWU4kSJVSiRIlU69u3by83NzfNmjVL69ev17Zt27Lcd3BwsK5cuaLp06fLy8tLkrRnz55U7fr27asxY8Zo7969WrlypWbNmmVu8/Pz09mzZ3X58mWVLVtWkrR79+4sxwIAAAAAAAAAAIB7H8VhAAAAKLAqVaqk06dPy8nJSRaLRS+88ILi4uLk7OycZ8eMiorSiRMnzJ9DQ0N14MABlShRQt7e3unuZ29vL39/f40aNUrVqlVT06ZNs3xsb29vOTk56b///a+GDRumQ4cOafLkyanaVa5cWY8++qiGDBmi+Ph4de7c2dzWrl07Va1aVQMHDtSHH36oyMhIvffee5LEiGIAAAAAAAAAAAD3Gbv8DgBJAgICVKtWrVRLo0aN8js0AACAfOXs7GwWNVksljwtDJOSRuqqX7++6tevL0l68803Vb9+fY0bNy7TfYcMGaK4uDgNHjw4W8cuXbq05s2bpxUrVqhWrVqaPn26Pv744zTb9uvXT3/99Ze6desmV1dXc729vb3WrFmjqKgoNWrUSEOHDtWYMWMkSS4uLtmKCwAAAAAAAAAAAPcmi2EYRn4HgfRFRETI09NT4eHh8vDwyO9wAAAAbBYTE6PQ0FBVrlz5vilK2r59u1q1aqV//vnHnNKxINi+fbuaN2+uEydOqGrVqmm2yc7vi2tVZIbXCAAAAAoyrleRGV4jAAAAKMhsvV5lWkkAAAAgh2JjY3Xu3DmNHTtWvXr1yvfCsNWrV8vd3V3Vq1fXiRMn9Nprr6lZs2bpFoYBAAAAAAAAAACgcGJaSQAAACCHli5dqho1aig8PFwffvhhfoejyMhIvfzyy/Lz85O/v78aNWqkwMDA/A4LAAAAAAAAAAAAdxkjhwEAAAA55O/vL39///wOwzRgwAANGDAgv8MAAAAAAAAAAABAPmPkMAAAAAAAAAAAAAAAAAAohCgOAwAAAAAAAAAAAAAAAIBCiOIwAAAAAAAAAAAAAAAAACiEKA4DAAAAAAAAAAAAAAAAgEKI4jAAAAAAAAAAAAAAAAAAKIQoDgMAAAAAAAAAAAAAAACAQojiMAAAAAAAAAAAAAAAAAAohCgOAwAAAFKYMGGCLBaL1VKuXLn8DgsAAAAAAAAAAADIMof8DgAAAAAoaGrXrq1NmzaZP9vb2+f6MW7fvi1HR8dc7xcAAAAAAAAAAABIxshhAAAAwB0cHBxUrlw5cyldunS6bQ3DULVq1fTxxx9brT906JDs7Ox08uRJSZLFYtFXX32lzp07y83NTVOmTEmzv0WLFunhhx9W0aJFVa5cOfXt21dhYWGSpMTERFWqVElfffWV1T779u2TxWLRqVOnJEnBwcFq3ry5XFxcVKtWLW3atEkWi0Vr1qzJ7lMCAAAAAAAAAACAexAjhxUQAQEBCggISLU+ISEhH6IBAADIG9HR0QoODr7rx/Xz81ORIkVsbh8SEqIKFSrI2dlZTZo00dSpU1WlSpU021osFg0ePFhz587V22+/ba6fM2eOWrRooapVq5rrxo8fr2nTpunTTz9NdzSyuLg4TZ48WTVq1FBYWJjeeOMN+fv766effpKdnZ369OmjxYsXa9iwYeY+S5YsUdOmTVWlShUlJiaqS5cu8vb2VlBQkCIjI/XWW2/ZfO4AAAAAAAAAAAAoPCyGYRj5HQTSFxERIU9PT4WHh8vDwyO/wwEAALBZTEyMQkNDVblyZbm4uEhKGuGqYcOGdz2WvXv3qkGDBja1Xb9+vaKjo/XAAw/o8uXLmjJlioKDg3X48GGVLFkyzX0uXrwoLy8v7dixQ40bN9bt27dVsWJFffTRRxo4cKCkpCKy119/XZ9++mmWYt+9e7caN26syMhIubu7a//+/WrYsKFCQ0Pl4+OjxMREeXt7a/To0Xr55Ze1YcMGPfPMMzp37pzKlSsnSdq0aZPatWun1atXq0uXLmkeJ63fV2a4VkVmeI0AAACgION6FZnhNQIAAICCzNbrVUYOAwAAwF3j5+envXv35stxbfX000+bj+vUqaOmTZuqatWqmj9/vt58801NnTpVU6dONdscOXJE3t7e6tChg+bMmaPGjRtr7dq1iomJUc+ePa36fvjhhzM9/v79+zVhwgQdOHBA165dU2JioiTp7NmzqlWrlurXry8/Pz8tXbpUI0eO1NatWxUWFqZevXpJko4dOyYvLy+zMEySGjdubPP5AwAAAAAAAAAAoPCgOAwAAAB3TZEiRWwewaugcHNzU506dRQSEiJJGjZsmFmIJUkVKlSQJA0dOlT9+/fXp59+qrlz56p3796pprJ0c3PL8Fg3b97UE088oSeeeEKLFi1S6dKldfbsWT355JOKi4sz2/Xr109LlizRyJEjtWTJEj355JMqVaqUJMkwDFksllw5dwAAAAAAAAAAANzbKA4DAAAAMhAbG6ujR4+qRYsWkqQSJUqoRIkSqdq1b99ebm5umjVrltavX69t27Zl+VjBwcG6cuWKpk+fLi8vL0nSnj17UrXr27evxowZo71792rlypWaNWuWuc3Pz09nz57V5cuXVbZsWUlJU1MCAAAAAAAAAADg/mOX3wEAAAAABcnbb7+trVu3KjQ0VEFBQerRo4ciIiI0cODADPezt7eXv7+/Ro0apWrVqqlp06ZZPra3t7ecnJz03//+V6dOndIPP/ygyZMnp2pXuXJlPfrooxoyZIji4+PVuXNnc1u7du1UtWpVDRw4UAcPHtT27dv13nvvSRIjigEAAAAAAAAAANxnKA4DAAAAUvjnn3/07LPPqkaNGurWrZucnJy0c+dO+fj4ZLrvkCFDFBcXp8GDB2fr2KVLl9a8efO0YsUK1apVS9OnT9fHH3+cZtt+/frpr7/+Urdu3eTq6mqut7e315o1axQVFaVGjRpp6NChGjNmjCTJxcUlW3EBAAAAAAAAAADg3sS0kgAAAEAKy5Yty/a+Fy9elIODgwYMGJBqm2EYNvXx7LPP6tlnn81035dfflkvv/xymn34+fnpjz/+MH/evn27JKlatWo2xQAAAAAAAAAAAIDCgeIwAAAAIIdiY2N17tw5jR07Vr169VLZsmXzNZ7Vq1fL3d1d1atX14kTJ/Taa6+pWbNmqlq1ar7GBQAAAAAAAAAAgLuLaSUBAACAHFq6dKlq1Kih8PBwffjhh/kdjiIjI/Xyyy/Lz89P/v7+atSokQIDA/M7LAAAAAAAAAAAANxljBwGAAAA5JC/v7/8/f3zOwzTgAED0pzaEgAAAAAAAAAAAPcXRg4DAAAAAAAAAAAAAAAAgEKI4jAAAADkKcMw8jsE2IDfEwAAAAAAAAAAQOFDcRgAAADyhKOjoyQpOjo6nyOBLZJ/T8m/NwAAAAAAAAAAANz7HPI7ACQJCAhQQEBAqvUJCQn5EA0AAEDO2dvbq1ixYgoLC5MkFSlSRBaLJZ+jwp0Mw1B0dLTCwsJUrFgx2dvb53dIAAAAAAAAAAAAyCUUhxUQw4cP1/Dhw1Otj4iIkKenZz5EBAAAkHPlypWTJLNADAVXsWLFzN8XAAAAAAAAAAAACgeKwwAAAJBnLBaLypcvrzJlyuj27dv5HQ7S4ejoyIhhAAAAAAAAAAAAhRDFYQAAAMhz9vb2FB8BAAAAAAAAAAAAd5ldfgcAAAAAAAAAAAAAAAAAAMh9FIcBAAAAAAAAAAAAAAAAQCFEcRgAAAAAAAAAAAAAAAAAFEL3VXFYQkKCZs+erZYtW6pUqVJycXGRj4+PunTposDAwCz39+eff6pz584qXbq0XF1dVatWLU2ePFkxMTF5ED0AAAAAAAAAAAAAAAAA2M4hvwO4W65fv6727dtr586dslgseuCBB+Tr66sLFy4oMDBQDg4O6ty5s839LV68WAMHDlRCQoIqVqwoLy8vHTp0SOPGjdOPP/6oLVu2qEiRInl4RgAAAAAAAAAAAAAAAACQvvti5LDExER16tRJO3fuVLdu3XT27FkFBwdrz549unDhgs6dO6dXX33V5v5Onz6tIUOGKCEhQR9++KHOnTunffv2KSQkRDVq1NDu3bv1zjvv5OEZAQAAAAAAAAAAAAAAAEDG7ovisP/973/6448/9Pjjj2vFihWqVKmS1fZKlSrpscces7m/jz76SLGxsXriiSc0YsQIWSwWSZKPj4/mzJljHvPy5cu5dxIAAAAAAAAAAAAAAAAAkAX3RXHY559/LkmaPHmy7OxydsqGYWj16tWSpCFDhqTa/uijj8rPz0+3b99WYGBgjo4FAAAAAAAAAAAAAAAAANlV6IvDQkJCFBwcrBIlSujRRx9VYGCgnnvuObVp00Z9+vTRN998o9jYWJv7O3v2rC5evChJatasWZptktcHBQXl/AQAAAAAAAAAAAAAAAAAIBsc8juAvLZ3715Jkp+fn/r376/FixdbbV++fLlmzJihDRs2yMfHJ9P+QkJCJEnOzs6qUKFCmm2qVKli1TY9sbGxmRamRUREZBoTAAAAAAAAAAAAAAAAANyp0I8cljzK1+7du7V48WINHTpUp0+fVkxMjDZt2qQqVaooODhY3bt3V2JiYqb9Xb9+XZJUrFgxWSyWNNsUL17cqm16pk2bJk9PzwwXLy+vrJwuAAAAAAAAAAAAAAAAAEi6D4rDbt68KUm6ffu2WrRoodmzZ8vHx0fOzs5q06aNVq1aJYvFor1792rdunWZ9hcTEyNJcnJySreNs7OzJOnWrVsZ9jVq1CiFh4dnuJw7d87WUwUAAAAAAAAAAAAAAAAAU6EvDnNxcTEfv/baa6m216tXT48//rgkacOGDTb3FxcXl26b5KkiXV1dM+zL2dlZHh4emS4AAAAAAAAAAAAAAAAAkFWFvjgseYpHSfLz80uzTc2aNSVJp0+ftrm/GzduyDCMNNskTyeZ8tgAAAAAAAAAAAAAAAAAcDcV+uKwGjVqmI+Tp3u8U/L6hISETPurXr26pKTRwS5cuJBmm1OnTlm1BQAAAAAAAAAAAAAAAIC7rdAXh9WvX9+cCjK5aOtOyesrVqyYaX/e3t4qV66cJGn79u1ptkle36RJkyzHCwAAAAAAAAAAAAAAAAC5odAXh7m5ual9+/aSpPnz56fafunSJf3888+SpNatW2fan8ViUdeuXSVJ3377bartO3bsUHBwsBwdHdWpU6echA4AAAAAAAAAAAAAAAAA2Vboi8Mkady4cbK3t9eyZcusCsRu3Lghf39/3bp1S1WqVFHPnj3NbZ999pl8fX3Vp0+fVP2NGDFCTk5O+uWXX/TRRx/JMAxJ0pkzZzR48GBJ0tChQ80RxgAAAAAAAAAAAAAAAADgbrsvisPq1aunmTNnyjAM+fv7y8fHR40aNVLFihX1888/q1SpUvr+++/l5ORk7nPjxg2dOXNGly5dStVf5cqVNXv2bNnZ2emdd96Rl5eXGjRooOrVq+vYsWNq2LChPvroo7t5igAAAAAAAAAAAAAAAABg5b4oDpOkYcOGaevWrXrmmWcUHR2tgwcPqkyZMho+fLgOHDighx56KEv9DRgwQL///rs6duyoW7du6ciRI6pSpYomTJigP/74Q25ubnlzIgAAAAAAAAAAAAAAAABgA4uRPCciCqSIiAh5enoqPDxcHh4e+R0OAAAAYOJaFZnhNQIAAICCjOtVZIbXCAAAAAoyW69X75uRwwAAAAAAAAAAAAAAAADgfkJxGAAAAAAAAAAAAAAAAAAUQhSHAQAAAAAAAAAAAAAAAEAhRHEYAAAAAAAAAAAAAAAAABRCDvkdAJIEBAQoICAg1fqEhIR8iAYAAAAAAAAAAAAAAADAvY7isAJi+PDhGj58eKr1ERER8vT0zIeIAAAAAAAAAAAAAAAAANzLmFYSAAAAAAAAAAAAAAAAAAohisMAAAAAAAAAAAAAAAAAoBCiOAwAAAAAAAAAAAAAAAAACiGKwwAAAAAAAAAAAAAAAACgEKI4DAAAAAAAAAAAAAAAAAAKIYrDAAAAACALDMPQH3/8oREjRuiRRx5RsWLF5OTkpAoVKqh79+7avHlzuvtGRkZq0qRJql+/vtzd3eXk5CRvb2/169dP+/btS3e/2NhYzZgxQw0bNpS7u7uKFi2qRo0a6csvv1RiYmK2z+X8+fN64YUX5OXlJWdnZ3l7e+vFF1/U+fPns90nAAAAAAAAAAAoOCyGYRj5HQTSFxERIU9PT4WHh8vDwyO/wwEAAABM9+u16q+//qq2bdtKkuzs7FStWjW5ubkpJCREUVFRkqQxY8Zo8uTJVvuFhYWpRYsWOn78uOzs7FS5cmW5u7vr5MmTioqKkr29vRYuXKhnn33War/IyEi1a9dOQUFBslgsqlmzphwdHXXo0CElJCSoY8eOWr16tRwcHLJ0HkeOHFGLFi107do1eXp6qmrVqjp58qTCw8NVsmRJ/fHHH/Lz88vBM3X/vkYAAABwb+B6FZnhNQIAAICCzNbrVUYOAwAAAIAsMAxD1apV05dffqkrV67o2LFj2rdvn65evapRo0ZJkqZMmaK1a9da7Td69GgdP35cNWrU0OHDh3XixAkdOHBAly5d0gsvvKCEhAQNGzZMERERVvu99tprCgoKUoUKFbR//34dPnxYBw4c0IkTJ1S7dm2tXbtW06ZNy9I5JCQkqGfPnrp27Zq6d++uCxcuaO/evTp//ry6deumq1evqnfv3jkalQwAAAAAAAAAAOQ/Rg4r4LgrBQAAAAXV/XqtGhERoSJFiqQ7Ulf79u21fv16derUSYGBgeb68uXL69KlS/rhhx/0zDPPWO0THx+v8uXL68qVK/rpp5/09NNPS5KuXr2qsmXLKiEhQcuWLVPv3r2t9tu5c6eaNm2qokWL6uLFi3Jzc7PpHFasWKFevXqpZMmSCg0NVdGiRc1tkZGRqly5sq5evapVq1apa9euNvWZlvv1NQIAAIB7A9eryAyvEQAAABRkjBwGAAAAAHnAw8Mjwykc27VrJ0k6fvy41fpbt25JkqpUqZJqHwcHB/n4+EhKKhRLFhQUpISEBNnZ2aVZpPXII4+oYsWKioyM1IYNG2w+h1WrVkmSevXqZVUYJklFixZVz549JSUVkQEAAAAAAAAAgHsXxWEAAAAAkItiYmIkSa6urlbr69atK0nasWNHqn2uXbum4OBgOTg46KGHHjLXX79+XZJUunRpOTk5pXm8ihUrSkoaRcxWyW2bNWuW5vbk9UFBQTb3CQAAAAAAAAAACp70b3cHAAAAAGSJYRjmaFt3Fl5NmDBBTz31lEaMGCEHBwe1b99e7u7uOnDggEaMGKGbN29qzJgx8vLyMvfx9PSUJF25ckVxcXFpFoidP39eknTs2DGbYoyLi9PZs2clpT2KWcr1p0+f1u3bt+Xo6JiqTWxsrGJjYzM8VkREhE0xAQAAAAAAAACAvEFxWAEREBCggICAVOsTEhLyIRoAAAAA2TF79mzt379fTk5Oev311622tW7dWhs3btTYsWM1ePBgq22+vr5atGiR+vXrZ7X+4YcflsViUUJCggIDA83pHpPt2rXLLA5LHmUsM+Hh4UpMTJQkFS9ePM02yesTExMVERGhkiVLpmozbdo0TZw40aZjAgAAAAAAAACA/MG0kgXE8OHDdeTIkVTL7t278zs0AAAAADbYt2+fXnvtNUnSlClTVLVq1VRtQkNDFRYWJovFIh8fH9WpU0eurq46ffq0vvnmG50+fdqqfbly5dS1a1dJ0uuvv241zePx48fl7+9v/nzr1i2b4kye9lJSulNVOjs7Z9rvqFGjFB4enuFy7tw5m2ICAAAAAAAAAAB5g+IwAAAAAMih0NBQdezYUTExMerbt6/efvvtVG2mTZumQYMGyWKx6MCBAzp9+rQOHjyosLAwDRkyRFu2bFGzZs0UHh5utd+sWbNUo0YNXbhwQY888ogqV66sGjVqqGbNmjp58qR69eolSXJ3d7cpVhcXF/NxXFxcmm1SThfp6uqaZhtnZ2d5eHhkugAAAAAAAAAAgPxDcRgAAAAA5MClS5fUrl07Xbx4UR06dNC8efNksVis2oSFhWnSpEmSpHnz5qlu3brmNnd3d3311VeqVauWLly4oC+//NJq3zJlyigoKEhjxoxRzZo1denSJYWFhaljx44KCgpS9erVJSWNMmYLT09P2dklpYLpTUWZvN7Ozo4CLwAAAAAAAAAA7mEUhwEAAABANl27dk3t2rXTyZMn1bJlS61YsUKOjo6p2u3Zs0cxMTFyd3dX48aNU213cHBQq1atzLZ38vT01OTJk3XkyBHdunVL169fV2BgoB566CGzfcOGDW2K2cnJSd7e3pKkU6dOpdkmeb2vr2+a5wMAAAAAAAAAAO4NFIcBAAAAQDZERUWpffv2OnTokBo1aqQff/wx3SkYIyMjM+3PMAxJUkxMjM0xXLt2TVu2bJEkdezY0eb9mjRpIknavn17mtuT1ye3AwAAAAAAAAAA9yaKwwAAAAAgi2JjY9W5c2cFBQWpdu3a2rBhg4oWLZpu++SpH6OiorRr165U2+Pj47V161ZJ0gMPPGBzHOPHj1dsbKzatGmjmjVr2rxft27dJEnfffddqsK1yMhIrVixQpLUo0cPm/sEAAAAAAAAAAAFD8VhAAAAAJAFCQkJ6tOnj3777TdVrVpVGzduVIkSJTLcp379+qpVq5Ykyd/fXwcPHjS3RUZGatiwYTpy5Igk6bnnnrPa9++//9aaNWsUHx9vrouKitLIkSM1c+ZMFSlSRAEBAamOuXPnTvn6+srX1zfVtu7du8vPz09Xr17VoEGDFB0dLUm6efOmBg0apKtXr+rBBx9Uly5dbHpOAAAAAAAAAABAweSQ3wEAAAAAwL3ku+++05o1ayRJdnZ26tmzZ5rtypcvb47AZbFYtHDhQrVt21bBwcF66KGH5OPjIw8PD4WEhOjWrVuSpClTpqhhw4ZW/Zw8eVJdu3aVq6urKleuLCcnJwUHBysmJkbFihXTqlWrVKNGjVTHj4mJ0ZkzZ9KMzd7eXitWrNBjjz2m77//Xps2bVK1atV04sQJhYeHq0SJElq+fLns7LifCAAAAAAAAACAexnFYQAAAACQBbGxsebjkJAQhYSEpNnOx8fH6ucGDRro0KFDmjFjhjZs2KDQ0FCdP39epUuXVvv27TV8+HA9/vjjqfqpV6+eXnzxRf3+++86d+6c4uPj5ePjo44dO+rtt99WuXLlsnUeDz74oP766y9NmjRJ69ev199//63SpUurV69eGjdunCpVqpStfgEAAAAAAAAAQMFhMQzDyO8gkL6IiAh5enoqPDxcHh4e+R0OAAAAYOJaFZnhNQIAAICCjOtVZIbXCAAAAAoyW69XmSMEAAAAAAAAAAAAAAAAAAohisMAAAAAAAAAAAAAAAAAoBCiOAwAAAAAAAAAAAAAAAAACiGH/A4ASQICAhQQEJBqfUJCQj5EAwAAAAAAAAAAAAAAAOBeR3FYATF8+HANHz481fqIiAh5enrmQ0QAAAAAAAAAAAAAAAAA7mVMKwkAAAAAAAAAAAAAAAAAhRDFYQAAAAAAAAAAAAAAAABQCFEcBgAAAAAAAAAAAAAAAACFEMVhAAAAAAAAAAAAAAAAAFAIURwGAAAAAAAAAAAAAAAAAIUQxWEAAAAAAAAAAAAAAAAAUAhRHAYAAAAAAAAAAAAAAAAAhRDFYQAAAAAAAAAAAAAAAABQCFEcBgAAAAAAAAAAAAAAAACFEMVhAAAAAAAAAAAAAAAAAFAIURwGAAAAAAAAAAAAAAAAAIUQxWEAAAAAAAAAAAAAAAAAUAhRHAYAAAAAAAAAAAAAAAAAhZBDfgeAJAEBAQoICEi1PiEhIR+iAQAAAAAAAAAAAAAAAHCvozisgBg+fLiGDx+ean1ERIQ8PT3zISIAAAAAAAAAAAAAAAAA9zKmlQQAAAAAAAAAAAAAAACAQojiMAAAAAAAAAAAAAAAAAAohCgOAwAAAAAAAAAAAAAAAIBCiOIwAAAAAAAAAAAAAAAAACiEKA4DAAAAAAAAAAAAAAAAgELovigO8/f3l8ViyXCJiYmxub8JEyZk2l9wcHAenhEAAAAAAAAAAAAAAAAAZMwhvwO4m6pXr64yZcqkuc3OLut1cl5eXvL29k5zW5EiRbLcHwAAAAAAAAAAAAAAAADklvuqOGz06NHy9/fPtf4GDx6sCRMm5Fp/AAAAAAAAAAAAAAAAAJBb7otpJQEAAAAAAAAAAAAAAADgfkNxGAAAAAAAAAAAAAAAAAAUQvfVtJIrV67UmjVrFBERoTJlyqhZs2YaMGCAPD09s9Xf5s2bdfjwYV29elUlSpRQ48aNNWDAAJUrVy6XIwcAAAAAAAAAAAAAAACArLmvisPWrVtn9fPy5cs1fvx4LVmyRE899VSW+9u2bZvVz99//70mTJigL7/8Uv7+/pnuHxsbq9jY2AzbREREZDkuAAAAAAAAAAAAAAAAALgvppWsWrWqpk6dqr/++ksRERGKjIzUL7/8oiZNmuj69evq0qWL9uzZY3N/5cuX1+jRo7V7925dvXpV0dHR2r59u55++mndunVLgwcP1o8//phpP9OmTZOnp2eGi5eXV05OHQAAAAAAAAAAAAAAAMB9ymIYhpHfQeSXuLg4tWjRQrt27VLr1q3166+/5qg/wzDUvXt3rV69WlWrVlVISIgsFku67W0dOczLy0vh4eHy8PDIUXwAAABAboqIiJCnpyfXqkgXrxEAAAAUZFyvIjO8RgAAAFCQ2Xq9el+MHJYeJycnTZ48WZK0ZcsWXb9+PUf9WSwWTZ8+XZJ08uRJHTx4MMP2zs7O8vDwyHQBAAAAAAAAAAAAAAAAgKy6r4vDJKlp06aSpMTERJ06dSrH/T3wwAMqUaKEJOnEiRM57g8AAAAAAAAAAAAAAAAAsuO+Lw5zdHQ0H8fHx+dqn7nVHwAAAAAAAAAAAAAAAABk1X1fHHb48GHzcaVKlXLc35UrVxQWFpZr/QEAAAAAAAAAAAAAAABAdtz3xWEzZsyQJPn5+alixYo57u+TTz6RYRjy9PRUo0aNctwfAAAAAAAAAAAAAAAAAGRHoS8O27hxo0aNGqXQ0FCr9eHh4Xr11Ve1dOlSSdK4ceOstn/22Wfy9fVVnz59rNYfPnxYL7/8stWIY5IUExOjqVOn6oMPPpAkvfvuu3Jycsrt0wEAAAAAAAAAAAAAAAAAmzjkdwB57ebNm5o+fbqmT5+uihUrqkKFCrp9+7aOHDmiuLg4WSwWjRs3Ts8++6zVfjdu3NCZM2fk6+trtf727duaNWuWZs2apdKlS8vb21uSdPToUUVHR0uShgwZopEjR96V8wMAAAAAAAAAAAAAAACAtBT64rCGDRvqvffe059//qkTJ07o0KFDMgxDFStWVIsWLfTyyy+rSZMmNvfn6+uryZMna8eOHQoODtaxY8cUFxenMmXKqH379ho6dKiefPLJPDwjAAAAAAAAAAAAAAAAAMicxTAMI7+DQPoiIiLk6emp8PBweXh45Hc4AAAAgIlrVWSG1wgAAAAKMq5XkRleIwAAACjIbL1etbuLMQEAAAAAAAAAAAAAAAAA7hKKwwAAAAAAAAAAAAAAAACgEKI4DAAAAAAAAAAAAAAAAAAKIYf8DgBJAgICFBAQkGp9QkJCPkQDAAAAAAAAAAAAAAAA4F5HcVgBMXz4cA0fPjzV+oiICHl6euZDRAAAAAAAAAAAAAAAAADuZUwrCQAAAAAAAAAAAAAAAACFEMVhAAAAAAAAAAAA9wHDMPTHH39oxIgReuSRR1SsWDE5OTmpQoUK6t69uzZv3pzuvpGRkZo0aZLq168vd3d3OTk5ydvbW/369dO+ffvS3MfX11cWiyXTZeLEiVk+l/Pnz+uFF16Ql5eXnJ2d5e3trRdffFHnz5/Pcl8AAABAYWYxDMPI7yCQvuRpJcPDw+Xh4ZHf4QAAAAAmrlWRGV4jAAAAKMjux+vVX3/9VW3btpUk2dnZqVq1anJzc1NISIiioqIkSWPGjNHkyZOt9gsLC1OLFi10/Phx2dnZqXLlynJ3d9fJkycVFRUle3t7LVy4UM8++6zVfj179tTFixfTjCU6Olr79++XJP3888964oknbD6PI0eOqEWLFrp27Zo8PT1VtWpVnTx5UuHh4SpZsqT++OMP+fn52dxfeu7H1wgAAADuHbZerzJyGAAAAAAAAAAAwH3AMAxVq1ZNX375pa5cuaJjx45p3759unr1qkaNGiVJmjJlitauXWu13+jRo3X8+HHVqFFDhw8f1okTJ3TgwAFdunRJL7zwghISEjRs2DBFRERY7bdixQr98ccfaS4vv/yyJKl8+fJq06aNzeeQkJCgnj176tq1a+revbsuXLigvXv36vz58+rWrZuuXr2q3r17KzExMYfPFgAAAFA4UBwGAAAAAAAAAABwH2jcuLGOHj2ql156ScWLFzfXOzk5aerUqXr66aclSbNnz7bab926dZKkjz76yGpELjc3NwUEBKhUqVKKiIjQ9u3bbY5l4cKFkqS+ffvK3t7e5v1WrVqlI0eOqGTJkpo7d66KFClixjJv3jyVLFlSBw8eVGBgoM19AgAAAIUZxWEAAAAAAAAAAAD3AQ8PDzk4OKS7vV27dpKk48ePW62/deuWJKlKlSqp9nFwcJCPj48kKT4+3qY4zpw5o99//12S1L9/f5v2SbZq1SpJUq9evVS0aFGrbUWLFlXPnj0lJY1aBgAAAIDiMAAAAAAAAAAAAEiKiYmRJLm6ulqtr1u3riRpx44dqfa5du2agoOD5eDgoIceesim4yxevFiGYahOnTqqV69elmLcuXOnJKlZs2Zpbk9eHxQUlKV+AQAAgMIq/dtDAAAAAAAAAAAAcF8wDMMcbevOwqsJEyboqaee0ogRI+Tg4KD27dvL3d1dBw4c0IgRI3Tz5k2NGTNGXl5eNh1r0aJFkrI+alhcXJzOnj0rKe1RzFKuP336tG7fvi1HR8c028XGxio2NjbD40VERGQpPgAAAKAgojgMAAAAAAAAAADgPjd79mzt379fTk5Oev311622tW7dWhs3btTYsWM1ePBgq22+vr5atGiR+vXrZ9Nx9uzZo6NHj8rOzk59+/bNUozh4eFKTEyUJBUvXjzNNsnrExMTFRERoZIlS6bZbtq0aZo4cWKWjg8AAADciygOAwqI6OhohYSEyNnZWc7OznJycjIfOzs7y9HRURaLJb/DBAAAAAAAAAAUMvv27dNrr70mSZoyZYqqVq2aqk1oaKjCwsJksVjk7e0tDw8PnThxQqdPn9Y333yjZs2aydfXN9NjJY8a1rp1a1WsWDFLcSZPeylJTk5OabZxdnY2H9+6dSvdvkaNGqU333wzw+NFRETYPBoaAAAAUFBRHAYUEIcPH1bjxo0zbJOyWOzO4rG0lsza5LQPJycnCtYAAAAAAAAA4B4WGhqqjh07KiYmRn379tXbb7+dqs20adM0evRo+fn56cCBA6pbt64kKSoqSq+//rq+/fZbNWvWTEeOHJGnp2e6x4qPj9fSpUslSQMGDMhyrC4uLubjuLi4NNuknCrS1dU13b6S/84NAAAAFHYUhwEFhMViUbly5RQbG2suCQkJVm2S1xckjo6OuVKkVr16dXXp0kXFihXL71MCAAAAAAAAgPvCpUuX1K5dO128eFEdOnTQvHnzUt0QHBYWpkmTJkmS5s2bZxaGSZK7u7u++uor/fnnnzpy5Ii+/PJLjRo1Kt3j/fLLLwoLC5Obm5u6du2a5Xg9PT1lZ2enxMREXb9+Pc02yevt7Ozk4eGR5WMAAAAAhQ3FYUAB8fDDD+vixYtW6xISEhQXF2dVMJbWklmb3Ogjuc3t27etYrx9+7Zu376tqKioHD8Hw4YNU4cOHdS3b1916NDB6i4wAAAAAAAAAEDuuXbtmtq1a6eTJ0+qZcuWWrFihRwdHVO127Nnj2JiYuTu7p7m7BcODg5q1aqVjhw5oj179mR4zOQpJbt27Sp3d/csx+zk5CRvb2+dPn1ap06dUtOmTVO1OXXqlCTJ19c3zfMBAAAA7jcUhxUQAQEBCggISLX+zpGjcH+xt7eXq6trhkNf322JiYnpFpJltwjt1q1b2rp1qw4dOqRVq1Zp1apV8vT0VPfu3dW3b1+1atVK9vb2+X3qAAAAAAAAAFAoREVFqX379jp06JAaNWqkH3/8Md2/Q0dGRmban2EYkqSYmJh020RGRiowMFCS1L9//2xEnaRJkyY6ffq0tm/frn79+qXavn37drMdAAAAAIrDCozhw4dr+PDhqdZHRETI09MzHyIC0mZnZycXF5c8GdXr4MGDWrJkiZYsWaJz585pzpw5mjNnjipUqKA+ffqob9++atCgQaphzQEAAAAAAAAAtomNjVXnzp0VFBSk2rVra8OGDSpatGi67atXry4pqaBs165dqYqu4uPjtXXrVknSAw88kG4/33//vaKjo1W+fHm1adMm2/F369ZNy5cv13fffacPPvjAKvbIyEitWLFCktSjR49sHwMAAAAoTOzyOwAASFa3bl1Nnz5dp0+f1tatW/Xiiy+qePHiunDhgj755BM9/PDDqlmzpiZPnqyTJ0/md7gAAAAAAAAAcE9JSEhQnz599Ntvv6lq1arauHGjSpQokeE+9evXV61atSRJ/v7+OnjwoLktMjJSw4YN05EjRyRJzz33XLr9JE8p2bdv30xniti5c6d8fX3l6+ubalv37t3l5+enq1evatCgQYqOjpYk3bx5U4MGDdLVq1f14IMPqkuXLhkeAwAAALhfWIzksX5RICWPHBYeHi4PD4/8Dge46+Li4rRhwwYtWbJEgYGBVsOSN2nSRH379lXv3r1VtmzZfIwSAID7E9eqyAyvEQAAABRk9+P16tKlS9W3b19JSSOClSlTJs125cuXN0fgkqR9+/apbdu2un79uiwWi3x8fOTh4aGQkBDdunVLkjRlyhS99957afZ3/vx5eXt7KzExUQcOHFC9evUyjHPLli16/PHHJf3flJUpHTp0SI899piuX78uT09PVatWTSdOnFB4eLhKlCih33//3Sxoy4n78TUCAACAe4et16tMKwmgQHNyclKnTp3UqVMnRUZGavXq1VqyZIk2btyooKAgBQUF6c0331Tbtm3Vt29fde3aNcMh0AEAAAAAAADgfhUbG2s+DgkJUUhISJrtfHx8rH5u0KCBDh06pBkzZmjDhg0KDQ3V+fPnVbp0abVv317Dhw83i7nSsnjxYiUmJqpOnTqZFobZ4sEHH9Rff/2lSZMmaf369fr7779VunRp9erVS+PGjVOlSpVyfAwAAACgsGDksAKOu1KAtF2+fFnLly/XkiVLFBQUZK53dXVVp06d1LdvXz311FNycnLKxygBACjcuFZFZniNAAAAoCDjehWZ4TUCAACAgszW61W7uxgTAOSasmXL6tVXX9XOnTsVEhKiiRMn6oEHHtCtW7e0fPlyde7cWeXKldOLL76obdu2KTExMb9DBgAAAAAAAAAAAAAAuKsoDgNwz6tWrZrGjRun4OBg7dmzR2+++abKly+v69ev63//+59atmwpX19fvfvuuzp48GB+hwsAAAAAAAAAAAAAAHBXUBwGoNCwWCxq2LChZsyYoXPnzmnTpk0aPHiwPDw8dO7cOX344YeqV6+e6tSpo2nTpunMmTP5HTIAAAAAAAAAAAAAAECeoTgMQKFkb2+vNm3a6Ntvv9Xly5e1cuVKdevWTU5OTjp06JBGjx4tX19fNW/eXLNmzdKVK1fyO2QAAAAAAAAAAAAAAIBcZTEMw8jvIJC+iIgIeXp6Kjw8XB4eHvkdDnDPu3Hjhr7//nstWbJEmzdvVvJHoIODg5588kn169dPnTp1kpubWz5HCtzbIiIidObMGZ0+fVrnzp2Th4eHKlWqpIoVK6pixYoqUqRIfocIIBdwrYrM8BoBAABAQcb1KjLDawQAAAAFma3XqxSHFXAkHkDeOX/+vJYtW6YlS5Zo37595no3Nzd16dJF/fr1U9u2beXo6JiPUQIFU2RkpE6fPp3ucu3atQz3L168uFkslrJoLOW64sWLy2Kx3KUzApAdXKsiM7xGAAAAUJBxvYrM8BoBAABAQUZxWCFB4gHcHUePHtXSpUu1ePFinTp1ylxfunRp9erVS/369dMjjzxCoQruG5GRkTpz5oxCQ0OzVfwlSSVLlpSvr68qVaqkiIgInT9/Xv/884+io6NtisHFxSVVAdmd/5YrV0729vY5PV0A2cS1KjLDawQAAAAFGderyAyvEQAAABRkFIcVEiQewN1lGIaCgoK0ZMkSLVu2TP/++6+5rXLlyurbt6/69eunmjVr5mOUQM4lF3+lN/LX1atXM+0jufgrrcXHx0dFixZNtY9hGAoPD9c///yj8+fPmwVjd/5ry/Elyd7eXuXKlcuwgKxixYpydXXN8nMEIHNcqyIzvEYAAABQkHG9iszwGgEAAEBBRnHYPSYgIEABAQGp1ickJOj48eMkHkA+iI+P16ZNm7R48WKtXr1aN2/eNLc99NBD6tevn5599llVrFgxH6ME0hYVFZXhtI+2FF+VKFEizcKvypUrp1v8lVtu3bqlCxcuWBWN3VlAdvHiRSUkJNjUX4kSJTIdhaxYsWKMDghkEX8kR2Z4jQAAAKAg43oVmeE1AgAAgIKM4rBCgsQDKBiio6P1ww8/aPHixdqwYYPi4+MlSRaLRS1btlS/fv3UvXt3FS9ePJ8jxf0iKioqw5G/rly5kmkf6RV/JY/8VdD/30lISNDly5fTHH0s+fE///yjW7du2dSfq6trpgVkZcuWZRpLIAWuVZEZXiPA/2PvvsOjKt42jn930zsplIQSOii9Se+9SlMgoIAKir0BgkgRpIjSBEEUQZQiJVQRkRJ6R2qoIRBqIJBO+u77R15X8wMMJWED3B+vXCRn5sx5zjqEmd3nzIiIiEhOpvGqZEZ9RERERERyMiWHPSE08RDJeW7cuMHixYuZN28e27Ztsxy3t7enVatWdO/endatW2sbO3koWZH85enpaVnp63FM/soKZrOZqKiou25f+Xci2f1sY+nr6/ufW1jmz58fR0fHbL4zkZxBY1XJjPqIiIiIiORkGq9KZtRHRERERCQnU3LYE0ITD5Gc7fz58yxYsIB58+Zx9OhRy3F3d3c6duxI9+7dadiwoVYaktvEx8ffMfkrNDT0vpO/7rbyl4eHxyO4kyfD39tY3i2B7O9tLE0m0z215+3tTYECBShZsiSLFi3K5uhFrEdjVcmM+oiIiIiI5GQar0pm1EdEREREJCdTctgTQhMPkcfHkSNHmDdvHvPnz+fChQuW4/ny5aNr164EBARQtWpVDAaDFaMUa4iJiWH58uWsWbOGs2fPcu7cOa5fv57peUr+yln+3sbyvxLILl26lGEby5IlS3Ly5EkrRi2SvTRWlcyoj4iIiIhITqbxqmRGfUREREREcjIlhz0hNPEQefyYTCa2b9/OvHnzWLx4MTdv3rSUlSxZkoCAAAICAihRooQVo5TslpyczO+//878+fNZuXIliYmJt9XJlSvXHRO/ihQpouSvx5TZbCYyMtKyXWVaWhqtW7e2dlgi2UZjVcmM+oiIiIiI5GQar0pm1EdEREREJCdTctgTQhMPkcdbcnIyf/zxB/PmzWPlypUZVhSqVq0aAQEBdOzYkUKFClkxSskqJpOJrVu3Mm/ePJYsWUJkZKSlrFSpUnTt2pVKlSpZVv7KlSuX9YIVEckCGqtKZtRHRERERCQn03hVMqM+IiIiIiI52b2OV42PMCYRkaeOvb09bdu2ZeHChYSHhzN37lyaN2+OjY0Ne/fu5YMPPsDf35+qVasyevRojh8/bu2Q5T6ZzWYOHjzIgAED8Pf3p0GDBnz//fdERkbi5+fHRx99xP79+zl+/DjDhw/n+eefp0KFCkoMExF5jJnNZrZt20b//v2pUaMGuXLlwt7eHj8/Pzp16sSmTZvuem5sbCyff/45lSpVwtXVFXt7ewoVKkT37t05cODAXc9LTk5m8uTJ1KhRAw8PD+zs7PD19aVDhw5s3Ljxvu8hKCgIg8Hwn18zZsy473ZFRERERERERERERCRn0cphOZyeShF5MoWHh7No0SKWLFnC1q1b+fev4tKlS9OhQwc6duxIlSpVMBgMVoxU7iY0NJT58+czf/58goODLcc9PDzo3LkzAQEB1K9fHxsbGytGKSKSvZ7WseqGDRto0qQJAEajkeLFi+Pi4sLp06eJi4sDYMiQIYwcOTLDedeuXaNu3bqcOnUKo9FIkSJFcHV1JSQkhLi4OGxsbPj555/p1q1bhvNu3bpFkyZN2LlzJwCFCxfGy8uLs2fPEhUVBcC4ceMYMGDAPd9DUFAQDRs2xN3dnXLlyt2xTv/+/Xn++efvuc07eVr7iIiIiIg8HjRelcyoj4iIiIhITqZtJZ8QmniIPPmuXbvGypUrCQwMZP369aSkpFjKChYsaEkUq1OnjhKNrOz69essWrSIefPmWT6gB3BwcKBNmzZ0796dli1b4ujoaMUoRUQenad1rLp+/Xr69evHhx9+SNeuXfH09ATSV/caPnw4Y8aMAWDVqlW0adPGct5rr73GrFmzKFWqFMuXL6d06dIAxMfH8+GHHzJz5kzc3d25cOFChtdz1KhRfPbZZ+TOnZtVq1ZRvXp1AFJSUhg9ejTDhw/HxsaGEydOULx48Xu6h7+Tw+rXr09QUFBWvCx39LT2ERERERF5PGi8KplRHxERERGRnEzJYU8ITTxEni7R0dGsWbOGwMBA1qxZw61btyxlPj4+PP/883Ts2JHGjRvj4OBgxUifHnFxcSxfvpz58+ezbt060tLSgPSVYho1akRAQAAdO3bEw8PDypGKiDx6T+tYNSYmBmdnZ2xtbe9Y3qpVK37//XfatWvHihUrLMd9fX25evUqK1eupG3bthnOSU1NxdfXl4iICNasWUPLli0tZTVr1mTXrl1MmTKFd95557brVapUiYMHD/Ltt9/Sr1+/e7oHJYeJiIiIiGi8KplTHxERERGRnOxex6vGRxiTiIhkwsPDg27durF48WIiIiJYsWIFPXv2xNPTk4iICGbNmkXr1q3JnTs33bp1Y9GiRcTGxlo77CdOcnIyq1evplu3buTJk4eXXnqJ33//nbS0NKpWrcrEiRO5ePEif/75J71791ZimIjIU8bd3f2uiWEATZs2BeDUqVMZjickJABQtGjR286xtbXF398fSE8Uu9fzAIoVK3bH80RERERERERERERERO7+iYaIiFiVk5MT7dq1o127dqSkpLBlyxaWLVvGsmXLuHz5MgsXLmThwoU4ODjQtGlTOnbsSNu2bfHx8bF26I8lk8nE9u3bmT9/PosXL+bGjRuWsuLFi9O9e3cCAgIoWbKkFaMUEZHHQWJiIpD+b/m/lS9fnq1bt7Jjxw7KlCmToezmzZucOHECW1tbKlaseNt5hw4dYseOHbRu3TpDWVJSEvv37wegWrVq9x1rWFgYvXr14sKFCzg7O1O2bFm6dOlyWwwiIiIiIiIiIiIiIvJ4UnKYiMhjwM7OjsaNG9O4cWOmTJnC3r17CQwMJDAwkDNnzrB69WpWr16NjY0N9erVo2PHjrRv354CBQpYO/Qc78iRI8yfP5/58+cTFhZmOZ4vXz66du1KQEAAVatWxWAwWDFKERF5XJjNZhYvXgxA7dq1M5QNHz6cFi1a0L9/f2xtbWnVqhWurq4cPHiQ/v37Ex8fz5AhQyhYsGCG8z755BOWLVvG+PHj8fb2pkuXLnh5eXHy5EmGDBnCuXPn6NGjBzVq1LjveENDQwkNDbX8vHr1asaOHctbb73F5MmTsbGxeYBXQUREREREREREREREcgqD2Ww2WzsIuTvtZy8i/8VsNnPs2DFLotihQ4cylD/33HN07NiRDh06aMWrfzl//jwLFixg/vz5HDlyxHLczc2NTp060b17dxo2bKgPxEVEMqGx6u1mzpzJ66+/jr29PcHBwZYtH/+2efNmPvvsM7Zu3ZrheOHChRk1ahTdu3e/Y7uHDx9m0KBB/P777/x7Cuft7c3w4cN58803MRqN9xzn7t27+e677+jRowelS5fGx8eHs2fP8t133zF58mTMZjMfffQRX3311V3bSEpKIikp6T+vExMTQ8GCBdVHRERERCRH0pxGMqM+IiIiIiI52b2OV5UclkNMmzaNadOm3XY8LS2NU6dOaeIhIvfk7Nmzlq0nd+zYkeHD4zJlylgSxSpWrPjUrYQVERHBkiVLmDdvHtu2bbMct7e3p3Xr1gQEBNC6devbtgATEZG705vkGR04cIDatWuTmJjIl19+Sf/+/W+rM2fOHMaOHcupU6coVKgQ7u7unDlzhoSEBBo0aMDs2bMpXLjwbeetXr2a4cOHs3//fvz8/MiTJw9nzpwhLi6OypUrM2vWrCzbCnLy5Mm8//772NjYcPr0aYoUKXLHesOHD2fEiBH31Kb6iIiIiIjkRJrTSGbUR0REREQkJ1Ny2BNCEw8ReVBXr15lxYoVBAYGsnHjRlJTUy1lhQsXpkOHDnTs2JGaNWs+sStkxcfHs3LlSubPn8/atWstr4HBYKBBgwZ0796djh074unpaeVIRUQeTxqr/iM0NJTatWtz5coVAgIC+OWXX25LxB4zZgyDBw+mdOnS/Prrr5QvXx6AuLg43n//fWbNmoWfnx/BwcF4eHhYzps3bx4vvfQSefPmZeHChdSvXx+A5ORkRo4cyahRo3Bzc+PQoUN3TeS6H2lpaRQuXJiLFy8yadIk3nvvvTvW08phIiIiIvK405xGMqM+IiIiIiI5mZLDnhCaeIhIVoiMjOS3334jMDCQtWvXkpCQYCnLmzcvzz//PB07dqRhw4bY29tbMdKHl5KSwvr165k3bx7Lly8nPj7eUlapUiW6d+9Oly5dKFCggBWjFBF5Mmismu7q1avUqVOHkJAQWrduzbJly7Czs8tQ59q1a/j7+5OYmMiuXbuoXr16hvLU1FQqVKhAcHAwo0ePZtCgQUD6v2sFCxYkPDychQsX0qVLl9uu37x5c9atW0ffvn357rvvsuSeOnXqRGBgIG+//TbffPPNA7ejPiIiIiIiOZnGq5IZ9RERERERycnudbxq+whjEhERK/H09KRHjx706NGDW7du8ccffxAYGMiqVasIDw9n5syZzJw5Ew8PD9q0aUOHDh1o0aIFLi4u1g79npjNZnbu3Mn8+fNZtGgR169ft5QVLVqUgIAAAgICeOaZZ6wYpYiIPIlu3rxJ06ZNCQkJoX79+ixevPi2xDCAffv2kZiYiKurK88999xt5ba2tjRo0IDg4GD27dtnOX769GnCw8MBaNy48R1jaNKkCevWrctw3sP6+x7+vfKoiIiIiIiIiIiIiIg8fpQcJiLylHF2dqZDhw506NCB5ORkgoKCWLZsGcuXL+fq1avMmzePefPm4ejoSIsWLejQoQNt27bNkVsvBgcHM2/ePObPn8+5c+csx/PkyUOXLl0ICAigevXqt23rJSIikhXi4uJo1aoVR48epVq1aqxatQonJ6c71o2Njc20vb8XdU5MTHzo8x7WsWPHALTSpoiIiIiIiIiIiIjIY07JYSIiTzF7e3uaNWtGs2bNmDZtGrt27SIwMJDAwEBCQ0NZvnw5y5cvt6xm0rFjR9q3b4+vr6/VYr5w4QILFy5k3rx5HDp0yHLc1dWVDh060L17dxo3boytrf6JExGR7JOUlMTzzz/P7t27KVOmDGvXrsXNze2u9UuUKAGkJ5Tt2bPnjttKbt68GYCSJUtajhcrVgyDwYDZbGbDhg133FZy/fr1t533MNatW8fRo0eB9FXJRERERERERERERETk8WW0dgAiIpIzGI1GatWqxVdffUVISAgHDx5k6NChlCtXjtTUVNavX8+bb75J/vz5M9R7FG7evMnMmTNp0KAB/v7+DBgwgEOHDmFra0vbtm1ZuHAh4eHhzJ07l+bNmysxTEREslVaWhpdu3Zl48aNFCtWjD///BMvL6//PKdSpUo8++yzAPTq1YvDhw9bymJjY3njjTcIDg4GoEePHpYyHx8fmjdvDsD777/Pli1bLGXJycl89tln/PnnnwC89NJLGa65a9cuChcuTOHChW+L5+/4TSaT5ZjZbGbZsmV07doVgGbNmt2WxCYiIiIiIiIiIiIiIo8Xg/nvPUieYL169eKnn376zzoJCQk4OjreV7s7d+5k7Nix7Nixg7i4OIoUKUK3bt3o37//fbd1NzExMXh4eBAdHY27u3uWtCkicr9Onz7NsmXLWLZsGbt27cpQVr58eTp27EiHDh0oV65clm3hmJCQwKpVq5g/fz5r1qwhJSXFUlavXj0CAgLo3Lkz3t7eWXI9ERG5f0/rWHXBggUEBAQA6SuC5cmT5471fH19Wbx4seXnAwcO0KRJEyIjIzEYDPj7++Pu7s7p06dJSEgAYNSoUXz66acZ2jl//jz16tUjLCwMgPz585M7d25CQkIs20726dOHmTNnZjgvKCiIhg0bAv9sPfm3XLlyER0djYuLC8WLF8fBwYHQ0FCuX78OQLVq1VizZg0+Pj4P9Br97WntIyIiIiLyeNB4VTKjPiIiIiIiOdm9jlefqqVV/uuDG6Px/hZRmzdvHj179iQtLY38+fNTsGBBjh49ytChQ1m1ahVBQUE4OztnRdgiIlZXokQJBgwYwIABA7h06RIrVqwgMDCQoKAgDh8+zOHDhxk+fDjFihWjQ4cOdOzYkerVq9/379bU1FQ2btzIvHnzCAwMJC4uzlJWvnx5unfvTteuXSlUqFBW36KIiMg9S0pKsnx/+vRpTp8+fcd6/v7+GX6uXLkyR48e5euvv2bt2rWEhoZy6dIlcufOTatWrXjrrbcsyVz/286hQ4eYNGkSK1eu5PTp04SHh+Pp6UmdOnV47bXX6Nix433dw9ixYwkKCuLQoUOEhYURGxtLrly5aNy4MV27dqVnz57Y2dndV5siIiIiIiIiIiIiIpLzPFUrh82ePZtevXo9dHvnzp2jdOnSJCUl8eWXX/Lxxx9jMBg4f/48zZs35+TJk7z11ltMnTr1oa+lp1JEJCe7ceMGq1evJjAwkHXr1pGYmGgp8/X1pX379nTs2JH69evf9QNms9nMnj17mD9/Pr/++ivh4eGWMn9/fwICAggICKBs2bLZfj8iInJ/NFaVzKiPiIiIiEhOpvGqZEZ9RERERERysnsdr97fki4CwPjx40lKSqJZs2b079/fsoWav78/P/74IwAzZ87MkOAgIvIk8vb2pmfPnqxYsYLr16+zePFiAgICcHd358qVK0yfPp2mTZuSN29eS72/t806efIkQ4cOpUSJEtSoUYMpU6YQHh6Ot7c3b775Jtu2bSM0NJTRo0crMUxEREREREREJBtcjbvK3ENzWRq8lPj4eGuHIyIiIiIiItngqdpWMiuYzWaWLVsGwKuvvnpbea1atShdujQnTpxgxYoV9O3b91GHKCJiFa6urnTu3JnOnTuTlJTExo0bWbZsGcuXL+f69evMnTuXuXPn4uzsTOHChQkODrac6+zsTPv27enevTtNmzbVNlYiIiIiIiIiItkkJS2FIRuHsHLXSk7sPQHnwO6CHe2btmfRokXWDk9ERERERESy2FOVHLZkyRKWL19OTEwMefLkoXbt2rz88st4eHjccxthYWFcuXIFgNq1a9+xTu3atTlx4gS7d+9WcpiIPJUcHBxo2bIlLVu2ZPr06ezYsYPAwECWLVvG+fPnCQ4OxtbWlubNmxMQEMDzzz+Pi4uLtcMWEREREREREXnihNwM4UTECZ6xfYagoCA2bdrEwtULSY1KtdRJIYWdO3diNpstO2WIiIiIiIjIk+GpSg777bffMvz866+/MmzYMObPn0+LFi3uqY3Tp08D6YkPfn5+d6xTtGjRDHXvJikpiaSkpP+sExMTc09xiYjkVDY2NtStW5e6desyYcIE/vrrL86cOUPDhg3JnTu3tcMTEREREREREXmixCXHsfHsRpbsWMIfG/7g2tFrGM4bMEebM9SzsbWh2nPVaNq4KQ0aNKBmzZpKDBMREREREXkCPXBy2Pbt21myZAkhISEYjUZKly7Niy++SOXKlTM99/Tp0zRv3hyDwUBISMiDhnDPihUrxujRo2ndujVFihTBYDCwc+dOPvvsM3bv3k379u3Ztm0bVatWzbStyMhIAHLlynXXibKnp2eGunczZswYRowYcZ93IyLy+DIYDFSuXPme/q0QEREREREREZF7980f3/Dt4m85uf8k5lAzRP9TZsaMnZ0d1atXp0GDBpZkMGdnZ+sFLCIiIiIiIo/EfSeHpaSk0Lt3bxYsWJDh+KpVqxg/fjwdO3bk22+//c/VYJKTkzl37twjewrps88+u+1Y06ZNqV+/PnXr1mXPnj0MHDiQDRs2ZNpWYmIiAPb29net4+DgAEBCQsJ/tjVo0CA+/PDD/6wTExNDwYIFM41LRERERERERERERJ4OEbcimL91PrZhtuzdsZegoCDOnTuXoY7RxkjJ8iVp06wNzZs0p2bNmri4uFgnYBEREREREbGa+04Oe+2115g/f/5dywMDA9m2bRuLFy+mTp06DxVcdrO3t2fkyJE0b96coKAgIiMjLat+3Y2joyOQnuB2N39vFenk5PSfbTk4OFgSyURERERERERERERE7iTVlMqKPSuYu3wuO7buICI4AqIy1rG1taXAMwVo3rg5HVt2pHbt2koGExERERERkftLDtu2bRs///wzBoOBEiVK8PXXX9OgQQOSk5MJCgpi3Lhx7Nmzh/DwcJo1a8bChQtp165ddsWeJWrWrAmAyWTi7NmzVKlS5T/r/508FhUVhdlsvuPqZ39vJ5lZopmIiIiIiIiIiIiIyJ1cvHiRBasWMG3xNC4cuoDppiljBSOUKFeCTi070bBhQ2rVqoWrq6t1ghUREREREZEc676Sw2bNmgVA/vz52bFjB15eXgC4uLjQoUMH2rdvz4QJExg0aBCJiYl07tyZ2bNn071796yPPIvY2dlZvk9NTc20fokSJYD01cEuX75M/vz5b6tz9uzZDHVFRERERERERERERP7LmXNnmLl0JsF7gzmx7wQhISEZKxjBq5gXNWrXIKBtAO2atsPNzc06wYqIiIiIiMhj476Sw3bs2IHBYOCjjz6yJIb9299lVatWpWPHjkRGRtKzZ09iY2N54403sizorHTs2DHL9wUKFMi0fqFChciXLx9Xr15l+/btvPjii7fV2b59OwDVq1fPukBFRERERERERERE5Ilx6dIl5q2ax7Lfl3F492Fuhd/KUG40GqlatSpuJd1o06wNvdr1IpdHLusEKyIiIiIiIo+t+0oOu3z5MvDPVox3U79+fbZs2ULz5s25fPkyb731FnFxcXz88ccPHmk2+frrrwEoXbr0HVcB+18Gg4EOHTowffp0Zs2adVty2I4dOzhx4gR2dnY5fktNEREREREREREREXk0rly5QlBQEJs2bWLxmsVEXYrKWMEAdgXsKPdcOUa+MpI6derg7u5ulVhFRERERETkyWG8n8opKSkA2NjYZFq3TJkybN26lSJFimA2mxk4cCDDhg17sCgfwp9//smgQYMIDQ3NcDw6Opp3332XBQsWADB06NAM5ZMmTaJw4cJ07dr1tjb79++Pvb0969atY/z48ZjNZgDOnz/PK6+8AsBrr71Gvnz5suOWRERERERERCSHOHjwIB9//DEHDx60digiIpLDXL16lfnz59PxpY7kK5wPPz8/AgIC+P7779MTwwxg8DPg38qf18a/xq7Tu0g6n8T+Jftp1aqVEsNEREREREQkS9zXymF58uTh0qVLhIWFUaVKlUzrFylShK1bt9K0aVOOHz/OqFGjiIuLsyRQPQrx8fGMHTuWsWPHkj9/fvz8/EhJSSE4OJjk5GQMBgNDhw6lW7duGc6Liori/PnzFC5c+LY2ixQpwvfff0/v3r0ZMGAAkydPJk+ePBw9epSUlBSqVKnC+PHjH9EdioiIiIiIiMijdu7cOYYMGcK8efMAmDFjBsuXL6dJkyZWjkxEJOuEx4Xj5uCGs52ztUN5LISHhxMUFMSaP9fw58Y/uRJ6JUO5wWCgUqVKNGjQAK9nvChVuRStyrXS6ysiIiIiIiLZ6r6Sw8qWLculS5fYunUrHTp0uKdz/Pz82LJlC82aNeOvv/5i0qRJHD58+IGCfRBVqlTh008/ZefOnZw5c4ajR49iNpvJnz8/devW5c0336R69er33e7LL79M8eLFGTNmDDt27CA4OJiiRYvSrVs3Bg4ciKOjYzbcjYiIiIiIiIhYU0REBF988QXffvstycnJQPpDZKGhobRq1Yp58+bxwgsvWDlKEZH7k5SaxO5Lu4lKjKJdqXaW47V/rE1IZAhOtk74OPtk+CrlXYphDf7ZKWLvpb3Y29iT2yU33k7eONg6WONWHqlr166xefNmNm3aRFBQEMePH7+9Uj6wL2ZPldpV+Ob1b6hSNPOHrkVERERERESyksH8956I92DMmDF8+umn5M+fn7CwMAwGwz1fKCYmhlatWrFjxw4MBgNmsxmDwUBaWtoDBf60iImJwcPDg+joaC0jLiIiIiI5isaqkhn1EXmS3Lp1i0mTJjFu3DhiYmIAaNy4MePGjaNs2bL06NGDJUuWYDAY+Pbbb3njjTesHLGIyN0lpyWz99JeNp3bxKZzm9hxYQeJqYkU9SxKyLshlnp5v8rLtfhrd2yjim8V9vXdZ/m5+JTihET+c66bvZslkaxsnrL8+PyPlrJlx5dhxpwh2czLyQtb4309y/zIXb9+3ZIMtm7DOs6cPJOh3GAwYM5rhsJQvHJxnm/2PB0qdaB6geo5/t6eVhqvSmbUR0REREQkJ7vX8ep9zUhbtGjBp59+yuXLlwkMDKRTp073fK67uzt//vkn7du3588//7yfy4qIiIiIiIiIWEVqaiqzZ89m2LBhXLmSvj1YxYoVGTduHE2bNrU8OLdw4ULefvttZsyYQb9+/bh+/TpDhgy5rwfrREQehX6r+zH38FxupdzKcDyPSx6q+VUjMTURR9v0XRGufnSV+JR4Im5F3PaVyzFXhvNzu+QmNjmWG7dukGZOIzY5ltjkWEKjQjGT8fnkj//8mLORZzMcM2DA08mTivkqsuHlDZbjU3ZPITE18baVy3ycfcjlmAujwZiFr05GERERbN68maCgIDZs3MDx4NtXBvMt7suLrV+kQYMGlKlahn2R+2harCk+zj7ZFpeIiIiIiIjI/biv5LBKlSpRt25dLl++zE8//XRfyWEATk5OrF69mq5du7Js2bL7OldERERERERE5FExm82sWLGCQYMGceLECQAKFy7MqFGj6NatG0ZjxmQEGxsbvv32W3Lnzs3IkSMZOnQo169fZ9KkSbfVFRHJbmmmNA5ePcimc5vYfmE7v3b+FXsbeyB9datbKbfwdvKmQeEGNCzckIZFGvKMzzO3JbQaDAZc7V1xtXelcK7C/3nNna/uBMBkNhGdGJ0hkex/t5isUaAG+VzzWcpvJtzEjJmbCTeJTYrNUHfSrkmERoXe8ZrFvYpz+p3Tlp8H/DmA6MToOyaS5XHJg38u//+8h4iICLZs2UJQUBBBQUEcOXLk9kp5gcJgU8SGmnVq8k6Dd3ixzIuW4hIFSvznNUREREREREQetftey3rz5s0PdUE7OzuWLl36UG2IiIiIiIiIiGSX7du3M2DAAHbs2AGAt7c3Q4YMoV+/fjg4ONz1PIPBwOeff46Pjw/vvfce33zzDTdu3GD27NnY29s/qvBF5ClkMps4HH6YoHNBbDq3iS3ntxCVGGUp33NpD3UK1QHggxof0K9qP8rkKZMtq24ZDUY8nTzxdPKkhPedE6XmdZyX4edUUyqRCZFE3IogzZyWoSygXAAXYi5wPf56hoSz2ORYvJy8MtRdHLyYc1Hn7njN/90yM2BpABeuXMB0zkTsyVjCg8O5dvb2LTTLlCnDCbcTpBVKo3CFwrSu2JrmxZrTsEhDXO1d7+UlEREREREREbGq+04Ok+wxbdo0pk2bdtvxtLS0O9QWERERERERkax2/PhxBg0axIoVK4D0FdA/+OADBgwYgIeHxx3PCToXxPwj8wkoF0CDwg0AePfdd/Hx8aFnz57Mnz+fmzdvsmTJElxcXB7VrYjIE85sNpNmTsPWmP727oSdE+j/Z/8Mddwd3KnnX4+GhRtSJFcRy/G7JWxZk63Rltwuucntkvu2slGNRt3xnKTUJOJT4jMcG1J3CJdiL2VIIrt+Kz2prKB7Qa5du2ZZGWzJ0iWkXE25veHc4PmMJ9+/+z316tUjd+7crDq5imdzP0sxr2JZcr8iIiIiIiIij5LBbDabrR2E3F1MTAweHh5ER0fj7u5u7XBERERERCw0VpXMqI/I4+LSpUsMHz6cH3/8EZPJhNFo5NVXX2X48OH4+fnd8Zwt57cwLGgYQeeCADBg4LN6nzG0/lBsjDYA/P7773Tq1ImEhARq1qzJ6tWr8fLyumN7IiL/xWw2c/LGSTaFbmLTuU0EnQticovJdCvXDYDdF3fTeG5j6vrXTd8msnBDKvlWsiSPPa3Cw8PZvHkzmzdvJigoiODg4Nvq+BbzpUC5Ang+44ljMUcSHRKplK8SXzT6wvL7XJ5cGq9KZtRHRERERCQnu9fx6tP97oCIiIiIiIiIPLWioqL48ssvmTRpEgkJCQC0b9+e0aNH88wzz9z1vF+P/krXpV0BsLexp0aBGmw5v4XPt3zO9gvb+aPHH9gYbWjZsiUbNmygdevW7Ny5k3r16vHHH3+QP3/+R3J/IvJ4i06MZtGxRZZksCtxVzKUbzm/xZIcVi1/NSIHRmJnY2eNUHOMq1evWhLBNm/ezPHjx2+rU758eRo0aED9+vWpV68ePj4+VohURERERERE5NHJ0uSwQ4cOsXXrVs6ePUtsbGymWyIaDAZmzZqVlSGIiIiIiIiIiPynpKQkvv32W0aNGsXNmzcBqFWrFl9++SW1a9e+4znRidF4OKZvLdm2VFsKeRSiVfFWDK47mIIeBZl3eB5v/PYG9fzrZVhppmbNmmzdupVmzZpx7NgxatWqxZ9//knJkiWz/0ZF5LESGhlKXHIc5fKWAyA+JZ6+q/tayh1sHKhVsFb6ymBFGvJc/ucsZUaDEaON8ZHHbG1XrlyxJIMFBQVx8uTJDOUGg8GSDNagQQPq1q2Lt7e3laIVERERERERsY4s2Vby+PHjvPrqq+zevfuezzGbzRgMhkwTyJ52WrJYRERERHIqjVUlM+ojktOYTCbmz5/PkCFDOH/+PAClS5dm7NixtGvXDoPBcNs5uy7uYljQMC7FXOJwv8MYDenJF4mpiTjaOmaoey7qHAXdC1qSw67GXcXH2Qdboy3nzp2jWbNmnD59Gh8fH9auXUuVKlWy+Y5FJCe7EH2BTefSt4ncFLqJ89HnaV6sOWt7rLXU6RHYg2KexWhYpCE1CtS47ffO0+bSpUsZtok8depUhnKDwUDFihWpX7++JRlM2/nKf9F4VTKjPiIiIiIiOdkj21by7Nmz1KlTh6ioKP7OM3NzcyNXrlwYjU/f02oiIiIiIiIikrOYzWbWrVvHwIEDOXToEAB+fn6MGDGCXr16YWt7+9sjey7tYVjQMNaeSU/SsDXasv/yfqrlrwZwxwSNwrkKW75PTE2kxS8tcLV3ZUGnBRQuXJht27bRsmVLDhw4QIMGDVixYgWNGjXKhjsWkZzs/bXvs/rUakIiQzIctzXaYsZseagW4JeOv1gjxBzj4sWLGbaJPH36dIZyg8FApUqVLNtE1q1bF09PTytFKyIiIiIiIpIzPXRy2NChQ4mMjMRoNPLxxx/Tr18/ChcunAWhiYiIiIiIiIg8nP379zNgwAA2btwIgLu7O4MGDeLdd9/F2dn5tvr7Lu9jeNBwfjv9GwA2Bht6VujJkHpDKOJZ5J6veyT8CKFRocQkxVDxu4rMbT+X1iVbs2nTJjp06MDGjRtp2bIl8+fPp1OnTllzsyKSo4THhRN0Lojg68GMaDjCcjz4ejAhkSEYDUaq+lVN3yaycENqF6qNq72rFSO2vgsXLmTYJjIkJGMCndFotCSDNWjQgDp16pArVy7rBCsiIiIiIiLymHjobSXz5cvH9evX+eCDD/jqq6+yKi75f1qyWERERERyKo1VJTPqI2JNISEhfPrpp/z6668A2Nvb89Zbb/Hpp5/i7e19x3P2XtrLcz88B6Qnhb1U4SWG1B1CMa9iDxbDzRC6LOnC/iv7Afio5keMbjwaU4qJ7t27ExgYiMFgYMaMGfTt2/eBriEiOUfErQg2n9ts2Soy+HqwpezKR1fI55oPgI2hG0lISaCuf13cHZ7ufx/DwsIsq4IFBQVx9uzZDOVGo5EqVapYtomsU6cOHh4eVopWnkQar0pm1EdEREREJCd7ZNtKxsTEAOgpVxERERERERGxumvXrjFy5EhmzJhBamoqBoOB7t27M3LkyDuudH7j1g28ndOTxar6VaVWwVoU9yrOZ/U+o7hX8YeKpZhXMba/sp2B6wcyefdkvt75NdvCtrGw80IWLVrEm2++ycyZM3n99de5fv06gwcPtmwlJyKPl6GbhjJyy8jbjlfIW4GGhRuSZkqzHGtU5OndTvbcuXMZtokMDQ3NUG5jY0OVKlUs20TWqVNHyRgiIiIiIiIiD+mhk8MKFizImTNnsLV96KZERERERERERB5IXFwcEyZMYPz48cTFxQHQvHlzxo4dS8WKFW+rfzj8MMODhrP5/GbOvnsWD0cPDAYDQT2DsLOxy7K4HGwdmNRiEg0KN6D3it7svrSbN397kzXd1zBjxgxy587NF198wZAhQ7h+/ToTJkzAaDRm2fVFJOvEJMWw9fxWy8pg37X5jqp+VQEo6V0SgDK5y6RvE1mkIfX961uST59GZrM5QzJYUFAQ58+fz1DHxsaGqlWrWraJrF27Nm5ublaKWEREREREROTJ9NAZXc2bN+fMmTPs2bOHatWqZUVMIiIiIiIiIiL3JCUlhR9++IERI0YQHh4OQJUqVRg3bhyNGze+rf6R8COM2DyCpceXAmDAwPqz6+n0bPqK6FmZGPZv7Uu3p1K+SvT7rR/TW09Pv7bBwKhRo8idOzfvv/8+kydP5saNG/z444/Y2WVPHCLyjzRTGvEp8cQnx1v+zO2SGz83PyB9m8ilwUsJjQpl07lN7L+8nzTzPyuAbQzdaEkOa1+6PeEfh5PHJY9V7iUnMJvNhIaGZtgmMiwsLEMdW1tbqlWrZtkmslatWkoGExEREREREclmBrPZbH6YBs6fP0+FChXIlSsXBw4cwMvLK6tiE7SfvYiIiIjkXBqrSmbURyQ7mc1mli5dyuDBgzl9+jQARYsWZfTo0bzwwgu3rb517NoxRmweweLgxUB6UtiLZV5kaP2hPJv72Uce/9+m7ZlGi+It2LlmJ7179yY1NZVWrVqxePFinJ2drRaXSE5hNpu5lXIrQxJXXHIchTwKWZK4LsZcZEnwkgxJXnHJcenfp8TTq0IvSwLovsv7aPFLC+JT4klMTbztep83+JzP6n8GpCeTlp9RPkN5ca/iNPBvQMMiDWlcpDF5XfNm8yuQc5nNZs6ePWtZFSwoKIiLFy9mqGNra8tzzz1n2SayVq1auLq6WilikdtpvCqZUR8RERERkZzsXserD71ymL+/P4GBgXTo0IFatWoxdepUmjRp8rDNioiIiIiIiIjc0ZYtWxgwYAC7d+8GIHfu3AwdOpS+fftib29/W/3wuHAqfVeJFFMKAC88+wLD6g+jTJ4yjzTu/7Xm9Bre/v1t3Ozd+KHdD6xYsYLOnTuzZs0amjZtyqpVq/QQnjwWzGYzSWlJGZOy/j9Rq5R3KXzdfAE4feM0S48vTa/zdyLX/yd7xSfH82HND2lVohUA68+up/3C9txKuYWZ259tndJiCu9UfweA0MhQPvjjg7vGVyN/Dcv3tkZbbiTcyFBuwICLvQsudi7Y2/zzO8TH2Yf2pduT2zk3dQvVpUHhBhT0KPjgL9Rjzmw2c+bMmQzbRF66dClDHTs7O0syWIMGDahZsyYuLi5WilhEREREREREIAuSwwAaNWrEgQMHqFWrFs2bN8fT05PixYtn+oSrwWBgw4YNWRGCiIiIiIiIiDzhjhw5wqBBg/jtt98AcHFx4aOPPuKjjz667cm4q3FXyeeaD4C8rnnpXr47sUmxDKs/jHJ5yz3y2O+kXJ5y1C5Ym+0XttNlSRfeqPIGq39fTaf2ndixYwf169dn7dq15M+f39qhylMuJimG8VvHs/XkVhLMCYxsNpJmJZsBsOjYIrot7YbJbLrjuXOen0PPij0BOBFxgkEbBt31Oh1Kd7B8b2e0Iz4lPkO5s50zLnYuuNi74GjraDnu5+ZHt7LdLGV//+lq74qLnYtl60eA0j6lOdrvaHrZ/9d1tHXEYDDcFo+vmy/Luiy7h1foyWQ2mzl9+nSGbSIvX76coY6dnR01atSwbBNZs2ZNrXooIiIiIiIiksM89LaSADt27OCll17i3Llz3EtzBoMBs9mMwWAgLS3tYS//RNOSxSIiIiKSU2msKplRH5GsEhYWxrBhw/jpp58wm83Y2NjQt29fhg4dSr58+TLUPXXjFJ9v/pxFxxZxuN9hSvuUBiDNlIaN0cYa4f+nVFMqQzcNZcy2MQCUz1uekc+O5I2ub3DlyhX8/f35888/KVGihJUjladRmimNHw78wIBvBhCzPAZi/imzsbHB2dkZo72R6NRosAPswGBvwMbeBjsHO+wc7KhcsDJl8pfBycmJOHMce6/txdnZGWdnZ1ydXHFzdcPNxQ13V3cqFqxIad/SODk5gS3EmmPxcvPC09UTF3sXjAbjXWN9mpjNZhITE0lMTCQhISFLv//3sfDwcMLDwzNc297enho1ali2iaxRo4aSweSxpvGqZEZ9RERERERyske2rWRwcDDNmjUjISEBs9mMo6MjJUqUIFeuXBiNesPmXk2bNo1p06bddlzJcyIiIiIiIvK0ioyMZMyYMUyZMoWkpCQAOnfuzBdffEHJkiUz1D1z8wwjt4zkl8O/WFYwWnN6jSU5LCcmhkH6FnejG4+mvn99Xlr2EofDDxNwM4Axs8cw5e0pnDlzhtq1a7N27VoqV65s7XDlKbL+7Hre+uUtTv18Cs7cXp6WlkZsbOxtx82YSf3//xJIIGh/EEEEPVQsRqMRJycnnJ2dcXJyyvD93f580DIHB4c7riJ2232azaSkpGRZItb9fP/378NHwcHBwZIM1qBBA6pXr56evCciIiIiIiIij42HXjmsS5cuLF68GAcHByZMmEDv3r1xdHTM/ES5J3oqRURERERyqpw6Vl2wYAHdunWzdhhCzu0jkvMlJCQwdepURo8eTVRUFAD16tXjyy+/pHr16hnqno08y8gtI/n50M+kmdMfsGpTsg3D6w+nil+VRx36Q7kce5nugd0JOhfE/I7zaZy3MS1atOCvv/7Czc2NFStW0LBhQ2uHKU+BqLgoCnYuSNyGOEgFGzsbBvQfwJBPh2A0GklISCAhIYFbt25l+PNOxx6mzGS681aV2clgMNyWQGZnZ3fHZC1rxPe//k6cc3JywtHREUdHxyz73t3dnQoVKui9Xnmi5dTxquY0OUdO7SMiIiIiInDv49WHTg4rUKAAV65cYfjw4Xz22WcP05TcgSYeIiIiIpJTZdVY9a233rrjKroP4scff+T1118nJSUlS9qTh6P5jNyvtLQ0fv75Z4YOHcqFCxcAKFu2LOPGjaNly5a3reaTnJZMwYkFuRZ/DYBWJVoxvP5wquWv9shjzypppjR+O/0b7Uq1A9L/HrVr147Nmzdjb2/PwoUL6dChg5WjlCdRZEIkHo4ebFi/gbfeeovTp08DUK9hPWZOn0mpUqUeaTx/r8yVFYlm91I/NTX1oeLNjuSsO33/v8dsbR96YwiRp5rmNJIZzWlEREREJCd7ZNtKRkZGAtCiRYuHbUpERERERJ5C06dPx9HRka+//vqh2vn222955513sigqEXmUzGYza9as4ZNPPuHo0aNA+sNoI0eO5KWXXsLG5p8tIS/GXCS/W34MBgP2Nva8V/09toZtZXj94VQvUP1ul3hs2BhtLIlhAAnGBMLahlHZWJkDmw7QuXNnvvvuO1577TUrRilPkuS0ZKbtmcbw1cN5Zt8z7F63G4B8+fIxceJEunTpck/bLGY1g8GAvb099vb2eHh4ZPv1/k5Eu1vi2N8JWXdK1LK3t7fKayQiOYfmNCIiIiIikpM9dHJYgQIFOHPmDGlpaVkRj4iIiIiIPIUmTZqEnZ0dY8eOfaDzx48fzyeffILZbMbBwSGLoxOR7LR7924GDhzI5s2bAciVKxeDBw/m7bffxsnJyVIvLDqML7Z8weyDs1n64lLalmoLwCd1PmGwYbBVYn8Upu6ZSmhcKKF1QiluLM6ZDWfo06cPERERDBw4UAkp8sDMZjMrT67k47Ufc2btGdgEu5N3YzQaefvtt/n8888fSVJWTmFnZ4ednZ1WhRGRB6Y5jYiIiIiI5FTGh22gbdv0N2O3bNny0MGIiIiIiMjT59lnn8VsNjN+/HiGDRt23+d//vnnlg9RnJycWLZsWTZEKSJZ7dSpU3Tu3JkaNWqwefNmHBwc6N+/P2fPnqV///6WxLAL0Rfot7ofxacUZ+aBmaSYUlh/dr2lHaPhod/ayNFGNBzBF42+wGhr5EydM3g19QJg0KBBfPTRR5hMJitHKI+jQ1cP0eTnJrT/qj1nxp6BP4BkeK76c+zbt4/Jkyc/VYlhIiIPS3MaERERERHJyR76HdT+/fuTJ08exo8fz7lz57IgJBEREREReZps2LCBUqVKYTabGTVqFKNGjbrncz/55BNGjBiB2WzG1dWV1atXa8t7kRzu6tWr9OvXj2effZalS5diMBjo3bs3p0+f5ssvv8TT0xNI3z7yrd/eovg3xZmxfwYpphQaFWnEll5bmNxyspXv4tExGowMrjuYoJ5B5HfPz83aN7Ftmb4Q/MSJE+nVqxcpKSlWjlIeJ+O2jaPixIpsnLwRZgHhkMszFzNnzmTnjp1UqlTJ2iGKiDx2NKcREREREZGc7KGTw/Lmzcsff/yBu7s71atX5/vvvycqKioLQhMRERERkadB3rx52bhxI8WLF8dsNjNs2DDGjx+f6Xnvvfce48ePx2w24+Hhwdq1a2nYsOEjiFhEHkRsbCxDhw6lWLFizJgxg7S0NNq0acPhw4f58ccfKViwYIb6nRZ14tt935Kclkx9//oE9Qxiw8sbqOtf10p3YF11/ety8I2DtCzektTqqdAejDZGfv75Zzp06MCtW7esHaI8BkwmEzd33oRvgAPpx3r37s2pk6fo06cPRuOTvRKfiEh20ZxGRERERERyMoPZbDY/TANFixYF4NatW1y7dg2DwYDBYMDHxwdnZ+f/vrjBQEhIyMNc/okXExODh4cH0dHRuLu7WzscERERERGLrB6rXrx4kXr16nHu3DkMBgMTJ07k3XffvWPdPn368OOPP2I2m/H29mbt2rVUqVLloWOQrKX5jAAkJyczc+ZMPv/8c65fvw5A9erVGTduHPXr17fUuxp3FXcHd5zt0t9LCDweyKRdkxjRYAQNi+hD0r+ZzCa+3vE1cw7NYZjvMHoG9CQxMZHatWuzatUqy8prIgBms5mFRxdyM+EmdR3r8uabb7J9+3YAypYty/Tp06lTp46VoxQRsR7NaSQzmtPIky4qLoofV/5IckoyA14aoIcFREREHjP3Ol596OSwhxkkGAwG0tLSHubyTzxNPEREREQkp8qOser58+epX78+YWFhGAwGpk6dSr9+/SzlJpOJnj17Mn/+fMxmM3nz5mXdunWUK1cuS64vWUvzmaebyWRi8eLFfPrpp5YHw0qUKMGYMWPo2LEjBoMBgPC4cMZtH8f0fdMZ2XAkH9f6GEhPagEs9SSj5LRk7G3s2bZtG23btiUqKopy5cqxdu1a/Pz8rB2e5AC7Lu7igz8+YFfILmy32GLeZSYtLQ0XFxdGjBjBu+++i52dnbXDFBGxKs1pJDOa08iTJi4hjh27drB72242bdrEtu3bSElO36a+XJty7Avch72dvZWjFBERkXt1r+NV24e9UM+ePR+2CREREREREQD8/f3ZsGEDDRo04NKlS7zzzjs4ODjwyiuvkJKSQkBAAIGBgZjNZvLnz8/69espVaqUtcMWkf+xYcMGBg4cyP79+4H0rZaGDx/Oq6++aklGuRZ/jS+3f8m3e78lITUBgK1hWy3JYUoK+2/2Nukf2NSpU4e+3/Tly35fcuTIEWrWqsmG9RsoXry4lSMUawmLDuOT9Z+w4MgCCAbDHwZSY1IB6NSpExMnTrxtG1cREck6mtOISE6SmJzIgnULWPTbIvZu38uNEzcgJWMdo5sRU6yJI6uP4F/Tn0N/HiKPZx7rBCwiIiLZ4qGTw2bPnp0VcYiIiIiIiABQrFgxy4cpV69epW/fvqSmprJy5UrWrFkDQOHChVm/fr1lm3sRyRkOHjzIJ598wh9//AGAq6srAwYM4IMPPsDV1RWA6/HXGb9jPNP2TuNWyi0AquevzogGI2hWrJnVYn+cFSpZCNs+tqTOSSXsfBjP1XyODes2UKlSJWuHJo9QXHIcY7eN5eudX5MYnghrgBAwY6Zo0aJMnTqVli1bWjtMEZGnguY0ImItJpOJPfv3MOaXMezauotrwdcgKWMdezd7nm/xPA0bNqRRo0aUKFGC/pP7M2HABK7uv0rRykXZtWEXZYuWtc5NiIiISJZ76G0lJXtpyWIRERERyamye6x6/PhxGjRowPXr1y0rCJnNZooXL87GjRspUKBAll9TspbmM0+PxMREBg4cyDfffIPZbMbOzo433niDIUOGkCdPxifOewT2YN6ReQBU86vGiAYjaFG8hVYKe0h7L+2l8+zOhE0Lg6vg6OLI76t/p0GDBtYOTR6R0MhQSk0qRcqWFAzbDJhTzdjb2/PJJ5/wySef4OTkZO0QRURyHM1pJDOa00hOZzKZWL19Nes3rufS4UsEBQVx8+bNjJUcIV/ZfNSsW5Pu7brzfN3nsbW5ff2Q75Z9R78e/TDfMmPrZcuK1StoVbPVI7oTEREReRD3Ol69r+Swtm3b0q5dO1q3bo2fn1+WBCr/TRMPEREREcmpHsVY9ejRozRs2JAbN24AUKZMGdavX0/evHmz5XqStTSfeTocP36crl27cvjwYQC6du3KqFGjKFasGAA3E26SkpZCXtf0v7dHrx3llRWvMKz+MFqVaKWksCwUnRhNz197smLYCjgPRjsjc36ew0tdXrJ2aJJNjl8/zjO5nwHgjz/+oMerPYi4FAFA06ZNmTZtGiVKlLBmiCIiOZrmNJIZzWkkpzGZTGzYt4GfVvzE1qCtXDx8EVOcKUMdV1dXfMv6UrJKSbq26cqLjV/E3s7+ntr/c8+ftGrditSIVNw83Fi9cjX16tXLjlsRERGRLJAtyWFGo9Hypm2lSpVo06YNbdu2pUqVKg8f8VNu2rRpTJs27bbjaWlpnDp1ShMPEREREclxsupN8s8///w/yw8ePMjy5csxGo3069eP3LlzZ9rm0KFDHzgeyTr6IOXJZjabmTVrFu+++y4JCQnkzp2bOXPm0KpV+pPlkQmRTNg5gcm7J/NimRf5od0PGc5VUlj2MJvNfLP9Gz7o8wGmEyaMRiPff/89r7zyirVDkyx05uYZ+v/Zn+UnlrOq9Sp+GvcTS5YsAcDX15dJkybxwgsv6O+ZiEgmNKeRzGhOIznB+fPn2bhxIxMXTCR4TzBp0WkZK9iBV0kv3unyDi2atqBKlSrY2dk98PWOnztOp46dOP7Xcezt7ZkzZw7dunV7yLsQERHJHmazmZALIVy5dIVnSz6Lt7e3tUN6pLIlOaxPnz6sWbOGK1eupJ/8/28w5cuXjzZt2tCmTRuaNGmiZeqzkCYeIiIiIpJTZdVY9d8PoWSVtLS0zCtJttN85skVFRVF3759Wbx4MQBNmjRh7ty5+Pr6EpUYxcSdE5m0exIxSTEAVPWryo5XdmBn8+AfUMj92XdxHx+8/QHbVmwDYNy4cQwYMMDKUcnDikyIZOSWkUzdM5WUlBQMewzYb7Un6VYSRqORd999lxEjRuh3rojIPdKcRjKjOY1Yw4FTB/hh6Q9s2LiB5JBkzoWey1jBBjyKe1CpZiU6tuxIz9Y9cXfJ2v6ZkJDASy+9xNKlSwFo+UZLVk9bjdFozNLriIiIZCb2Vix7j+/lrxN/cTzkOCGhIVy6cAnPZE8ir0YSFhZGUlISAAsXLqRLly5WjvjRypbksL/t37+fVatWsWrVKv7666/0hv5/4uPo6EijRo1o27Ytbdq00faTD0kTDxERERHJqbLyg5SsZDAY9EFKDqH5zJNp+/btBAQEEBYWhq2tLaNHj+ajjz4iLiWOiTsnMnHXRKKTogEol6ccwxsMp33p9hgN+hDhUTObzXzyySd8+eWXABRvU5xt87eR103bWD1uUtJS+G7/dwwPGs6NhBsQBm7r3YgNiwWgZs2afPvtt1SsWNG6gYqIPGY0p5HMaE4jj0JwaDDfB37Pug3rOLP/DMnXkjOU29jY8Nxzz1H2ubIUr1KcV9q9go+HT7bHZTKZePeDd5k2JX3no2eaP8OBlQdwtHfM9muLiMjTwWQyce7KOfYe38vhU4exj7Mn7noc58+f5/Cpw5w+expTrCnTdgwGAx4+Hkz5egovvfTSI4g858jW5LB/u3z5MqtXr2bVqlVs3LiRhISE9Ib/P1msYsWKtG3bVttPPiBNPEREREQkp8qqsermzZuzMKp09evXz/I25f5pPvNkSUtLY/To0QwfPhyTyUSxYsVYsGAB1apVA2DopqGM3DISgLJ5yjKs/jA6PtNRSWE5wPjx4y2rhjlVdWL1gtU0Kt7IylHJ/Wj0UyM2ndsE8ZBrWy6idkYB4OXlxZdffknv3r21ioOIyAPQnEYyozmNZIfIyEg2b97Mxo0bWbpmKZdDLt9Wx7mQM2Wql6FPpz50bdUVNzc3K0SartOHnQicGAhA7gq5ObThEL7evlaLR0Tk30wmEyGXQjgccpiToSc5e+EsFy5ewCXJBV9XX3x8fHDL5UZoUigF8hWgkG8hiuYvSomCJR5Jou3TLjE5kQsXL3D10lXCwsLYc2wPf/71JxFXIogJjyHpZhIkZ94OdmDvaY9rHldy++Ymf8H81Ctfj/oV6lOoUCEKFCiAvb19tt9PTvTIksP+LTExkfXr17Nq1Sp+++03Ll9OH8z8e/vJ1q1b07ZtW20/eY808RARERGRnEpjVcmM+siT48KFC/To0YMtW7YA0KNHD6ZOm0qKbQo+zulvpEUlRtF6fmveq/4enZ/trKSwHGbU5FF89uFnYAJKwtCpQxnaeCg2Rhtrhyb3YOa+mXw09iPMf5qJj4kH4NVXX2Xs2LH4+OjNbBGRB6XxqmRGfUSywqXrl/h+2fesXrea4L3BJF5I5H8/nnXM70jpqqVp1bwVfTv0xT+fv5WivbNBUwcx9sOxkAJOBZ3Ytn4blUtWtnZYIvIE+zvp60jIEU6EnuDshbM43HLAGG/k8uXLnDl/hmNnj5EWkwYPuuCqHdi42JAndx7K+JfBx8cHd093TiWcIrdPbnzz+pI/b378ff0tCWW5XHNl5W0+9mJjYzly6gjr/1rPyZCThJ4P5crFK9y8epP4iHjSotPS34vKhMHFgJOPE2WKl6F2udr4+/uT2y83ZnczVUpXoVShUnoo7i6skhz2v/bv329ZVezAgQPpF/yf7SfbtGlDmzZtyJ8/f3aF8VjTxENEREREciqNVSUz6iNPhmXLlvHqq68SGRmJq6sr3377LX61/Ri4fiDOds5s7rXZMteXnG3R0kUEBASQlpwGhaDeJ/X49aVfyeeaz9qhyb9ci7/GsE3DaFC4AV3KduHQoUO80e8Ndu3cBUC5cuWYPn06tWvXtnKkIiKPP41XJTPqI/IgImMi+W7Zd6z8YyWHdx0m/nz8bR+Mly5dmoYNG9KgQQPKPVeOZwo/Y51g78Ps1bN5teurmOPN2OSyYcnyJbSv397aYYnIY8ZkMnH28lkOnznMyXMnMceaIRauXLnCqXOn2HF8Bwk3E+476cvgYsDBwwEXbxc8c3tSvnh5yuQtw40bNwi9FMqu07tIiE4gOTYZU7zpgRPK7Bzt8Mvrh4+PD7m8chGSGIKHpwfePt7k8cmDb15fCuQrgL+fP6ULlqZ4geI4ODg82MWsLDUtlaNnj7Lv+D6OnT7GqbOnuBB2getXruMY50j0tWgiIyMzbcdoa6RwocIUKlSIvPnzctl4mSKFi/BMsWeoUKoC1Z+tjpe71yO4oydTjkgO+7fMtp+cMGEC77333qMI5bGiiYeIiIiI5FQaq0pm1EcebwkJCXz00UdMnz4dgKpVqzJ0ylCmhUzjj5A/AHCzd+PA6wco7lXcmqHKfdiyZQstWrcgIS4B8oJPXx92vr9T/w9zgMTURKbsnsIXW78gJimGAg4F6HClA9OmTsNkMuHq6srnn3/OO++8g62trbXDFRF5Imi8KplRH5F7ERMfwx+b/+Do7qNs2rSJXbt2kZKSkqGOrbctRSsXpUmjJvTp1IeKJSpaJ9iHFPRXEM1bNCf5WjJ2TnasXb2WRo20Zb2IZFzp61bkLVKjU7ly5QonQ0/y56E/ibkR82BJX84GHHKlJ32VKlyKBuUa4OfnR+68uYm2i+bZIs9Srlg53F3u/d9pk8lEeGQ4Zy6e4eyls3ALbBJtiIiIIORSCBuObiAmMoa46DgSYxJJiU1JTyi7hxWw7sTNzQ0vby8iiMDZwxm3XG7k8sqFl7cXeXLnwS+PH2WLlKVq8ar4+Pjg5eWFnZ3dg13sPkTGRrI3eC8HTx3k+Jnj2MXakXwzmbCwME6dPcWli5fu6f+Vu4c7yW7JeOTxII9fHgoWKkjxIsUpW6IsVZ6pQrmi5bCzzf77eVrluOSwf7vT9pPDhw9n6NChjzqUHE8TDxERERHJqTRWlcyojzy+jh49SteuXTl27BgAr7/7OrG1Y1lwfAFmzNgabelXtR+f1fuM3C65rRyt3K9Dhw7RuGljbly/gWNuRw5tP0TJEiWtHdZTy2w2syR4CQPXDyQ0KhTMUORyEWJXxhIRHgHACy+8wIQJEyhQoICVoxURebJovCqZUR+RO7mVeItffv+FxWsWs3/HfiJPRUJqxjqOXo74lfejYcOGvNLhFWqVq2WdYLNByKUQ6jSrw9Xgq9jZ2fHDDz/w8ssvWzssEckmfyd9XQu/RvzNeC5fvsypc6dYvX81N67deOikr0IFClHr2Vr4+fmRJ28eLnGJEv4lHijpKzuZTCYuXr/IzRs3SYpN4saNG5y9dJZ1R9YRcT2CyJuRREdGEx8db0koIwHMpgdMx3EEW1dbHNwccPFwwc0zPaHMx8eHMoXLUKdUnfREMm8vjM5GiuUvhr2dfYZ4T188zcULF4m5FsP58+c5cuoIfxz4g8irkSTcSMAcdw+xGcDGwwZnH2e8fL3wze9LkcJFqFm2Jg0rNKRQoUIaI1lZtiSHTZkyhXr16lGhQoUs3TLiwIEDpKWlUa1atSxr80mhiYeIiIiI5FQaq0pm1EceP2azmRkzZvDhhx+SmJhI3rx5+XTCp/Q/25+ktCQAupTpwheNvqCYVzErRysPIyQkhKbNmhJ6NpS8efOydu1aSpctzc2Em/i5+Vk7vKfGoauHePv3t9kWtg2APIl5yLM5D0d3HgWgePHiTJ06lebNm1szTBGRJ5bGq5IZ9REBSEtL46+//mLUT6PYvmU7ESciIDljHRs3G15o8wKNGjaiYcOGFCtWLEs/S81pEhMT6dWrF7/++isAAe8E8POknzEajVaOTETulclkIjwinBvXbnD58mVOnzvNyv0ruXrlKjeu3SA6IvqBk7588vpQqUQl/Pz8yJsvLyGpIRQuUJgS/iUoU7RMjkr6yk4mk4no6GgiIiI4f/k8m4M3cyn8EuHXw7kRcYPIm5HERMUQHxWPc4ozqXGp3Lx5kwdd38ngbMDW1RYDBpIjkyEl83OwB3sve9zzuFOmeBmaVWlGoUKFKFCwAHaedlQqWQlnR+cHikcejWxJDjMajRgMBtzd3alduzb16tWjXr16VK1aVcvZZxNNPEREREQkp9JYVTKjPvJ4uXnzJq+++irLly8HoEWLFvz00094+3hTYUYF8rjkYVyTcVTLrwe7nhRXr16lRYsWHDp0CHd3dxoNbsQ24zZ+7vAzLYq3sHZ4T4Wgc0E0/KkhjmZHngt9jl0Ld5GcnIyDgwODBg1i4MCBODo6WjtMEZEnlsarkhn1kadTaloqgUGBLPt9GfGn4tmyZQvR0dEZ6hicDfiV86NW3Vq83P5lWtVs9dQlRplMJgYPHsy4ceMAKNG4BAdXH1QSgYiVmEwmrt68SmRkJKm3UomMjOTytcusP7aeS1cvZUj6SoxMJDUm9bZVD/+Lg5sDJfxL4OfnRz7ffJxOPk3+/PktSV/PFk1f6cvDxSP7bvIpkJaWRnhEOAfPHuTc5XNcvHqRy+GXCb8eTkREBFE3o3BLdcMh2YGIiAiuR1wnOir6ru05ezpTtkRZ/P39KVCgAGGGMEoWLUm5EuV4rsxzFPEt8tT9+/WkybbkMMuJ/8p2d3JyokaNGpZksZo1a+Lg4PCAocu/aeIhIiIiIjmVxqqSGfWRx8fmzZvp0aMHFy9exMbWhoKdCnJs7jGc7dPf1L9x6wZeTl5P9JPvT6uoqCjatWvH1q1bMdgZMHcyQ2n4pPYnfN7wc+xs7Kwd4hMlPjmefZf3Ub9wfcuxNya+wdpv1nI+9DwAzZs3Z+rUqRQvXtxaYYqIPDU0XpXMqI88PVLTUvngqw9YtmwZl49cxnwr48en7u7ulKxSkvzl8xPQNoCODTpia6OFMwC6D+rO/HHzwQxeZb04tPEQBXJrO3SRB5Galsql65e4cO0CF65e4PL1y1y9fhXHVEfcze5ERkZy6dolgo4HER8bT2JsIsnxyaTeSsWcYAbT/V/T29sbX19ffH19OZt6ljz58tye9FW0HB6uSvrKqRKTEwm5FELIpRDOXz5PckoyFUtVpErpKuRyzWXt8CSbZUty2KJFi9i6dStbt27l6NGjmEz//Hb59xvE9vb2VK1a1ZIsVrt2bVxdXR/wVp5umniIiIiISE6lsapkRn0k50tNTeXzzz/niy++wGQyYZ/HnuT2yeAHU1pM4Z3q71g7RHkEEhIS6Nq1KytXrsRgNGBua4ZKUKtgLRZ2WkhBj4LWDvGxZzKb+OXwLwzeMJjIxEhOv3OatKg0PvjgA5YuXQpA/vz5mTRpEp06dVIipojII6LxqmRGfeTpsDRoKb379Cb2TOw/B+3Bp7QPPZ/vSdd2XalUqRI2NjbWCzKHGz5zOCPeGQHJ4JjfkS1/bqHaM1p1Wp5OaWlpREdHc+XaFfaH7ufytcuER4Rz/cZ1bkTeIDIykuioaDzxxCXNhcjISK7duMbF8IuYE83wYDsKWhhtjfh4+eDp6YlHLg9CE0Nx93JPT/ry+/+kr8JK+hJ5UmRLcti/RUdHs23bNrZu3cqWLVvYv38/KSn/bFr67zexbGxsqFChgiVZrG7dunh5eT3IZZ86mniIiIiISE6lsapkRn0kZzt//jwBAQHs2LEj/UBFoCXk8sjF4DqDefu5t3Gyc7JmiPIIpaam0qdPH+bMmQOAQ0sHkqon4eXkxZzn59C2VFvrBvgY23p+Kx+u+5B9l/cB4O/mT7ub7fhx0o/Ex8djY2PD+++/z7Bhw3Bzc7NytCIiTxeNVyUz6iNPtri4OHp/0JslPy5JX23HHmq/UJuXOr3ESy1f0vaI9+mXtb/Q88WemGJNGN2NLAhcwIuNX7R2WCIPJDE5kfNXzxN2NYzUW6kYk4xERkZy/up5NgZvJDIykpjoGOJi4rgVe4vE2ERS4lOwTbYlKT6JB0zB+IctGJ2N2DnbYe9qT8E8BalctDKenp64ebgRHBuMj5cPeXLnwdfHl/x58lMwb0H88/nj7e6tbQJFniLZnhz2vxITE9m1a5clWWzXrl3Ex8f/c6F/JYsZDAaeeeYZ6tevz9SpU7Pi8k8sTTxEREREJKfSWFUyoz6Scy1evJg+ffoQHR0NDkAbcKjowDvPvcOguoPwctIDXU8js9nMgAED+OqrrwDI2ywv4TXD8XTy5Ox7Z8nlmMu6AT5mzkaeZcCfA1h6PH1lMDd7N7p7dGfrt1s5duwYALVq1WL69OmUL1/emqGKiDy1NF6VzKiPPJnMZjPLli3jvffe4+LFiwD4PedH4I+BVC9T3crRPd62H95O4+aNSbqaBA6weNFiOrfrbO2wREhOSWb60umcOneK6zeu42XwsqzaFRYexr6QfSTFJZFyK4W0W2mQ9PDXdHJ2IskuCTsXOxxcHXB2c8bF3QV3D3c8cnnwbMFnqVGiBp6enrh7uBNliKJQ3kIU9i2srQBF5J498uSw/5WWlsaBAwfYsmULW7duZfv27dy4cSPjxQ0G0tLSsuPyj51p06Yxbdq0246npaVx6tQpTTxEREREJMfRm+SSGfWRnCc+Pp7333+fH374AQDPEp5Etork5QYv83mDz/HP5W/lCCUnGD9+PAMGDADg2abP8vmEz+lUtpOVo3q8xCTFUGBCAWKTYzEajPQo1oPkP5JZ+PNCALy9vRk/fjw9e/bUE90iIlak8apkRn3kyRP0VxC9X+/Nub3nAChSpAhjvh5Dlw5drBvYE+T81fNUbFSRqONR2NjY8N133/Hqq69aOyx5Sl2LvMbbo99m2ZxlpEak3n8DDuDu4U7hfIXx9PTExd2F07dO4+7hTi7PXHh5epHbOzd5ffLim9uXUgVKUapAKTw9PbG3t8/6GxIR+R9WTw77X8nJyfz000+MGzeO0NBQzGazksPugSYeIiIiIpJTaawqmVEfyVl27dtF205tiQiLwGAwMGjQIHq824NkczIV8lWwdniSw8yePZvXXnsNk8lEu3btWLhwIU5OTvxx5g/iU+Lp+ExHa4eY4/z9Xtff+q/rz8ErB6l1vRbfjP6GyMhIAPr06cOYMWPw9va2VqgiIvL/NF6VzKiPPDli4mPo+F5HNvy0AVLBxtaGQZ8MYtCgQTg7a/vIrJaQmEDfPn355ZdfAPhgwAd8NeYrPRghj8zZsLO8PPhldizbgflWejqEwclAriK5cHZzpmSBklQpUgVPT0+c3Zw5m3iWvD558cvtR4E8BSiUrxD++fxxtHe08p2IiPy3ex2v2mZXAAkJCezcudOyctju3btJSEgAePg9dkVERERERETknqSkpfDSJy/x68RfIQ2cvZxZtXgVjRo1snZokoP17t0bLy8vunTpwsqVK2nRogUz582ke2B3biTc4O1qb/NVs69wsHWwdqg5wrqQdXy87mNmtZtFtfzVAHjB6wW2Dt3K57s/B6BChQpMnz6dmjVrWjNUERERkafO+J/H8+nHn5JyLQUAz2c9mTdrHi1rtLRyZE8uJ0cn5s6dS+HChRk1ahQTv5zI8t3LOfz7YVydXK0dnjzBjh07xoQJE/jll19ITk4GwNbblva92zNt8DTyeOaxcoQiItaRZSuHRUVFsW3bNksy2IEDB0hNTV+a8e9L2NraUrFiRerUqUOdOnWoW7cuuXPnzorLP7H0VIqIiIiI5FQaq0pm1Eesy2w289OOn3j7jbeJPxoPgHMZZybPmMxrdV6zcnTyuNi8eTPt2rUjJiaG8hXKU3tQbaafmA5AZd/KvFf9PZxsnXCwdaBh4Ya4ObgBEB4XTlRiFI62jjjYOuBo64ijrSP2NvYYDU/OagHHrx/no3Uf8fuZ3wFoW7Itv7T+hc8++4ypU6diMplwc3Nj5MiRvPXWW9jaZttzmiIi8gA0XpXMqI883g6dOcTzvZ/n/LbzABjdjLz56ZtM7j9ZK1g9Qu+OfpdvPvsGTJDrmVwc3HgQ/3z+1g5LniAmk4mJCyYyYcIELh+4bDlesmJJ2vVqxxdvfoG9nbZ4FJEnU7avHHblyhW2bt1qSQY7duyYJQns7z9dXV2pUaOGJRmsRo0aWppVREREREREJJvtuLCDvlP6cmzGMYgDbKHTe52YN3aeVnqS+1K/fn2CgoJo0aIFhw8dJv7TeH747gcG7h/IgSsH6Lm8p6XuybdPWpLDpuyewuhto+/Ypr2NPXte22PZzvS7fd8xde9UHGz+SSL7d0LZsPrDKOldEoCdF3ayLmTdHes52DhQp1AdcrukP4h449YNrsZdvWM9W6Nthi0g71fErQiGBw1nxr4ZpJnTsDXa8na1tylzrQylS5fmypUrAHTp0oUJEybg5+f3wNcSERERkfuTlpbGt99+y4cDPyQ1IRUMUL5NeVZ9v4pCeQtZO7ynzpTBU/D182XwG4OJOh5FqUql2PDHBmqXr23t0OQxdyvxFh9P/Jg50+eQcCF9BzODwUCHDh346KOPqFWrlpUjFBHJOe4rOWzOnDmWZLCzZ88CGbeIzJcvH7Vr17asClaxYkVl3ouIiIiIiDzlsmjBarlHKSkpfNj/Q479egwA70LerFiygtrV9Ma7PJhKlSqxfft2mjVrRkhICEN6DGHB0gX8GvErF2IukJSaRGJqIm72bpZz7GzsyOWYy1Jm5p/fA8lpydjZ2Fl+vhx7maPXjt71+u9Vf8/y/fYL2xm+efhd6254eQONiqRvmbro2CLeXPPmHesZDUZWdF1Bm5JtAFh+YjmDNwzOkEj272S196q/R82C6dtBbg/bTuv5rYlOigbg+VLP82aRNxk/ZDyT1k8CoESJEkybNo2mTZveNVYRERERyXq7d+/mzTff5MCBAwC4FnFl+rfT6dGih5Uje7oN6jWIYgWL0a1TN5KuJlGvTj3mLp5L9+bdrR2aPIbCwsN4a+Rb/D7vd9Ki0tIP2kG55uWYNHwSjao0sm6AIiI50H0lh73yyisYDAbLG/ulSpWyrApWp04dihUrli1BioiIiIiIyOOrevXqvPrqq/To0QNfX19rh/NEuhJ7hdjkWGyjbQkICGD37t0AdO/dnZlTZ2oVb3loxYsXZ/v27TRv3pwjR47wQqsXWLVqFXXb1b1j/eENhjO8wXAgPUE0xZRiSRRLTE0kn2s+S93elXpTz78eSWnp5f+ul5SWhL/HP1vOlM9bnjeqvEFiWuId63o7eVvq2hpt8XH2sdRLMaVYykxmE/Y2/2wrcj3+Oscjjt/1/l8s86Ll+7DoMKKToqmQtwJj649l+/zttO3ZluTkZBwcHPj000/p378/jo6O9/4Ci4iIiMhDCb0cSpvX2hC8NhjM4OHhwZgxY+jTp4+29s4hXmz8IkV2FqFe03okXkqkR7seXJh+gU9e+cTaocljIiwsjNHjR/Pd999BUvoxo6uRRl0b8e3QbylRsIR1AxQRycEM5vt4hNtoNGIwGLCxseGFF16gQ4cO1KlTh3z58mV+cg4zZMgQvvjiCwBGjhzJkCFD7vnc4cOHM2LEiP+sc/z4cUqXLv1QMYL2sxcRERGRnEtjVcnM333kb0ajkRYtWtC7d2/atm2Lg4O2N3xYMUkxfLn9SybumkihsEJcmn+J2NhYcuXKxffff0/nzp2tHaI8YSIjI2nbti3bt2/H0dGRnj174uTkhL29fbZ92do+3BaQf0szpZGUlmRJKPN08sTRNj2B62rcVU5EnLgt2ezv71uXaE0xr/SHIvdd3sfJiJO4h7nz3rvvERoaCkDLli355ptv9PCkiMhjRHMayYz6SM5nMpl4c8ybzBw7E3Nc+keenbp2YtqkaeTNm9fK0cmdXLx+kQqNKnDz6E2MRiPTpk3jjTfesHZYkoP9vvl3fv7uZxYtWkRaWvpKYQ75HOjWtxsT+08kl2su6wYoImJF9zpeva9UeU9PTyIjI0lNTWXhwoUsXLgQgKJFi1q2kqxbty4lSuTsrNzjx48zfvz4h26nYMGCFCp0573J9VS2iIiIiIhIuilTpvDrr7+yfft21qxZw5o1a/Dy8iIgIIBevXpRuXLlLEn8eJokpyUzY98MRm4ZSURkBPwOJw6eAKBOnTrMmzfvrvNVkYfh6enJunXr6NKlC6tXr+a77757JNfNzuSzu3252rtavr928hpR9lHY29tjTDGydNRSli1bBkCBAgWYPHkyHTp00O8yERERkUdo5baVvPzay0SfTN/u2z6fPeMmjuP9ru9bNzD5TwVyF+DC3gv07tObRb8sol+/foSGhjJ69GhsbGysHZ7kEKlpqYz8YSRTJk0h6kSU5XijRo3o83YfOrfrjK2NVgUUEblX9/Ub88aNGxw7doytW7davi5evEhISAghISHMnTsXgNy5c1u2mqxbty6VKlXCaDRmyw3cL7PZzOuvv46dnR116tRh48aND9zWK6+8wvDhw7MuOBERERERkSdQz549eeeddzh16hQ//fQTc+fO5eLFi0ydOpWpU6dSrlw5evXqRffu3fVkdyZMZhOLji3i042fcjbyLFwGu2V2pFxPwWg08tlnnzFkyBBtmyLZytnZmcDAQH7++WfOnz9PcnJyln/9r7sdtyZbW1s++OADhg4diqurq7XDEREREXlqXI+6Trt+7di1aBeYADto/kpzlkxcgquTxmWPA2dHZxbOXUjZkmUZOnQoX375JQu2LeDwH4e1CtRTLiouivfGvcfC7xeSHP7/c0Aj1G1Vl8mfT6ZSpUrWDVBE5DF13+8WlylThjJlyliW9zx//nyGZLETJ05w7do1AgMDLU9Quri4UKNGDUuyWI0aNXBycsraO7lHs2bNYuvWrYwbN47g4GCrxCAiIiIiIvI0KlmyJF988QWff/45GzZsYM6cOQQGBnLkyBE++ugjBg4cSKtWrejVqxetW7fG3t7e2iHnOIHHA+m2tBuYwO0vN279fouU1BQKFCjAvHnzqFevnrVDlKeEnZ0dr7zySra0bTabSU1NzZIks5SUlGxJXqtSpQoTJ06kbNmy2fIaiIiIiMidrVy5krfeeYuLYRcByFs5L0tmL6FO+TpWjkzul8Fg4LPPPsPL14u333ibCzsu4F/Zn30b9lGiYM7epUqyXsjFEPoM7UPQ4iDLFrE4QNW2VZk6fCrVy1S3boAiIo+5h36U2N/fH39/f3r06AFAREQE27ZtsySL/fXXX8TFxbF+/Xo2bNiQflFbWypVqkTdunWzZHvHe3X9+nUGDhzIs88+ywcffECfPn0e2bVFREREREQknY2NDc2aNaNZs2ZERUXx66+/Mnv2bHbv3s3KlStZuXIlPj4+dO/end69e1OhQgVrh2xV8cnxuNi7ANC+dHsqu1Um5tcYzuw5A0CHDh344Ycf8PLysmaYIlnGYDBgZ2eHnZ0dLi4u1g5HRERERHKAv078xfCBw1m5ciUA3r7evP7Z63zR7wsrRyYP663X3iLRKZGPX/uYmNMxlKlahnVr19GgUgNrhyaPwKlTp5g4cSI//fQTCQkJANh42tC6R2umfTaNArkLWDlCEZEnQ5bv9ejj40P79u35+uuv2bNnD1FRUfzxxx8MGTKEevXq4ejoSEpKCnv27GHChAlZffn/9MEHH3Dz5k2+/fZb7OzsHrq9TZs28cILL9CoUSM6d+7Ml19+ydWrV7MgUhERERERkadDrly5eP3119m1axfBwcEMGDAAX19fIiIimDx5MhUrVqRSpUpMnjyZiIgIa4f7SIVFh9FreS/KTS9HYmoiABvXb+TSl5c4s+cMjo6OzJgxg6VLlyoxTEREREREnkhxCXG0fKMllctXZuXKldja2jJw4EDOnz6vxLAnyEfdP2L5H8ux8bQh5VoKjeo2Yvbq2dYOS7KJyWTi26XfUqpOKUqXLs2MGTNISEggf8n8vD3ubWKvxLJiygolhomIZKEsTw77Xy4uLhQoUID8+fPj5+dHrly5MBgM2X3Z22zYsIF58+bRo0cP6tevnyVtbtmyhSVLlrBp0yaWLl3KwIEDKVq0KHPmzMmS9kVERERERJ4mzzzzDOPGjSMsLIw1a9bwwgsvYG9vz8GDB3n//ffx8/OjY8eOrFq1ipSUFGuHm20iEyLpv64/Jb8pyU+HfiI0KpTfjv9G//79ad68OeHh4ZQtW5Z9+/bx+uuvW2WOLSIiIiIikt0mLZyEd1Fv1n63FlIgb5m8HDp0iLFjx2qF2SfQ8/WeZ+/uvTgVdMIcb+aVjq8weNpga4clWSgxOZEPJ3yIe3F33ur8Fqe2n8JsNtOmTRs2bdrEhRMX+GbANzg5OFk7VBGRJ85Dbyv5v0wmE3/99Rdbtmxh69atbNu2jRs3bmSoYzabs/qy/ykxMZE33ngDDw8Pvvrqq4duz9fXl8GDB9OhQweKFi2Kk5MTf/31F6NGjeL333/nlVdewdvbm7Zt2/5nO0lJSSQlJf1nnZiYmIeOV0RERERE5HFia2tLy5YtadmyJTdv3mTBggXMmTOHffv2sWzZMpYtW0bevHnp0aMHvXr1omzZstYOOUskpibyze5vGL1tNFGJUQA0KNyAt4u+zZjeY9i/fz8Ab775Jl999RVOTnqzVEREREREnjzHQo/R7pV2nA06C4DBxcBrn7zGjMEzMBqzfd0LsaJKJSoR8lcIFRpX4Pqh64x5Zwz50vLx7rvvWjs0eQhXb17lrVFvsfKnlaTeTE0/aAulG5Xmm8+/oUn1JtYNUETkKfDQyWHJycns3r3bkgy2c+dO4uLiLOX/mwhWsmRJ6tWrZ/l6FEaNGsWZM2eYOnUqefPmfej2Xn/99duO1apVi99++41OnTqxbNkyPvjgA9q0afOfT3CPGTOGESNGPHQ8IiIiIiIiTyovLy/eeust3nrrLY4cOcJPP/3Ezz//THh4OF9//TVff/01VapUoXfv3nTr1u2x3V7xZsJNKn1XibDoMADK5inLuCbjiNgZQa9WvYiLi8PLy4tZs2bRvn176wYrIiIiIiKSDdLS0ug7vC+zv5qNOTH988VnWz7Lqh9WUdSvqJWjk0fF19uXsD1htOreik1LNvHee+9x7tw5vvrqKyUHPmYuX77MkDFDmPPDHMvfaYOzgbqd6zJt2DTKFn0yHvYTEXkcGMz3uYxXbGwsO3bssCSD7d27l+TkZEv5v5szGo2ULVs2QzJYnjx5si76e3D8+HEqVqxI2bJl2bt3b4ZBQ69evfjpp58YOXIkQ4YMyZLrnTp1ilKlSgFw8OBBKlSocNe697pyWMGCBYmOjsbd3T1LYhQRERERyQoxMTF4eHhorCp39XcfKfZlMQrmKYifmx/53fLj5+aHn5sfRT2LUtWv6n23m5KSwtq1a5k9ezarVq0iNTX9qVN7e3uef/55evXqRbNmzbC1zfLFsrNVuwXt+OvqX4xsOJLnCz/PO2+/w7x58wCoX78+v/zyCwUKFLBylCIiIiJPDs1pJDPqI4/OgQMH6NevH3v27AHAqaAT30z7hlfbvmrlyMRazGYzX375JZ988gkApeqWYsfqHXi5P54PhT1Ndu7fyXfffMf8+fNJSUkBwC63HZ1f7cyUT6bg4+Fj5QhFRJ4c9zpeva93yqtWrcqhQ4cwmUyWY/9OBrOzs6Ny5crUq1ePunXrUrduXTw8PB4g/Kzz5ptvkpqayvTp0x9JNnnJkiXx8vLi5s2bnDlz5j+TwxwcHHBwcMj2mERERERERKwp5GYIIbdCbjteza8ae/rssfzcZn4b0sxp+Ln6kd/9nySy/G75KeBegLyu6StB29nZ0bZtW9q2bcv169dZsGABs2fP5uDBgyxevJjFixfj6+vLSy+9RK9evXjmmWce2b3eq32X9zEsaBjft/0ePzc/AGa2nYmHgwdH/jpC1SpVOXv2LDY2NgwfPpxBgwZhY2Nj5ahFRERERESyVlh4GB9+8iHL5i7DZDLh7u7OC2+/wNRhU3G0d7R2eGJFBoOBgQMHUqhQIXq83IOTW0/iX8mfPRv28EzhnDfPf9qZTCbGzR3H1xO+5saRG5bjderUoXvf7rzS9RXs7eytGKGIyNPtvlYO+9/kKkdHR6pXr25ZFaxmzZo4OztneZAPI1euXMTFxeHjc3sGcnR0NImJibi6uuLi4kLBggXZu3fvQ18zX758hIeHs3DhQrp06fJQbempFBERERHJqTRWlcz83Ud+O/wbUURxOfYyl2IucTnuMpdjL1M2d1mmt5kOpD945DLahYTUhDu29b+JZG+sfgNbo22G1chizsewPnA9S35dQkREhKVu9erV6dWrF127diVXrlzZes+ZCbkZwqcbP+XXY78C8HqV15nRZgaQ/kbqV199xaeffkpqair+/v7Mnz+fWrVqWTNkERERkSeW5jSSGfWR7GMymXhv/Ht8+8W3mGLTF6Xo1q0bX3/9Nb6+vlaOTnKabxZ9w3u93sOcYMbWx5Y1v62h6XNNrR2WAHEJcXz41Yf8/N3PJF5KTD9ogIatGjLmszFUr17dugGKiDzhsmXlMFdXV2rXrm1JBnvuueews7N76GCzW1paGuHh4Xctj4uLIy4uDkfHh38CISIigmvXrgFouw8RERERERGgjn+dTD9IMWMmsEsgl2Mv35ZEdinmEoU8Cv1T12zmp0M/kZiaeHtDuaHOmDp86P0hc+bM4bfffmP37t3s3r2bd997l3rN6/FSz5fo1LoTro6uWX2rd3U9/jojt4xkxr4ZpJhSMGCgR/keDKozCIArV67w8ssvs379egBeeOEFZs6cafVkNhERERERkaz2+67f6f5qdyKDIwGwy2PH1KlT6ftCXytHJjnVOy++Q9ECRWnftj2pEak0b9ic6b9M5/UOr1s7tKfWuSvn6Pd5P9bNX4cp5v93HbOHCi0qMGXEFOpVrGfdAEVEJIP7WjnMZDI9kq0ZH5VevXrx008/MXLkSIYMGZIlbQ4ePJgxY8bg4eHBtWvXsLd/uOUx9VSKiIiIiORUGqtKZrKyj5jNZgwGAwCpplRm7p95WwLZ5djLRCZG0qF0BwK7BAJw9epVCvQuQNqBNLj2rwbdwLGqI006NmHV26ssh38+9DPuDu7pK5K55yePSx5sjff1XNVtxm8fz8gtI4lNjgWgebHmjGsyjgr5KgCwZs0aevbsSUREBM7OzkyZMoVXXnnFcr8iIiIikj00p5HMqI9krZsxN3n+refZtmAbpAG20OjlRiybsgx3F72+krmjZ49SvXF1bp27Bbbw4Zcf8vUHX1s7rKdKaGgokyZN4vsfvifhVvrq70Z3I027NWX60OkU8Sti5QhFRJ4u2bJy2JOUGJaZSZMmMWnSJGrUqMHChQstx48dO8a0adN46623KFOmjOV4YmIiEyZMYNy4cQAMHDjwoRPDREREREREJN2/E6Vsjba8We3NO9ZLSEngVsoty89eub147/33uBR7iVNHTxGyMYSYfTEQC4mbElm9aTW1F9Smd+/evPDCC/RZ1YektCTL+UaDkbwuecnvnp9GhRsxruk4S1nQuSC8nbzJ754fT0fPuyZzhceHE5scS2XfynzZ5EsaF20MQFJSEgMHDmTy5MkAVKhQgYULF1K6dOkHf6FERERERERyoMCVgXR5pQupN1IB8Cnvw6LZi2hYuaGVI5PHSdmiZQk9EEr5puUJ3x/OhA8n4J3szaABg/SAVTabvXo206dMZ/+G/ZhM6SuFeRbypNOrnZjYfyKuTo9udXYREbl/T0+2132Kiori/PnzXL16NcPxlJQUpk+fTtmyZcmTJw9Vq1alatWqeHt78+mnn2IymXj11Vf55JNPrBS5iIiIiIhkJ7PZzLZt2+jfvz81atQgV65c2Nvb4+fnR6dOndi0adNdz42NjeXzzz+nUqVKuLq6Ym9vT6FChejevTsHDhy463nJyclMnjyZGjVq4OHhgZ2dHb6+vnTo0IGNGzc+8L1cunSJvn37UrBgQRwcHChUqBCvv/46ly5deuA2rc3JzglvZ2/Lz/Y29nzd/GsWdl7IgeEHiN4STcLNBObMm0PdJnUxGo3s2LGDPn364OvrS+4/clMquhR+Ln7YGGwwmU1cibvCvsv7OBN5xtKu2Wym+S/NKT+jPN5feuM82pliU4pRd3ZdXlj8Arsv7rbUHVx3MPM7zmdvn72WxLATJ05Qo0YNS2LYe++9x65du5QYJiIiIiIiT5QLFy7QqVMnOj3fidQbqdh42PDxpI8J/ytciWHyQPJ45iFsZxgV21UE4NNPPuWdd94hLS3NuoE9gVLTUhk8bTAeJT14pe0r7P1zLyaTiaZNm/LHH39w49wNvh/6vRLDREQeAw+3N8ZTqHDhwowcOZIdO3Zw4sQJTp48SXJyMnny5KFVq1a89tprNG/e3NphioiIiIhINtm4cSNNmjQB0ldXLl68OC4uLpw+fZrAwEACAwMZMmQII0eOzHDetWvXqFu3LqdOncJoNFKkSBFcXV0JCQlh/vz5/Prrr/z8889069Ytw3m3bt2iSZMm7Ny5E0ifkxQvXpyzZ8+yfPlyli9fzrhx4xgwYMB93UdwcDB169bl5s2beHh4ULZsWUJCQpg5cyZLly5l27ZtT2yikqOjIz0DetIzoCdXrlzh559/Zs6cORw/fpyL2y7CNihUqBCfvPwJrTu3xj63PZdjL+Pp5GlpIy45jlLepbgce5kbCTdITE3kbORZzkaeBeB6/HU29dyEwWDAy8mLbuXS/7+azWZmz57NO++8w61bt/Dx8WH27Nm0adPGKq+FiIiIiIhkLiY+RttK3qdbibfo8nEXNs7ZyK34W9jY2NDvnX4MHjIYX29fa4cnjzl7O3sOLD/AxIkT+fjjj5k2bRqHTh5i6aKl5PHMY+3wHns3om/wzth3WDJrCSnXU9IP2kCxesWY8cUMmtRsYt0ARUTkvhnMZrPZ2kHI3Wk/exERERHJqZ7Wser69evp168fH374IV27dsXTMz1hKDk5meHDhzNmzBgAVq1alSHh57XXXmPWrFmUKlWK5cuXWxKv4uPj+fDDD5k5cybu7u5cuHAhw+s5atQoPvvsM3Lnzs2qVauoXr06kL6q8ejRoxk+fDg2NjacOHGC4sWL39M9pKWlUb58eYKDg+nUqRNz587F2dmZ+Ph4Xn75ZQIDAylfvjx//fUXRuODLzj9OPURs9nM3r17mT17NgsWLCA6OtpSVq9ePXr16sULL7yAq+vtT8MmpiZyJfYKl2Mvczn2MpdiL2FrtOX1Kq9jZ2NnqRcVFcUbb7zBr7/+CkDjxo2ZO3cufn5+2X+DIiIiInKbx2m8Ktbxdx/BAA55HchTNA8lnynJc5Weo1mtZtQpXwdbG63D8L+mL53OB+9+QNLlJABq1arF9OnTKV++vJUjkyfRkiVL6N6jO8lJyTj7O7N7427KFi1r7bAeS9euXeOjUR8xb9Y8zLf+P4XAEWo8X4OpI6ZSpVQV6wYoIiK3udc5jZLDcjhNTkVEREQkp3pax6oxMTE4Oztja3vnDwBatWrF77//Trt27VixYoXluK+vL1evXmXlypW0bds2wzmpqan4+voSERHBmjVraNmypaWsZs2a7Nq1iylTpvDOO+/cdr1KlSpx8OBBvv32W/r163dP97B48WJefPFFvL29CQ0Nxc3NzVIWGxtLkSJFuHHjBoGBgXTo0OGe2ryTx7WPJCQksGLFCubMmcO6dev4e9rs4uJC586d6dWrF/Xq1buvxLkdO3YQEBDA+fPnsbW1ZdSoUfTv3/+hku9ERERE5OE8ruNVeXQsyWF34eDkQIVyFShXrhz5i+XHtYArreq0okyRMo8wypzjZNhJ2r7SltMbTgNgcDbQ8+Oe/DD0B2xsbKwcnTzJZi6byRs93sB8y4ytly3LVy2nda3W1g7rsXHk2BG+mfwNc+fOJSkpPanT1suWtj3bMu3TaVrtT0QkB7vXOY3ehRYREREREbkP7u7ud00MA2jatCkAp06dynA8ISEBgKJFi952jq2tLf7+/kB6oti9ngdQrFixO573XwIDAwF48cUXMySGAbi5ufHCCy8A6UlkTyMnJye6du3K2rVrCQsLY/To0ZQoUYL4+Hh++uknGjZsSPHixRkxYgTnzp37z7bS0tL44osvqFevHufPn6dIkSJs27aNgQMHKjFMREREROQxsXHPRkZ8P4JWb7aiaP2iOBV0AltISkhiz549zJo1i88Hf86AlwdQtmhZjK5GvMp4Ual9JXp+1pNZq2YRERVh7dvINqlpqfT8rCfPPPOMJTGsZJOSnDh+gtkjZisxTLJd3w59+WPTH9j52JF6M5W2jdvyzaJvrB1WjmYymZi8cDL5KuejfNnyfP/99yQlJVGtWjW+mP4FsVdiCZwQqMQwEZEnhN6JFhERERERyUKJiYlAeoLRv/29fcaOHTtuO+fmzZucOHECW1tbKlaseM/nJSUlsX//fgCqVat2zzHu2rULgNq1a9+x/O/ju3fvvuc2n1QFChRg0KBBnDx5ku3bt9OnTx/c3NwIDQ1l+PDhFClShEaNGjF37lzi4+MznHvp0iWaNGnCkCFDSEtLo1u3bhw8eNCyNaiIiIiIiDweqpSqwtDXhvLbtN8ICQrhVtgtEuITOBZ8jEWLFjF06FAqNKiAXe70beXN8WYigyM5uOIgc0fN5bV2r5HbMzdFixbl+eef59X3XuXd8e+yYssKbiXesvLdPZxDhw5RunJp5o6ai/mWGcf8jswInMHJP09SslBJa4cnT5GmzzXl0N5DuBZzxZxo5t2Ad3ln3O0rsD/NouKi2LBvA2+OeRO3Im683+19wv8KBwM0a9WMLVu2sHv3bga/MRhHe0drhysiIllI20rmcFrWWkRERERyKo1Vb2c2m6lSpQp//fUXb7/9Nt98889Tqhs3bqRFixY4OzszceJEWrVqhaurKwcPHqR///7s3LmTIUOGMHLkyAxtBgcHU716dZKSkhg7dixdunTBy8uLkydPMmTIEH777Td69OjBzz//fE8xJicn4+TkhMlkYseOHdSsWfO2Ojt27KB27doYjUYSExOxs7O7rU5SUpJlq4G7iYmJoWDBgk9cH7l16xbLli1j9uzZbNy40bLtpKurKy+++CK9e/fmxo0bvPLKK9y8eRMXFxemTZvGyy+/jMFgsHL0IiIiIvI3zWkkMw/SR65HXef3nb8TtDuIQ0cOce7UOaLOR2GKNd35BBtwzOtI3mJ5Kf1saapXqk63xt0oVaxUjp4/xMbGMmzYMKZMmUJaWhpGByNt+rbh169+VVKJWNXNmJuUa1aOy7svA9D7497M+nJWjv77lBUSkxM5dPoQB08dJPhMMCHnQsiTlofI8EguXLjAybMniYuMy3iSLTzb9FkmDJtA8+rNrRO4iIg8lHsdryo5LIeYNm0a06ZNu+14Wloap06d0uRURERERHIcfZByu5kzZ/L6669jb29PcHCwZcvHv23evJnPPvuMrVu3ZjheuHBhRo0aRffu3e/Y7uHDhxk0aBC///47/57CeXt7M3z4cN5888173qLw+vXr5MmTB4Djx49TunTp2+ocP36cZ599FoCIiAi8vb1vqzN8+HBGjBhxT9d8kvvI+fPnmTt3LnPmzOHs2bO3lVeuXJkFCxZQsqSemBcRERHJaTSnkcxkZR+JiIjg6NGjHDlyhPnr53P02FHiLsbBXZ65cXNzo2zZsrgWcMWjkAe1q9amde3WlChY4qHieFgmk4n+k/szbeQ0kiLTg+/cuTNfT/iaQgULWTU2kb+lpKZQo0sNDgQeAKBv375MmzYNW1tbK0f2YEwmE8Hngjlw8gDGGCM3w29y4cIFdh7dyaHTh0i4kUBadBrcy6f+dmDvbU/tlrWZNnQazxR+JtvjFxGR7KPksCeEJqciIiIiklNprJrRgQMHqF27NomJiXz55Zf079//tjpz5sxh7NixnDp1ikKFCuHu7s6ZM2dISEigQYMGzJ49m8KFC9923urVqxk+fDj79+/Hz8+PPHnycObMGeLi4qhcuTKzZs26bTvKu7lw4QKFCqW/YR8SEkLRokVvq3P27FlLYtuFCxcoUKDAbXWe5pXD7sRsNrN161bmzJnDokWLiI+P56OPPmL06NHY29tbOzwRERERuQPNaSQz2d1HTCYTO47uYN2Odez+azcng08ScS6C5PBkUlJS7niO0d2IZyFPCpcsTMUKFXmt+WuUL1ceZ2fnLI/vf23Yt4Gur3Ql4kgEAD75fZj7/VxatmyZ7dcWeRCTJk/iww8+xGw206JFC3785Ud8vX2tHVYGJpOJ6OhoLl68SFhYGDuO7iDocBBXL13lZvhN4iLiSI1MhbR7aMwINrlscPFxwTOvJ/XL16f6s9UpWLAgPvl88MnnQ7H8xe75AUMREcn5lBz2hNDkVERERERyKo1V/xEaGkrt2rW5cuUKAQEB/PLLL7dtVzBmzBgGDx5M6dKl+fXXXylfvjwAcXFxvP/++8yaNQs/Pz+Cg4Px8PCwnDdv3jxeeukl8ubNy8KFC6lfvz6Qvj3kyJEjGTVqFG5ubhw6dIgiRYpkGmtWrRx2L57WPhIfH09ERAT+/v7WDkVERERE/sPTOl6Ve2etPpKcnMypU6c4evQoP/z+A0ePHuXG+Ruk3ki9Y32DwUDx4sVx8HXAq7AXVStWpUmNJjSs0jBLtniMjoum/TvtCfolCFIBG6jXvR7LvlmGl7vXQ7cvkp1WrFhBt27dSEhIwKmgE9vWb6NyycqP7Pq3bt3i8KnDbDmyhRMhJzgXdo5LFy5xI/wGsddjSb6ZDMn31pbR3UixwsWoULICBQsWxM3HjTinOMoUL0Ol0pUoW6QsdrZ22XtDIiKSoyg57AmhyamIiIiI5FQaq6a7evUqderUISQkhNatW7Ns2TLs7DK+EXft2jX8/f1JTExk165dVK9ePUN5amoqFSpUIDg4mNGjRzNo0CAAUlJSKFiwIOHh4SxcuJAuXbrcdv3mzZuzbt06+vbty3fffZdpvMnJyTg5OaU/ob5jBzVr1rytzo4dO6hduzZGo5HExMTb7udeqY+IiIiISE6m8apkJqf1kcsRl1mzYw1b9m7h8OHDRJyLIOlyEhEREXc+wRacfJ3wLeZLubLleKP1G5QtW5b8+fPf9kDT3Yz9aSxD+w8l5Xr6SmZeZbyYP2s+zas3z6rbEsl2qzetpl27dpjjzNjksmHx8sV0qN/hoduNT4jnwKkDHDx5kOMhxzl7/iyXLl7i+pXruCe6c+PqDW7evHlPbXl7e1OwYEFy5cn1f+zdeVxV1f7/8feBA8gg4CwogmPOY2CmOWtpVuaUmaWlXr1xf6mVVtY1U29mNmg3zGa7aVaWmQ1OOeaI5ogjDuAsTszzYf/+8MupE6CgKIdzXs/HYz86rL322p8Fx332Jz6srYtuF1U9qLpqBddSg9oN1PyO5mpet7l8PH1uOmYAgGMp7P1q6XywMgAAAADYgcuXL6tbt246evSoOnTooIULF+ZbSLV9+3alp6fLx8dHYWFhefabzWZ17NhR+/fv1/bt263t0dHROn/+vCSpS5cu+cbQtWtXrVixwua4a3F3d1eNGjUUExOjY8eO5VscduzYMUlSSEjIDReGAQAAAACKV2DFQA1/cLiGPzjcpv38+fPau3evZv8yW1F7o3Tm6BmlnE6RsqS0k2k6dvKYjq09ph/f/1GS5O/vL49AD1UMqagmjZvonrB7dH/b+xVc9c/Vj8+cOaOxY8fq22+/lXR1xaJ//ftfevfZd3kkHUqdXp16afX61br3vnuVGZepPvf20YxPZuj5wc8XeEy2JVt7ju7RzkM7tf/Ifh05fkR+GX5KvZSqkydPKvp4tK5cuFLg8ed13vray9tL2WWzVbZSWVWsWlGB1QMVUiNEDWo3UNN6TRXaIJRV+AAAtxTFYQAAAABwA5KTk9WzZ09FRUUpNDRUP/30kzw9PfPtm5SUdN3xchd1Tk9Pv+njrqd169aKiYnRxo0b9dhjj+XZv3HjRms/AAAAAIB9q1KliqpUqaKuXbta27It2Vq/a71Wbl6pyJ2Rij8Rr7TTaTp8+LDi4+OleOn8/vPa9+s+fa2vFa5wufq7qnxwedWtVVd7f9urpKQkubi4qOkDTbXkoyUKqhxUYnMEblbHFh21f8d+tezcUomHEzVuyDit+2Od+t/VX0kXk3Ty5EntOLhDW/dvVcrFFFkSLFJOIQY2S2Z/s3wq+qh81fIKqBag4BrB6tCkg9o0bqOgoCD5+fkVerU+AABuBYrDAAAAAKCIMjIy9NBDD2nr1q1q1KiRli1bprJlyxbYv27dupKuFpRFRkbm+1jJdevWSZLq1atnba9du7ZMJpMMw9CqVavyfazkb7/9lue46+nTp4+++eYbffvtt5o+fbpN7ElJSVq4cKEkqV+/foUeEwAAAABgP8yuZnVu1VmdW3W2ac/IyNCeqD36bPln2rlnp44dPKbLsZdlibfIEm/RhfgLurD7gqSrfzD0wQcfqEWLFiUxBaDY1a5WW7F/xKrZfc10YuMJ/TzzZ/2snws+wEVy9XWVV0Uv+Vf2V1iDMLVv2l41atRQlYAq8q3sqwbBDVhNDwBg9ygOAwAAAIAisFgsGjhwoFavXq3atWtr5cqVKl/+2kv/t2jRQg0bNtT+/fs1dOhQffPNN2ratKmkq8VYY8eO1f79+yVJgwcPth5XsWJF3XvvvVq2bJnGjBmjgIAAtW/fXpKUmZmpKVOmaOXKlZKkxx9/3OacW7Zs0cCBAyVJMTExNvv69u2r+vXr6+DBg3ryySf1v//9T15eXkpJSdGTTz6pS5cuqXHjxurdu/cNf58AAAAAAPbHw8NDoa1CFdoq1KY99nysftnwizZs36DUs6l6uNPDevzxxyl6gcPx9/HX0XVH1W14N234aYMCKgXozgZ3KigoSBWqVtAlt0tqWLuhmtdrrmZ1m6mMe5mSDhkAgJtmMnKfQQK7lJiYKD8/PyUkJMjX17ekwwEAAACsnPVedcGCBRo0aJCkqyuCVa5cOd9+AQEB1hW4JGnHjh3q2rWrrly5IpPJpODgYPn6+io6OlppaWmSpKlTp+rll1+2GSc2Nlbt27fXiRMnJEnVqlVTpUqVdPToUetjJ0eMGKGPPvrI5ri1a9eqU6dOkv589ORfRUVFqX379rpy5Yr8/PxUp04dHTlyRAkJCSpfvrx+//13NWzY8Ea+RVbO+h4BAABA6cD9Kq6H9wgAAADsWWHvV1k5DAAAAACKICMjw/o6Ojpa0dHR+fYLDg62+bply5aKiorS22+/rWXLlun48eM6ffq0KlWqpJ49eyo8PNxazPX3cXbv3q2ZM2dqyZIlio6O1vnz51WuXDm1a9dOw4cPV58+fYo8j8aNG2v37t2aPHmyli5dqr1796pSpUoaMGCAJk6cqOrVqxd5TAAAAAAAAAAAYF9YOczO8VcpAAAAsFfcq+J6eI8AAADAnnG/iuvhPQIAAAB7Vtj7VR4UDgAAAAAAAAAAAAAAAAAOiOIwAAAAAAAAAAAAAAAAAHBAZTg9ywABAABJREFUFIcBAAAAAAAAAAAAAAAAgAMyl3QAuCoiIkIRERF52i0WSwlEAwAAAAAAAAAAAAAAAKC0ozjMToSHhys8PDxPe2Jiovz8/EogIgAAAAAAAAAAAAAAAAClGY+VBAAAAAAAAAAAAAAAAAAHRHEYAAAAAAAAAAAAAAAAADggisMAAAAAAAAAAAAAAAAAwAFRHAYAAAAAAAAAAAAAAAAADojiMAAAAAAAAAAAAAAAAABwQBSHAQAAAAAAAAAAAAAAAIADojgMAAAAAAAAAAAAAAAAABwQxWEAAAAAAAAAAAAAAAAA4IAoDgMAAAAAAAAAAAAAAAAAB0RxGAAAAAAAAAAAAAAAAAA4IIrDAAAAAAAAAAAAnIBhGNqwYYPGjRunu+66S/7+/nJ3d1dgYKD69u2rNWvWFHhsUlKSJk+erBYtWsjHx0fu7u6qUaOGHnvsMe3YseO65165cqX69u2rwMBAeXh4qGrVqurYsaNmzJhRpDmsXbtWJpPpmtucOXOKNCYAAADgyMwlHQAAAAAAAAAAAABuvdWrV6tr166SJBcXF9WpU0fe3t6Kjo7WokWLtGjRIr3yyiuaMmWKzXFxcXG65557dPjwYbm4uKhmzZry8fHR0aNH9dVXX+mbb77Rl19+qUcffTTPOQ3D0NNPP20t2KpevbqaNWumCxcuaOPGjYqKitK4ceOKPBdfX181adIk330BAQFFHg8AAABwVBSHAQAAAAAAAAAAOAHDMFSnTh09++yzGjhwoMqVKydJyszM1KRJkzRt2jRNnTpVrVu3Vq9evazHTZgwQYcPH9Ydd9yhxYsXq379+pKklJQUPfvss/roo480atQo3X///fL19bU558svv6w5c+aocePG+uyzzxQaGmrdl5iYqHXr1t3QXFq0aKG1a9fe0LEAAACAM6E4zE5EREQoIiIiT7vFYimBaAAAAAAAAAAAgKMJCwvTgQMHZDbb/nrI3d1dr7/+unbt2qWlS5fq448/tikO++WXXyRJM2bMsBaGSZK3t7ciIiK0aNEiXbx4URs3blSPHj2s+6OiovTmm2+qUqVKWrVqlSpXrmxzXl9fXz3wwAO3YqoAAAAA/g/FYXYiPDxc4eHhedoTExPl5+dXAhEBAAAAAAAAAABH8vdVvf6uW7duWrp0qQ4fPmzTnpaWJkmqVatWnmPMZrOCg4N18eJFZWdn2+x7//33ZbFYNHr06DyFYQAAAABuD4rDAAAAAAAAAAAAoPT0dEmSp6enTXvTpk31+++/a9OmTWrUqJHNvsuXL+vgwYMym81q3ry5zb6ffvpJktSrVy/t2LFDn376qQ4fPiwvLy+1bt1aw4cPv+GisRMnTmjo0KE6efKkvLy81LhxYz3yyCN5YgAAAACcHcVhAAAAAAAAAAAATs4wDC1cuFCS1LZtW5t9kyZN0n333adx48bJbDarZ8+e8vHx0a5duzRu3DilpKTolVdeUVBQkPWYc+fO6cyZMzKZTFqzZo2ef/55WSwW6/4lS5Zo+vTp+v7779W1a9cix3v8+HEdP37c+vXPP/+sN954Q+Hh4Zo1a5ZcXV2veXxGRoYyMjKu2ScxMbHIcQEAAAD2xqWkAwAAAAAAAAAAAEDJ+vjjj7Vz5065u7trzJgxNvs6d+6slStXqmnTpnrqqadUtWpV+fj4qF27djp79qzmzZunKVOm2Bxz9uxZSZLJZNJzzz2nsLAw7dixQxkZGdq3b5+6deumxMRE9e3bVydPnix0nJ6ennryySe1atUqnT59WhkZGTpw4IDGjBkjk8mkiIgIvfDCC9cdZ9q0afLz87vm9tdiNwAAAKC0ojgMAAAAAAAAAADAie3YsUOjR4+WJE2dOlW1a9fO0+f48eOKi4uTyWRScHCwmjRpIk9PT8XExOiTTz5RTEyMTf+UlBRJUk5Ojnx8fPTLL7+oRYsWcnd3V8OGDfXjjz8qMDBQiYmJmjlzZqFjbd26tT777DN17txZgYGBcnd3V/369fXuu+/q3XfflSTNnDnTZlWx/Lz00ktKSEi45laUojUAAADAXlEcBgAAAAAAAAAA4KSOHz+uXr16KT09XYMGDdLzzz+fp8+0adP05JNPymQyadeuXYqJidGePXsUFxenYcOGae3atWrbtq0SEhKsx5QpU8b6+oknnlC5cuVsxvT09NSoUaMkScuWLSuWufzrX/9S9erVZbFYtGTJkmv29fDwkK+v73U3AAAAoLSjOAwAAAAAAAAAAMAJnTt3Tt26ddPZs2d1//33a+7cuTKZTDZ94uLiNHnyZEnS3Llz1bRpU+s+Hx8fzZkzRw0bNtSZM2c0e/Zs676/FoPVr18/3/M3aNBAkvKsOnajXF1dFRYWJkk6cuRIsYwJAAAAlHYUhwEAAAAAAAAAADiZy5cvq1u3bjp69Kg6dOighQsXys3NLU+/7du3Kz09XT4+PtbCq78ym83q2LGjtW+ukJAQeXh4SJL1v3+X226xWG52Ola5c8jOzi62MQEAAIDSjOIwAAAAAAAAAAAAJ5KcnKyePXsqKipKoaGh+umnn+Tp6Zlv36SkpOuOZxiGJCk9Pd3a5urqqtDQUEnSsWPH8j0ut71atWpFiv9a9u3bJ0mqXr16sY0JAAAAlGYUhwEAAAAAAAAAADiJjIwMPfTQQ9q6dasaNWqkZcuWqWzZsgX2r1u3rqSrBWWRkZF59mdnZ2vdunWSpHr16tnsGzBggCRpwYIFysrKynPsF198IUnq3LnzjU3mb1asWKGoqChJUteuXYtlTAAAAKC0ozgMAAAAAAAAAADACVgsFg0cOFCrV69W7dq1tXLlSpUvX/6ax7Ro0UINGzaUJA0dOlR79uyx7ktKStKoUaO0f/9+SdLgwYNtjh0+fLiCgoIUExOj0aNHKzMz0xrHyy+/rJ07d8rd3V1jx461OW7Lli0KCQlRSEhInnhy48/JybG2GYahH374QQMHDpQkde/eXa1bty7kdwUAAABwbOaSDgAAAAAAAAAAAAC33rfffqvFixdLklxcXNS/f/98+wUEBGjhwoWSJJPJpC+//FJdu3bVwYMH1bx5cwUHB8vX11fR0dFKS0uTJE2dOlWtWrWyGcfT01OLFi1Sly5d9MEHH+jrr79WnTp1FBMTowsXLsjV1VUfffSRtfgsV3p6umJjY/ONbdmyZfrmm2/k7e2tOnXqyMPDQ8ePH9eFCxckSaGhoZo/f/4Nf48AAAAAR0NxGAAAAAAAAAAAgBPIyMiwvo6OjlZ0dHS+/YKDg22+btmypaKiovT2229r2bJlOn78uE6fPq1KlSqpZ8+eCg8PV6dOnfId684779SePXs0depULVu2TLt27ZK/v7/69OmjF154QWFhYUWawxtvvKG1a9dq9+7dOnHihJKSkuTv768uXbpo4MCBGjJkiNzc3Io0JgAAAODITIZhGCUdBKSIiAhFRETkabdYLDp8+LASEhLk6+tbApEBAAAA+UtMTJSfnx/3qigQ7xEAAADYM+5XcT28RwAAAGDPCnu/ysphdiI8PFzh4eF52nN/kAAAAAAAAAAAAAAAAABQFC4lHQAAAAAAAAAAAAAAAAAAoPhRHAYAAAAAAAAAAAAAAAAADojiMAAAAAAAAAAAAAAAAABwQBSHAQAAAAAAAAAAAAAAAIADojgMAAAAAAAAAAAAAAAAAByQ0xaHvfLKKzKZTDKZTJo6deoNjbF582Y99NBDqlSpkjw9PdWwYUNNmTJF6enpxRwtAAAAAAAAAAAAAAAAABSNUxaHHThwQDNmzLipMebPn6977rlHS5YskYeHhxo0aKAjR45o4sSJat++vVJTU4spWgAAAAAAAAAAAAAAAAAoOqcrDjMMQyNHjpSbm5s6d+58Q2PExMRo2LBhslgsevPNN3Xy5Ent2LFD0dHRuuOOO7Rt2zaNHz++mCMHAAAAAAAAAAAAAAAAgMJzuuKwTz/9VL///rsmTpyooKCgGxpjxowZysjIUPfu3TVu3DiZTCZJUnBwsD777DNJ0kcffaTz588XW9wAAAAAAAAAAAAAAAAAUBROVRx24cIFvfDCC2rYsKHGjh17Q2MYhqEffvhBkjRs2LA8+++++27Vr19fWVlZ+vHHH28qXgAAAAAAAAAAAAAAAAC4UU5VHDZ27FhdvnxZs2fPlpub2w2NceLECZ09e1aS1LZt23z75LZv3br1xgIFAAAAAAAAAAAAAAAAgJtkLukAbpdVq1Zp/vz5Gjx4sDp06HDD40RHR0uSPDw8FBgYmG+fWrVq2fQtSEZGhjIyMq7ZJzEx8QaiBAAAAAAAAAAAAAAAAODsnKI4LD09XaNGjZKfn5/eeuutmxrrypUrkiR/f3+ZTKZ8+5QrV86mb0GmTZum11577abiAQAAAAAAAAAAAAAAAID8OEVx2NSpU3XkyBG9//77qlKlyk2NlZ6eLklyd3cvsI+Hh4ckKS0t7ZpjvfTSS3r22Wev2ScxMVFBQUFFjBIAAAAAAAAAAAAAAACAs3P44rADBw5oxowZatmypf75z3/e9HhlypSRJGVmZhbYJ/dRkZ6entccy8PDw1pIBgAAAAAAAAAAAAAAAADFyaWkA7jVnn76aWVnZ+uDDz6Qi8vNTzf3kZHx8fEyDCPfPrmPk8ztCwAAAAAAAAAAAAAAAAC3m8OvHLZz506ZTCY9+OCDefYlJCRIkqZPn673339fQUFB2rZt2zXHq1u3rqSrq4OdOXNG1apVy9Pn2LFjNn0BAAAAAAAAAAAAAAAA4HZz+OIwSbJYLDp//nyB+5OTk5WcnGx9ZOS11KhRQ1WrVtW5c+e0ceNGDRgwIE+fjRs3SpJat25940EDAAAAAAAAAAAAAAAAwE1w+MdK5j7+Mb9tyJAhkqQpU6bIMAzFxMRcdzyTyaSHH35YkvTpp5/m2b9p0yYdPHhQbm5u+a5WBgAAAAAAAAAAAAAAAAC3g8MXh92omTNnKiQkRAMHDsyzb9y4cXJ3d9eKFSs0Y8YMGYYhSYqNjdVTTz0lSRo+fLiqVq16W2MGAAAAAAAAAAAAAAAAgFwUhxUgPj5esbGxOnfuXJ59NWvW1McffywXFxeNHz9eQUFBatmyperWratDhw6pVatWmjFjRglEDQAAAAAAAAAAAAAAAABXURx2g5544gn9/vvv6tWrl9LS0rR//37VqlVLkyZN0oYNG+Tt7V3SIQIAAAAAAAAAAAAAAABwYiYj95mIsEuJiYny8/NTQkKCfH19SzocAAAAwIp7VVwP7xEAAADYM+5XcT28RwAAAGDPCnu/ysphAAAAAAAAAAAAAAAAAOCAKA4DAAAAAAAAAAAAAAAAAAdEcRgAAAAAAAAAAAAAAAAAOCCKwwAAAAAAAAAAAAAAAADAAZlLOgBcFRERoYiIiDztFoulBKIBAAAAAAAAAAAAAAAAUNpRHGYnwsPDFR4enqc9MTFRfn5+JRARAAAAAAAAAAAAAAAAgNKMx0oCAAAAAAAAAAAAAAAAgAOiOAwAAAAAAAAAAAAAAAAAHBDFYQAAAAAAAAAAAAAAAADggCgOAwAAAAAAAAAAAAAAAAAHRHEYAAAAAAAAAAAAAAAAADggisMAAAAAAAAAAAAAAAAAwAFRHAYAAAAAAAAAAAAAAAAADojiMAAAAAAAAAAAAAAAAABwQBSHAQAAAAAAAAAAAAAAAIADojgMAAAAAAAAAAAAAAAAABwQxWEAAAAAAAAAAAAAAAAA4IAoDgMAAAAAAAAAAAAAAAAAB2Qu6QBwVUREhCIiIvK0WyyWEogGAAAAAAAAAAAAAAAAQGlHcZidCA8PV3h4eJ72xMRE+fn5lUBEAAAAAAAAAAAAAAAAAEozHisJAAAAAAAAAAAAAAAAAA6I4jAAAAAAAAAAAAAAAAAAcEAUhwEAAAAAAAAAAAAAAACAA6I4DAAAAAAAAAAAAAAAAAAcEMVhAAAAAAAAAAAAAAAAAOCAKA4DAAAAgCIwDEMbNmzQuHHjdNddd8nf31/u7u4KDAxU3759tWbNmgKPTUpK0uTJk9WiRQv5+PjI3d1dNWrU0GOPPaYdO3bke0xISIhMJtN1t9dee63Qc1i7du11x5szZ06RvzcAAAAAAAAAAMC+mEs6AAAAAAAoTVavXq2uXbtKklxcXFSnTh15e3srOjpaixYt0qJFi/TKK69oypQpNsfFxcXpnnvu0eHDh+Xi4qKaNWvKx8dHR48e1VdffaVvvvlGX375pR599FGb40JDQ1W9evV8Y0lNTdXOnTslSW3atCnyXHx9fdWkSZN89wUEBBR5PAAAAAAAAAAAYF8oDgNwW1lyLLqSfkWXUi/pUtolXUy9qEupl1TDr4a61OpS0uEBAABcl2EYqlOnjp599lkNHDhQ5cqVkyRlZmZq0qRJmjZtmqZOnarWrVurV69e1uMmTJigw4cP64477tDixYtVv359SVJKSoqeffZZffTRRxo1apTuv/9++fr6Wo9buHBhgbF88sknGjFihAICAtSlS9HvpVq0aKG1a9cW+TgAAAAAAAAAAFA6UBwG4IZZciy6kHrBWuB1Ke2SLqX+X8FX2iW1D26vB+94UJIUfSlad316l66kXZEhI89YTzV/yloclmXJ0rQN0xQaGKrQaqGq6FXxts4LAADgWsLCwnTgwAGZzbbplLu7u15//XXt2rVLS5cu1ccff2xTHPbLL79IkmbMmGEtDJMkb29vRUREaNGiRbp48aI2btyoHj16FCqWL7/8UpI0aNAgubq63uzUAAAAAAAAAACAg6E4DICN5MxkbTm1Jd9ir0tpl9S/YX891eIpSdLBiwfV+IPGBY6VnZNtLQ4r61FWl9MuW/f5eviqgmcFVfSqqPKe5dWr3p+/ON0bt1evrn3V+nWIf4jCqoVdLRYLDFWrwFbycfcp7qkDAAAUyl9X9cpPt27dtHTpUh0+fNimPS0tTZJUq1atPMeYzWYFBwfr4sWLys7OLlQcsbGx+v333yVJjz/+eKGOAQAAAAAAAAAAzoXiMMDBGIahpMwkmWRSWY+ykqS4lDgt2Lvgz8c4/q3oKzw0XC+2e1GSdCLhhLp92a3A8euVr2d9XdGrokwyqbxneVXwqmAt9sp93SG4g7VvJa9KivpnlLUYzM3VrcBzuLu66/GmjyvydKQOXTqkmPgYxcTH6Nt930qSXu/8ul665yVJUnx6vI5ePqomVZrI3dX9xr9xAAAAxSQ9PV2S5OnpadPetGlT/f7779q0aZMaNWpks+/y5cs6ePCgzGazmjdvXqjzzJ8/X4ZhqEmTJmrWrNkNxXrixAkNHTpUJ0+elJeXlxo3bqxHHnmk0DEAAAAAAAAAAAD7RnEYYMdyjBxdSbtiLeoK8AlQzXI1JUkx8TF6/ffX8y32ys7J1qQOk/Rqx6urb11Mvagxy8cUeJ4zSWesryt5VVKjSo1Uwev/Cr08//xvBa8KalqlqbVvZe/Kyvp3llxdrv8II1cXVzWq3Oi6/SSpceXG+t/D/5N0tfjrjzN/aNuZbdp2ZpsiT0cqtFqote/Koys14LsB8nD1UPOqzf9cYaxaqOpVqCcXk0uhzgkAAFAcDMPQwoULJUlt27a12Tdp0iTdd999GjdunMxms3r27CkfHx/t2rVL48aNU0pKil555RUFBQUV6lzz5s2TdHOrhh0/flzHjx+3fv3zzz/rjTfeUHh4uGbNmnXNR1VmZGQoIyPjmuMnJibecGwAAAAAAAAAAODmURxmJyIiIhQREZGn3WKxlEA0KCkHLhzQ8J+GXy3ySr2kK+lXlGPkWPe/2uFVTeo4SZKUlpWmj3d8XOBY8enx1tdVfapqQKMBquhZMc8KXxW9KirI989fQFbyrqSop6MKFa/JZJKr6fqFYTfDv4y/utTqoi61uljbDMOwvr6SfkXlypTTlfQr2np6q7ae3mrd5+vhq8WPLFanmp0kSVmWLJldzDKZTLc0ZgAA4Lw+/vhj7dy5U+7u7hozZozNvs6dO2vlypX697//raeeespmX0hIiObNm6fHHnusUOfZvn27Dhw4IBcXFw0aNKjIcXp6eurJJ5/U4MGDVb9+fVWsWFHHjh3Thx9+qFmzZikiIkJlypTRW2+9VeAY06ZN02uvvVbkcwMAAAAAAAAAgNvHZPy1ygJ2JzExUX5+fkpISJCvr29Jh4Nb7MCFA2o4u2Gedl8PX1XwrKBRd47S+LbjJUmJGYmauWWm7epe/1f4VcGrgrzcvG53+CXGMAwdvXJUkacjte301RXGdpzdobTsNB175ph1tbVpv0/Te5HvXV1ZLDBUYdXCdGfgnargVaGEZwAAQOnEvaqtHTt2qG3btkpPT9ebb76pcePG5ekzd+5cvfHGGzp8+LBq1KghX19fHTlyRGlpaerYsaM+//xzhYSEXPdcY8aM0axZs9S1a1etXLmyWOcxa9YsjRkzRq6uroqOjlbNmjXz7VfYlcOCgoJ4jwAAAMAukdPgeniPAAAAwJ4V9n6V4jA7R+LhXFKzUrXsyDJrgVdFr4oq71le7q7uJR1aqZOdk619cfvUtEpT60phfb/tq0UHFuXpW6tcLYVVC9N/e/xXFb0q3u5QAQAotbhX/dPx48fVtm1bnT17VoMGDdK8efPyrFY6bdo0TZgwQfXr19c333yjpk2vPq47OTlZY8aM0aeffqrAwEDt379ffn5+BZ4rOztb1apVU1xcnP73v//d1GMl82OxWBQSEqJTp05p5syZGj169A2PxXsEAAAA9oz7VVwP7xEAAADYs8Ler7rcxpgAXIeXm5f6NOijDiEd1LhyY1X1qUph2A0yu5jVrGozm1/Kfvnwl9r41EbNvHemBjUZpLrl60qSjl05ph8O/CBfjz8vllPWTdHwJcP14fYPtfPsTmVZsm77HAAAQOlw7tw5devWTWfPntX999+vuXPn5ikMi4uL0+TJkyVdXT0stzBMknx8fDRnzhw1bNhQZ86c0ezZs695vhUrViguLk7e3t56+OGHi30+rq6uCgsLkyQdOXKk2McHAAAAAAAAAAC3j7mkAwCA28XLzUt3B92tu4PutrZdSbui7We262TiSZtCvO8OfKc95/fo052fSpLKmMuoRdUWCqsWprBqYXq08aN5fukLAACcz+XLl9WtWzcdPXpUHTp00MKFC+Xm5pan3/bt25Weni4fHx9r4dVfmc1mdezYUfv379f27duvec558+ZJkh5++GH5+PgUz0T+JncO2dnZt2R8AAAAAAAAAABwe1AcBsCplfMsp261u+Vpn9Jpirac2qLI05Hafma7EjIStPnUZm0+tVl1y9fVoCaDrH0//uNjVfKupNDAUFXzrXY7wwcAACUoOTlZPXv2VFRUlEJDQ/XTTz/J09Mz375JSUnXHc8wDElSenp6gX2SkpL0448/SlKxP07yr/bt2ydJql69+i07BwAAAAAAAAAAuPUoDgOAfDx4x4N68I4HJUk5Ro6OXD6iyNOR2nZ6myp4VbD2s+RY9OyKZ5WcmSxJCiwbqNDAUIVVC1NoYKjuDLxT5TzLlcgcAADArZORkaGHHnpIW7duVaNGjbRs2TKVLVu2wP516159nHVycrIiIyPVunVrm/3Z2dlat26dJKlevXoFjvP9998rNTVVAQEB6tKlSzHMJK8VK1YoKipKktS1a9dbcg4AAAAAAAAAAHB7uJR0AABg71xMLqpXoZ4GNx2sWT1maWKHidZ9KVkpeqTRI2papalcTC46k3RGPx76US+vflnd53XXoEWDbMaKPB2ptKy02z0FAABQjCwWiwYOHKjVq1erdu3aWrlypcqXL3/NY1q0aKGGDRtKkoYOHao9e/ZY9yUlJWnUqFHav3+/JGnw4MEFjpP7SMlBgwbJ1dX1mufcsmWLQkJCFBISkmdfbvw5OTnWNsMw9MMPP2jgwIGSpO7du+cpYgMAAAAAAAAAAKULK4cBwE3w9fDVJw9+IklKyUzRznM7r64wdmabtp3eptbV/vyF6tmks2r9SWu5mlzVpEoThQaGqkNwB/Vr2E8eZo+SmgIAACiib7/9VosXL5Ykubi4qH///vn2CwgI0MKFCyVJJpNJX375pbp27aqDBw+qefPmCg4Olq+vr6Kjo5WWdrV4fOrUqWrVqlW+450+fVpr1qyRVLhHSqanpys2NjbffcuWLdM333wjb29v1alTRx4eHjp+/LguXLggSQoNDdX8+fOvew4AAAAAAAAAAGDfKA4DgGLi7e6tdjXaqV2Ndta2HOPP1ThOJp5UFe8qOp9yXrvO7dKuc7v08Y6PNW7lOI25a4xGthopvzJ+JRE6AAAogoyMDOvr6OhoRUdH59svODjY5uuWLVsqKipKb7/9tpYtW6bjx4/r9OnTqlSpknr27Knw8HB16tSpwPPOnz9fOTk5atKkiZo1a3ZTc3jjjTe0du1a7d69WydOnFBSUpL8/f3VpUsXDRw4UEOGDJGbm9tNnQMAAAAAAAAAAJQ8k2EYRkkHgYIlJibKz89PCQkJ8vX1LelwANwkwzB0KvGUtp3Zpq2ntmr+3vk6nXRakjTn/jkaeefIEo4QAIDC414V18N7BAAAAPaM+1VcD+8RAAAA2LPC3q+ychgA3EYmk0lBfkEK8gtSnwZ9NKXzFH219yvN3TVXTzR7wtpvw4kNquxdWfUq1CvBaAEAAAAAAAAAAAAAQGnmUtIBAIAzc3d119DmQ7V26Fp5unlKuvooyuFLhqv++/XV99u+ijwdWcJRAgAAAAAAAAAAAACA0ojiMACwM/Hp8apXoZ4MGVp0YJFaf9Janb7opGVHloknAQMAAAAAAAAAAAAAgMKiOAwA7Ex5z/Ja8ugSRf0zSkOaDZHZxay1MWvVY34PtfiwhdYcX1PSIQIAAAAAAAAAAAAAgFLAXNIB4KqIiAhFRETkabdYLCUQDQB70KhyI83tPVdTOk3Ru1ve1Ud/fKTd53fLEKuHAQAAAAAAAAAAAACA6zMZPKPMriUmJsrPz08JCQny9fUt6XAAlKAraVe0cP9CjWg5QiaTSZL0xoY3lJGdoX+F/UsVvCqUcIQAAGfDvSquh/cIAAAA7Bn3q7ge3iMAAACwZ4W9X+WxkgBQSpTzLKd/tPqHtTAsIT1B0zZM06R1k1RjZg2NXjpasfGxJRwlAAAAAAAAAAAAAACwFxSHAUAp5e3urY96faTmVZsrNStV70W+p9rv1dbjPzyuvef3lnR4AAAAAAAAAAAAAACghFEcBgCllNnFrEcaP6Id/9ihFYNXqEvNLrIYFs3bM09N5zTVB9s+KOkQAQAAAAAAAAAAAABACaI4DABKOZPJpG61u+m3J37TthHb1L9hf7m7uqtH3R7WPlfSrijHyCnBKAEAAAAAAAAAAAAAwO1GcRgAOJA7A+/Ut/2/1amxpxTiH2JtH7ZkmBpGNNSnOz5VRnZGyQUIAAAAAAAAAAAAAABuG6coDlu8eLFGjhypVq1aKSAgQO7u7vL399fdd9+tWbNmKTMzs0jjTZo0SSaT6ZrbwYMHb9FsAOD6KnlXsr6OT4/X2pi1OnTpkIb/NFy13qulGRtnKDEjsQQjBAAAAAAAAAAAAAAAt5q5pAO4Hd566y1t3LhRHh4eCgwMVLNmzXT27Flt3rxZmzdv1pdffqnffvtN/v7+RRo3KChINWrUyHefl5dXMUQOADfPv4y/YsbE6KM/PtK7W97VmaQzGv/beP3n9//on3f+U6PvGq2qPlVLOkwAAAAAAAAAAAAAAFDMnGLlsOHDh2vNmjVKSkrSsWPHtG3bNp06dUqbN29W9erV9ccff+jll18u8rhPPfWUNmzYkO9WUNEYAJQEXw9fPX/38zr2zDF9+uCnql+xvhIyEvTGxjf07b5vSzo8AAAAAAAAAAAAAABwCzhFcdjQoUPVsWNHubm52bTfddddeueddyRdffQkADg6D7OHnmrxlPY9vU+LH1msHnV6aFiLYdb962LWadvpbSUYIQAAAAAAAAAAAAAAKC5OURx2LfXr15ckpaamlnAkAHD7uJhc9FD9h/TrY7/K291bkmQYhv619F8K+yRMnb/orOVHlsswjBKOFAAAAAAAAAAAAAAA3ChzSQdQ0jZv3ixJatmyZZGPXbNmjfbt26dLly6pfPnyCgsL0xNPPKGqVasWd5gAcMslZyarZUBLHbx4UGti1mhNzBo1r9pc4+8er/6N+svs4vQfGQAAAAAAAAAAAAAAlCpOuXKYxWLRqVOnNHv2bD3//PPy9vbWtGnTijzO+vXr9d1332nNmjX6/vvv9cILL6hWrVqaO3duoY7PyMhQYmLidTcAuB3KepTVF72/0NFnjmpM6zHydvPWrnO7NGjRINX7bz0tObSkpEMEAAAAAAAAAAAAAABF4FTFYTNnzpTJZJLZbFZQUJDCw8PVpUsXbdmyRWFhYYUeJyAgQBMmTNC2bdt06dIlpaamauPGjerRo4fS0tL01FNP6aeffrruONOmTZOfn981t6CgoJuZMgAUWQ2/Gnr3vnd1YuwJTe44WRW9Kup4/HG5u7qXdGgAAAAAAAAAAAAAAKAITIZhGCUdxO2ycOFCzZo1S1lZWYqNjdX58+fl5+en8PBwTZ48Wa6urjc1vmEY6tu3r3744QfVrl1b0dHRMplMBfbPyMhQRkbGNcdMTExUUFCQEhIS5Ovre1PxAcCNSM1K1aIDi/RYk8es17Rpv0/T+ZTzerbNs6rhV6OEIwQAlJTExET5+flxr4oC8R4BAACAPeN+FdfDewQAAAD2rLD3q05VHPZ3W7du1ciRI7V7926NGjVKH3zwwU2PefjwYd1xxx2SpF27dqlZs2Y3NR6JBwB7k5KZoqB3g3Ql/YrMLmY92vhRjW87Xo0rNy7p0AAAtxn3qrge3iMAAACwZ9yv4np4jwAAAMCeFfZ+1akeK/l3rVu31q+//ioPDw999NFHio2Nvekx69Wrp/Lly0uSjhw5ctPjAYC98XLz0oK+C9QppJOyc7L15Z4v1eSDJur1VS/9Hvu7nLjmGAAAAAAAAAAAAAAAu+LUxWGSFBgYqObNmysnJ0e7d+8uljHd3NwkSdnZ2cUyHgDYE5PJpHvr3KvVQ1Yrcnik+jXsJ5NM+iX6F7Wf217TN04v6RABAAAAAAAAAAAAAIAoDpP0ZxFXcRRzXbx4UXFxcZKk6tWr3/R4AGDPQquFamH/hTr0r0P6R8t/yNPsqb4N+lr3X0i5oExLZglGCAAAAAAAAAAAAACA83L64rCYmBjrimHNmjW76fHeeecdGYYhPz8/hYaG3vR4AFAa1K1QVx8+8KHOPX9OdSvUtbb/a+m/VHNWTb216S0lZiSWYIQAAAAAAAAAAAAAADgfhy8O++OPP/Tqq6/q2LFjefYtW7ZMPXr0UHZ2tnr27KnatWtb982cOVMhISEaOHCgzTH79u3T008/rX379tm0p6en6/XXX9f06Vcfp/bCCy/I3d39FswIAOyXr4ev9XVqVqo2n9ysM0lnNG7lONV4t4YmrJqg88nnSzBCAAAAAAAAAAAAAACch7mkA7jVkpKSNHnyZE2ePFlVq1ZV9erVlZmZqRMnTig+Pl6SFBoaqi+++MLmuPj4eMXGxiokJMSmPSsrSx988IE++OADVapUSTVq1JAkHThwQKmpqZKkYcOG6cUXX7zlcwMAe+bl5qXo/xeteXvmacamGTp06ZCmbZimdza/o74N+2pM6zEKrXZ1hcWY+BgtP7JcZcxlVMZcRp5unn++NnuqZrmaquhVUZKUZclShiVDZcxlZHZx+I8xAAAAAAAAAAAAAABumMP/Vr1Zs2aaNWuWVq1apX379ungwYPKzMxUhQoV1KZNGw0YMECDBw+W2Vy4b0VISIimTJmiTZs26eDBgzp06JAyMzNVuXJl9ezZU8OHD9e99957i2cFAKWDh9lDw1oO05MtntSSQ0s0feN0bTm1RV/t/Ur3173fWhy269wujfplVIHjfNjrQ/2j1T8kSeti16nbl90kSa4mV2sRWW5R2Sv3vKIhzYdIkg5cOKDxv423Fpn9tW8Zcxl1q9VN9wTfI0m6knZFy48utx3vL8dU8q6k8p7lJUmGYUiSTCbTrfnGAQAAAAAAAAAAAABQDBy+OKxcuXJ65pln9MwzzxTpuEmTJmnSpEl52v39/fXKK68UU3QA4BxcTC7qXb+3HrrjIf1+4netOLpCjSs3tu6v7F1ZD93xkNKz0/Nsadlp8i/jb+2bnp1ufW0xLErJSlFKVoq17a+vzyWf08+Hfy4wLm83b2tx2NErR/Xo948W2PeVe17RlM5TJEmHLh1Sw4iGeYrNclc8G9JsiJ5pffVz52LqRY1ZNsZabFbZu7ICygYowCdAAWUDFOwXrApeFQr5nQQAAAAAAAAAAAAAoPAcvjgMAGA/TCaT2ge3V/vg9jbtdwfdrcUDFxdqjJ51eyp1Qqq1cOzvxWQh/iHWvndUvEOfPPBJnmKz3NetAltZ+3qaPdUppFO+xWnp2ekq61HW2jc9O12GDKVlpyktOy1PjPfW/nMFyfj0eM3fO7/A+YxsNVJzes2RJCVmJGrgdwOthWMBPgGq6lPVppisjLlMob5PAAAAAAAAAAAAAABQHAYAKFVcTC7ydPOUp5unyqncNfsGlg3UsJbDCjVuo8qNtHrI6kL1bVy5sc49dy7f4rS/F6iV9yyvt7u/rfTsdCVnJisuJU5nk8/qbNJZnUs+p+q+1a19zySd0dIjSws876hWo/RBrw8kXS0ke/qXp68Wj+VTTObn4cdjLwEAAAAAAAAAAADAyVEcBgBAEZldzKriU6VQfct7ltezbZ4tVN9KXpX0yQOf/Fk8lnJOZ5POWr8OKBtg7Xs68fQ1VyT7V+i/9N+e/5V0tZBswqoJ1iKyvxaUVfKqJFcX10LFBwAAAAAAAAAAAAAoXSgOsxMRERGKiIjI026xWEogGgBASajgVaHAlc4Mw1B2Trb16/Ke5fVWt7euFo79X/FY7n8TMhJU2buyte+pxFOK2Jb3M0aSXE2uev7u5/VG1zckSUkZSXpz45t5ViKr6lOVR1oCAAAAAAAAAAAAQClDcZidCA8PV3h4eJ72xMRE+fn5lUBEAAB7YjKZ5ObqZv26ik8VPXf3c/n2Tc1KVY6RY/3a18NXE9pNsBaSnUu+uiJZXEqcLIZFPu4+1r4nEk5o6u9T8x23XJlyGnvXWP27w78lXS0k+3jHx3kea+nr4csjLQEAAAAAAAAAAADADlAcBgCAg/Fy87L5urpvdf2ny3/y9MvOyVZcSpw8XD2sbd7u3vrnnf+0KSI7m3xWmZZMXUm/IheTi7VvbEKsnluRt0DN0+ypgLIBCg8Ntz5SMy0rTT8f/lnB/sEK8Q9RJa9KFJABAAAAAAAAAAAAwC1GcRgAAE7K7GJWYNlAm7YQ/xDNvn+2TZthGLqSfkXnks/Jv4y/td3d1V0DGw+0FpCdSz6nxIxEpWWn6diVY0rLSrP2PXrlqAZ8N8D6tafZU8H+wQr2u1os1rt+b91X5z5Jsq569tdCNAAAAAAAAAAAAABA0VEcBgAArslkMqm8Z3mV9yxv016vQj0t6LvApi0lM+XqimPJZ1Xdt7q1PTsnW22D2iomPkZnks4oLTtNBy8e1MGLByVJwX7B1uKw/Rf2q9VHrRTsF3x1pTG/EOuKY8F+wWpQqYEqelW8xbMGAAAAAAAAAAAAgNKP4jAAAFBsvN29Vbt8bdUuX9umvXnV5trw1AZJUqYlUycTTiomPkYx8TGKTYhVx5CO1r6x8bHKtGQq+nK0oi9H5znHfzr/RxPumSBJOn7luCavn5yngKy6b3W5ubrduokCAAAAAAAAAAAAQClAcRgAALit3F3d8y0gy3VvnXt1fPRxxcbH2hSQ5f63drk/jztw8YDm7pqbZwwXk4uq+1bXlE5T9ESzJyRJl9Mua+fZnQr2D1aQb5A8zB63ZH4AAAAAAAAAAAAAYC8oDgMAAHbF7GJWiH+IQvxD1EEdrtm3Tvk6mtppap4CskxLpk4knJDZ5c9bnS2ntuj+r+6XJJlkUkDZAOtKYyH+IerXsJ9aBrS8pXMDAAAAAAAAAAAAgNuJ4jAAAFBq1atQTy+3f9mmLcfI0fnk84qJj1Gd8nVs2htUbKCY+BilZafpTNIZnUk6o00nN0mSGlVqZC0OW3ZkmYYuHnq1eMw/OM9jK2uVqyVPN8/bN1EAAAAAAAAAAAAAuAEUhwEAAIfiYnJRQNkABZQNsGnvVa+XetXrJcMwdCH1Qp7HVjav2tza9/iV4zqfcl7nU85r6+mtec7x5cNfanDTwZKkHWd3aP6e+X8Wkv1fAZlfGb9bOk8AAAAAAAAAAAAAuB6KwwAAgFMxmUyq7F1Zlb0rK7RaaL59BjcdrNbVW+cpIMv9b4h/iLXv1lNb9c6Wd/KMUa9CPR3616FbNQ0AAAAAAAAAAAAAuC6KwwAAAP6mrEdZtQxoaX3M5N8ZhmF93bRKUz1717OKSYixFpNdSrsk/zL+tylaAAAAAAAAAAAAAMgfxWEAAABFZDKZrK/b1mirtjXa2uxPzkxWfHr8bY4KAAAAAAAAAAAAAGxRHAYAAFDMfNx95OPuU9JhAAAAAAAAAAAAAHByLiUdAAAAAAAAAAAAAAAAAACg+LFymJ2IiIhQREREnnaLxVIC0QAAAAAAAAAAAAAAAAAo7SgOsxPh4eEKDw/P056YmCg/P78SiAgAAAAAAAAAAAAAAABAacZjJQEAAAAAAAAAAAAAAADAAVEcBgAAAAAAAAAAAAAAAAAOiOIwAAAAAAAAAAAAAAAAAHBAFIcBAAAAAAAAAAAAAAAAgAOiOAwAAAAAAAAAAAAAAAAAHBDFYQAAAAAAAAAAAAAAAADggCgOAwAAAAAAAAAAAAAAAAAHRHEYAAAAAAAAAAAAAAAAADggisMAAAAAAAAAAAAAAAAAwAFRHAYAAAAAAAAAAAAAAAAADojiMAAAAAAAAAAAAAAAAABwQBSHAQAAAAAAAAAAAAAAAIADMpd0ALgqIiJCERERedotFksJRAMAAAAAAAAAAAAAAACgtKM4zE6Eh4crPDw8T3tiYqL8/PxKICIAAAAAAAAAAAAAAAAApRmPlQQAAAAAAAAAAAAAAAAAB0RxGAAAAAAAAAAAAAAAAAA4IIrDAAAAAAAAAAAAAAAAAMABURwGAAAAAAAAAAAAAAAAAA6I4jAAAAAAAAAAAAAAAAAAcEAUhwEAAAAAAAAAAAAAAACAA6I4DAAAAAAAAAAAAAAAAAAcEMVhAAAAAAAAAAAAAAAAAOCAKA4DAAAAAAAAAAAAAAAAAAdEcRgAAAAAAAAAAAAAAAAAOCCKwwAAAAAAAAAAAAAAAADAAVEcBgAAAAAAAAAAAAAAAAAOyFzSAeCqiIgIRURE5Gm3WCwlEA0AAAAAAAAAAAAAAACA0o7iMDsRHh6u8PDwPO2JiYny8/MrgYgAAAAAAAAAAAAAAAAAlGY8VhIAAAAAAAAAAAAAAAAAHBDFYQAAAAAAAAAAAAAAAADggCgOAwAAAAAAAAAAAAAAAAAHRHEYAAAAAAAAAAAAAAAAADggisMAAAAAAAAAAAAAAAAAwAFRHAYAAAAAAAAAAAAAAAAADsgpisMWL16skSNHqlWrVgoICJC7u7v8/f119913a9asWcrMzLyhcTdv3qyHHnpIlSpVkqenpxo2bKgpU6YoPT29mGcAAAAAwF4YhqENGzZo3Lhxuuuuu+Tv7y93d3cFBgaqb9++WrNmTYHHJiUlafLkyWrRooV8fHzk7u6uGjVq6LHHHtOOHTvyPSYkJEQmk+m622uvvVbkuZw+fVr/+Mc/FBQUJA8PD9WoUUMjR47U6dOnizwWAAAAAPt3u/OZv1q5cqX69u2rwMBAeXh4qGrVqurYsaNmzJhxQ3MhnwEAAAAKx2QYhlHSQdxq7dq108aNG+Xh4aHAwEBVqFBBZ8+etSYIrVq10m+//SZ/f/9Cjzl//nwNGTJEFotF1apVU+XKlRUVFaWsrCyFhoZq7dq18vLyuunYExMT5efnp4SEBPn6+t70eAAAAEBxcdZ71VWrVqlr166SJBcXF9WpU0fe3t6Kjo5WcnKyJOmVV17RlClTbI6Li4vTPffco8OHD8vFxUU1a9aUj4+Pjh49quTkZLm6uurLL7/Uo48+anNc//79dfbs2XxjSU1N1c6dOyVJy5cvV/fu3Qs9j/379+uee+7R5cuX5efnp9q1a+vo0aNKSEhQhQoVtGHDBtWvX7/Q4+XHWd8jAAAAKB2c8X71ducz0tWCtKefflpz5syRJFWvXl0BAQG6cOGCTp06JT8/P128eLFI87gd+YzknO8RAAAAlB6FvV91ipXDhg8frjVr1igpKUnHjh3Ttm3bdOrUKW3evFnVq1fXH3/8oZdffrnQ48XExGjYsGGyWCx68803dfLkSe3YsUPR0dG64447tG3bNo0fP/4WzggAAABASTEMQ3Xq1NHs2bN18eJFHTp0SDt27NClS5f00ksvSZKmTp2qn3/+2ea4CRMm6PDhw7rjjju0b98+HTlyRLt27dK5c+f0j3/8QxaLRaNGjVJiYqLNcQsXLtSGDRvy3Z5++mlJUkBAgLp06VLoOVgsFvXv31+XL19W3759debMGf3xxx86ffq0+vTpo0uXLumRRx5RTk7OTX63AAAAANiT253PSNLLL7+sOXPmqHHjxoqMjNTJkycVGRmp48eP69KlS/r888+LNAfyGQAAAKBonGLlsGtZuHChBgwYoMDAwEIvNRweHq7Zs2ere/fuWr58uc2+TZs2qW3btnJzc9PJkydVpUqVm4qPv0oBAACAvXLWe9XExER5eXnJbDbnu79nz55aunSpHnzwQf3444/W9oCAAJ07d05LlizRAw88YHNMdna2AgICdPHiRf3666/q0aNHoWLp0KGD1q9fr+eee05vvfVWoeeQmwdVqFBBx48fV9myZa37kpKSVLNmTV26dEmLFi3Sww8/XOhx/85Z3yMAAAAoHZzxfvV25zNRUVFq3ry5ypcvr6ioKFWuXPmm53C78hnJOd8jAAAAKD1YOayQcpcVTk1NLVR/wzD0ww8/SJKGDRuWZ//dd9+t+vXrKysryyZxAgAAAOAYfH19C/xFiiR169ZNknT48GGb9rS0NElSrVq18hxjNpsVHBws6eovVgojNjZWv//+uyTp8ccfL9QxuRYtWiRJGjBggM0vUiSpbNmy6t+/v6Srv3QBAAAA4Dhudz7z/vvvy2KxaPTo0cVSGCaRzwAAAABF5fTFYZs3b5YktWzZslD9T5w4obNnz0qS2rZtm2+f3PatW7cWQ4QAAAAASpP09HRJkqenp01706ZNJV1dbfjvLl++rIMHD8psNqt58+aFOs/8+fNlGIaaNGmiZs2aFSnGLVu2SCKnAQAAAGCruPOZn376SZLUq1cv7dixQ+Hh4erWrZseeughvf7664qLiytyjOQzAAAAQNEU/OchDsxisejs2bNasmSJXnzxRXl7e2vatGmFOjY6OlqS5OHhocDAwHz75P7lTG7fgmRkZCgjI+OafRISEiRdXQoOAAAAsCe596hO/qR6G4ZhWP86/e+/qJg0aZLuu+8+jRs3TmazWT179pSPj4927dqlcePGKSUlRa+88oqCgoIKda558+ZJKvqqYZmZmTpx4oSk/P/q/6/tMTExysrKkpubW54+5DMAAAAo7chpbBV3PnPu3DmdOXNGJpNJa9as0fPPPy+LxWLdv2TJEk2fPl3ff/+9unbtWqgYiyufkchpAAAAUPoVOqcxnMi7775rSLLZevfubezdu7fQY3z77beGJKNKlSoF9pk9e7YhyWjcuPE1x3r11VfzxMPGxsbGxsbGxsZW2raTJ08W+n7a0X344YeGJMPd3d04cuRInv1r16417rnnnjzfw5CQEGPevHmFPs+2bdsMSYaLi4tx6tSpIsUYFxdnPe+BAwfy7bN//35rn4sXL+bbh3yGjY2NjY2NjY3NUTZymquKO5/ZsWOHIV3NW1xcXIw2bdoYO3bsMDIyMox9+/YZ3bp1MyQZvr6+xokTJwoVY3HlM4ZBTsPGxsbGxsbGxuY42/VyGqdaOaxatWpq27atsrKyFBsbq/Pnz2vNmjVasGCBJk+eLFdX1+uOkbuksru7e4F9PDw8JElpaWnXHOull17Ss88+e80+8fHxCg4O1okTJ+Tn53fd+BxJaGiotm3bVtJh3HbM27k447wTExMVFBSkkydPytfXt6TDua2c8eedy1nnzrydh7Ne2wzDUKtWrQpcUdfZ7NixQ6NHj5YkTZ06VbVr187T5/jx44qLi5PJZFKNGjXk6+urI0eOKCYmRp988onatm2rkJCQ654rd9Wwzp07q1q1akWKMzenkQrOa3JzGqngvIZ85tqc8VooOe+8JeeduzPO21k/9yXn/HlLzNsZOePcnfXaRk7zp1uRz6SkpEiScnJy5Ovrq19++UXlypWTJDVs2FA//vij6tSpozNnzmjmzJl6++23rxtnceUzEjnN9TjjtVBi3s7GWeftrJ/7kvP+zJm3c3HGeTvzda2wOY1TFYf1799f/fv3t369detWjRw5Uq+//rouX76sDz744LpjlClTRtLVpYsLkrsMsaen5zXH8vDwsElSrsXPz8/p3sSurq5ON2eJeTsbZ523JPn6+jrd3J355+2sc2fezscZr23u7u5ycXEp6TBK3PHjx9WrVy+lp6dr0KBBev755/P0mTZtmiZMmKD69etr165datq0qSQpOTlZY8aM0aeffqq2bdtq//791/ylQ3Z2thYsWCBJeuKJJ4oca25OIxWc1/z10SoF5TXkM9fmrNdCZ5235Lxzd9Z5S875ue+sP2/m7Xycee7OeG0jp7l1+cxfc48nnnjCWhiWy9PTU6NGjdLEiRO1bNmyQhWHFVc+I5HTXI+zXguZt3Nx1nnncsbPfWf9mTNv5+Ks85ac87omFS6nceqMp3Xr1vr111/l4eGhjz76SLGxsdc9Jjd5iY+PL/CZnVeuXLHpCwAAAMBxnTt3Tt26ddPZs2d1//33a+7cuTKZTDZ94uLiNHnyZEnS3Llzrb9IkSQfHx/NmTNHDRs21JkzZzR79uxrnm/FihWKi4uTt7e3Hn744SLH6+fnZ00Uc3OXv8ttd3FxccpkGgAAAHAWtzKf+evvSOrXr5/v+Rs0aCBJiomJKVS85DMAAABA0Tl1cZgkBQYGqnnz5srJydHu3buv279u3bqSrv7lyZkzZ/Ltc+zYMZu+AAAAABzT5cuX1a1bNx09elQdOnTQwoUL5ebmlqff9u3blZ6eLh8fH4WFheXZbzab1bFjR2vfa8l9pOTDDz8sHx+fIsfs7u6uGjVqSPozd/m73PaQkJB85wMAAACg9LvV+UxISIh1Za6CVujKbbdYLIWKmXwGAAAAKDqnLw6Trj6W5a//vZYaNWqoatWqkqSNGzfm2ye3vXXr1sUUIQAAAAB7k5ycrJ49eyoqKkqhoaH66aefCnxkSVJS0nXHy12ZOD09vcA+SUlJ+vHHHyVJjz/++A1EfVVurkJOAwAAADin25HPuLq6KjQ0VNL1C7mqVatW6NjJZwAAAICicfrisJiYGOuKYc2aNbtuf5PJZH10y6effppn/6ZNm3Tw4EG5ubnpwQcfLN5gAQAAANiFjIwMPfTQQ9q6dasaNWqkZcuWqWzZsgX2z11VODk5WZGRkXn2Z2dna926dZKkevXqFTjO999/r9TUVAUEBKhLly43HH+fPn0kSd9++22eX/QkJSVp4cKFkqR+/frd8DkAAAAA2Kfbmc8MGDBAkrRgwQJlZWXlOfaLL76QJHXu3LnQ8ZPPAAAAAEXj8MVhf/zxh1599dV8/ypl2bJl6tGjh7Kzs9WzZ0/Vrl3bum/mzJkKCQnRwIED8xw3btw4ubu7a8WKFZoxY4b1L2JiY2P11FNPSZKGDx9uXWEMNyY8PLykQygRzNu5OOu8nZUz/7ydde7MG87AGX/eFotFAwcO1OrVq1W7dm2tXLlS5cuXv+YxLVq0UMOGDSVJQ4cO1Z49e6z7kpKSNGrUKO3fv1+SNHjw4ALHyX2k5KBBg+Tq6nrNc27ZskUhISEKCQnJs69v376qX7++Ll26pCeffFKpqamSpJSUFD355JO6dOmSGjdurN69e1/zHCiYM/7bkJx33pLzzt1Z5+2snPXnzbydjzPP3Rk528/7duczw4cPV1BQkGJiYjR69GhlZmZa43j55Ze1c+dOubu7a+zYsTbHkc+UPGf7t5GLeTsXZ523M3PWnznzdi7OOm9nVpifucnIrWxyUGvXrlWnTp0kSVWrVlX16tWVmZmpEydOKD4+XpIUGhqqX3/9VRUrVrQeN2nSJL322mvq0KGD1q5dm2fc//3vf3ryySeVk5OjatWqqXLlyoqKilJWVpZatWqldevWydvb+6bjT0xMlJ+fnxISEuTr63vT4wFASeO6BsARcW1zLgsWLNCgQYMkXf0L+sqVK+fbLyAgwPoX65K0Y8cOde3aVVeuXJHJZFJwcLB8fX0VHR2ttLQ0SdLUqVP18ssv5zve6dOnVaNGDeXk5GjXrl3XXfn4r7lQfmlfVFSU2rdvrytXrsjPz0916tTRkSNHlJCQoPLly+v333+3/gLoRvFvA4Aj4toGwBFxbXMeJZHPbN++XV26dFFiYqLKlSunOnXqKCYmRhcuXJCrq6s+/fRTDRkyxOYYe8hnJP5tAHBMXNsAOBqua9dnLukAbrVmzZpp1qxZWrVqlfbt26eDBw8qMzNTFSpUUJs2bTRgwAANHjxYZnPRvhVPPPGE6tSpo2nTpmnTpk3av3+/atWqpUcffVQvvPCCypQpc4tmBAAAAKAkZWRkWF9HR0crOjo6337BwcE2X7ds2VJRUVF6++23tWzZMh0/flynT59WpUqV1LNnT4WHh1t/+ZGf+fPnKycnR02aNLluYVhhNG7cWLt379bkyZO1dOlS7d27V5UqVdKAAQM0ceJEVa9e/abPAQAAAMC+lEQ+c+edd2rPnj2aOnWqli1bpl27dsnf3199+vTRCy+8oLCwsCLPg3wGAAAAKDyHXzmstMvIyNC0adP00ksvycPDo6TDAYCbxnUNgCPi2gbkj38bABwR1zYAjohrG5A//m0AcERc2wA4Gq5r10dxGAAAAAAAAAAAAAAAAAA4IJeSDgAAAAAAAAAAAAAAAAAAUPwoDgMAAAAAAAAAAAAAAAAAB0RxGAAAAAAAAAAAAAAAAAA4IIrDAAAAAAAAAAAAAAAAAMABURxWTObNm6eRI0fqzjvvlIeHh0wmk+bOnVtg/61bt+qhhx5SxYoV5eHhoXr16mnixIlKS0vLt/+VK1f0/PPPq06dOvLw8FClSpXUr18/7du3L9/+HTt2lMlkyne77777imPKABzc6dOnNXPmTHXv3l01atSQu7u7qlatqr59+2rr1q35HpOYmKhnn31WwcHB8vDwUHBwsJ599lklJiYWeJ6vvvpKYWFh8vb2Vrly5dSzZ09t3769wP7R0dEaMGCAKlWqJE9PTzVt2lTvv/++cnJybnrOAByfPV7buG+DPSCfAeCI7PFzXyKnAXDj7PG6xn0b7AU5DQBHY4+f+xL5DICbY4/XNme5bzMZhmGUdBCOICQkRLGxsapYsaK8vb0VGxurzz//XEOHDs3Td9GiRXrkkUfk6uqqvn37qmrVqtq4caO2bt2qtm3batWqVfLw8LD2v3Tpktq0aaPo6Gi1adNGbdq00dmzZ/X999/LbDZr9erVat26tc05OnbsqHXr1unVV1/Nc/46depo8ODBxf49AOBYXnzxRU2fPl21a9dWhw4dVLlyZUVHR2vx4sUyDEMLFizQgAEDrP1TUlLUrl077dq1S926dVPLli21e/duLVu2TM2bN9eGDRvk7e1tc47XX39dL7/8smrUqKF+/fopOTlZX3/9tdLT07V8+XJ17NjRpv/+/ft19913KzU1VQMGDFC1atW0dOlS7d27VyNGjNBHH310O741AEoxe7y2cd8Ge0A+A8AR2ePnPjkNgJthj9c17ttgL8hpADgae/zcJ58BcLPs8drmNPdtBorFypUrjZiYGMMwDGPatGmGJOPzzz/P0y81NdWoWLGi4ebmZmzfvt3anpOTY4SHhxuSjGnTptkck9v+7LPP2rRv2rTJcHV1NRo2bGhYLBabfR06dDD48QK4Gd9//72xfv36PO3r16833NzcjPLlyxvp6enW9okTJxqSjPHjx9v0z22fOHGiTfvhw4cNs9ls1KtXz4iPj7e2R0VFGV5eXkbt2rWNrKwsm2Pat29vSDJ++eUXa1tmZqbRpUsXQ5KxevXqm5ozAMdnj9c27ttgD8hnADgie/zcJ6cBcDPs8brGfRvsBTkNAEdjj5/75DMAbpY9Xtuc5b7N8WdYAq6VeKxcudKQZPTv3z/PvitXrhiSjODgYCMnJ8faXq1aNcPFxcVISkrKc0zv3r3z/bB1ljcwgJLRvXt3Q5Kxbds2wzCu/s+TwMBAw8fHx0hOTrbpm5aWZpQrV86oVq2azbXtpZdeMiQZX3zxRZ7xR40aZUgyli9fbm07dOiQIcno1KlTnv5btmwxJBmPPvpocU0RgBMqiWubYXDfBvtDPgPAGZDTAHA05DPAn8hpADg68hkAjoic5tZyucEFx3CDzp8/L0mqWbNmnn3+/v4qV66cYmNjdezYMZtjKlasKB8fnzzH5I6zevXqfM/39ddfa9q0aXrvvfe0efPm4pgCAMjNzU2SZDabJV19xvyZM2fUtm3bPEt3lilTRu3bt9fp06d15MgRa/vatWslSd27d88z/r333itJWrduXaH6h4WFyd/f36Y/ABRVSVzb/or7NpQG5DMAHAU5DQBHQz4DFA45DQBHQD4DwBGR09xa5pIOwNlUqlRJknT8+PE8+xISEnTlyhVJ0uHDh1W7dm3rMefPn1dycnKe5CN3nMOHD+d7vkcffdTm69DQUH3zzTf5Jj4AUBgnTpzQb7/9pqpVq6pJkyaSrn44S1LdunXzPSa3PTo62ua1j4+Pqlates3+ua51DpPJpDp16mj79u1KTU2Vl5fXjU4PgJMqqWvbX3HfhtKAfAaAIyCnAeBoyGeAwiOnAVDakc8AcETkNLceK4fdZnfffbd8fX21ePFi7dy502bfv//9b+vr+Ph46+sePXooJydHr732mk3/yMhI/fzzz3n6S1Lv3r21dOlSnT17VikpKdq1a5eeeOIJbdu2TV27dlVqamrxTgyAU8jKytLjjz+ujIwMvfnmm3J1dZV09X+cSJKfn1++x/n6+tr0y31d1P5FPQcAFEZJXtsk7ttQupDPACjtyGkAOBryGaBoyGkAlGbkMwAcETnN7cHKYbeZj4+P3nnnHQ0fPlxt2rRRv379VLVqVW3atEl//PGH6tevr4MHD1rf8JL02muvaenSpXrrrbe0efNm3XXXXTp79qy+++47NWzYUHv27LHpL0ljxoyx+bpZs2b64osvlJ2dra+++kqff/65wsPDb8eUATiInJwcPfXUU1q/fr1GjBihxx9/vKRDAoCbZg/XNu7bUJqQzwAozezhcx8AipM9XNe4b0NpQ04DoLSyh899AChu9nBtc5b7NlYOKwHDhg3Tr7/+qjZt2ujHH3/U7NmzZTabtWrVKtWpU0fSn0sbS1L16tW1bds2DRs2TMePH9d7772nLVu2aPLkyZowYUKe/tc7tyRt3LixmGcFwJEZhqERI0Zo3rx5Gjx4sObMmWOzP7cCu6C/CElMTLTpl/u6qP0Lc47cqm8AuB57uLZdC/dtsFfkMwBKI3v43CenAVCc7OG6di3ct8GekdMAKG3s4XOffAZAcbOHa9u1ONp9GyuHlZAePXqoR48eedoff/xxubi4qGXLljbt1apV0yeffJKn/6RJkyRJd955Z6HOW7FiRUlymKXvANx6OTk5Gj58uD7//HM9+uijmjt3rlxcbGuLr/eM5vyeCV23bl1t3rxZ586dy/Pc54L6F3QOwzB05MgRBQYGytvbu6hTBOCE7OXadi3ct8Gekc8AKE3s5XOfnAZAcbGX69q1cN8Ge0dOA6C0sJfPffIZAMXJXq5t1+Jo922sHGZHNm7cqJiYGN13332Fqla0WCz6+uuvZTab1bdv30KdY+vWrZKkkJCQmwkVgJP46wfzI488oi+//DLPEunS1Q/RwMBAbdy4USkpKTb70tPTtX79egUGBlr/8k6SOnToIElasWJFnvGWL19u00eSOnbsWGD/yMhIxcfH2/QHgILY07XtWrhvQ2lDPgPAHtnT5z45DYDiYE/XtWvhvg2lETkNAHtjT5/75DMAios9XduuxeHu2wwUu2nTphmSjM8//zzf/QkJCXnaTp8+bdSvX98wm83GH3/8YbMvMzPTSE1NtWmzWCzGmDFjDEnG2LFjbfYdPXrUOHPmTJ5z7N+/36hUqZIhydi8eXMRZwXA2VgsFmPo0KGGJKN///5GVlbWNftPnDjRkGSMHz8+3/aJEyfatB86dMgwm81GvXr1jPj4eGt7VFSU4eXlZdSuXTvPOdu3b29IMn755RdrW2ZmptG1a1dDkrF69eobnS4AJ2Fv1zbu22CPyGcAOAp7+9w3DHIaADfH3q5r3LfBXpHTAHAE9va5bxjkMwBunr1d25zpvs1kGIZxa8vPnMMnn3yiDRs2SJL27t2rHTt2qG3bttYqxd69e6t3796SpKlTp2revHlq166dKleurJMnT+rHH39UamqqPv30Uw0ZMsRm7FOnTqlRo0bq3r27atasqczMTC1fvlwHDx7U/fffr++//14eHh7W/nPnztWIESPUqVMn1a5dW2XLllV0dLR++eUXZWVlaeLEiXrttdduzzcGQKk1adIkvfbaa/Lx8dHo0aNlNud9EnHv3r3VvHlzSVJKSoratWunXbt2qVu3bmrVqpV2796tpUuXqnnz5tqwYUOe5YT/85//6JVXXlGNGjXUr18/paSkaMGCBUpLS9Py5cvVqVMnm/779+/X3XffrbS0NA0YMECBgYFatmyZ9uzZo+HDh+vjjz++Zd8PAI7B3q5t3LfBXpDPAHBE9va5L5HTALg59nZd474N9oScBoCjsbfPfYl8BsDNs7drm1Pdt5V0dZqjGDJkiCGpwO3VV1+19l21apXRtWtXo3Llyoabm5tRtWpV45FHHjF27NiR79iJiYnG448/btSqVcsoU6aMUbZsWaNNmzbGxx9/bFgsljz9d+/ebTz++ONGgwYNDD8/P8NsNhtVqlQxHnzwQWP58uW36lsAwMFc77qmfP76Lj4+3hg7dqwRFBRkuLm5GUFBQcbYsWNtKrP/bt68ecadd95peHp6Gn5+fsZ9991nREZGFtj/0KFDRr9+/YwKFSoYHh4eRqNGjYz33nsv3+shAPydvV3buG+DvSCfAeCI7O1zPxc5DYAbZW/XNe7bYE/IaQA4Gnv73M9FPgPgZtjbtc2Z7ttYOQwAAAAAAAAAAAAAAAAAHJBLSQcAAAAAAAAAAAAAAAAAACh+FIcBAAAAAAAAAAAAAAAAgAOiOAwAAAAAAAAAAAAAAAAAHBDFYQAAAAAAAAAAAAAAAADggCgOAwAAAAAAAAAAAAAAAAAHRHEYAAAAAAAAAAAAAAAAADggisMAAAAAAAAAAAAAAAAAwAFRHAYAAAAAAAAAAAAAAAAADojiMAAAAAAAAAAAAAAAAABwQBSHAQAAAAAAAAAAAAAAAIADojgMAAAAAAAAAAAAAAAAABwQxWEAAAAAAAAAAAAAAAAA4IAoDgMAAAAAAAAAAAAAAAAAB0RxGAAAAAAAAAAAAAAAAAA4IIrDAAAAAAAAAAAAAAAAAMABURwGAAAAAAAAAAAAAAAAAA6I4jAAAAAAAAAAAAAAAAAAcEAUhwEAAAAAAAAAAAAAAACAA6I4DAAAAAAAAAAAAAAAAAAcEMVhAAAAAAAAAAAAAAAAAOCAKA4DAAAAAAAAAAAAAAAAAAdEcRgAAAAAAAAAAAAAAAAAOCCKwwAAAAAAAAAAAAAAAADAAVEcBgAAAAAAAAAAAAAAAAAOiOIwAAAAAAAAAAAAAAAAAHBAFIcBAAAAAAAAAAAAAAAAgAOiOAwAAAAAAAAAAAAAAAAAHBDFYQAAAAAAAAAAAAAAAADggCgOAwAAAAAAAAAAAAAAAAAHRHEYAAAAAAAAAAAAAAAAADggisMAAAAAAAAAAAAAAAAAwAFRHAYAKHF9+vSRyWTSCy+8cM1+AwYMkMlk0nPPPXebIgMAAACAayOfAQAAAFCakdMAgOMzGYZhlHQQAADndvbsWTVo0EDJycmKjIxUy5Yt8/T56aef9OCDD6pmzZqKioqSl5dXCUQKAAAAALbIZwAAAACUZuQ0AOD4WDkMAFDiAgIC9Oabb8pisWjYsGHKzs622Z+UlKSnn35akvThhx+SdAAAAACwG+QzAAAAAEozchoAcHwUhwEA7MKIESPUsWNH7dq1S2+99ZbNvhdffFGnTp3SkCFD1K1btxKKEAAAAADyRz4DAAAAoDQjpwEAx0ZxGADALphMJn300UcqU6aMXnvtNUVHR0uSNm/erDlz5qhy5cp65513rP0vXLig559/XnfccYfKlCmjcuXKqUePHlq/fn2esQ3D0IIFCzRw4EDVq1dP3t7eKlu2rMLCwjR79mzl5OTkOWbSpEkymUyaO3euIiMj1atXL1WoUEEmk0m7du2SJF26dEkTJkxQo0aN5OPjIz8/P9WrV09PPPGEIiMjb803CgAAAIDdIZ8BAAAAUJqR0wCAY6M4DABgN+rWrauJEycqPT1dI0aMUEZGhoYPH66cnBzNmjVL5cuXlyQdPHhQLVq00Ntvvy2LxaKePXuqadOmWr16tTp16qSvvvrKZtyMjAwNGjRIK1asUOXKlfXAAw+odevW2rdvn8LDw/XUU08VGNP69evVrl07xcTEqHv37mrfvr1cXFyUnJysu+66S9OmTVNWVpbuvfdede3aVX5+flqwYIF+/fXXW/q9AgAAAGBfyGcAAAAAlGbkNADgwAwAAOxIVlaW0bx5c0OSERYWZkgyevXqZd2fnZ1tNG7c2JBkzJo1y8jJybHu27Fjh1GhQgXD29vbOH/+vM2Y33//vZGRkWFzrri4OOPOO+80JBnr1q2z2ffqq68akgxJxvTp0/PE+fnnnxuSjP/3//5fnn3nz5839u7de8PfAwAAAAClE/kMAAAAgNKMnAYAHBMrhwEA7IrZbNYnn3wiV1dXRUZGqmzZsvrggw+s+3/66SdFRUXp0Ucf1TPPPCOTyWTd16JFC/373/9WSkqK5s2bZzNmnz595O7ubnOuSpUqadq0aZKkH3/8Md94GjdurHHjxuVpj4uLkyR17tw5z77KlSurcePGRZg1AAAAAEdAPgMAAACgNCOnAQDHZC7pAAAA+LtWrVrp4Ycf1nfffaeRI0eqevXq1n0rV66UJPXu3TvfY9u1aydJ2rZtW559u3bt0ooVKxQbG6vU1FQZhqGkpCRJUnR0dL7jPfDAAzbJzV9jlKQJEybIbDara9euKlOmTOEnCQAAAMAhkc8AAAAAKM3IaQDA8VAcBgCwS97e3jb/zRUTEyNJeuSRR/TII48UePzFixetrzMzMzV06FAtWLCgwP65Ccjf1ahRI9/2Ll26aOzYsZo5c6YeeOABubu7q3nz5urevbuGDRumkJCQAs8FAAAAwLGRzwAAAAAozchpAMCxUBwGAChVLBaLJKlHjx6qXLlygf3q169vff3OO+9owYIFaty4sWbMmKGWLVuqXLlycnNz0+HDh3XHHXfIMIx8x7nWX5q88847GjlypH788UetWrVKGzduVGRkpN5880198803Bf7lDAAAAADnRD4DAAAAoDQjpwGA0oniMABAqZK7fPGoUaP04IMPFuqYH374QZKsycdfHTt27KbiueOOOzR+/HiNHz9e6enpioiI0PPPP6+RI0eSeAAAAACwQT4DAAAAoDQjpwGA0smlpAMAAKAounbtKklavHhxoY+5cuWKJCkoKCjPvm+//bZY4pKu/gXLc889p4CAAMXFxSkuLq7YxgYAAABQ+pHPAAAAACjNyGkAoHSiOAwAUKr069dP9evX19y5czV9+nRlZWXZ7M/MzNSiRYu0d+9ea1u9evUkSXPmzLHp+9133+l///vfDcWxePFibdmyJU/7zp07df78eZUtW1blypW7obEBAAAAOCbyGQAAAAClGTkNAJROFIcBAEoVs9msH374QUFBQXrxxRcVHBys++67TwMGDFCbNm1UpUoV9e3bV0ePHrUeM378eLm6uurFF1/UnXfeqUGDBik0NFT9+/fX2LFjbyiOtWvXqk2bNqpevboeeOABPfbYY+rUqZPCwsKUk5OjKVOmyM3NrbimDQAAAMABkM8AAAAAKM3IaQCgdDKXdAAAABRV/fr1tWvXLr333nv64YcftGHDBhmGoYCAALVv314PP/ywdWljSWrfvr02bNigl19+WTt37tThw4fVpEkTff/992rZsqXeeuutIscwdOhQmc1mrV+/XpGRkUpISFDVqlXVs2dPjR07Vh07dizGGQMAAABwFOQzAAAAAEozchoAKH1MhmEYJR0EAAAAAAAAAAAAAAAAAKB48VhJAAAAAAAAAAAAAAAAAHBAFIcBAAAAAAAAAAAAAAAAgAOiOAwAAAAAAAAAAAAAAAAAHBDFYQAAAAAAAAAAAAAAAADggCgOAwAAAAAAAAAAAAAAAAAHRHEYAAAAAAAAAAAAAAAAADggisMAAAAAAAAAAAAAAAAAwAFRHAYAAAAAAAAAAAAAAAAADojiMAAAAAAAAAAAAAAAAABwQBSHAQAAAAAAAAAAAAAAAIADojgMAAAAAAAAAAAAAAAAABwQxWEAAAAAAAAAAAAAAAAA4IAoDgMAAAAAAAAAAAAAAAAAB0RxGAAAAAAAAAAAAAAAAAA4IIrDAAAAAAAAAAAAAAAAAMABURwGAAAAAAAAAAAAAAAAAA6I4jAAAAAAAAAAAAAAAAAAcEAUhwEAAAAAAAAAAAAAAACAA6I4DAAAAAAAAAAAAAAAAAAcEMVhAAAAAAAAAAAAAAAAAOCAKA4DAAAAAAAAAAAAAAAAAAdEcRgAAAAAAAAAAAAAAAAAOCCKwwAAAAAAAAAAAAAAAADAAVEcBgAAAAAAAAAAAAAAAAAOiOIwAAAAAAAAAAAAAAAAAHBAFIcBAAAAAAAAAAAAAAAAgAOiOAwAAAAAAAAAAAAAAAAAHBDFYQAAAAAAAAAAAAAAAADggCgOAwAAAAAAAAAAAAAAAAAHRHEYAAAAAAAAAAAAAAAAADggisMAAAAAAAAAAAAAAAAAwAFRHAYAAAAAAAAAAAAAAAAADojiMAAAAAAAAAAAAAAAAABwQBSHAQAAAAAAAAAAAAAAAIADojgMAAAAAAAAAAAAAAAAABwQxWEAAAAAAAAAAAAAAAAA4IAoDgMAAAAAAAAAAAAAAAAAB0RxGAAAAAAAAAAAAAAAAAA4IIrDAAAAAAAAAAAAAAAAAMABURwGAAAAAAAAAAAAAAAAAA6I4jAAAAAAAAAAAAAAAAAAcEAUhzmZSZMmyWQyyWQyae3atSUdDopJSEiITCaTQkJCSjoUhzR37lzrv5u5c+eWdDgAAAAAAAAAAAAAAACFQnGYnYuJibEWpdzs1rFjx5Kejl1KSUnRZ599pj59+qhWrVoqW7aszGaz/Pz8VL9+ffXq1UsTJ07U8uXLlZaWVtLhOo3cgjeTyaSYmJiSDueWOH36tKZNm6Zu3bopMDBQnp6ecnd3V4UKFdS8eXMNHDhQM2bM0LZt25STk1PS4Zaojh07FrmwNScnR7/++qvGjBmjO++8U9WqVVOZMmXk7e2t6tWrq3v37vr3v/+tPXv2FDjGXwsDi7L17t073/GKOk7z5s2LFJOrq6v8/f3VsGFDPfbYY1q0aJGys7ML9f36u2bNmlnHLVeu3E1d/5KTk/Xll19q6NChatSokSpXrix3d3f5+fmpdu3a6tu3r959912dPXv2hs9xuz3zzDM23/stW7YU+ti1a9faHOvj46Nz585d97jffvvNeszQoUPz7fP390dQUFChfnaffPKJ9ZhJkyYVei4AAAAAAAAAAAAA7Ju5pAMAStLSpUs1fPhwnTlzJs++xMREJSYm6tChQ/rll18kSWFhYdq6devtDhMO6M0339Srr76q9PT0PPsuX76sy5cva/fu3frmm28kSePHj9f06dNvd5il1uLFizVhwgQdOHAg3/2pqak6ffq0Vq5cqalTp+quu+7StGnTSn0RbU5OjhISEpSQkKADBw7oq6++UosWLbRw4ULVrl270ONs27bNpmguPj5eixYt0mOPPVakeCwWi95++23NmDFDFy9ezLM/KytLiYmJOnbsmBYtWqTnn39eAwYM0NSpU4sU7+2WkZGh+fPn27R9+umnuuuuu25ovJSUFL322mv64IMPiiM8G6dOndJ7772nF154odjHBgAAAAAAAAAAAGD/KA6zc5UrV9YPP/xQ4P6oqCj9+9//liQ1atRIU6dOLbBvxYoV1a5dO1YE+T+//PKLevfubV1Vp2bNmnr44YfVqFEj+fr6KiUlRbGxsdq2bZtWr16t1NRUWSyWEo46f466spajmjBhgqZNm2b9unXr1urRo4dq166tMmXKKD4+XgcPHtSWLVu0ZcsWWSwWu33v2ZucnBy9+OKLmjFjhrWtYsWK6t69u8LCwlSxYkVJ0vnz57V9+3atWLFCly5d0pYtW9S7d2/Fx8cXOHanTp30zDPPFCqOgICA6/a51rU9l5+f3zX3/z2mnJwcXbp0SZs2bdLXX3+t9PR07dy5U926ddOePXvk4+Nz/eB1tdApv7aiFIddvnxZjzzyiH777TdrW506dXTfffepQYMGqlixolJSUnT27FmtX79e69atU3p6ur7++mulpaVp8eLFhT7X7fbDDz/o8uXLNm1ff/21Zs6cKW9v7xsa85NPPtHYsWNVr1694gjRxhtvvKERI0aofPnyxT42AAAAAAAAAAAAAPtGcZid8/LyKvDxZJLk7+9vfV2xYsVr9sWfMjIyNGLECGth2Pjx4/Wf//xHZnP+/yTS09P1888/a9OmTbczTDig3bt3W1cAc3d317x589S/f/8C+1+8eFHz58+Xh4fH7QqxVPtrYZibm5tee+01jR49Wl5eXvn2z8rK0ty5czVlyhQlJiZec+waNWoU6zW2OMYqKKYRI0Zo/Pjx6tChgy5cuKDjx4/rv//9r1566aXrjpmamqoFCxZIkmrVqqWgoCCtW7dOa9eu1dGjRwu1oldWVpYefPBBbdy4UZJUpUoVvf/+++rbt69MJlOe/hMmTNDly5f19ttva9asWdcdv6TlFs+ZTCYNGTJEc+fOVXJysr799ls9+eSTRRrL29tbKSkpys7O1oQJE/Tdd98VW5y5Y8fHx+v111/XW2+9VWxjAwAAAAAAAAAAACgdXEo6AKAkrFq1SmfPnpV09VGR06dPL7AwTJLKlCmjfv366Z133rldIcJBzZ8/Xzk5OZKk0aNHX7MwTLpa9Dl69GiNGjXqdoRXqv300082hWE///yzXnrppQILw3L7jRgxQnv27NHDDz98u0K9LRo0aKBXXnnF+nVhV+L67rvvrIVyTzzxhIYOHSpJMgxDn3/+eaHGePHFF62FYTVq1NCWLVvUr1+/fAvDcpUvX17/+c9/tG3bNjVq1KhQ5ykJMTExWrVqlSSpQ4cOmjhxonVe+a24dj29evVS3bp1JUnff/99sT66eOjQoSpXrpwk6f3339eJEyeKbWwAAAAAAAAAAAAApQPFYU5m0qRJMplMMplMWrt2bZ79MTEx1v25BQFxcXF69dVX1bRpU/n5+alcuXJq3bq1Pv30U+vKW7lOnDihF154QY0bN1bZsmXl5+entm3b6osvvpBhGIWKMT09XR9++KF69eqloKAglSlTRn5+fmrcuLGeeeYZHT58+Ga/DTp48KD1dceOHW96vL9KSEjQ22+/ra5duyowMFAeHh4qX768WrVqpZdeekmnT5++5vFDhw61/gxyHxe5ePFi9enTR8HBwfLw8LDZJ0khISEymUwKCQm5bnznzp3T5MmT1a5dO1WtWlXu7u6qWLGi7r77bk2dOlVXrly57hhHjx7V+PHjFRoaqnLlysnNzU0VKlRQ/fr11aVLF02ZMkWRkZHXHedWy87O1sqVK60rKAUEBMjd3V3e3t4KCQlR//799d1331mLtYpi+/bteuqpp1S7dm15enqqYsWK6ty5sz7//PNrjvfX916nTp1uaF4FOXr0qF588UWFhoaqUqVKcnd3V5UqVdS5c2fNmjVLqamp1x1j165dev3113X//ferZs2a8vLykoeHhwICAtS9e3fNnDlTycnJxRp3cTAMQxMmTLB+PWnSJHXv3r3Qx/v7+xe68Kk0+ev1rbDXzr+uivX444+rX79+1kclzp0797qPOD19+rTef/996xjz588v1LUpV4MGDfSf//yn0P1vt88//9z6efbEE0+oZs2aat++vSRp48aNNv/GC8NsNuv111+3fj1+/Phii9Xf39/67yIjI8P6GGoAAAAAAAAAAAAAzoPHSuKatmzZoj59+lhX2coVGRmpyMhILVmyRN99953c3Nz066+/6tFHH83zaLZNmzZp06ZNWr16tb744otrnm/dunV67LHH8hRQZWRkaN++fdq3b59mz56tKVOmFOrxaAX5a1HbhQsXbnicv1u4cKFGjRqly5cv27RnZmbqypUr2rFjh2bOnKk5c+ZoyJAh1x0vMzNT/fr10/fff18s8f33v//Viy++mKdI6NKlS9q8ebM2b96sd955RwsWLNC9996b7xifffaZnn76aWVkZNi0X758WZcvX9ahQ4e0evVqTZ8+vcSLiLp37641a9bkac/KylJsbKxiY2P13Xff6e6779aiRYtUpUqVQo07c+ZMPf/88zZFMunp6VqzZo3WrFmjzz77TD/99JPNY19z3Yr3Xk5Ojl555RXNmDEjT8FmXFyc4uLitGbNGr311ltavHixWrVqle84kydP1quvvprvvnPnzuncuXNauXKlZsyYoR9++EFhYWEFxrR27Vpr8VtwcLBNMeOtsHLlSkVFRUm6ugLV2LFjb+n5Sou/Po40PT39uv2jo6O1fv16SVK7du1Uq1YtSVLfvn31v//9T6dPn9by5cvVs2fPAseIiIhQZmamJOm+++5Tu3btbmYKdiUnJ0dz586VdPWxz/369ZMkDRkyROvWrZN09Rr55ptvFmncfv36KSwsTJGRkVq/fr1++eUX3X///cUS8//7f/9P//3vf3XixAnNmzdPzz33nJo2bVosYwMAAAAAAAAAAACwfxSHoUAnT57Ugw8+qMuXL+uxxx5T586d5e3trb179yoiIkLx8fFasmSJpk+fru7du+uhhx6Sm5ubRo4cqTZt2sjDw0NbtmzRhx/+f/buOzqK8v37+GfTE0JCD0W6VIFIlKKgIKCAiAKK9CLYsCIoCqhUBUEQbF9UijRBUaqANEPvBoI06VUIkN4LmeePPDu/hGTTIXF5v87ZczZzl7lmd3ZmQy6u+zvFxcVp3rx5atWqlc2kqLVr1+qZZ55RYmKiLBaL2rRpo7Zt2+qee+5RQkKC9u/fr3nz5iksLMyshJLbBLF7773XfL58+XKNGjVKlStXztVcVj/88INeeeUVGYYhJycnPfXUU2rVqpXKli2r6Oho7dixQwsXLlRsbKz69+8vFxcX9ejRI9M5Bw8erLVr16py5crq27evateurYSEBO3duzdN0kd2fPjhh2Y1Hjc3Nz377LNq3ry5SpUqpdDQUP3555/69ddfFRoaqqeeekp//vmnHnnkkTRzHDx4UC+//LJu3rwpR0dHtW3bVo8//rjKlCkjBwcHXbt2TYGBgdqwYUO6BLmCEBMTIw8PD7Vs2VIPPvigqlatqqJFiyo6OlrHjh3TkiVLdPr0ae3cuVOdO3fW1q1bM11eVEpZunDZsmVydXXViy++qIcffliOjo7av3+/Zs+erYiICG3fvl0dOnTQ1q1b5ejomGZ86nPv22+/VY8ePeTs7Jyn4+zXr58WLFggSfL29tbzzz+vxo0bq1ixYrp27ZrWrFmjNWvW6NKlS3rssce0f/9+1axZM8PXy9HRUY0bN1azZs1Us2ZNFStWTDdv3tS5c+f0+++/a8eOHfr333/Vvn17HTx4UBUrVsxT7Pll/fr15vPnn39e7u7uBRhN4WFNmJOUrWvc7Nmzzeepr9X9+/fXvHnzJKVUFsssOSz1e5GdJNj/kg0bNphLM3bp0kVFixaVJHXt2lVvvvmmoqOjNW/ePH366adZXktuNWnSJLPS2wcffKD27dvLwSHvBV5dXV01ZswYvfDCC0pOTtYHH3ygNWvW5HleAAAAAAAAAAAAAP8RBv7T/P39DUmGJKNFixZZ9h81apTZ39/fP1372bNnzXZJhre3t7Fz5850/Q4fPmy4ubkZkozixYsb1atXNypVqmScOHEiXd+NGzea89WrVy/DuP7991+jRIkS5j43bdpks1+DBg0MSYajo6Nx7NixLI85I5GRkUapUqXMuEqXLm2MGTPGOHjwoHHz5s0czxcYGGi4uroakoyKFSsaBw8ezLDf8ePHjXvuuceQZBQtWtQIDg5O16dfv35p3oNOnToZsbGxme6/cuXKhiSjcuXKGbavXbvWsFgshiSjQYMGxpkzZzLst3PnTsPLy8ucKzExMU3766+/bsa1atUqm/EkJycbW7ZsyTTmrFiPSZJx9uzZXM2xYcMGIzo62mZ7YmJimmOaP39+hv3mzJmT5j0pU6aMcfjw4XT9Lly4YFSvXt3sN3ny5HR9du3alWauevXqGf/73/+Mc+fO5eoYZ8yYYc7VqlUr49q1axn2W758ueHs7GxIMpo1a5Zhn7179xqXL1/OdH8LFiwwHBwcDEnGwIEDbfZLfW2ydV7mRIsWLTK9djVu3DjL9zE3Ur/3/fr1y/N8qd/72x1TXFxcmtflhRdeyHTepKQko1y5coYkw93d3QgPDzfbkpOTzc+ks7OzERQUlOEckZGR5vkhybh48WKujrGw6tq1q3lsGzZsSNPWp08fs23ZsmWZzpP689GrVy9z+5NPPmlunzNnTrpxGzZsyPK9T31+jBw50jAMw7h586ZRv379TD9DP/zwg9k+atSoTOMHAAAAAAAAAAAA8N+R95IUsGvTp0/XQw89lG77fffdp169ekmSQkNDdfr0aS1YsEA1atRI17d169Zq3bq1pJQqNpcuXUrXZ/LkyWalKWuFsYyUK1dOv/zyixwdHXXz5k1Nnz49V8fl6empH374wazscv36dY0aNUr333+/vL291aJFCw0ZMkS//vqrgoODs5xv9OjRio+Pl6Ojo1asWCFfX98M+9WqVUtz5syRJEVGRuqHH37IdN4KFSpo/vz5cnNzy+ERpjVy5EgZhqGiRYtqzZo1qlq1aob9HnroIU2ZMkWSdP78+XTLWZ46dUqSVLp0aT311FM292exWPToo4/mKeb80KZNG3l4eNhsd3Jy0vTp083XI6tlT61mzpyp++67L932ihUravHixWa1ny+++CLdMo9NmzbVu+++a/58+PBhDRo0SFWqVFHZsmX11FNPafTo0dqwYUO6pTtvFR8frzFjxpj7XrFihUqXLp1h32eeeUbDhg2TJO3YsUN79uxJ16dRo0YqX758pvvs1auX+dlftGiREhMTM+1/p6ReijZ1dbb8NHfuXFkslmw9Nm/enOV8Wc1RpUqVHMeYnJysGzduaOXKlXr00Ue1d+9eSSnn+nvvvZfp2DVr1phLCHfq1EleXl5pYu3bt6+klGVZ58+fn+EcV69eVXJysqSUilX33HNPjo+hsAoODtaKFSskpVybb71P9e/f33w+a9asXO1j4sSJ5vXj448/ztZSoNnh4OCgCRMmmD+///77+TIvAAAAAAAAAAAAgMKP5DDYVKpUKTMJJCOplxxs2LBhuiUIbfU9cuRImjbDMMxEg1q1aunpp5/ONK5atWqpcePGkqR169Zl2jcznTp10tatW9WoUaM026OiorR161Z98cUX6tq1q8qVK6cuXbro77//znCesLAwM2Hg8ccfV8OGDTPdb5s2bcwEnKziHzBggDw9PbN7SBn6+++/FRAQICklsadChQqZ9u/Ro4eZNHdrfEWKFJGUkiRx7ty5PMVVWDg6OqpJkyaSpL1798owjEz716pVSx07drTZ/uCDD+qxxx6TJP3777/auXNnuj6TJ0/WnDlz0iXOBAUFafXq1RozZoyeeOIJ+fj4aPDgwbp+/XqG+1q/fr2ZzPP6669nea5Yk3ukvH12mjVrJillGcpDhw5l2Kdly5YyDEOGYdyRcyV1EmexYsVu+/4Ki1sT1hwdHVW6dGk988wzZmKYi4uLlixZojp16mQ618yZM83nGS0HmXqbreQne34f5s2bp4SEBElSnz590i35+Nhjj5lLd65du9b8bOZE/fr11adPH0kpSzt/9dVXeYz6/3To0EEtWrSQlHKtW7JkSb7NDQAAAAAAAAAAAKDwciroAFB4NWrUyEwSykjZsmXN502bNs10rtR9Q0ND07QdPXpUN27cMPstX748y9gcHR0lSWfPnlVcXFyuK2s99NBD2rt3r/bt26fly5dr27ZtCggIUHR0tNknMTFRy5Yt0+rVqzVjxgy98MILaebYsWOHWSmnaNGi2YrfmsRz9OjRTPtllnCXXVu3bjWfOzo6Zju+sLCwdPE98cQTWrp0qZKTk9WyZUt98MEH6tSpU5r3t7CJiYnRzz//rFWrVunvv/9WUFCQoqKiMkwCi4iIUEREhLy9vW3O9/jjj2e5zzZt2mjTpk2SUpIwMqqi1r9/f/Xq1Uvr16/XmjVrtGPHDh05ciRNpbHw8HBNnz7djP/BBx9MM0fq9zY+Pj7L9zZ1lS9b555hGFq7dq1+/fVX/fXXX7p48aIiIyPTVUCzunTpkh544IFM93unWSyW2zLvY489prfeeitbfevVq5dln2XLlmXanlnVu+x65pln9NVXX6lixYqZ9rt69arWrFkjSSpfvrzatGmTrk/16tXVvHlzbd++XceOHdPu3bszvfbfrvehoMyePdt8njrR0spisahPnz4aP368bt68qblz5+qDDz7I8X7GjRunn3/+WXFxcZowYYJefPFFFS9ePE+xW02aNMlMhh05cqQ6d+6c6X0eAAAAAAAAAAAAwH8ffxGETaVKlcq03dXVNVd9b10mK3VVoS1btmjLli05iFIKCQnJcim8rDRq1MisIJacnKzjx49r165dWrFihVavXq3k5GQlJCTopZdeUo0aNdS8efMM41+yZEmOqrFYl9K0JT+WZEsd3zfffKNvvvkm22NvjW/AgAFasmSJNm3apPPnz2vQoEEaNGiQ+Zq0aNFCTz75pM2lDe+0nTt3qnv37rp48WK2x2SVHJbR0qmZ9fn3339t9nN2dlaHDh3UoUMHSSmfjYMHD2r79u1avHix/vrrL0kpiTtPPfWUjh8/nqYaU+r3dtSoUVnGlVpG597Vq1f13HPPaceOHdmeJyIiIkf7vV1KlixpLi15awJqfqlUqZI6deqUb/Plx1y3JqyFhITo+PHjmjNnjm7cuKHff/9dzZs3T7OUaUbmzp1rJgD27t3bTMC9Vb9+/bR9+3ZJKdXDbk0OK1mypPn8dr0Ptly4cMGskpiRSpUqyc/PL1dz79mzR4cPH5YkNW7c2GYVtn79+mn8+PGSUpLJcpMcVrFiRb3xxhv6/PPPFRoaqgkTJmjSpEm5ivtWjRs31nPPPadff/1VJ0+e1Pfff6/XXnstX+YGAAAAAAAAAAAAUDixrCRsunXJrPzqe6uwsLBcj5VkLvOVXxwcHFS3bl0NHDhQK1eu1L59+1SuXDlJ0s2bNzV27Ng0/fMSf+pKThlxd3fP9dxWeYnv1tfW2dlZf/zxh6ZNm6Z7773X3H7y5EnNmTNH/fv3V/ny5dWrV69cLamWn86ePau2bduaiWH33nuv3njjDX355Zf66aeftHTpUi1btkzLli0zl4GUUt7jzFiX1sxun8jIyGzH7ObmpqZNm+rdd9/V/v37NW/ePLOqT1BQkL799ts0/fPzvU1KSlK7du3MxLDixYurb9++mjx5subPn69ff/3VfL3efPNNc1xWr9edknq51FOnThVgJHeWNWHN+hgwYIAmTZqkM2fO6JFHHtHNmzf13nvvae7cuZnOk1VVLKvnn3/erGi2ePHiNFUWJalcuXLm/SA+Pl6XLl3K7aHl2J9//qnOnTvbfHz55Ze5njv1MpqZvT733nuvuezqyZMn01T3y4kRI0aYiaBfffVVjhJcs/Lpp5+a15WxY8cqKioq3+YGAAAAAAAAAAAAUPiQHIYCZ11iUZIGDx4swzBy9KhSpcptjc/Pzy9Nta0tW7akSepKHf+0adNyHP/tljq+5cuX5yi21JWprJycnPT222/r5MmTOn78uGbNmqWBAweqatWqklKSjH766Sc9+OCDmVbNut0+/fRTM+nh/fff14kTJ/TVV1/pzTffVI8ePdS5c2czoSZ1taOs3JoMk1WfokWL5jz4/69Pnz5pqvps2LAhTXvq9/bgwYM5em83b96cZq6ff/5ZgYGBkqTWrVvr/Pnzmjt3rt5991317t1bzz77rPl61apVK9fHdLukXoI1J5XP7FXRokW1ZMkScznC119/3WaC0bZt23TixAnz53r16slisWT48Pb2VkxMjCQpKipKv/zyS5q5ihQpooYNG5o/28N7ERMTo8WLF5s/v/HGGzZfH4vFkuaYUyeV5UTx4sXNqmNxcXH6+OOP83YQqdSoUUMvvviipJSk0ylTpuTb3AAAAAAAAAAAAAAKH5LDUOBSL51oXbarsHniiSfM5wkJCbpx44b5c2GP/3bGV6tWLQ0YMEAzZ87UmTNntHv3btWvX19SynKKEyZMyNf95cT69eslSWXKlNEnn3wii8Vis+/Zs2ezPW92qlKl7pPXJU9Tn3u3Jtvl53trfb2klCTHzJLacvJ63Slt27Y1n//yyy+KjY0twGgKBx8fH3O50ejoaI0cOTLDfrlNYLI1NvV7kVXFsvzUv3//TBMif/zxx1zN+8svv+SoAmBqv/76a66XXn377bfNz/i8efPy9fo9atQos8LhlClTdO3atXybGwAAAAAAAAAAAEDh4lTQAQD333+/ihUrprCwMG3btk03btxQqVKlCjqsNG5d/jF1xaYWLVrIYrHIMAz9/vvvSkhIkIuLy50O0aaWLVuaz5cuXWozQSQ/NGnSRPPmzTMrB23btu227SsrV69elSRVrVpVjo6ONvv9+++/ZsWs7Li1eldGNm7caD5v0qRJtufOiK0qdVLKe/v1119LSnlve/Xqlev9WF8vSWmWDM3I2rVrc72f26VNmzaqX7++/v77b4WEhGjatGkaPnx4QYdV4F599VV99tlnunLlihYsWKBhw4apXr16ZntkZKSWLFkiSXJ0dNSIESOytUzw999/rytXrmjHjh06fvy4ateubba99tprmjJliuLj4/XHH39ox44d5lKL/0WpE+BeeOEFVapUKcsx69ev165duxQTE6NFixbplVdeyfF+3dzcNGbMGA0cOFDJyckaPny43n777RzPk5GyZctqyJAhGjdunCIjIzVu3Dj5+vrmy9wAAAAAAAAAAAAACheSw1DgHB0d1bt3b3399deKj4/XyJEj9d13393Wfd64cUMlSpTIVhKEJK1YscJ8XqlSpTRVlUqVKqUOHTro999/19WrVzVlypRClZTi5+dnJs0EBARo0aJF6tGjx23bn3V5SSllicmCUqRIESUkJOj06dMyDMNm5bCxY8fmKM7jx49r9erV6tChQ4btAQEB+vPPPyWlVA176KGH0rQHBQXJx8cn2/tLfe6lTuqRpPbt26tMmTK6du2ali1blqckHGsVISml8tmt+7JavHixjh49mqt93E4Wi0WffPKJnn76aUkplZEefPBBPf7449kaHx4ernfeeUezZ8++nWHeca6urnr33Xc1dOhQGYahUaNG6bfffjPbFy1aZC4T2bZtW40dOzZb8yYkJJiVAWfPnq1JkyaZbRUqVNAbb7yhKVOmyDAM9ezZU1u3blXlypWzNfexY8e0cOFCjR8/PruHeducOHFC27dvl5Sy1OP//vc/ubq6Zjnu4YcfNiuozZo1K1fJYZLUr18/TZ06VUeOHNHvv/+eZsnOvHrvvfc0Y8YMXb9+Xd99952GDh2ab3MDAAAAAAAAAAAAKDxYVhKFwogRI1SiRAlJKRVp3n///XTVulKLjY3VnDlztHjx4lzt79dff1Xt2rU1Y8YMhYSEZNrX399f77zzjvlz37590/UZP368mTDw4Ycfavr06TIMw+ac4eHhmjZtWpoKU7eLxWLRpEmTzOSoF198McvXLSgoSGPHjtWhQ4fSbB8yZIh27tyZ6dhvvvnGfH7//ffnLuh80KhRI0kpiYBTpkzJsM+UKVNylYg4cOBAHTt2LN32S5cuqXv37kpOTpaU8no5OaXNwR08eLBatWqlFStWKCEhweY+DMPQ9OnT0yzLd+u55+HhYSbzGIahTp06adOmTZnGfu7cOQ0dOjTdMnLW10uSRo4cqZs3b6Yb6+/vn+0kl82bN8tischisahKlSrZGpNXHTt21HvvvScppeJahw4d9Nlnn2W6xGRiYqJmzpyp+vXra+nSpXckzjvt1VdfNasxLlu2TAcPHjTbUlfF6tevX7bnTN133rx56RIsJ0yYYCYqXrhwQU2bNtVvv/2W6XUxJCREH374oRo1alRoluhN/fp07949W4lhUkoluwoVKkiS9u3bp7///jtX+3d0dEyzPO/UqVNzNU9GihYtqo8++khSyufgq6++yre5AQAAAAAAAAAAABQeVA5DoVCuXDktWbJEHTp0UFxcnCZNmqSFCxeqa9euatCggYoWLaro6GidP39e+/fv16ZNmxQTE6Nx48blep8nT57UoEGD9NZbb6l58+Zq2rSpqlWrpmLFiikhIUFnzpzRxo0btWXLFnNM/fr1M6wK5uvrq5kzZ6pfv35KTk7W4MGD9e2336pz586qU6eOihQposjISJ0+fVp79+7Vli1blJCQoPnz5+c6/pxo166dxo8fr5EjRyomJkY9evTQpEmT9PTTT+vee++Vq6urwsPDdeLECe3evVs7duxQcnKyWrVqlWaepUuX6osvvlDlypX1+OOPq0GDBipTpoySkpJ0+fJlLV++XLt27ZIkOTs7m4k6eTVlyhR5e3tnq6+12tDgwYO1fv16SSkVcvz9/dWuXTv5+PjowoUL+uWXX7Rv3z6VK1dO9evXN/tmpUuXLlq2bJn8/PzUv39/Pfzww3J0dNRff/2lWbNmKTw8XFJK5aDBgwenG28Yhvz9/eXv769ixYqpZcuWatSokcqXL6+iRYsqMjJSx44d08qVK3X8+HFz3MCBA9W6det0873yyisKCAjQ999/rxs3bqhNmzZ69NFH1a5dO1WuXFnOzs4KCQnRsWPHtH37dv3111+SlCbh0Tr/hAkTFBkZqZUrV8rX11d9+/ZV5cqVFRoaqnXr1mnFihVycHBQ7969tWDBgmy9XnfaxIkTZRiGPv/8cyUmJuqDDz7Q559/rnbt2qlRo0YqXbq0DMNQUFCQ9u/fr3Xr1ik4OFiSsjzHLly4oOXLl2c7lk6dOuXhSPKPh4eH3nnnHY0cOVKGYejjjz/WypUrdfjwYe3du1dSyrFbq65lR61atdS4cWPt3btXQUFB+v3339Mcr7Ozs1auXKlu3bpp48aNunr1qp577jnVqFFD7dq1U926dVWyZElFR0fr33//1bZt27R582bFxcXl9+HnWlJSkubNm2f+nFFisC0ODg7q1auXWVFt1qxZmjZtWq7i6Nixox555BFt27ZN0dHRuZrDlldffVXTp0/X6dOn831uAAAAAAAAAAAAAIUDyWEoNFq1aqWdO3eqZ8+eOn78uC5fvpzpH9MdHR1VtmzZXO2rUqVKKlGihEJCQpSYmGgm62Tmueee0/fffy8PD48M23v37i0fHx8NGDBAly5d0okTJ/TZZ5/ZnM/V1dWs5nMnjBgxQpUrV9Zbb72lkJAQHThwQAcOHLDZv2jRoumSZazLcJ4/f14zZ860ObZkyZKaP3++fH198yX2r7/+Ott9rclh7du31+jRozV69GhJ0po1a7RmzZo0fStVqqRly5bpyy+/zPb8HTt21KOPPqqhQ4dqxowZmjFjRro+zZs316pVq+To6JiurU6dOnJ1dVV8fLzCwsK0fPnyTBOOXF1dNWzYMPM4MvLdd9+pZs2a+vjjjxUTE6OtW7dq69atNvuXKlVKbm5uabaVKVNGP//8s5577jnFxMToyJEjev/999P0cXd314wZM5ScnFxok8McHBw0efJkNWvWTCNGjNCxY8d048YNLViwINOYmzVrpokTJ2Y6d3auE6llViXrTnvjjTc0efJkhYWFadWqVdq/f78WLlxotnfr1i3dOZGVfv36mclls2bNSpcMV6JECf3xxx/6/PPPNXnyZAUHB+vkyZM6efKkzTkdHR3Vo0ePPCX+5pfVq1fr6tWrkqSaNWuqadOmORrfr18/MzlswYIFmjRpklxcXHIVy6RJk9ItUZsfnJ2dNX78+Nu61DAAAAAAAAAAAACAgkVyGAqVhg0b6siRI1q2bJlWrFih3bt3KygoSNHR0fL09FTFihVVv359PfbYY+rYsWOuk8OefPJJBQUFaceOHdqyZYv27dunEydO6MqVK4qJiZGrq6uKFSumWrVqqWnTpurWrVu2Ep0ef/xxnT59WosWLdLq1au1f/9+Xb9+XXFxcSpatKiqVKkiX19ftWrVSh07dlSxYsVyFX9u9erVS88884zmzp2rdevW6eDBg7px44aSkpLk7e2tatWqyc/PT61bt9aTTz6ZLhHuwIED2rJli/z9/bV7926dOXNGoaGhslgsKlGihO677z61b99eAwYMUPHixe/osWVk1KhRevTRR/Xll19q165dCgkJUbFixVStWjV17txZr7zySq7eg7ffflvNmjXTN998oy1btujKlSvy8PBQ/fr11bdvX/Xv399MpMsopiFDhmjTpk3atm2bDh48qFOnTunGjRuKi4tTkSJFVLp0ad13331q2bKlunfvrvLly2cZ09ChQ9WvXz/Nnj1bGzdu1JEjR8yKWMWKFdO9996rRo0a6fHHH9fjjz8uZ2fndHO0b99egYGBmjx5sjZs2KDLly/L3d1dFSpUULt27fTqq6+qRo0a+vHHH3P8mt1pnTp10tNPP60//vhD69at044dO/Tvv/8qJCREjo6OKlGihOrUqaOHHnpIzz//vO67776CDvm28vLy0ptvvmkmXX388cfat2+f2Z6TqlhW3bt31zvvvKOEhAStXbtW//77b7pz1dHRUe+//75ef/11LV26VJs2bdL+/ft17do1hYWFycPDQ6VLl5avr68effRRde/eXT4+Pnk72HySeknJ3Lw+devW1YMPPqj9+/crODhYy5cv1/PPP5+rWJo2baouXbrclqVPu3Xrps8//9ysKggAAAAAAAAAAADAvliMwlTa5DY5e/asNm7cqL1792rv3r06cuSIbt68qXHjxunDDz/M9by7du3SxIkTtXPnTkVFRalq1arq0aOH3nvvvRxXYAEAAAAAAAAAAAAAAACA/HRXVA6bPn26pk+fnq9zLly4UP369dPNmzdVoUIFVaxYUYcPH9bHH3+sVatWafPmzTaXHwQAAAAAAAAAAAAAAACA2y3jdc/sTKlSpfTUU09p7NixWrt2rZ599tk8zXfu3DkNHDhQN2/e1KRJk3Tx4kUFBATo5MmTqlWrlvbt26dhw4blU/QAAAAAAAAAAAAAAAAAkHN3ReWwW5eOXLx4cZ7mmzx5suLj4/XEE0/ovffeM7dXrlxZs2fPVrNmzfT999/ro48+ko+PT572BQAAAAAAAAAAAAAAAAC5cVdUDstPhmFo2bJlkqSBAwema3/44YdVu3ZtJSYmasWKFXc6PAAAAAAAAAAAAAAAAACQRHJYjl24cEFXrlyRJDVr1izDPtbte/bsuWNxAQAAAAAAAAAAAAAAAEBqd8Wykvnp5MmTkiRXV1eVL18+wz7VqlVL09eW+Ph4xcfHZ9onOTlZISEhKlmypCwWSy4iBgAAAG4PwzAUGRmp8uXLy8GB/3cCAAAAAAAAAABQ2JAclkOhoaGSpGLFitlM1ipevHiavrZMmDBBY8aMyd8AAQAAgDvs4sWLuueeewo6DAAAAAAAAAAAANyC5LAciouLkyS5uLjY7OPq6ipJio2NzXSu4cOHa8iQIZn2CQ8PV6VKlXTx4kV5eXnlMFoAAADg9omIiFDFihVVtGjRgg4FAAAAAAAAAAAAGSA5LIfc3NwkSQkJCTb7WJeKdHd3z3QuV1dXM5EsK15eXiSHAQAAoFBi+XMAAAAAAAAAAIDCyaGgA/ivsS4ZGRYWJsMwMuxjXU7S2hcAAAAAAAAAAAAAAAAA7jSSw3KoRo0aklKqg/37778Z9jlz5kyavgAAAAAAAAAAAAAAAABwp5EclkOVKlVS2bJlJUk7duzIsI91e5MmTe5YXAAAAAAAAAAAAAAAAACQGslhOWSxWNS5c2dJ0qxZs9K179y5U8ePH5ezs7OefvrpOx0eAAAAAAAAAAAAAAAAAEgiOcymadOmqUqVKurevXu6tvfee08uLi5av369Jk+eLMMwJEnnz5/XgAEDJEkvvviiWWEMAAAAAAAAAAAAAAAAAO60uyI5bMeOHSpVqpT5WLx4sSRpwoQJabZfvHjRHBMWFqbz58/r6tWr6earWrWqfvjhBzk4OGjYsGGqWLGi/Pz8VKNGDf3zzz964IEHNHny5Dt2fAAAAAAAAAAAAAAAAABwK6eCDuBOSExMVHBwcLrtMTExiomJMX++efNmtufs27ev7r33Xk2YMEE7d+7U0aNHVa1aNfXo0UPvv/++3Nzc8iV2AAAAAAAAAAAAAAAAAMgNi2FdExGFUkREhLy9vRUeHi4vL6+CDgcAAAAw8V0VAAAAAAAAAACgcLsrlpUEAAAAAAAAAAAAAAAAgLsNyWEAAAAAAAAAAAAAAAAAYIdIDgMAAAAAAAAAAAAAAAAAO0RyGAAAAAAAAAAAAAAAAADYIZLDAAAAAAAAAAAAAAAAAMAOkRwGAAAAAAAAAAAAAAAAAHaI5DAAAAAAAAAAAAAAAAAAsEMkhwEAAAAAAAAAAAAAAACAHSI5DAAAAAAAAAAAAAAAAADsEMlhAAAAAAAAAAAAAAAAAGCHSA4DAAAAAAAAAAAAAAAAADtEchgAAAAAAAAAAAAAAAAA2CGSwwAAAAAAAAAAAAAAAADADpEcBgAAAAAAAAAAAAAAAAB2iOQwAAAAAAAAAAAAAAAAALBDJIcBAAAAAAAAAAAAAAAAgB0iOQwAAAAAAAAAAAAAAAAA7BDJYQAAAAAAAAAAAAAAAABgh0gOAwAAAAAAAAAAAAAAAAA7RHIYAAAAAAAAAAAAAAAAANghksMAAAAAAAAAAAAAAAAAwA6RHAYAAAAAAAAAAAAAAAAAdojkMAAAAAAAAAAAAAAAAACwQySHAQAAAAAAAAAAAAAAAIAdIjkMAAAAAAAAAAAAAAAAAOwQyWEAAAAAAAAAAAAAAAAAYIdIDgMAAAAAAAAAAAAAAAAAO0RyGAAAAAAAAAAAAAAAAADYIZLDAAAAAAAAAAAAAAAAAMAOkRwGAAAAAAAAAAAAAAAAAHaI5DAAAAAAAAAAAAAAAAAAsEMkhwEAAAAAAAAAAAAAAACAHbqrksPWrFmjNm3aqESJEipSpIj8/Pz01VdfKTk5OcdzhYeH6+OPP1a9evXk4eGhYsWK6dFHH9WiRYtuQ+QAAAAAAAAAAAAAAAAAkDMWwzCMgg7iTpg4caKGDx8uSapWrZo8PT11+PBhJScn6+mnn9ayZcvk4JC9XLnLly/rscce08mTJ+Xo6Kh69eopMTFRx44dk2EYevXVV/W///0vX+KOiIiQt7e3wsPD5eXllS9zAgAAAPmB76oAAAAAAAAAAACF211ROWzXrl0aMWKEHBwc9NNPP+n06dMKDAxUQECAfHx8tHLlSk2dOjXb8/Xp00cnT57Ufffdp1OnTungwYM6cuSIDhw4oPLly2vGjBmaP3/+bTwiAAAAAAAAAAAAAAAAAMjcXZEcNn78eBmGoRdffFE9evQwt/v6+ppJYRMnTlRiYmKWcwUGBsrf31+SNHPmTFWpUiXD+UaPHp1/BwAAAAAAAAAAAAAAAAAAOWT3yWERERHauHGjJGngwIHp2rt27SovLy8FBwebSV+Z2bFjhyTpnnvuUdOmTdO1d+7cWQ4ODjpz5oz++uuvPEYPAAAAAAAAAAAAAAAAALlj98lhBw4cUEJCgtzc3OTn55eu3dnZWY0aNZIk7dmzJ8v5QkNDJUkVKlTIsN3FxUWlSpWSJO3evTu3YQMAAAAAAAAAAAAAAABAnth9ctjJkyclSZUqVZKTk1OGfapVq5amb2a8vb0lSZcvX86wPSEhQTdu3JAk/fPPPzmOFwAAAAAAAAAAAAAAAADyQ8bZUnbEWumrePHiNvtY26x9M2OtMnbp0iXt3btXjRs3TtO+fPlyJScnZ2u++Ph4xcfHZ9onIiIiy5gAAAAAAAAAAAAAAAAA4FZ2XzksLi5OUspyj7a4urpKkmJjY7Ocr0mTJnrggQckSf3799eJEyfMtj179uidd94xf85qvgkTJsjb2zvTR8WKFbOMCQAAAAAAAAAAAAAAAABuZffJYW5ubpJSlnu0xVq9y93dPVtzLly4UGXLltWxY8dUp04d1apVS1WrVlXTpk0VExOjjh07SpI8PT0znWf48OEKDw/P9HHx4sVsxQQAAAAAAAAAAAAAAAAAqdl9clh2lozMztKTqdWqVUsHDhzQ22+/rSpVqujcuXOKjo5Wr169FBAQIC8vL0lS2bJlM53H1dVVXl5eWT4AAAAAAAAAAAAAAAAAIKecCjqA261GjRqSpAsXLigpKUlOTukP+cyZM2n6ZkfZsmU1bdo0TZs2LV3b/v37JclcfhIAAAAAAAAAAAAAAAAA7jS7rxzWsGFDOTs7Ky4uTgEBAenaExMTtW/fPklSkyZN8ry/I0eO6J9//pGbm5vatGmT5/kAAAAAAAAAAAAAAAAAIDfsPjnMy8vLTNKaNWtWuvYlS5YoIiJCJUuWVMuWLfO0L8MwNHz4cElSr169sr1MJQAAAAAAAAAAAAAAAADkN7tPDpOkkSNHymKxaObMmVq0aJG5PTAwUEOGDJEkDRs2TC4uLmbbtGnTVKVKFXXv3j3dfNu3b9emTZtkGIa5LTg4WC+88IJWrVolHx8fTZw48TYeEQAAAAAAAAAAAAAAAABk7q5IDmvWrJnGjRun5ORk9ezZU9WrV5evr6/8/PwUFBSkDh06aOjQoWnGhIWF6fz587p69Wq6+fbv3682bdrI29tbvr6+atCggcqWLau5c+eqQoUK2rhxo0qVKnWnDg8AAAAAAAAAAAAAAAAA0rkrksOklOphq1atUqtWrRQcHKxTp06pfv36mjZtmlasWCFHR8dsz9WyZUv17dtXZcuW1enTp3X27FnVrVtXo0eP1tGjR1WvXr3beCQAAAAAAAAAAAAAAAAAkDWLkXptRBQ6ERER8vb2Vnh4uLy8vAo6HAAAAMDEd1UAAAAAAAAAAIDC7a6pHAYAAAAAAAAAAAAAAAAAdxOSwwAAAAAAAAAAAAAAAADADpEcBgAAAAAAAAAAAAAAAAB2iOQwAAAAAAAAAAAAAAAAALBDJIcBAAAAAAAAAAAAAAAAgB0iOQwAAAAAAAAAAAAAAAAA7BDJYQAAAAAAAAAAAAAAAABgh0gOAwAAAAAAAAAAAAAAAAA7RHIYAAAAAAAAAAAAAAAAANghksMAAAAAAAAAAAAAAAAAwA6RHAYAAAAAAAAAAAAAAAAAdojkMAAAAAAAAAAAAAAAAACwQySHAQAAAAAAAAAAAAAAAIAdIjkMAAAAAAAAAAAAAAAAAOwQyWEAAAAAAAAAAAAAAAAAYIdIDgMAAAAAAAAAAAAAAAAAO0RyGAAAAAAAAAAAAAAAAADYIZLDAAAAAAAAAAAAAAAAAMAOkRwGAAAAAAAAAAAAAAAAAHaI5DAAAAAAAAAAAAAAAAAAsEMkhwEAAAAAAAAAAAAAAACAHSI5DAAAAAAAAAAAAAAAAADsEMlhAAAAAAAAAAAAAAAAAGCHSA4DAAAAAAAAAAAAAAAAADtEchgAAAAAAAAAAAAAAAAA2CGSwwAAAAAAAAAAAAAAAADADpEcBgAAAAAAAAAAAAAAAAB2iOQwAAAAAAAAAAAAAAAAALBDJIcBAAAAAAAAAAAAAAAAgB0iOQwAAAAAAAAAAAAAAAAA7BDJYQAAAAAAAAAAAAAAAABgh0gOAwAAAAAAAAAAAAAAAAA7RHIYAAAAAAAAAAAAAAAAANihuyo5bM2aNWrTpo1KlCihIkWKyM/PT1999ZWSk5NzPFdkZKTGjh2rhg0bytPTUy4uLqpUqZJ69eqlgICA2xA9AAAAAAAAAAAAAAAAAGSfxTAMo6CDuBMmTpyo4cOHS5KqVasmT09PHT58WMnJyXr66ae1bNkyOThkL1fu2rVreuSRR3TixAk5ODioatWq8vT01OnTpxUVFSVHR0fNnz9fPXr0yHPcERER8vb2Vnh4uLy8vPI8HwAAAJBf+K4KAAAAAAAAAABQuN0VlcN27dqlESNGyMHBQT/99JNOnz6twMBABQQEyMfHRytXrtTUqVOzPd+IESN04sQJ1apVS0eOHNGpU6d08OBBXb16VS+//LJu3rypV199VREREbfxqAAAAAAAAAAAAAAAAADAtrsiOWz8+PEyDEMvvvhimmpevr6+ZlLYxIkTlZiYmK35Vq9eLUmaPHmyateubW4vUqSIvvnmG5UqVUoRERHasWNHPh4FAAAAAAAAAAAAAAAAAGSf3SeHRUREaOPGjZKkgQMHpmvv2rWrvLy8FBwcLH9//2zNGRsbKyllecpbOTk5qXLlypKkpKSk3IYNAAAAAAAAAAAAAAAAAHli98lhBw4cUEJCgtzc3OTn55eu3dnZWY0aNZIk7dmzJ1tzNmjQQJK0c+fOdG0hISE6fvy4nJycdP/99+c+cAAAAAAAAAAAAAAAAADIA7tPDjt58qQkqVKlSnJycsqwj7UCmLVvVkaPHi1nZ2e99957mjNnjoKCghQdHa0dO3boqaeeUnR0tD744ANVrFgx03ni4+MVERGR5QMAAAAAAAAAAAAAAAAAcirjbCk7EhoaKkkqXry4zT7WNmvfrLRq1UobNmzQRx99pAEDBqRpq1KlihYsWKBevXplOc+ECRM0ZsyYbO0TAAAAAAAAAAAAAAAAAHLC7iuHxcXFSZJcXFxs9nF1dZUkxcbGZnves2fP6tq1a7JYLKpcubLq168vd3d3nTt3TjNnztS5c+eynGP48OEKDw/P9HHx4sVsxwQAAAAAAAAAAAAAAAAAVnZfOczNzU2SlJCQYLNPfHy8JMnd3T1bc06YMEEjRoxQ7dq1dfDgQTVo0ECSFBUVpcGDB2vWrFlq1qyZjh49Km9vb5vzuLq6molpAAAAAAAAAAAAAAAAAJCf7L5yWHaWjMzO0pNW165d09ixYyVJP/74o5kYJkmenp6aMWOG6tatq3///VfffvttXkIHAAAAAAAAAAAAAAAAgFyz++SwGjVqSJIuXLigpKSkDPucOXMmTd/M7N+/X3FxcfL09FTjxo3TtTs5Oally5ZmXwAAAAAAAAAAAAAAAAAoCHafHNawYUM5OzsrLi5OAQEB6doTExO1b98+SVKTJk2ynC8yMjLLPoZhSJLi4uJyGC0AAAAAAAAAAAAAAAAA5A+7Tw7z8vJSmzZtJEmzZs1K175kyRJFRESoZMmSZsWvzFiri0VFRWnv3r3p2pOSkrRlyxZJUs2aNfMQOQAAAAAAAAAAAAAAAADknt0nh0nSyJEjZbFYNHPmTC1atMjcHhgYqCFDhkiShg0bJhcXF7Nt2rRpqlKlirp3755mroYNG6pu3bqSpP79++vQoUNmW2RkpF599VUdPXpUktS7d+/bdkwAAAAAAAAAAAAAAAAAkJm7IjmsWbNmGjdunJKTk9WzZ09Vr15dvr6+8vPzU1BQkDp06KChQ4emGRMWFqbz58/r6tWrabZbLBbNnz9fxYsX1/Hjx3X//feratWq8vX1lY+Pj1mdbPz48XrggQfu2DECAAAAAAAAAAAAAAAAQGp3RXKYlFI9bNWqVWrVqpWCg4N16tQp1a9fX9OmTdOKFSvk6OiY7bn8/Px0+PBhDRkyRHXq1FFQUJCOHTum4sWL69lnn9Wff/6pkSNH3sajAQAAAAAAAAAAAAAAAIDMWQzDMAo6CNgWEREhb29vhYeHy8vLq6DDAQAAAEx8VwUAAAAAAAAAACjc7prKYQAAAAAAAAAAAAAAAABwNyE5DAAAAAAAAAAAAAAAAADsEMlhAAAAAAAAAAAAAAAAAGCHSA4DAAAAAAAAAAAAAAAAADtEchgAAAAAAAAAAAAAAAAA2CGSwwAAAAAAAAAAAAAAAADADpEcBgAAAAAAAAAAAAAAAAB2iOQwAAAAAAAAAAAAAAAAALBDJIcBAAAAAAAAAAAAAAAAgB0iOQwAAAAAAAAAAAAAAAAA7BDJYQAAAAAAAAAAAAAAAABgh0gOAwAAAAAAAAAAAAAAAAA7RHIYAAAAAAAAAAAAAAAAANghksMAAAAAAAAAAAAAAAAAwA6RHAYAAAAAAAAAAAAAAAAAdojkMAAAAAAAAAAAAAAAAACwQySHAQAAAAAAAAAAAAAAAIAdIjkMAAAAAAAAAAAAAAAAAOwQyWEAAAAAAAAAAAAAAAAAYIdIDgMAAAAAAAAAAAAAAAAAO0RyGAAAAAAAAAAAAAAAAADYIZLDAAAAAAAAAAAAAAAAAMAOkRwGAAAAAAAAAAAAAAAAAHaI5DAAAAAAAAAAAAAAAAAAsEMkhwEAAAAAAAAAAAAAAACAHSI5DAAAAAAAAAAAAAAAAADsEMlhAAAAAAAAAAAAAAAAAGCHSA4DAAAAAAAAAAAAAAAAADtEchgAAAAAAAAAAAAAAAAA2CGSwwAAAAAAAAAAAAAAAADADpEcBgAAAAAAAAAAAAAAAAB2iOQwAAAAAAAAAAAAAAAAALBDd1Vy2Jo1a9SmTRuVKFFCRYoUkZ+fn7766islJyfnaB6LxZKtx9y5c2/TkQAAAAAAAAAAAAAAAABA5pwKOoA7ZeLEiRo+fLgkqVq1avL09FRgYKDeeustbdy4UcuWLZODQ/Zy5Zo1a2azLTQ0VEePHpUkNW3aNO+BAwAAAAAAAAAAAAAAAEAu3BXJYbt27dKIESPk4OCgBQsWqEePHpKkwMBAtW3bVitXrtTUqVP17rvvZmu+7du322z78MMPdfToUTVu3Fi1atXKl/gBAAAAAAAAAAAAAAAAIKfuimUlx48fL8Mw9OKLL5qJYZLk6+urqVOnSkqpLJaYmJin/RiGoYULF0qS+vTpk6e5AAAAAAAAAAAAAAAAACAv7D45LCIiQhs3bpQkDRw4MF17165d5eXlpeDgYPn7++dpX9u2bdO5c+fk7Oys7t2752kuAAAAAAAAAAAAAAAAAMgLu08OO3DggBISEuTm5iY/P7907c7OzmrUqJEkac+ePXna14IFCyRJ7dq1U6lSpfI0FwAAAAAAAAAAAAAAAADkhVNBB3C7nTx5UpJUqVIlOTllfLjVqlXTpk2bzL65ER8fryVLlkjK/pKS8fHxio+Pz7RPRERErmMCAAAAAAAAAAAAAAAAcPey++Sw0NBQSVLx4sVt9rG2WfvmxqpVqxQWFiZvb2917NgxW2MmTJigMWPG5HqfAAAAAAAAAAAAAAAAAGCL3S8rGRcXJ0lycXGx2cfV1VWSFBsbm+v9WJeU7Nq1q9zc3LI1Zvjw4QoPD8/0cfHixVzHBAAAAAAAAAAAAAAAAODuZfeVw6yJWgkJCTb7WJd2dHd3z9U+goODtWbNGklS3759sz3O1dXVTEwDAAAAAAAAAAAAAAAAgPxk95XDsrNkZHaWnszMzz//rMTERFWpUkXNmzfP1RwAAAAAAAAAAAAAAAAAkJ/sPjmsRo0akqQLFy4oKSkpwz5nzpxJ0zenrEtK9u7dWxaLJVdzAAAAAAAAAAAAAAAAAEB+svvksIYNG8rZ2VlxcXEKCAhI156YmKh9+/ZJkpo0aZLj+U+fPq1du3ZJSkkOAwAAAAAAAAAAAAAAAIDCwO6Tw7y8vNSmTRtJ0qxZs9K1L1myRBERESpZsqRatmyZ4/nnz58vSWrcuLFq1aqVp1gBAAAAAAAAAAAAAAAAIL/YfXKYJI0cOVIWi0UzZ87UokWLzO2BgYEaMmSIJGnYsGFycXEx26ZNm6YqVaqoe/fumc69cOFCSVKfPn1uQ+QAAAAAAAAAAAAAAAAAkDt3RXJYs2bNNG7cOCUnJ6tnz56qXr26fH195efnp6CgIHXo0EFDhw5NMyYsLEznz5/X1atXbc67a9cunTp1Ss7OzlkmkQEAAAAAAAAAAAAAAADAnXRXJIdJKdXDVq1apVatWik4OFinTp1S/fr1NW3aNK1YsUKOjo45ntO6pGS7du1UqlSp/A4ZAAAAAAAAAAAAAAAAAHLNYhiGUdBBwLaIiAh5e3srPDxcXl5eBR0OAAAAYOK7KgAAAAAAAAAAQOF211QOAwAAAAAAAAAAAAAAAIC7CclhAAAAAAAAAAAAAAAAAGCHSA4DAAAAAAAAAAAAAAAAADtEchgAAAAAAAAAAAAAAAAA2CGSwwAAAAAAAAAAAAAAAADADpEcBgAAAAAAAAAAAAAAAAB2iOQwAAAAAAAAAAAAAAAAALBDJIcBAAAAAAAAAAAAAAAAgB0iOQwAAAAAAAAAAAAAAAAA7BDJYQAAAAAAAAAAAAAAAABgh0gOAwAAAAAAAAAAAAAAAAA7RHIYAAAAAAAAAAAAAAAAANghksMAAAAAAAAAAAAAAAAAwA6RHAYAAAAAAAAAAAAAAAAAdojkMAAAAAAAAAAAAAAAAACwQySHAQAAAAAAAAAAAAAAAIAdIjkMAAAAAAAAAAAAAAAAAOwQyWEAAAAAAAAAAAAAAAAAYIdIDgMAAAAAAAAAAAAAAAAAO0RyGAAAAAAAAAAAAAAAAADYIZLDAAAAAAAAAAAAAAAAAMAOkRwGAAAAAAAAAAAAAAAAAHaI5DAAAAAAAAAAAAAAAAAAsEMkhwEAAAAAAAAAAAAAAACAHSI5DAAAAAAAAAAAAAAAAADsEMlhAAAAAAAAAAAAAAAAAGCHSA4DAAAAAAAAAAAAAAAAADtEchgAAAAAAAAAAAAAAAAA2CGSwwAAAAAAAAAAAAAAAADADpEcBgAAAAAAAAAAAAAAAAB2iOQwAAAAAAAAAAAAAAAAALBDJIcBAAAAAAAAAAAAAAAAgB26q5LD1qxZozZt2qhEiRIqUqSI/Pz89NVXXyk5OTnXc/7yyy9q166dfHx85OrqqgoVKqhdu3aaPXt2PkYOAAAAAAAAAAAAAAAAADljMQzDKOgg7oSJEydq+PDhkqRq1arJ09NThw8fVnJysp5++mktW7ZMDg7Zz5WLj4/X888/r5UrV5pzlixZUlevXtXly5fVsGFD7d+/P89xR0REyNvbW+Hh4fLy8srzfAAAAEB+4bsqAAAAAAAAAABA4XZXVA7btWuXRowYIQcHB/300086ffq0AgMDFRAQIB8fH61cuVJTp07N0ZwvvPCCVq5cqUcffVTHjx/X6dOntXfvXl24cEFXr17Vp59+epuOBgAAAAAAAAAAAAAAAACydldUDuvQoYPWrFmjl19+Wd99912atp9++km9evVSyZIldeXKFTk7O2c53x9//KH27durdu3aCggIkLu7++0KnWoMAAAAKLT4rgoAAAAAAAAAAFC42X3lsIiICG3cuFGSNHDgwHTtXbt2lZeXl4KDg+Xv75+tOadNmyZJ+vDDD29rYhgAAAAAAAAAAAAAAAAA5JbdJ4cdOHBACQkJcnNzk5+fX7p2Z2dnNWrUSJK0Z8+eLOeLjY3Vpk2bZLFY1KFDB23evFkDBw5U69at9eyzz2ratGmKjIzM9+MAAAAAAAAAAAAAAAAAgJxwKugAbreTJ09KkipVqiQnp4wPt1q1atq0aZPZNzOBgYFKSkpShQoV9Nlnn2nixIlp2pcuXarJkydr9erVuv/++zOdKz4+XvHx8Zn2iYiIyDImAAAAAAAAAAAAAAAAALiV3VcOCw0NlSQVL17cZh9rm7VvZq5cuSJJunbtmiZOnKiOHTvq+PHjio+P1969e+Xn56d///1XzzzzjKKiojKda8KECfL29s70UbFixeweKgAAAAAAAAAAAAAAAACY7D45LC4uTpLk4uJis4+rq6uklCUjsxIdHS1JSkxMVLVq1fTbb7+pVq1acnFxUaNGjbR69Wp5eHjowoULmjNnTqZzDR8+XOHh4Zk+Ll68mN1DBQAAAAAAAAAAAAAAAACT3SeHubm5SZISEhJs9rEu7eju7p7t+STptddek7Ozc5r2smXLqnv37pKkP/74I9O5XF1d5eXlleUDAAAAAAAAAAAAAAAAAHLK7pPDsrNkZHaWnrx1PkmqXbt2hn3q1KkjSTp37lx2wwQAAAAAAAAAAAAAAACAfGX3yWE1atSQJF24cEFJSUkZ9jlz5kyavpmpVauW+dy6HOWtrNtv3ryZo1gBAAAAAAAAAAAAAAAAIL/YfXJYw4YN5ezsrLi4OAUEBKRrT0xM1L59+yRJTZo0yXK+e+65RxUrVpT0f0llt7Jur1ChQm7DBgAAAAAAAAAAAAAAAIA8sfvkMC8vL7Vp00aSNGvWrHTtS5YsUUREhEqWLKmWLVtma86uXbtKkubNm5euLS4uTj///LMkqVWrVrmMGgAAAAAAAAAAAAAAAADyxu6TwyRp5MiRslgsmjlzphYtWmRuDwwM1JAhQyRJw4YNk4uLi9k2bdo0ValSRd27d08333vvvSdPT0/t2LFDn3zyiZKTkyVJsbGxevXVV3XlyhUVL15cL7/88m0+MgAAAAAAAAAAAAAAAADI2F2RHNasWTONGzdOycnJ6tmzp6pXry5fX1/5+fkpKChIHTp00NChQ9OMCQsL0/nz53X16tV085UtW1Y//fSTXFxc9OGHH6p8+fJq3LixypUrp7lz58rDw0OLFy9W6dKl79QhAgAAAAAAAAAAAAAAAEAad0VymJRSPWzVqlVq1aqVgoODderUKdWvX1/Tpk3TihUr5OjomKP5OnbsqP3796t79+6yWCw6ePCgihQpor59++qvv/7SE088cZuOBAAAAAAAAAAAAAAAAACyZjEMwyjoIGBbRESEvL29FR4eLi8vr4IOBwAAADDxXRUAAAAAAAAAAKBwu2sqhwEAAAAAAAAAAAAAAADA3cSpoAMAAAAAgMLCMAwlJiYqOTm5oEMBAAAAAPxHODg4yNnZWRaLpaBDAQAAANIhOQwAAADAXe/mzZu6ceOGIiMjlZiYWNDhAAAAAAD+Y5ydnVW0aFGVKlVKjo6OBR0OAAAAYCI5DAAAAMBd7ebNm7p48aLi4+Pl7e0tT09POTo68j++AQAAAABZMgxDN2/eVFRUlMLCwhQbG6uKFSuSIAYAAIBCg+QwAAAAAHe1GzduKD4+XpUqVZK7u3tBhwMAAAAA+A/y9PSUt7e3Lly4oBs3bsjHx6egQwIAAAAkSQ4FHQAAAAAAFBTDMBQZGSlvb28SwwAAAAAAeeLu7i4vLy9FRkbKMIyCDgcAAACQRHIYAAAAgLtYYmKiEhMT5enpWdChAAAAAADsQNGiRc3fNQEAAIDCgOQwAAAAAHet5ORkSZKjo2MBRwIAAAAAsAfW3y+tv28CAAAABY3kMAAAAAB3PYvFUtAhAAAAAADsAL9fAgAAoLAhOQwAAAAAAAAAAAAAAAAA7BDJYQAAAAAAAAAAAAAAAABgh0gOAwAAAAAAAAAAAAAAAAA7RHIYAAAAAAAAAAAAAAAAANghksMAAAAAAPnm5s2bmjp1qho2bKgiRYrIYrHIYrFo+fLlBR0aAAAAAAAAAAB3HZLDAAAAAAD5ZvDgwRo6dKgOHjyopKQk+fj4yMfHR25ubgUdWoFasWKFunbtqkqVKsnNzU0lS5aUr6+vXn31Ve3atStf9rFq1Sq9++67euyxx1S9enV5eXnJxcVF5cuXV/v27TVnzhwlJSXly74kKSkpSZs2bdLkyZPVvXt31axZUw4ODrJYLOrfv3+W42NiYrR27VqNHz9eXbp0UeXKlc1kwtGjR2c7jtWrV+uZZ55R2bJl5eLiorJly6pDhw5asWJF7g9OUsuWLc14Mnu0bNkyzbjNmzebbZs3b043b+r23DzOnTsnSfrxxx/TbctMZq/t6NGjzXZbzp8/r+HDh6tRo0YqXry4nJ2d5ePjowYNGujZZ5/VtGnTFBgYaPbv379/ro/x1tf0v2ThwoV666231Lx5c1WpUkVFihSRm5ubKlWqpM6dO+u3337L1jz+/v7q3LmzypUrJ1dXV91zzz3q3bu3AgICbvMRpMjr9eTQoUP65JNP1LZtW1WoUEEuLi4qWrSo6tWrp7feeksnTpzIMoaQkBCNHTtWjRs3VrFixeTs7KwSJUro4Ycf1oQJExQREZGfh4wCFhkZqdGjR6t+/fry9PSUt7e3GjVqpClTpighISHX827ZskUjR45U27ZtVaNGDfP6VaZMGT322GP68ssvFRsba3P8nb63Ij3DMDRr1iw98sgjKlGihDw8PFSzZk0NGTJEQUFBWY5PSEjQ1KlT1ahRI3l7e8vT01P169fXqFGjFBkZaXNcfn1PAQAAAIBCwUChFh4ebkgywsPDCzoUAAAAIA17+K4aGxtrHD161IiNjS3oUOxCRESE4ezsbEgyJk2aZCQnJxd0SAUuLCzMeOKJJwxJ5qNYsWLm6yTJePvtt/NlX/fdd1+a/RQtWtRwc3NLs83Pz8+4evVqvuzv7NmzaeZO/ejXr1+W4/39/W2OHzVqVJbjk5KSjH79+pljLBaLUbx4ccPJycncNmDAgFyfhy1atDAkGc7OzoaPj4/NR+fOnW0el7+/f7p5d+zYYXMu63mR2T4vXLhgGIZhzJkzx9zP2bNnszyezF7bUaNGme0ZWbBggeHh4ZHmPfLy8jI8PT3TbKtcubI55q233sow/lKlSqWZIzuv6X9JkSJF0rwm3t7ehouLS5ptTzzxhBEVFWVzjtTvh8ViMby9vc2fnZycjB9++OG2H0dericLFixI95n29vY2HB0dzZ9dXFyMGTNm2Nx/QECA4ePjk+51sFgs5rYKFSoYR44cuZ0vA+6Qc+fOGVWqVDHfWw8PD8PV1dX8uWHDhkZISEiu5u7QoUOac7FIkSLpPqdVq1Y1/vnnnwzH3+l7K9KKi4sz2rZtm+YamPreU7JkSWP//v02x4eEhBgNGzY0+7u6uqa5n1WuXNk4d+5chmPz+j0Fdzd+zwQAAEBhQ+UwAAAAAEC+OH78uBITEyVJgwYNyrQK0d0gPj5ebdq00fr161W2bFnNnDlToaGhCg0NVVxcnC5cuKDvv/9eDz74YL7s77nnntP333+vI0eOKCYmRhEREYqNjdXly5c1ZswYOTg4KCAgQP369cuX/UlS0aJF1bx5c7399tuaO3eu7r///hyNL168uFq3bq333ntPixYtUtmyZbM9dtSoUZo7d64k6e2339a1a9cUEhKisLAwTZs2Tc7Ozpo9e7YmTJiQo5hu9fDDD+vq1as2H0uXLs23+R5++OEs+1SsWDFPx5NT+/btU9++fRUTE6MGDRro119/VVRUlMLDwxUZGalr165p+fLl6t+/v4oUKWKOmz59eobx79u3L8s+OX1NC5MXX3xRc+fO1cmTJxUXF6ewsDDFxcXp9OnTevPNNyVJ69ev19ChQzMc/8svv2jMmDGSpFdeeUXXr19XWFiYLl68qE6dOikpKSlfKw7akpfrSWJiolxdXdW7d2+tXr1a4eHhCgsLU0xMjDZu3Kh69eopISFBgwYN0saNG9ONT0pK0nPPPaegoCAVK1ZMCxcuVExMjDnH3Llz5eXlpcuXL6tHjx639XXA7Xfz5k117NhR586dU7ly5bRhwwZFR0crJiZGixcvVtGiRXXgwAH16tUrV/O3adNGX375pQICAhQREaGoqChFRUXpxo0b+vLLL+Xu7q6zZ8+qc+fOSk5OTje+IO6t+D/vvPOO1q1bJ2dnZ3399deKjo5WZGSk9u3bp9q1ays4OFhPPfWUzUqCvXr10oEDB+Tl5aWff/5ZMTExio6O1vr161WuXDmdP39eHTt21M2bNzMcn5fvKQAAAABQqOQ1u+zChQvGY489ZrRq1cq4fPlylv0vXbpktGrVymjVqpURFBSU193bPXuoxgAAAAD7ZA/fVfkf3flr8+bNmVYfutu8//77hiSjRIkSxpkzZwo6HGP48OHm+3Px4sU8z3fz5s10Vbms1bayUzksKSkp3bbKlStnqyLHjRs3zMotnTp1yrCPtfqSh4dHrv79wXosLVq0yNG4rCqH5dc+71TlsJ49exqSjDJlyhhhYWGZ7iMmJibLOFJXnJszZ06W/e1Njx49DEmGu7u7kZCQkKYtKSnJ/Ay0bds23dj4+Hijfv36hiSjefPmdyrkDGV2PTl+/Him/0YYGhpqlC1b1pBktG7dOl176nuJrXNk5syZZp/jx4/n6VhQsFK/lzt37kzX/tNPP5ntGzduzPf9f/fdd+b827dvz/H4/L634v/8888/ZsXBCRMmpGs/ffq04e7ubkgyPvzww3TtGzduNN+bRYsWpWvfuXOn2T5z5sx07Xn5ngLweyYAAAAKmzxXDluyZIk2b96sxMRElS9fPsv+FSpUUFJSkjZv3qxffvklr7sHAAAAABSwH3/8URaLRS1btjS3WSwW85F6e2YuXryoYcOG6f7775e3t7fc3d1VvXp1PfPMM5o3b57i4uLS9L9w4YK++eYbdejQQTVr1lSRIkXk6empunXravDgwbpw4YLNfbVs2VIWi0WjR4/WzZs39cUXX6hhw4by9PRUmTJl1KlTJwUGBpr9Y2JiNH78eNWrV09FihRRyZIl1a1bN50+fTrD+UNDQ/XVV19JksaNG6eqVatm6zW4nZo2bWo+v3z5cp7nc3BwyFN1OEdHx1yP3bhxo3k+vPfeexn2effdd+Xg4KCYmBj+/SEPDh48KCnlM+Pt7Z1pX3d39zsQUeZGjx6d5rqzadMmdejQQaVLl5abm5vq1KmjMWPGpLue3Co8PFyffPKJmjRpouLFi8vV1VUVK1ZUjx49tHv37lzHZ/0cxsbGKiQkJE3bli1bdP78eUnSiBEj0o11cXExK45t375dZ86cydG+rdfqKlWqSJL8/f3VqVMnlStXTo6Ojurfv3+Oj0NKfz2pVatWpv9GWKxYMXXp0kWS0lSSs7py5Yr53FZlxcaNG5vPo6Kishd0FhITE/XFF1/o/vvvV5EiRVSiRAm1bNlSv/76q6S0941bFeb70a3v+7Zt29SxY0eVKVNGRYoUUcOGDTVr1qw0Y1avXq3HH39cpUuXloeHhxo1aqSff/7Z5jHk5fitFSAfe+wxPfTQQ+nau3fvbt5D582bZ3Oe3Ep9Ll+6dClP4/Pj3ipJ69atU5cuXXTPPffIxcVFXl5eqlatmp544gl9/vnn6a4dVqdPn9agQYNUo0YNubu7y8vLS35+fho7dqzNylqSFBAQoLFjx+rRRx9V5cqV5ebmpmLFiqlp06b67LPPsvUZO3DggAYMGKDq1avLw8NDnp6e8vX11YcffqgbN27k6nVYsGCBbt68KU9PT7PyYmrVqlVTt27dJEnz589P1249t1L3S+2hhx4y7xUZnVt5+Z4CAAAAAIWNU14n+P3332WxWNS5c+dsj+nSpYu2bdumlStX6o033shrCAAAAACAAuTu7i4fHx8lJCQoNDRUkuTj42O2lyhRIss55s+fr5dfftlM2HBxcZG7u7vOnDmjM2fOaOXKlWrQoEGaZQv79u2rLVu2mD97e3srMjJSx44d07Fjx/Tjjz/q999/V/PmzW3uNzExUe3atdPGjRvl4uIiZ2dnXb9+XStWrNCmTZvk7++vqlWr6vHHH9eBAwfk5uYmi8WikJAQ/fLLL9q8ebP27dunSpUqpZn3119/VUxMjJydndW3b99svY6327Zt28zn1apVK8BI8s6aQCNJdevWzbCPp6en7rnnHl24cEF//PEH//6QR7lJmihokydP1vvvvy8p5fqQkJCg48ePa/To0dqyZYs2bNiQ4R//9+zZo2eeeUZBQUGSUhIEPDw8dOnSJS1evFg///yzPvnkEw0fPjzHMVk/h9bEn9Q2bNggKWW51mbNmmU4vn379mn6v/LKKzmOQZK+/PJLDR48WIZhyNvbO8dJEHm9nri5uUlShku5pZ5v//79qlevXro+e/fulSQVKVJEtWvXzvH+bxUdHa0nn3xSW7dulZTynru6umrr1q3asmWLPvjgg0zHF+b7UWozZ87UK6+8IsMw5OXlpZiYGB08eFAvvviiTp06pQkTJmjUqFEaO3asHBwcVLRoUcXGxmr//v3q3r27QkND9eqrr+bb8cfExGjHjh2S0p7bqVksFrVr107/+9//tH79epvHllupz+Xq1avnaXx+3FvHjh2rUaNGmT97eHjIMAydPXtWZ8+e1YYNG/Tggw+mS7z/5Zdf1LdvX8XHx0tKuY4kJCTowIEDOnDggGbOnKl169apTp066fb5wAMPmM8dHBzk5eWlsLAw7dmzR3v27NG8efPk7++f7pplNWrUKI0bN06GYZgxJyYm6tChQzp06JBmz56t1atXq2HDhjl6LazXxEcffTTNssWptW/fXj/++KPOnz+vf/75R7Vq1Uo3vl27djaT2du3b6/Nmzdr+/btio2NLRRJzgAAAABwO+S5cti5c+ckSX5+ftkeY/3H/LNnz+Z19wAAAABwR0QnRNt8xCXFZbtvbGJsrvvGJMbY7BuTGJOtvrdDt27ddPXqVS1dutTcdvXqVfORentG1qxZo379+ikuLk7NmjXTtm3bFBsbq7CwMIWHh2vr1q166aWX5OLikmZcvXr1NHHiRB09elQxMTEKCwtTfHy89uzZo3bt2ik8PFzdunVTbGysjT1L3377rQ4cOKAlS5YoKipKkZGR2rt3r6pVq6aoqCi9/fbbeumllxQaGqp169YpOjpaUVFR2rhxo0qXLq1r165lWOFn+/btklJ+V3Z1ddXnn38uX19feXh4yNvbW40bN852NY68iIqK0uHDhzVs2DBNmTJFUsof8UuXLn1b93snZZRccmvb33//fafCsTvWCk07d+7UlClTlJCQUMARZU9gYKA++OADffDBB7p27ZpCQ0MVFhamjz/+WFJK1SxrVZnUzp07p3bt2ikoKEjPPfec/vrrL8XFxSkiIkJBQUH66KOP5OjoqBEjRmj58uXZiiU8PFz79+/XgAEDzCpUQ4YMSZescPjwYUlSnTp1bCZrlSlTxvz8HjlyJFv7v1VQUJCGDBmifv366cKFCwoLC1NsbKw++uijTMfl5/Vk8+bNkqT69euna2vUqJFZMWzIkCH66aefzMThuLg4zZ8/X0OGDJEkffbZZzaTRnJi6NCh2rp1qxwcHPTZZ58pLCxMISEhunbtmt566y1NnDgxTfWuWxXm+5HV9evX9frrr+uNN95QUFCQwsLCFBwcrH79+kmSJk2apEmTJumTTz7R+PHjFRISorCwMP37779q166dpJSKjOHh4fl2/MeOHVNycrI5R2avr5Ty3cJW1ayciI2N1cmTJ/Xpp5+a1fgeffRRm5XqbnW77q3nz5/XmDFjJKWc+5cvX1Z0dLQiIyMVFhambdu26bXXXlPRokXTjAsICFDv3r0VHx+vZs2aKTAwUBEREYqJidHKlStVrlw5Xbx4UR07dszwe0ebNm00e/ZsnT9/XvHx8QoNDVVMTIyWLl2qWrVq6ejRoxkmBUrStGnTNHbsWHl6emrChAm6cuWKoqOjFRMTo/3796tVq1a6cuWKnn766Rx/57Fe47JzbqTuL0khISG6evVqtscnJyfr2LFjOYoPAAAAAP5T8roupZubm+Hg4GAcPHgw22MOHjxoWCwWw8PDI6+7t3vh4eGGJCM8PLygQwEAAADSsIfvqrGxscbRo0eN2NjYLPtqtGw+nlz4ZJq+Hp942OzbYk6LNH1LTSpls++D3z+Ypm/lLyrb7Fv3m7pp+tb9pm6G/W4nf39/Q5KRk181ExMTjapVqxqSjObNmxvx8fH5EktSUpLRoEEDQ5Ixf/78dO0tWrQwY922bVu69k2bNpnt7u7uxsmTJ9P1mTVrltmekJCQpq1p06aGJOPpp582n1ssFqN48eKGk5OTOXetWrWMc+fO5csxW+3atcucP/XD0dHRGDBggBETE5Ov+0vN+rr269cvV+MrV65sSDJGjRqVab+ff/7ZPK7Nmzdn2CckJMSwWCyGJMPJySnHsViPxdnZ2fDx8cnwUbNmzXTjUn8O/P39c7XPFi1aZNl3zpw55n5KlSplM0brw9o3o9d21KhRNj+7x48fN4oWLWq2Fy9e3OjUqZMxfvx4Y+3atUZoaGiOjvHs2bPmXHPmzMnR2OxIfSy2zqMuXboYkow2bdqka3vuuecMSUafPn1s7mPq1KmGJMPX19dmn0WLFmX4OXR1dTU++OADIykpKd0YPz8/Q5LRuXPnTI/x/vvvNyQZzz77bKb9bpX6nOnSpUu2xtyO68nixYvNeWbNmpVhn/PnzxsPPvig2c9isRjFihUzP9NNmzY1li1bluN929qXg4ODIckYN25chn369euX5XllS0Hfj1K/7y+++GKG8Vnvw5KM8ePHp+sTHh5uFClSxOYxZCaz41+5cqW538DAQJtzLF++3Oz3999/52j/VleuXMnwXJZkdOzY0QgODs50/J24t1rvbRndWzLTrl07Q5Jx7733GtHR0enaAwICzO8ekydPztHcly5dMlxdXQ2LxWKcP38+Tdv169cNDw8Pw2KxGBs3bsxwfGJiovHAAw8Ykowvvvgi2/uNiIgwX+Pp06fb7BcWFmb2++qrr8zthw4dMrevWLHC5viDBw+a/VatWpVlXNn9ngLk5PdMAAAA4E7Ic+Uw6//OCw4OzvYYa99b/9c3AAAAAODu4u/vb1aV/uKLL/Lt90RHR0ez0om1ildGmjdvnuEyXy1atJCrq6sk6bnnntO9996brk/btm0l/V8FktSsy2v+/vvv2r17twYNGmRWPImMjNT3338vNzc3/fPPP+rSpYtZOSU/uLi4yMfHRz4+PnJ2dja3v/LKKxo1apRdLJnUunVrc1m6Tz75JMM+n376qbnEVVJSUqYVezKTmJiooKAgm4/C4MaNG5nGmJc4a9WqpS1btqhRo0aSUs7t5cuX68MPP1T79u1VsmRJtWzZMttVtO4UV1dXvfvuuxm2PfPMM5KkQ4cOpdkeEhJiVjrMbBlB61KxgYGBNl9b63K7Pj4+ZhUwR0dHDRs2TEOHDs2wMlhkZKSklCXZMmNtt/bPjewuiZnf15MTJ06YFYiaN2+u/v37Z9ivUqVKWr9+vXr16iVJMgxDYWFh5mc6KipK165dy9G+bfntt9+UnJwsDw8PvfPOOxn2yaqqWmYK+n6UWkbntaOjo1q3bi0pZbnPwYMHp+vj5eWlhx56SFL6z01WMjv+1OdwZud96rbcnveOjo7muWy9f0hS165dNWnSpCyXwL4T99ZixYpJSjnG6OjsVXsNCwvTunXrJEnvvfdehq9jw4YN1aVLF0nSokWLchRThQoV5OvrK8MwtHPnzjRtCxcuVExMjB588EHzHLqVk5OTevToIUlmnNmR13PjTp5bAAAAAPBf4JTXCapUqaLQ0FBt3rxZrVq1ytYYf39/SSn/0AMAAAAA/wVRw20vhePokPaP/Nfetf0HawdL2v+jc+7tc9nue/T1o+Yfxm916/Jk+17aZ7NvYWL9Q2PZsmWzvZxTatu2bdOsWbO0e/duXbp0KcM/pl66dMnmeOuSebdydHRUqVKldPnyZTMp5lY+Pj7mc2symJU12Ss5OVnt2rXTt99+a7a5ubnppZdeUlRUlIYMGaKAgACtXLlSnTp1shlnTvj5+ZlLKSUnJ+vMmTP64osvNGPGDM2bN08LFy7U008/nS/7KiglS5bU4MGDNXHiRG3YsEG9e/fWyJEjde+99+rq1av67rvvNGXKFDk7OysxMVGS5OCQu/8f16JFC3MJvMLq7NmzqlKlSqZ9br1G5ETDhg21d+9e7d+/X2vWrNGuXbt08OBBXb16VcnJydqyZYu2bNmi/v37a/bs2XnaV36577775OnpmWFb+fLlJSnd8nS7du0yP7vZ/Teu8+fPp7kWWD3zzDNmElpSUpKOHTumCRMmaNy4cfr++++1bNkyM9nmTnN3d5efn1+2+ubn9eTq1avq0KGDwsLCVL58eS1atMjm53L9+vXq3r27YmJiNGrUKPXo0UMVK1bUxYsXtWjRIk2cOFGvvPKK/vrrL3333XfZO3AbAgICJEkPPvigzSUqq1evbu7flsJ6P7IqUaKEqlevnun4unXr2nwNrH1szZ/X47/dSpcubZ7LhmHo8uXLmjFjhqZMmaLly5fr66+/1ssvv2xz/J24tzZu3FilSpXSlStX1KRJE7366qtq06aNatWqZfO6GhAQYH7fa9Omjc25H3/8cf3yyy86dOiQEhMT0yS4JScna/HixVq8eLEOHjyo69evm0u5pnbr+2dN9jt8+LDKli1rc9/W5Ozz58/b7JNbheF+AwAAAAD/BXlODmvTpo0CAgL0zTffaNCgQSpXrlym/S9fvqxvvvlGFosl019YAQAAAKAwKeKS8R9L72RfD+fMq8nktm9Bsv6htXLlyjke+/7772vSpEnmz46OjipevLhZfSwqKkrR0dGZVt8oWrSozTYnJ6dM+1jbJZkJSBnNa6t60RtvvKEPP/xQMTExWrduXb4lh6Xm4OCge++9V998842qV6+uoUOHqlevXjpx4kSWv78XduPGjdOlS5e0YMECLVy4UAsXLkzTXrNmTXXo0EFffPGF3N3dzco7yL0HH3wwTRLnuXPn9Ntvv2nixIm6ceOGfvzxRz3wwAN64403CjDKFNn5bCclJaXZ/u+//5rPs1ttLSYmJss+Tk5Oql+/vn766SeVKlVKX331lbp166Z//vknTbUha8xZzWltz+wYM1OyZMlcJUvm5Xpy7do1tW7dWqdOnZKPj482bdqke+65J8O+Fy5cUKdOnRQbG6vZs2frhRdeMNtq1aql0aNHq1KlSho4cKC+//57Pf/88zarFmXH9evXJf1f0qAtFSpUsJkcVpjvR/kxf+o+Gc2f2+NPvb/MzvvUbbk971OzWCy65557NH78ePn5+enZZ5/VoEGD1KRJE/n6+mY5/nbdW4sVK6ZFixapZ8+eOnLkiN58801Jkre3tx599FE9//zz6tatW5rErtQV9CpUqGBzbuvnLSkpSSEhIWayX0xMjJ566inzP3NLKVXSSpQoYe4nJCREiYmJ6d4/6zUzNjY2W9U5s3O9tMruuZE6ptRjCurcAgAAAIDCKs/LSg4aNEjOzs4KCwtT69atMy0tHhgYqDZt2igsLExOTk567bXX8rp7AAAAAIAdyGnlhw0bNph/iH7ttdf0999/Kz4+XiEhIbp69aquXr1qLg9WEBXUUv+Btk6dOhn2cXZ2Nqu43I5qGrd67bXX5OrqqqioqBwvK1UYOTk5af78+Vq3bp169uypunXrqlKlSmratKk+/fRTHThwwPyjcc2aNQs4WvtUpUoVDR06VFu2bDGTnGbOnFnAUeXezZs3JaVU1jIMI1uPli1b5mgf1uvSxYsXtXbt2jRt1uSky5cvZzqHtT2rZCZbMlrSMqdycj25du2aWrVqpaNHj6pMmTL6888/Vbt2bZv9v/nmG8XGxqpEiRJpEsNSGzBggLkM4G+//Zb7A9H/3SOyug/ZupcU9vvR7ZaX4099Dmd23qduy+15b0uXLl1UuXJlJScna9asWTken9/31jZt2ujs2bOaN2+e+vXrpxo1aig8PFyrVq1Snz591LBhwyyvEVlJfa5/8skn8vf3l7u7u7744gudP39ecXFxCg4ONt+/Jk2aSEr//lmvma+++mq2rpfnzp3LdoxFixY1k7Vyc26k/h5WUOcWAAAAABQmeU4Oq1y5sj755BMZhqF//vlHfn5+at26tcaMGaPvv/9eP/zwg8aMGaPWrVvrgQce0IkTJ2SxWDR27FibpcwBAAAAAHcHa4WNs2fP5mjc4sWLJUlt27bVN998o3r16qVLeLBWJSsIDRo0MJ9nlnCQ3aSE/ODm5mYmU5w6deq27+9OeeKJJ7Rw4UIdOXJE58+f165duzR8+HB5eHho69atkqRmzZoVcJT2rW7dumrevLkk6Z9//ingaHLPuixabGzsbfuMpE5YuHUf9erVkyQdO3bMTLq41bVr18xKV/fdd99tiTE7sns9uXbtmh577DEdOXLETAyrW7dupnMfPXpUkrL8d8MaNWpIyvn941ZlypSRlLZyXEZstRf2+9Htlpfjr1OnjlnF7vDhwzb3YW0rW7ased7lJ2tSUG4+97fj3lqkSBH16dNHP/74o06cOKFLly7ps88+k5ubW5qKYtL/nb9S5st2WtucnJxUvHhxc7v1/fv44481ePBgVapUKd13Elvvn/Wa+ffff+fwCLPHeo3LzrmRur+UsoyqNb7sjHdwcLCZzA8AAAAA9iDPyWFSyhIZY8aMkcViUXJysjZv3qyxY8dq0KBBevXVVzV27Fht3rxZycnJZmLY+++/nx+7BgAAAAD8hz388MOSUpZw279/f7bHWZf2atiwYYbthmHozz//zHuAufTEE0+Yz62JDrdKSEjQmTNnJElVq1a97TFFRkaaSSV3w9JJO3bs0PHjxyVJ/fr1K+Bo7J+np6ck/aeX73z44YfNpAhrwkR+s37mpfSfw8cff1xSymd1586dGY7/448/0vUvCNm5ngQFBemxxx5LUzEsOwlt1mShrCoqWpf+zOv1zM/PT5K0f/9+m8s+njlzxuaSkoX9fnS75eX4PTw8zOTd1Of2rePXrVsnKe29Nb8YhmEmGObmXLoT99YKFSpo2LBhGjp0qKSUam1Wfn5+5mdm06ZNNufYuHGjJMnX1zfNspRZvX/nzp2zmfRmfe927959WyqgWq9x27Zts7k0pPW8qVy5smrVqpXh+HXr1tms2mcd37x58zTL/AIAAACAvcmX5DBJ+uijj7Rv3z5169ZN3t7e6cpGFytWTL169dJff/2lkSNH5tduAQAAAAD/YY899piqVasmKWW5tYSEhGyN8/b2liQFBgZm2D5jxow0SRh3WvPmzc2qNpMnT86wzzfffGP+sbNjx4552l9SUlKWfSZPnmz2y+lSeP81kZGRev311yWlJBM0bty4gCP67/rzzz+VmJiYaZ/Lly+biQfWRJv/ojJlyuiZZ56RlPJ5OXHiRKb9Q0JC0vycnc/hhAkTzOctWrRI09aiRQtVrlxZkjRx4sR0YxMTEzVlyhRJKdcY67Uzv+XH9ST1UpI+Pj7y9/fPdqUz6zl07do1LV26NMM+f/zxh7lE3UMPPZSteW3p0qWLHBwcFB0drenTp2fY55NPPrE5vrDfj263vB6/NXnX399fe/bsSde+ZMkSc3zfvn1zFFt2zuU5c+aYlbFuPZfv9L01Pj4+03Zr8lLqymzFihVT27ZtzVgySqIKDAw0l1/t0aNHmras3r8PPvjAZjx9+vSRu7u7bt68qddff91mxUNJSk5OVlhYmM32jPTu3VuOjo6KjIzU119/na793LlzZiJvnz590rVbz63Tp09ryZIl6dr37Nkjf39/STk/twAAAADgvybfksOklP9htGjRIgUHB+vUqVPavXu3du/erVOnTunGjRuaP3++fH1983OXAAAAAIBC7scff5TFYpHFYtHmzZvTtDk6Ourrr7+WxWLR9u3b1bp1a23fvl3JycmSpIiICG3evFm9e/dOU4GrXbt2kqS1a9dq3LhxZrWXsLAwffrpp3rzzTdVsmTJO3OAGXBwcNDUqVMlpVSseO2113Tt2jVJUlxcnGbOnGn+x6mWLVuaf9jNrYULF+rpp5/W0qVLzf1IKX+MPXTokF5++WWNGzdOUkqlD+vrl1fh4eG6ceOG+bAmEcXHx6fZHh4enuH40NDQNP2s73tMTEya7VFRUenG7tmzR59++qmOHj2aZr+rV6/Www8/rMDAQPn4+GjmzJkZ7rt///7meXm73Pr6ZPSwVc2ksBg2bJiqVaumDz74QNu3b1dsbKzZFhISopkzZ6p58+aKjIyUJLOyzX/VlClTVLJkSUVERKh58+aaPXt2mvP3xo0bWrp0qbp06ZIuyWLixInq3bu31q5dmyYJIikpSXv27FGXLl00b948SVLPnj3TLa/o6OioSZMmSZLWrFmj1157zUxAu3z5srp3765Dhw6l6Xcr6zndv3//XL8Geb2eXL9+3UwMK1u2rPz9/bNcSjK1gQMHysPDQ5I0YMAAzZgxw3wPwsPD9e2336pbt26SUpaOy8uxSikVhwYOHCgpZWm9zz//3LzmBAcHa8iQIZo9e7aKFSuW4fjCfj+63fJ6/P369VP9+vVlGIaeffZZs/pVcnKylixZopdeekmS1L59e7Vu3Trd+NGjR5vnvTVh0Gr79u169NFHNX/+/HRLLp48eVIffPCBXnnlFUkpy5jeei7d6XvrZ599pvbt26eLNz4+Xr/88ouZbP7kk0+mGffJJ5/I2dlZp06dUtu2bc1lHpOTk7VmzRo9+eSTSkpKUvXq1c3jtbLGPH78eC1dutRMdDt79qx69uypX375Jc0ylKmVLVvWTGRdvXq1Hn/8ce3YscNMEjMMQ8ePH9fUqVNVr149/f7772nGnzt3znzvRo8enW7+mjVr6uWXX5aU8h/T//e//5n/ieCvv/5Shw4dFBsbq7Jly+rdd99NN75169Zq3769JOnll1/WkiVLzO8ZmzZtUpcuXSRJ9evXt3kdycv3FAAAAAAoVAwUauHh4YYkIzw8vKBDAQAAANKwh++qsbGxxtGjR43Y2NiCDsUu+Pv7G5KMW3/VnDNnjrnd398/w7Fz5841XF1dzX6urq5GsWLFzJ8lGQcOHDD7JyQkGI888ojZZrFYjOLFixsODg6GJKNDhw7Ghx9+aEgyWrRokW5/LVq0MCQZo0aNsnk8lStXNiQZc+bMsdknq+P64osvDEdHRzPGEiVKGM7Ozua4Ro0aGdeuXbM5f3alfo0lGUWKFDFKlSpluLi4pNneqlUrIzg4OM/7s7K+jlk9MnoPDOP/XuOsHv369Us3dtmyZWa7g4ODUbx4cfO1lmTUqlXL+Oeff2zG3q9fvwzP11uPzVbstqT+HGTnERoamqt9pn7Pz549m2V/a9+MzvlRo0bZfC2aNm2aJl6LxWJ4e3sbHh4eaba7uLgY06dPzzKOs2fPmmMy+2zllvVYMnsNbV2rrAICAowqVaqku754enqmOeY2bdpkuG/rw9PT0yhVqlSaz7wko1u3bpned1LPY7FY0lwLnZycjB9++MHm2Mw+M9ZzpnLlyjbHp+6X2+vJmDFj0oz18fHJ9HHhwoV0c6xcuTLd6+3l5ZXm5xIlShhbt27N9FiyKzIy0mjevLk5t6Ojo1G8eHHDYrEYkowPP/zQePTRRw1JxoQJE9KMLez3o+y879n53FivmbeeW3k9fsNIuS6k/sx5eHgYbm5u5s8NGzY0QkJCMo09o2vhrddjNzc3o1SpUoa7u3ua7b6+vhleR+/0vfXWa4i7u7tRokQJ8zyUZNSpU8e4cuVKurGLFy9OE5eXl1ea17BixYrG0aNH0407d+6c4ePjk+Ya4+3tbf786aefZnmOTpo0Kc3918XFxShZsmS6a9+CBQvSjEt9P7A1d1xcnNG2bVuzn7Ozs1G0aFHz55IlSxr79++3+ZqGhIQYDRs2THMOpL5/Va5cOdN7aF6+p+Duxu+ZAAAAKGzytXIYAAAAAAC50bdvXx0/flyDBw9W3bp15eTkpISEBFWvXl2dOnXS/PnzVadOHbO/s7Oz1q9fr1GjRqlmzZpydnaWYRhq3Lix/ve//2nlypVpll0qKIMHD9bu3bvVu3dv3XPPPYqKilKRIkX0yCOP6Ntvv9X27dtVunTpPO+nQ4cO+v7779WzZ0/dd999cnd3V2hoqFxcXFS7dm316dNHq1ev1qZNm1SiRIl8OLKC98ADD2jYsGFq2rSpSpcuraioKJUsWVKtWrXSt99+q0OHDqlmzZoFHeZ/nr+/v37//XcNGTJEjzzyiHx8fBQbG6vExESVKlVKDz/8sEaOHKljx47prbfeKuhw80XDhg119OhRff3112rTpo1KlSqlyMhIJScnq0aNGurZs6cWL16cbsnDAQMG6Msvv1SXLl1Uu3Ztubi4KDQ0VB4eHqpfv75efvllbdu2TYsXL5abm5vN/Y8ePVqbNm1Sp06dVKZMGcXExKhChQrq2bOndu/erRdffPG2Hn9eryfWyjqSFB0draCgoEwfGS1F17FjRx05ckTvv/++/Pz85OXlpejoaHl7e6tRo0b66KOPdPToUT3yyCP5csyenp7atGmTJk+erAYNGsjFxUWGYahFixZaunSpxo0bZ1aDu7WC2H/lfnS75MfxV6lSRYcOHdLHH3+sevXqyWKxyNnZWQ888IA+//xz7d6922b1qsw88MADmjdvngYMGCBfX195e3srLCxMDg4Oql69urp27arFixfrr7/+UpUqVdKNv9P31pdfflnff/+9evTooXr16snDw0MREREqXry4HnnkEU2bNk0BAQEqW7ZsurHdunXTkSNH9Morr6h69eqKj4+Xk5OT7r//fo0ZM0aHDx9O8z3KqnLlytq/f78GDhyo8uXLS5Lc3Nz01FNPad26dRo+fHiWcb/33ns6fvy43nnnHTVo0EBubm4KCwuTp6enGjVqpGHDhmnnzp3q2bNnjl8TV1dXrV27Vj/88IOaN2+uIkWKKDExUTVq1NA777yjI0eO6IEHHrA5vnjx4tq9e7c+//xzPfDAA3J2dpYk1atXTx9//LEOHTqU4XsPAAAAAPbGYhiFfP2CfLRmzRpNnTpVAQEBio+PV61atfTCCy/o9ddfl4ND9vPkRo8erTFjxmTa59ixY6pdu3ZeQ1ZERIS8vb0VHh4uLy+vPM8HAAAA5Bd7+K4aFxens2fPqmrVqpn+oR4AANy9rMmnCQkJ2rp1a74lpQEA7BO/ZwIAAKCwccrPyU6fPq2VK1cqMDBQN27cUGxsrDLLPbNYLNq0aVN+hmDTxIkTzf/pVK1aNXl6eiowMFBvvfWWNm7cqGXLluUoQUySKlasqEqVKmXY5uHhkeeYAQAAAAAAABSsqVOnKiEhQSVKlFCjRo0KOhwAAAAAAIAcyZfksJiYGL3++uuaP39+umQwwzBksVjSbZOUbvvtsmvXLo0YMUIODg5asGCBevToIUkKDAxU27ZttXLlSk2dOlXvvvtujuYdMGCARo8efRsiBgAAAAAAAHAnREZG6qWXXlL//v3VtGlTc+nI8+fP6+uvv9aUKVMkpSwVTAUYAAAAAADwX5Pn5DDDMNS5c2dt3LhRhmGoVKlSuueee3Tw4EFZLBY98sgjCg0N1T///KPExERZLBbVqlVLZcuWzY/4s2X8+PEyDEMvvfSSmRgmSb6+vpo6dap69eqliRMn6u2335azs/MdiwsAAAAAAABAwbp586Z+/vln/fzzz5KkokWLSkpJGrN69tlnzVUJAAAAAAAA/kvynBy2ZMkSbdiwQRaLRaNGjdJHH32ko0ePqkGDBpKkLVu2SJKio6M1c+ZMffTRRwoJCdEPP/yg5s2b53X3WYqIiNDGjRslSQMHDkzX3rVrVw0aNEjBwcHy9/fXE088cdtjAgAAAAAgI7n5j1RXr17N9f7efvttMxkiu6ZPn65u3brlep9AVj7//HN9/vnnORrz7rvv5rgiPOxLo0aNdPHixRyN2bdvnypWrChPT099/fXX2rBhgw4fPqzr168rNjZW5cqV04MPPqi+ffvq2WefvWOrIOC/jXsrAAAAAKCwyXNy2E8//SRJeuihhzRq1ChJGS8XWaRIEb399tt6+OGH1aJFC3Xp0kUHDx5U+fLl8xpCpg4cOKCEhAS5ubnJz88vXbuzs7MaNWqkTZs2ac+ePTlKDvP399eRI0cUHBysEiVKqHHjxurbt+8drYoGAAAAALAfQUFBd3R/4eHhOd5nbGzsbYoGSBEVFZXj8zIqKuo2RYP/iuvXr+f4vLl586YkycnJSa+//rpef/312xEa7jLcWwEAAAAAhY1DXifYv3+/LBaLXnrppWz1b9SokQYNGqQbN27oyy+/zOvus3Ty5ElJUqVKleTklHEuXLVq1dL0za6tW7fq119/lb+/v3777Te9//77qlatmn788cc8xQwAAAAAuDsZhpHjR178+OOPOd5f//798+dgARtGjx6d4/Ny9OjRBR02Cti5c+dyfN5UqVKloMOGHeLeCgAAAAAobPKcHHbjxg1J/5dgJaVU47LK6H89dejQQZL0+++/53X3WQoNDZUkFS9e3GYfa5u1b1bKlSunESNGaN++fQoODlZMTIx27Nih9u3bKzY2VgMGDNCqVauynCc+Pl4RERFZPgAAAAAAAAAAAAAAAAAgp/K8rKSTk5MSExNVtGhRc1vq51evXlXVqlXTjPH29pYkXbx4Ma+7z1JcXJwkycXFxWYfV1dXSdkv3/3KK6+k2/bwww9r9erVevbZZ7Vs2TK98847euqppzJcYtNqwoQJGjNmTLb2CQAAAAAAAAAAAAAAAAA5kefKYeXLl5ckXb9+3dxWtmxZubu7S5ICAgLSjTl16pQkKSkpKa+7z5Kbm5skKSEhwWaf+Ph4STJjzi2LxaKJEydKkk6fPq1Dhw5l2n/48OEKDw/P9HEnEugAAAAAAAAAAAAAAAAA2J88J4f5+vpKkv7++29zm8ViUZMmTSRJ3377bZr+SUlJ+uKLLyRJNWrUyOvus5SdJSOzs/RkdtWsWVMlSpSQ9H9JcLa4urrKy8srywcAAAAAAAAAAAAAAAAA5FSek8NatWolwzD0xx9/pNk+YMAAGYahzZs3q0WLFvrmm280efJkNWnSRHv37pXFYtHzzz+f191nyZqAduHCBZuVys6cOZOmb145OztLujOV0QAAAAAAAAAAAAAAAAAgI3lODuvcubMsFov8/f3NJCtJ6t27t9q1ayfDMLR9+3a99dZb+uD/sXff4VGV+d/HPzPJpGdSSUJLQkITKRKkCCioiLqsDRtgF8vaFRVFXBFRwbKIdV3Fuoq4duwKgoICgsHQBAKEJEASSJ2EtEnmPH/kmfkRUkglYfJ+ec3l5Nz9zGlhvrnvBx/Un3/+KUk66aSTNG3atOY2f1SDBw+WxWJRaWlprUtc2u12rVu3TpJcs501R3Z2tg4cOCBJ6tatW7PrAwAAAAAAAAAAAAAAAICmaHZwWFRUlOx2u0pLSxUXF1ct7bPPPtPMmTMVGRkpwzBkGIaCgoJ02223afny5fLx8Wlu80dltVo1btw4SdIbb7xRI/2jjz6SzWZTWFiYxo4d2+z25s+f7xrn0KFDm10fAAAAAAAAAAAAAAAAADRFs4PDJMlsNsvDw6PGdm9vb82ZM0f79+9Xdna2MjMzlZOToxdffFFWq7Ulmm6QmTNnymQyaeHChfrggw9c25OSklyzl02fPl1eXl6utAULFig2NlaTJk2qVteWLVt06623asuWLdW2l5aW6sknn9RTTz0lSXrggQeq1QcAAAAAAAAAAAAAAAAAx1Kzg8PS0tKUlpam3NzcevOFhoYqIiJCJpOpuU022qhRozRnzhw5HA5NmTJF8fHxGjRokBISEpSVlaUJEybo3nvvrVYmPz9fqampyszMrLbdbrfr3//+t/r376+IiAidfPLJOvnkkxUWFqaZM2fK4XBo6tSpevDBB4/lEAEAAAAAAAAAAAAAAACgmmYHh8XGxqpHjx5avHhxS/Sn1cycOVNffvmlzjjjDOXk5Gjnzp0aMGCAFixYoC+++KLWmc9qExsbqzlz5ujcc89VQECAtm/frk2bNik0NFSXXHKJvvvuOy1cuLBNguAAAAAAAAAAAAAAAAAAwMlkGIbRnAr8/f1VWlqqNWvWaOjQoS3VL/x/NptNQUFBKigoOKZLcQIAAABH4w7PqqWlpUpJSVGPHj3k4+PT1t0BAAAAABzn+D0TAAAA7U2zZw7r2rWrJKmysrLZnQEAAAAAHN8qKys1f/58DR48WP7+/jKZTDKZTPr888/bumsAAACA23E+b69YsaKtuwIAAACgnWp2cNj48eMlSatWrWp2ZwAAAAAAx7e7775b9957r/78809VVFQoMjJSkZGRHf4v5r/44gtdeumlio6Olo+Pj8LCwjRo0CD94x//0OrVq1ukjS+//FL33XefTj/9dMXHx8tqtcrLy0tdunTRueeeq7feeksVFRUt0pYkVVRUaNmyZXrmmWc0adIk9e7dW2azWSaTSddee+1RyxcXF+vbb7/V448/rokTJyomJsb15eajjz7a4H58/fXXuuCCCxQVFSUvLy9FRUVpwoQJ+uKLL5o+OEljx4519ae+19ixY6uVW7FiRb1f0h6e3pTXnj17JElvv/12jW31qW/fPvroo670uqSmpmrGjBkaOnSoQkJCZLFYFBkZqYEDB+riiy/WggULlJSU5Mp/7bXXNnmMR+7T48n777+vO++8U6NHj1ZsbKz8/f3l4+Oj6OhoXXTRRfrkk08aVM/y5ct10UUXqXPnzvL29la3bt105ZVXKjExsZVHUKW515ONGzfqiSee0Nlnn62uXbvKy8tLgYGB6t+/v+68807t2LHjqH3Izc3VY489pmHDhik4OFgWi0WhoaEaOXKk5s6dK5vN1pJDRhsrLCzUo48+qgEDBiggIEBBQUEaOnSo/vWvf6m8vLzJ9f7888+aOXOmzj77bPXq1ct1/YqIiNDpp5+uF154QSUlJXWWP9b3VqA9sdvtev3113XzzTdr+PDh6t69u3x9feXn56f4+HhNmTJFS5cubZG2Pv30U5199tmKiIiQj4+PevTooZtvvlk7d+48alnDMPTGG2/o1FNPVWhoqPz8/NS7d29NmzZNWVlZdZZr7rMsAAAAcFwxmmnHjh2Gv7+/ERkZaezdu7e51eEIBQUFhiSjoKCgrbsCAAAAVOMOz6olJSXG1q1bjZKSkrbuiluw2WyGxWIxJBlPP/204XA42rpLbS4/P98YP368Icn1Cg4Odu0nScZdd93VIm2deOKJ1doJDAw0fHx8qm1LSEgwMjMzW6S9lJSUanUf/rrmmmuOWn758uV1lp81a9ZRy1dUVBjXXHONq4zJZDJCQkIMT09P17brr7++ycfhmDFjDEmGxWIxIiMj63xddNFFdY5r+fLlNer99ddf66zLeVzU12ZaWpphGIbx1ltvudpJSUk56njq27ezZs1ypdfmvffeM/z8/Kp9Rlar1QgICKi2LSYmxlXmzjvvrLX/4eHh1epoyD49nvj7+1fbJ0FBQYaXl1e1bePHjzeKiorqrOPwz8NkMhlBQUGunz09PY3XX3+91cfRnOvJe++9V+OcDgoKMjw8PFw/e3l5Ga+++mqd7ScmJhqRkZE19oPJZHJt69q1q7Fly5bW3A04Rvbs2WPExsa6Pls/Pz/D29vb9fPgwYON3NzcJtU9YcKEaseiv79/jfO0R48exvbt22stf6zvrUBT9OnTx+jTp4+xdu3aFq334MGD1Y5157PW4ddz53Of3W5vUhsOh8O47rrrXHWZzWbDarVWux58/fXXdZYvLS01zj777Gr3ycOfT8LCwoz169fXWra5z7L14fdMAAAAtDfNnjmsV69eWrRokYqLizVixAgtWrSoWX/NBQAAAAA4Pm3btk12u12SdMstt9Q7C1FHUFZWpnHjxumHH35QVFSUFi5cqLy8POXl5am0tFRpaWl67bXXdPLJJ7dIe5dccolee+01bdmyRcXFxbLZbCopKdG+ffs0e/Zsmc1mJSYm6pprrmmR9iQpMDBQo0eP1l133aV33nlHJ510UqPKh4SE6Mwzz9T999+vDz74QFFRUQ0uO2vWLL3zzjuSpLvuuksHDhxQbm6u8vPztWDBAlksFr355puaO3duo/p0pJEjRyozM7PO16efftpi9Y0cOfKoebp3796s8TTWunXrdPXVV6u4uFgDBw7Uxx9/rKKiIhUUFKiwsFAHDhzQ559/rmuvvVb+/v6ucs8//3yt/V+3bt1R8zR2n7YnN9xwg9555x0lJyertLRU+fn5Ki0t1a5du3THHXdIkn744Qfde++9tZb/3//+p9mzZ0uSbr75Zh08eFD5+flKT0/XhRdeqIqKihadcbAuzbme2O12eXt768orr9TXX3+tgoIC5efnq7i4WEuXLlX//v1VXl6uW265pdYZZyoqKnTJJZcoKytLwcHBev/991VcXOyq45133pHVatW+ffs0efLkVt0PaH2VlZU677zztGfPHnXu3Fk//vijDh06pOLiYi1evFiBgYHasGGDrrjiiibVP27cOL3wwgtKTEyUzWZTUVGRioqKlJ2drRdeeEG+vr5KSUnRRRddJIfDUaN8W9xbgcbatm2btm3bpmHDhrVovd7e3rrjjjv04Ycfas+ePSorK1Nubq7Ky8u1adMmTZo0SZL0zjvv6Nlnn21SG88884zeeustSVXPdgUFBSooKNC2bds0cuRIFRcX67LLLlNKSkqt5e+55x59//33slgseumll3To0CEVFhZq3bp16tu3r3JycvT3v/+9ztkmm/ssCwAAABw3mhtddvrppxunn366ERcXZ5hMJsNsNhs+Pj7GgAEDjNNOO82VXtvrjDPOaIkAN7fmDrMxAAAAwD25w7Mqf9HdslasWFHv7EMdzQMPPGBIMkJDQ43du3e3dXeMGTNmuD6f9PT0ZtdXWVlZY1Yu52xbDZltoaKiosa2mJiYBs0clp2d7Zq55cILL6w1j3P2JT8/PyMrK+uo/TmScyxjxoxpVLmjzRzWUm0eq5nDpkyZYkgyIiIijPz8/HrbKC4uPmo/Dp+l46233jpqfnczefJkQ5Lh6+trlJeXV0urqKhwnQNnn312jbJlZWXGgAEDDEnG6NGjj1WXa1Xf9WTbtm3Gvn376iybl5dnREVFGZKMM888s0b64feSuo6RhQsXuvJs27atWWNB2zr8s/ztt99qpC9atMiVvnTp0hZv/z//+Y+r/lWrVjW6fEvfW4HjicPhMEaOHGlIMnr27Nno8rm5uUZgYKAhybj55ptrTXfeL6688soa6du3b3fNYjZ37twa6bt27TJ8fX0NScbDDz9cI725z7L14fdMAAAAtDfNnjlsxYoV+vnnn7Vnzx5nsJnKysq0efNmrVy5UitWrKjx+vnnn13vAQAAAADHt7ffflsmk0ljx451bTOZTK7X4dvrk56erunTp+ukk05SUFCQfH19FR8frwsuuEDvvvuuSktLq+VPS0vTyy+/rAkTJqh3797y9/dXQECA+vXrp7vvvltpaWl1tjV27FiZTCY9+uijqqys1HPPPafBgwcrICBAERERuvDCC5WUlOTKX1xcrMcff1z9+/eXv7+/wsLCdPnll2vXrl211p+Xl6cXX3xRkjRnzhz16NGjQfugNY0YMcL1ft++fc2uz2w2N2t2OA8PjyaXXbp0qet4uP/++2vNc99998lsNqu4uFj/+9//mtxWR/fnn39KqjpngoKC6s3r6+t7DHpUv0cffbTadWfZsmWaMGGCOnXqJB8fH51wwgmaPXt2jevJkQoKCvTEE09o+PDhCgkJkbe3t7p3767JkydrzZo1Te6f8zwsKSlRbm5utbSff/5ZqampkqSHHnqoRlkvLy/XjGOrVq3S7t27G9W281odGxsrSVq+fLkuvPBCde7cWR4eHrr22msbPQ6p5vWkT58+6tKlS51lg4ODNXHiREmqNpOcU0ZGhut9XTMrHj47TlFRUcM6fRR2u13PPfecTjrpJPn7+ys0NFRjx47Vxx9/LKn6feNI7fl+dOTnvnLlSp133nmKiIiQv7+/Bg8erDfeeKNama+//lpnnXWWOnXqJD8/Pw0dOlQffvhhnWNozvidM0CefvrpOuWUU2qkT5o0yXUPfffdd+usp6kOP5b37t3brPItcW+VpO+//14TJ05Ut27d5OXlJavVqri4OI0fP17PPvtsjWuH065du3TLLbeoV69e8vX1ldVqVUJCgh577LE6Z02SpMTERD322GM67bTTFBMTIx8fHwUHB2vEiBF66qmnGnSObdiwQddff73i4+Pl5+engIAADRo0SA8//LCys7ObvC+O5Hy2XLFihQoLC/Xwww+rb9++8vX1VVhYmP7+979r7dq1tZZdsWKFq3xD26iv/MaNGzV58mR16dJFvr6+OuGEE/Tss8+qoqLCVebXX391XWd9fHzUv39/vfzyyzIMo94+/PXXX7rtttvUr18/BQYGKiAgQH369NGkSZP0ySef1Jjlrq4+79mzx5W2Z88eZWVl6a677lKPHj3k4+OjyMhITZo0Sdu2bau3P/Xtq+HDh0tq2vnz2WefqbCwUJI0Y8aMGukhISH6xz/+IUn65JNPdOjQoWrp7733niorKxUQEOCanfNwcXFxuvzyyyVJ//3vf2ukN/dZFgAAADiuNDe6bMyYMcbYsWOb/EL93GE2BgAAALgnd3hW5S+6W8bixYuNyMhIIyQkxDV7RmRkpOt10UUXHbWOd9991zUTlCTDy8vLCAoKcv0sydiwYUO1Ms6/7He+goKCDLPZXO3nlStX1tqes+xDDz1kjBs3ztWmv7+/q3xAQICxbt06Izs72xg8eLAhyfDx8XHNQKD/P5tSampqjfpfe+01Q5JhsViMwsLCJu3Xlnbfffe5+n3gwIFWaaO5sy00dOawp556yjWWvLy8OvNFR0cbkowJEyY0ui/MHFalX79+hiRj5MiRDRjB0bX2zGHOsYwZM8Z4+umnDZPJZJhMJiM4ONgwmUyutk8//fRaZ68zDMNYs2aNERkZ6crr4eHhmtlEkmEymYwnn3yySf275JJLXNeXI2crefDBBw1JRmBgYJ19y8rKcvXj1VdfbVTbzmMmJibGeP755137IygoyLBYLI06b5t7PZk2bZohyfD396+Rtnbt2gbPHObv728UFRU1uv0jFRUVGaeddlq1zzwkJMS1jx588EHX+VnbOdSe70eHf+6vv/66YTabDZPJVOMe++CDDxqGYRiPPPKIIckwm8018vz73/+udwyNHf+hQ4dc+Z5++uk6P59bbrnFkGRERUXVmaepXnrpJVc/161b1+jyLX1vnT17drV96efnZwQEBFTbVtu95cMPPzS8vb1deQIDA6v93L17d2Pr1q21tnl43Waz2QgODq62rV+/fvXOwPnII49Uu776+fkZXl5erp87d+5sJCYmNnvfHN7XRYsWGT179nSdC35+fq40i8VifPfddzXKHn5/bkgbR+7nw8t/8803rufWoKCgauOfNGmSYRiG8frrrxseHh61nm8PPPBAne3Pmzev2vnj4+NT7R5U27NPXX0+/J771VdfGREREa7P6PDjw2q1Gn/++We9+6U2lZWVxvDhww1Jxoknntjo8pMmTXIdY3U5/J5w5Oc6YsQIQ5Lxt7/9rc7yH374oat8Q2aaZOYwAAAAuKsGB4d98cUXxhdffNEi/+CChnOHL9wAAADgntzhWZV/tG9ZDf3S7Uhff/2160u1UaNGGStXrjQqKysNw6g6zn755RfjxhtvNLZs2VKt3G233WbMmzfP2Lp1q2s5O7vdbqxdu9Y455xzDElGly5dal3qzvnFT3BwsBEWFmZ89NFHRnl5ueFwOIzff//diIuLcwXEXHTRRUZsbKzx/fffG5WVlUZlZaWxdOlSo1OnToYk44orrqhR/9VXX21IMoYPH26Ul5cbzzzzjDFw4EDD19fXsFqtxtChQ4158+a1euBYYWGhsWnTJuP+++937eOrr7661dpri+Cw7OzsOvN17drVkGRER0c3ui8Eh1W59tprXWnPPvusUVZW1oCR1O1YBYcFBwcbZrPZmDFjhnHw4EHDMKquJ87AF0nGG2+8UWv/nIERl1xyifHHH38YdrvdMIyqwKx//vOfhqenpyHJ+OyzzxrUp/z8fGPdunXGdddd52r7kUceqZHv73//uyHJGDZsWL31Oa89d9xxR4Pad3IeMz4+PoaHh4dx7bXXGmlpaYZhVC1puXPnznrLt+T1JCEhwZBkjBgxokaaw+EwTj75ZEOSERISYrz//vuu+3RJSYnx7rvvGlar1ZBkvPTSS01q/0g333yzKzDmqaeecl2bDx48aNx5552uY6quc6g934+cn7szYOfOO+90BTHl5OQY11xzTbWxe3h4GI8//rhrGdn9+/e7xuDv71/r8rJNHf/69eurBdvU5eWXX3bly8nJqTNfQxUXFxs7duwwnnjiCVeAzGmnndbg8q11b92zZ48rKGjatGnVlmfNz883Vq5cadx6663G+vXrq5X7448/DIvF4nqOSkpKMgyjKnBnyZIlRufOnQ1JRnx8fK3PHePGjTPefPNNIzU11XW9Ky4uNj799FOjT58+hqQ6A/2fe+45VzDa3LlzjYyMDMMwqq4p69evN8444wxDktGtW7cWeeZxHgchISFGv379jJ9++sm1NODvv//u6m9MTIzrWdKpJYPDgoODjcsvv9wVkGmz2aotMTp37lzDYrEYd9xxhyuwLjc313VPNZvNxvbt22u0/corr7jqOP/886v9YUROTo7xww8/GJdffnmN378aEhwWEhJijBo1yhUEabfbjR9//NF1fJx66qn17pfD5eTkGCtXrjTOP/98V/1vvvlmg8s79e/f35BkXHbZZXXmOXTokKuNf/3rX9XSnEFz06dPr7P8li1bXOU/+eSTo/aJ4DAAAAC4qwb/i73JZDI8PDxq/GP8ddddZ1x//fXG/v37W7xzcI8v3AAAAOCe3OFZtSH/aO9wOIyioiK3eh05W01LaUpwmN1uN3r06GFIMkaPHt3swBOniooKY+DAgYYk47///W+N9MNnOaltNpNly5a50n19fY3k5OQaed544w1Xenl5ebU050wG559/vuu9yWQyQkJCXIElkow+ffoYe/bsaZExO61evbra7BLOl4eHh3H99dfXGpzQUo5VcNjhs0CsWLGi1jy5ubmuL+09PT0b3RfnWCwWS7WZ8A5/9e7du0a5tggOCw8Pr7OPzldTg8O2bdtWbcaSkJAQ48ILLzQef/xx49tvv6135rbaHKvgsPqOo4kTJxqSjHHjxtVIc87sddVVV9XZxvz58w1JxqBBg+rM88EHH9R6Hnp7exsPPvhgrTODOQOmjjbb4kknnWRIMi6++OJ68x3p8GNm4sSJDSrTGteTxYsX1xugZxiGkZqa6goQc14/D5/9bcSIEQ0Ozjua1NRUV0DOnDlzas3jDKBqyPXpSG19Pzr8c7/hhhtq7Z/zPizJePzxx2vkKSgocM1kVtsY6lPf+JcsWeJq1xnQVJvPP//clW/Tpk2Nat8pIyOj1mNZknHeeecdNejsWNxbnfe22u4t9XEG4PXs2dM4dOhQjfTExETXs8czzzzTqLr37t1reHt7GyaTqcbMdAcPHjT8/PwMk8lkLF26tNbydrvdGDJkiCHJeO655xrVdm2c+71Tp061zma2ceNGV55Vq1ZVS2vJ4LCzzjqr1ufpU0899ajnW2xsbK3Xm9zcXNf9dtKkSY16Xm9IcFjfvn1rPU4PPw/T09PrbGPu3Lm1ngMBAQFN/mxDQ0MNScY999xTbz5ncO69997r2maz2Vx9eP755+ssm5+f78r34osvHrVPBIcBAADAXZnVCIZh1Nj29ttv6+2331ZeXl5jqgIAAACA40JxcbECAgLc6lVcXNzWu9Vl+fLlSklJkSQ999xz8vLyapF6PTw8dM4550iSVq1aVWe+0aNHa/To0TW2jxkzRt7e3pKkSy65RD179qyR5+yzz5YklZSUKDk5uVqa83fkr776SmvWrNEtt9yizMxM5ebmqrCwUK+99pp8fHy0fft2TZw4UQ6Ho2kDrYWXl5ciIyMVGRkpi8Xi2n7zzTdr1qxZ8vX1bbG22sqZZ54pHx8fSdITTzxRa54nn3zS9e8YFRUVKikpaVJbdrtdWVlZdb7ag+zs7Hr72Jx+9unTRz///LOGDh0qqerY/vzzz/Xwww/r3HPPVVhYmMaOHavPP/+8hUbTMry9vXXffffVmnbBBRdIkjZu3Fhte25urj799FNJ0oMPPlhn3VdffbUkKSkpqc596+vr6zoPPTw8JFVdl6ZPn657773Xte1whYWFkiQ/P7/6huZKd+ZvihkzZjQoX0tfT3bs2KF//OMfkqquv9dee22t+aKjo/XDDz/oiiuukFT1b5L5+fmuc7qoqEgHDhxoVNt1+eSTT+RwOOTn56d77rmn1jz//Oc/m1x/W9+PDlfbce3h4aEzzzxTkuTj46O77767Rh6r1apTTjlFUs3z5mjqG//hx3B9x/3haU097j08PFzHsvP+IUmXXnqpnn76aYWGhtZb/ljcW4ODgyVVjfHQoUMNKpOfn6/vv/9eknT//ffXuh8HDx6siRMnSpI++OCDRvWpa9euGjRokAzD0G+//VYt7f3331dxcbFOPvlk1zF0JE9PT02ePFmSXP1sCTfddJMiIiJqbB8wYIB69OghqfHHamM88MADMplMNbY7z0Wp9uush4eHxo0bV2v/Pv74YxUWFspisWj+/Pm11t8c9957b63H6bnnnut6/t60aVOd5QMCAhQZGalOnTq5+ubn56c5c+Zo6tSpTepTc+57x/L6AQAAALiDBgeHOf8RoqioqNU6AwAAAADoWJxfNEZFRenkk09udPmVK1fq2muvVd++fRUQECCTyeR6Pf3005KkvXv31ll+2LBhtW738PBQeHi4JLmCYo4UGRnpen/kH0w5g70cDofOOeccvfLKK64vMX18fHTjjTfqySeflCQlJiZqyZIlDRlugyQkJCgzM1OZmZkqLS1VcnKybr31Vr366qs68cQTW7StthIWFuYKYPjxxx915ZVX6q+//pLdbld6eroefvhh/etf/6r2Bb7Z3Ki/j3MZM2aMjKqZ12u88vPzW2A0zZeSklJnH52v5hg8eLB+//13rVu3TrNnz9Y555yjqKgoSVXH+M8//6yLLrpI1113XbPbaiknnniiAgICak3r0qWLpKpgsMOtXr3ade6eccYZioqKqvV14oknusqkpqbW2sYFF1xQ7TzcuHGjLrvsMs2ZM0f9+/fX6tWrW2KYTeLr66uEhIQG5W3J60lmZqYmTJig/Px8denSRR988EGd5+UPP/yg+Ph4ffzxx5o1a5a2bdumQ4cOadu2bZo1a5aSk5N188036+abb25w+3VJTEyUJJ188sny9/evNU98fLy6d+9ebz3t9X7kFBoaqvj4+HrL9+vXr8594MxTV/3NHX9r69Spk+tYLi4uVnp6umbOnKkvv/xSAwcO1GuvvVZv+WNxbx02bJjCw8OVkZGh4cOH66WXXtK2bdvqva4mJia60p1BR7U566yzJFUFJNnt9mppDodDixYt0vnnn6/o6Gj5+vpW+/x+//13STU/P2ew3+bNm+u8XkZFRemxxx6TVPf1simGDx9eZ1pd1/iWVNf56jxPQkNDFRcXV2+eI88l5zPxkCFD1Llz55bqqktd+8zT01OdOnWSVP8+u/3225WZmakDBw6opKREq1ev1ujRo3XPPfdoyJAh2r59e4v3uSW0dJAdAAAAcLzybGjGrl27KiUlRStXrqzzlx8AAAAAcDd+fn5u90cyR/vr/GMpMzNTkhQTE9Posg888IDrC2ep6gv0kJAQ1+wHRUVFOnToUL2zbwQGBtaZ5unpWW8eZ7qkGl+0Hl6mrtmLbr/9dj388MMqLi7W999/rwsvvLDOvjSV2WxWz5499fLLLys+Pl733nuvrrjiCu3YsaNVvng8lubMmaO9e/fqvffe0/vvv6/333+/Wnrv3r01YcIEPffcc/L19XX90Rua7uSTT64WxLlnzx598sknmjdvnrKzs/X2229ryJAhuv3229uwl1Uacm5XVFRU275//37X+4bOttaQmRg9PT01YMAALVq0SOHh4XrxxRd1+eWXa/v27dVmcXH2+Wh1OtPrG2N9wsLCmhQs2ZzryYEDB3TmmWdq586dioyM1LJly9StW7da86alpenCCy9USUmJ3nzzTV133XWutD59+ujRRx9VdHS0pk6dqtdee02XXXZZnbMWNcTBgwcl/V9ASV26du2q9PT0WtPa8/2oJeo/PE9t9Td1/Ie3V99xf3haU4/7w5lMJnXr1k2PP/64EhISdPHFF+uWW27R8OHDNWjQoKOWb617a3BwsD744ANNmTJFW7Zs0R133CFJCgoK0mmnnabLLrtMl19+ebXA58Nn0OvatWuddTvPt4qKCuXm5roClIqLi/X3v/9dy5cvd+X18vJSaGioq53c3FzZ7fYan5/zmllSUtKg2Tlbcubaph6rrd1+c86l5jwTN0RL7jNvb2+NGDFC3333nS688EItWbJEV155pX7//fdGBWMFBgYqNze3Sfe9hl4/Dj9uW+L6AQAAAByvGvwvQWeeeaYMw9BDDz2kyy+/XP/85z9df/UjSa+88ooee+yxRr8AAAAAoD0zmUzy9/d3q1d7/Av6xvbpxx9/dH0Rfeutt2rTpk0qKytTbm6ua2YP5/JgbTGT0eFf0J5wwgm15rFYLK5ZXFpyNo263HrrrfL29lZRUVGjl5Vqjzw9PfXf//5X33//vaZMmaJ+/fopOjpaI0aM0JNPPqkNGza4vhDs3bt3G/fWPcXGxuree+/Vzz//7ApyWrhwYRv3qukqKyslVc2sdR3Rd88AAF+nSURBVLSZ2JyvsWPHNqoN53UpPT1d3377bbU0Z3DSvn376q3DmX60YKa61LakZWM15npy4MABnXHGGdq6dasiIiL0008/qW/fvnXmf/nll1VSUqLQ0NBqgWGHu/76613LAH7yySdNH4j+7x5xtPtQXfeS9n4/am3NGf/hx3B9x/3haU097usyceJExcTEyOFw6I033mh0+Za+t44bN04pKSl69913dc0116hXr14qKCjQl19+qauuukqDBw8+6jXiaA4/1p944gktX75cvr6+eu6555SamqrS0lLl5OS4Pj/njFNHfn7Oa+Y//vGPBl0v9+zZ06x+dxTt8Tm9LiaTyTWT6/r167Vhw4ZGlW/Ifa+4uNg1U+vh539gYKAr2Kutrh8AAADA8aTBM4c9/PDD+vTTT5WTk6OPP/64WpphGPr3v//dpA488sgjTSoHAAAAADj+OWfYSElJaVS5xYsXS5LOPvtsvfzyy7Xmcc7A0BYGDhyoL7/8UlL9X/I1NCihJfj4+Cg0NFQZGRnauXNnq7d3rIwfP17jx4+vNe2XX36RJI0aNepYdqnD6devn0aPHq0ff/yx3S4r1RDOpTJLSkq0c+dO9ezZs8XbODxw9MjzsH///vrqq6/0119/qbKystYgrgMHDrhmujp8ectjraHXkwMHDuj000+vFhjWr1+/euveunWrJNW5BKJTr169tHbt2kbfP47kXPL38JnjalNXenu/H7W25oz/hBNOkNlslsPh0ObNm3XuuefWmm/z5s2Sqs5RZ1BgS+rSpYtSU1ObdG9sjXurv7+/rrrqKl111VWSqoJb3n//fc2aNcs1o9inn34q6f+OX6lq2ce6zhvnkpCenp4KCQlxbXd+fo888ogryOdIdX1+zmvmpk2bGjG6tnP4DHulpaXy8fGpkaegoOBYdqka5zPx8RZEd+R9raHLFktV973Nmze7zvHaHJ525H3vxBNP1Jo1a5pcHgAAAOhIGjxzWPfu3ZWYmKgbbrhBsbGxslgsMgzD9Q/YDf2LyiNfAAAAAICOa+TIkZKqlnBbv359g8s5l/YaPHhwremGYeinn35qfgeb6PBgJWegw5HKy8u1e/duSVKPHj1avU+FhYWuoJKOsKzOr7/+qm3btkmSrrnmmjbujfsLCAiQpON6+c6RI0e6/p3LGTDR0pznvFTzPDzrrLMkVZ2rv/32W63lv/vuuxr520JDridZWVk1AsMa8sW8c8nLo82o6Fz6s7nXM2cgw/r16+tc9nH37t11LinZ3u9Hra054/fz83MF7x5+bB9Z/vvvv5ekOgOBm8MwDFeAYVOOpWNxb+3ataumT5+ue++9V1LVbG1OCQkJrnNm2bJlddaxdOlSSdKgQYOqLUt5tM9vz549dQa9OT+7NWvWHJMZUJvr8KC4us7ntWvXHqvu1OB8Jl6/fr0yMjLarB+NVd997Wic97G//vpLaWlpteZxXht8fX01evToWsuvXLmyzqUlneVjYmLUp0+fRvUPAAAAcCcNDg6TqgLEXnvtNe3atUulpaVyOByuALHNmzfL4XA0+gUAAAAA6LhOP/10xcXFSapabq28vLxB5YKCgiRJSUlJtaa/+uqr1b6sOtZGjx6tXr16SZKeeeaZWvO8/PLLri+yzjvvvGa1V1FRcdQ8zzzzjCtfY5fCO94UFhbqtttuk1QVTDBs2LA27tHx66effpLdbq83z759+1yBB42ZMaS9iYiI0AUXXCCp6nzZsWNHvflzc3Or/dyQ83Du3Lmu92PGjKmWNmbMGMXExEiS5s2bV6Os3W7Xv/71L0lV1xjntbOltcT15PClJCMjI7V8+fIGz9jiPIYOHDjgmh3pSN99951rdp1TTjmlQfXWZeLEiTKbzTp06JCef/75WvM88cQTdZZv7/ej1tbc8TuDd5cvX15rYM5HH33kKn/11Vc3qm8NOZbfeust18xYRx7Lx/reWlZWVm+6c/new2cVDA4O1tlnn+3qS20BMklJSa7lVydPnlwt7Wif34MPPlhnf6666ir5+vqqsrJSt912m2uZydo4HA7X0oBtpXfv3q59WNtytA6Ho9o1+li79NJLZbVaVVFRoXvuuadd/GH90c6BiooK13Oul5dXo6/HF110kQIDA2UYRq33vfz8fL366quSpIsvvlj+/v7V0q+88kp5eHiosLBQL730Uo3ye/bscQV7O2fiAwAAADqqRgWHAQAAAADQWG+//bZMJpNMJpNWrFhRLc3Dw0MvvfSSTCaTVq1apTPPPFOrVq1y/TGRzWbTihUrdOWVV1abgeucc86RJH377beaM2eOa7aX/Px8Pfnkk7rjjjsUFhZ2bAZYC7PZrPnz50uSvv/+e9166606cOCApKqljBYuXKiZM2dKqvoy2fnFblO9//77Ov/88/Xpp5+62pGqvujcuHGjbrrpJs2ZM0dS1Uwfzv3XXAUFBcrOzna9nEFEZWVl1bbXtUxTXl5etXzOz724uLja9qKiohpl165dqyeffFJbt26t1u7XX3+tkSNHKikpSZGRkVq4cGGtbV977bWu47K1HLl/anu1hy9/6zN9+nTFxcXpwQcf1KpVq1RSUuJKy83N1cKFCzV69GgVFhZKkmtmm+PVv/71L4WFhclms2n06NF68803qx2/2dnZ+vTTTzVx4sQaQRbz5s3TlVdeqW+//bZaEERFRYXWrl2riRMn6t1335UkTZkypcbyih4eHnr66aclSd98841uvfVWVwDavn37NGnSJG3cuLFaviM5j+lrr722yfugudeTgwcPugLDoqKitHz58qMuJXm4qVOnys/PT5J0/fXX69VXX3V9BgUFBXrllVd0+eWXS5JCQ0ObNVapajaZqVOnSqpaWu/ZZ591XXNycnI0bdo0vfnmmwoODq61fHu/H7W25o7/mmuu0YABA2QYhi6++GLX7FcOh0MfffSRbrzxRknSueeeqzPPPLNG+UcffdR13B+5HN+qVat02mmn6b///a9rWUWn5ORkPfjgg7r55pslVS1jeuSxdKzvrU899ZTOPffcGv0tKyvT//73P1cQzt/+9rdq5Z544glZLBbt3LlTZ599tmuZR4fDoW+++UZ/+9vfVFFRofj4eNd4nZx9fvzxx/Xpp5+6goFSUlI0ZcoU/e9//6s249bhoqKiXAE9X3/9tc466yz9+uuvriAxwzC0bds2zZ8/37VsbluyWCy6+OKLJUlPPvmk/ve//7n+KGH79u266KKL6gySOxaCgoJc1/YPP/xQF110kf78809Xel5enr7++mtdcMEFstlsx6RPd9xxh2655RatWLGi2rNYWVmZfvrpJ40bN841M+B9991X63WyvvtSSEiIHn74YUlVgaSPPfaY6xqyY8cOnXfeecrIyJC/v78ee+yxGuV79+6tm266SZL0z3/+U//+979dn+kff/yhCRMmqKSkRFFRUbrvvvtqHWNzn2UBAACA44bRTG+//bbx9ttvGwUFBc2tCrUoKCgwJLF/AQAA0O64w7NqSUmJsXXrVqOkpKStu+IWli9fbkgyjvxV86233nJtX758ea1l33nnHcPb29uVz9vb2wgODnb9LMnYsGGDK395eblx6qmnutJMJpMREhJimM1mQ5IxYcIE4+GHHzYkGWPGjKnR3pgxYwxJxqxZs+ocT0xMjCHJeOutt+rMc7RxPffcc4aHh4erj6GhoYbFYnGVGzp0qHHgwIE662+ow/exJMPf398IDw83vLy8qm0/44wzjJycnGa35+Tcj0d71fYZGMb/7eOjva655poaZT/77DNXutlsNkJCQlz7WpLRp08fY/v27XX2/Zprrqn1eD1ybHX1vS6HnwcNeeXl5TWpzcM/85SUlKPmd+at7ZifNWtWnftixIgR1fprMpmMoKAgw8/Pr9p2Ly8v4/nnnz9qP1JSUlxl6ju3mso5lvr2YV3XKqfExEQjNja2xvUlICCg2pjHjRtXa9vOV0BAgBEeHl7tnJdkXH755fXedw6vx2QyVbsWenp6Gq+//nqdZes7Z5zHTExMTJ3lD8/X1OvJ7Nmzq5WNjIys95WWllajjiVLltTY31artdrPoaGhxi+//FLvWBqqsLDQGD16tKtuDw8PIyQkxDCZTIYk4+GHHzZOO+00Q5Ixd+7camXb+/2oIZ97Q84b5zXzyGOrueM3jKrrwuHnnJ+fn+Hj4+P6efDgwUZubm69fa/tWnjk9djHx8cIDw83fH19q20fNGhQrdfRY31vPfIa4uvra4SGhrqOQ0nGCSecYGRkZNQou3jx4mr9slqt1fZh9+7dja1bt9Yot2fPHiMyMrLaNSYoKMj185NPPnnUY/Tpp5+udv/18vIywsLCalz73nvvvWbvo7qO88PV19/09HSjS5curnosFovr2hIYGGisWLGizjaOdu8wjJY535588knX+eM8DgIDA+t8djCMuvfL4ffc+p4V6rrGHP6sZDKZDKvVaoSFhVX7vE0mk3HXXXcZlZWVtdZd333JMAzD4XAY1113XbXr7+HHoJ+fn/H111/X2ffS0lLj7LPPrvaZHr6/wsLCjPXr19dZvrnPsnXh90wAAAC0N82eOeyaa67RNddcI6vV2tyqAAAAAAAd1NVXX61t27bp7rvvVr9+/eTp6any8nLFx8frwgsv1H//+1+dcMIJrvwWi0U//PCDZs2apd69e8tiscgwDA0bNkz//ve/tWTJkmrLLrWVu+++W2vWrNGVV16pbt26qaioSP7+/jr11FP1yiuvaNWqVerUqVOz25kwYYJee+01TZkyRSeeeKJ8fX2Vl5cnLy8v9e3bV1dddZW+/vprLVu2TKGhoS0wsrY3ZMgQTZ8+XSNGjFCnTp1UVFSksLAwnXHGGXrllVe0ceNG9e7du627edxbvny5vvrqK02bNk2nnnqqIiMjVVJSIrvdrvDwcI0cOVIzZ87UX3/9pTvvvLOtu9siBg8erK1bt+qll17SuHHjFB4ersLCQjkcDvXq1UtTpkzR4sWLayx5eP311+uFF17QxIkT1bdvX3l5eSkvL09+fn4aMGCAbrrpJq1cuVKLFy+Wj49Pne0/+uijWrZsmS688EJFRESouLhYXbt21ZQpU7RmzRrdcMMNrTr+5l5PnDMAStKhQ4eUlZVV76u2pejOO+88bdmyRQ888IASEhJktVp16NAhBQUFaejQofrnP/+prVu36tRTT22RMQcEBGjZsmV65plnNHDgQHl5eckwDI0ZM0affvqp5syZ45oN7siZcY6X+1FraYnxx8bGauPGjXrkkUfUv39/mUwmWSwWDRkyRM8++6zWrFlT5+xV9RkyZIjeffddXX/99Ro0aJCCgoKUn58vs9ms+Ph4XXrppVq8eLH++OMPxcbG1ih/rO+tN910k1577TVNnjxZ/fv3l5+fn2w2m0JCQnTqqadqwYIFSkxMVFRUVI2yl19+ubZs2aKbb75Z8fHxKisrk6enp0466STNnj1bmzdvrvYc5RQTE6P169dr6tSp6tKliyTJx8dHf//73/X9999rxowZR+33/fffr23btumee+7RwIED5ePjo/z8fAUEBGjo0KGaPn26fvvtN02ZMqXZ+6i5unXrprVr1+qGG25Q165dJVWd/1dffbUSExNrLPfbFmbMmKGkpCTdeOON6tmzpyTJMAz16dNHkydP1qeffnrMvot58MEH9fTTT2vChAnq2bOnTCaTCgoKZLVaNWTIEN11113asGGDFixYILO5aV81mUwmvfnmm/r444911llnKSQkRKWlpYqJidGNN96opKSkGrPlHc7b21vffvutXn/9dY0ePVr+/v6y2+3q1auX7rnnHm3ZskVDhgxp6i4AAAAA3IbJMNr5+gUdnM1mU1BQkOuXLgAAAKC9cIdn1dLSUqWkpKhHjx71flEPAAA6LmfwaXl5uX755ZcWC0oDALgnfs8EAABAe9PsmcMAAAAAAAAAwF3Nnz9f5eXlCg0N1dChQ9u6OwAAAAAAAI1CcBgAAAAAAACADquwsFCTJk3Sd99951o+UpJSU1N1//3369FHH5VUtVQwM8AAAAAAAIDjjWdbdwAAAAAAAAAA2kplZaU+/PBDffjhh5KkwMBASVVBY04XX3yxZsyY0Sb9AwAAAAAAaA6CwwAAAAAAaCeioqIaXSYzM7PJ7d11112uYIiGev7553X55Zc3uU3gaJ599lk9++yzjSpz33336b777mulHuF4MHToUKWnpzeqzLp169S9e3cFBATopZde0o8//qjNmzfr4MGDKikpUefOnXXyySfr6quv1sUXXyyTydRKvYc74d5av2P9rAMAAAAAIDgMAAAAAIB2Iysr65i2V1BQ0Og2S0pKWqk3QJWioqJGH5dFRUWt1BscLw4ePNjo46ayslKS5Onpqdtuu0233XZba3QNHQz31vod62cdAAAAAIBkMgzDaOtOoG42m01BQUEqKCiQ1Wpt6+4AAAAALu7wrFpaWqqUlBT16NFDPj4+bd0dAAAAAMBxjt8zAQAA0N6Y27oDAAAAAAAAAAAAAAAAAICWR3AYAAAAAAAAAAAAAAAAALghgsMAAAAAAAAAAAAAAAAAwA0RHAYAAACgwzMMo627AAAAAABwA/x+CQAAgPaG4DAAAAAAHZbZXPUrUWVlZRv3BAAAAADgDpy/Xzp/3wQAAADaGk+mAAAAADosi8Uii8WioqKitu4KAAAAAMANFBYWun7XBAAAANqDDhUc9s0332jcuHEKDQ2Vv7+/EhIS9OKLL8rhcDS77oULF8pkMslkMumGG25ogd4CAAAAaG0mk0mBgYEqKChQSUlJW3cHAAAAAHAcKykpkc1mU2BgoEwmU1t3BwAAAJAkebZ1B46VefPmacaMGZKkuLg4BQQEKCkpSXfeeaeWLl2qzz77rMlT/B48eFAPPPBAS3YXAAAAwDESHh6ukpISpaWlyWq1KjAwUB4eHvxDPgAAAADgqAzDUGVlpQoLC2Wz2eTt7a3w8PC27hYAAADg0iGCw1avXq2HHnpIZrNZ7733niZPnixJSkpK0tlnn60lS5Zo/vz5uu+++5pU/z333KP8/HxNmDBBX3/9dUt2HQAAAEAr8/DwUPfu3ZWdna3CwkLl5+e3dZcAAAAAAMcZi8Wi4OBghYeHy8PDo627AwAAALh0iOCwxx9/XIZh6MYbb3QFhknSoEGDNH/+fF1xxRWaN2+e7rrrrkavAb906VK9//77uuWWWxQREUFwGAAAAHAc8vDwUGRkpCIiImS321tk6XkAAAAAQMdgNptlsViYgRoAAADtktsHh9lsNi1dulSSNHXq1Brpl156qW655Rbl5ORo+fLlGj9+fIPrLi0tdQWFPfnkk1qwYEFLdRsAAABAGzCZTPLy8mrrbgAAAAAAAAAAALQIc1t3oLVt2LBB5eXl8vHxUUJCQo10i8WioUOHSpLWrl3bqLoff/xx7dy5U88884yCg4NborsAAAAAAAAAAAAAAAAA0CLcPjgsOTlZkhQdHS1Pz9onSouLi6uWtyH++usvPfPMMzr11FN19dVXN7+jAAAAAAAAAAAAAAAAANCC3H5Zyby8PElSSEhInXmcac68R2MYhm6++WY5HA698sorTe5bWVmZysrK6s1js9maXD8AAAAAAAAAAAAAAACAjsvtg8NKS0slSV5eXnXm8fb2liSVlJQ0qM433nhDK1eu1H333af+/fs3uW9z587V7Nmzm1weAAAAAAAAAAAAAAAAAOri9stK+vj4SJLKy8vrzOOcvcvX1/eo9R08eFAPPPCAunXrplmzZjWrbzNmzFBBQUG9r/T09Ga1AQAAAAAAAAAAAAAAAKBjcvuZwxqyZGRDlp50mj59unJzc/Wf//xHAQEBzeqbt7e3a9YyAAAAAAAAAAAAAAAAAGhJbh8c1qtXL0lSWlqaKioq5OlZc8i7d++ulrc+GzZskCTdfvvtuv3226ulFRUVSZIWLVqkr776SpKUmZnZ9M4DAAAAAAAAAAAAAAAAQBO5fXDY4MGDZbFYVFpaqsTERA0bNqxaut1u17p16yRJw4cPb3C9WVlZdaaVlJSopKSkaR0GAAAAAAAAAAAAAAAAgBZgbusOtDar1apx48ZJkt54440a6R999JFsNpvCwsI0duzYo9b3559/yjCMWl+zZs2SJE2dOtW1DQAAAAAAAAAAAAAAAADagtsHh0nSzJkzZTKZtHDhQn3wwQeu7UlJSZo2bZokafr06fLy8nKlLViwQLGxsZo0adIx7y8AAAAAAAAAAAAAAAAANFeHCA4bNWqU5syZI4fDoSlTpig+Pl6DBg1SQkKCsrKyNGHCBN17773VyuTn5ys1NVWZmZlt1GsAAAAAAAAAAAAAAAAAaLoOERwmVc0e9uWXX+qMM85QTk6Odu7cqQEDBmjBggX64osv5OHh0dZdBAAAAAAAAAAAAAAAAIAWYzIMw2jrTqBuNptNQUFBKigokNVqbevuAAAAAC48qwIAAAAAAAAAALRvHWbmMAAAAAAAAAAAAAAAAADoSAgOAwAAAAAAAAAAAAAAAAA3RHAYAAAAAAAAAAAAAAAAALghgsMAAAAAAAAAAAAAAAAAwA0RHAYAAAAAAAAAAAAAAAAAbojgMAAAAAAAAAAAAAAAAABwQwSHAQAAAAAAAAAAAAAAAIAbIjgMAAAAAAAAAAAAAAAAANwQwWEAAAAAAAAAAAAAAAAA4IYIDgMAAAAAAAAAAAAAAAAAN0RwGAAAAAAAAAAAAAAAAAC4IYLDAAAAAAAAAAAAAAAAAMANERwGAAAAAAAAAAAAAAAAAG6I4DAAAAAAAAAAAAAAAAAAcEMEhwEAAAAAAAAAAAAAAACAGyI4DAAAAAAAAAAAAAAAAADcEMFhAAAAAAAAAAAAAAAAAOCGCA4DAAAAAAAAAAAAAAAAADdEcBgAAAAAAAAAAAAAAAAAuCGCwwAAAAAAAAAAAAAAAADADREcBgAAAAAAAAAAAAAAAABuiOAwAAAAAAAAAAAAAAAAAHBDBIcBAAAAAAAAAAAAAAAAgBsiOAwAAAAAAAAAAAAAAAAA3BDBYQAAAAAAAAAAAAAAAADghggOAwAAAAAAAAAAAAAAAAA3RHAYAAAAAAAAAAAAAAAAALghgsMAAAAAAAAAAAAAAAAAwA0RHAYAAAAAAAAAAAAAAAAAbojgMAAAAAAAAAAAAAAAAABwQwSHAQAAAAAAAAAAAAAAAIAbIjgMAAAAAAAAAAAAAAAAANwQwWEAAAAAAAAAAAAAAAAA4IY6VHDYN998o3Hjxik0NFT+/v5KSEjQiy++KIfD0ah6li9frjvvvFOnnHKKunbtKm9vbwUGBmrIkCGaM2eOCgsLW2kEAAAAAAAAAAAAAAAAANAwJsMwjLbuxLEwb948zZgxQ5IUFxengIAAbd68WQ6HQ+eff74+++wzmc0Ni5W78sor9f7778vT01NdunRRRESEDh48qLS0NBmGoR49emjFihWKjo5udr9tNpuCgoJUUFAgq9Xa7PoAAACAlsKzKgAAAAAAAAAAQPvWIWYOW716tR566CGZzWYtWrRIu3btUlJSkhITExUZGaklS5Zo/vz5Da7voosu0rfffiubzabU1FStW7dOe/bs0ebNmzVw4EClpKTolltuacURAQAAAAAAAAAAAAAAAED9OsTMYRMmTNA333yjm266Sf/5z3+qpS1atEhXXHGFwsLClJGRIYvF0qy21q1bp2HDhsnDw0NFRUXy8fFpVn3MxgAAAID2imdVAAAAAAAAAACA9s3tZw6z2WxaunSpJGnq1Kk10i+99FJZrVbl5ORo+fLlzW6vb9++kqTKykqVlZU1uz4AAAAAAAAAAAAAAAAAaAq3Dw7bsGGDysvL5ePjo4SEhBrpFotFQ4cOlSStXbu22e2tXr1akhQXF6egoKBm1wcAAAAAAAAAAAAAAAAATeHZ1h1obcnJyZKk6OhoeXrWPty4uDgtW7bMlbexDMNQVlaWli1bpvvvv1+enp6aP3/+UcuVlZUddXYxm83WpD4BAAAAAAAAAAAAAAAA6NjcPjgsLy9PkhQSElJnHmeaM29Dff7557rooouqbRszZow++ugjjRo16qjl586dq9mzZzeqTQAAAAAAAAAAAAAAAABoCLdfVrK0tFSS5OXlVWceb29vSVJJSUmj6g4LC9OoUaM0YsQIde3aVSaTSb///rvefffdBtU1Y8YMFRQU1PtKT09vVJ8AAAAAAAAAAAAAAAAAQOoAM4f5+PhIksrLy+vM41za0dfXt1F1n3rqqVq1apXr57/++ku33XabXnvtNaWlpenbb7+tt7y3t7crMA0AAAAAAAAAAAAAAAAAWpLbzxzWkCUjG7L0ZEOccMIJ+vLLLxUZGanvvvuuWuAYAAAAAAAAAAAAAAAAABxLbh8c1qtXL0lSWlqaKioqas2ze/fuanmbw9/fX2PHjpUkJSYmNrs+AAAAAAAAAAAAAAAAAGgKtw8OGzx4sCwWi0pLS2sN1rLb7Vq3bp0kafjw4S3SpjMIra5gNAAAAAAAAAAAAAAAAABobW4fHGa1WjVu3DhJ0htvvFEj/aOPPpLNZlNYWJhrxq/mKCgo0PLlyyVJJ510UrPrAwAAAAAAAAAAAAAAAICmcPvgMEmaOXOmTCaTFi5cqA8++MC1PSkpSdOmTZMkTZ8+XV5eXq60BQsWKDY2VpMmTapW1/79+3X33Xdry5YtNdpZs2aNzjnnHOXm5mrAgAEaM2ZMK40IAAAAAAAAAAAAAAAAAOrXIYLDRo0apTlz5sjhcGjKlCmKj4/XoEGDlJCQoKysLE2YMEH33ntvtTL5+flKTU1VZmZmte3l5eV6/vnn1b9/f4WFhWnIkCFKSEhQp06ddMopp2jNmjWKj4/XZ599Jg8Pj2M5TAAAAAAAAAAAAAAAAABw6RDBYVLV7GFffvmlzjjjDOXk5Gjnzp0aMGCAFixYoC+++KLBgVxRUVH6z3/+o8suu0zh4eHatWuXNm3aJJPJpDPOOEMvvPCCNm3apPj4+FYeEQAAAAAAAAAAAAAAAADUzWQYhtHWnUDdbDabgoKCVFBQIKvV2tbdAQAAAFx4VgUAAAAAAAAAAGjfOszMYQAAAAAAAAAAAAAAAADQkRAcBgAAAAAAAAAAAAAAAABuiOAwAAAAAAAAAAAAAAAAAHBDBIcBAAAAAAAAAAAAAAAAgBsiOAwAAAAAAAAAAAAAAAAA3BDBYQAAAAAAAAAAAAAAAADghggOAwAAAAAAAAAAAAAAAAA3RHAYAAAAAAAAAAAAAAAAALghgsMAAAAAAAAAAAAAAAAAwA0RHAYAAAAAAAAAAAAAAAAAbojgMAAAAAAAAAAAAAAAAABwQwSHAQAAAAAAAAAAAAAAAIAbIjgMAAAAAAAAAAAAAAAAANwQwWEAAAAAAAAAAAAAAAAA4IYIDgMAAAAAAAAAAAAAAAAAN0RwGAAAAAAAAAAAAAAAAAC4IYLDAAAAAAAAAAAAAAAAAMANERwGAAAAAAAAAAAAAAAAAG6I4DAAAAAAAAAAAAAAAAAAcEMEhwEAAAAAAAAAAAAAAACAGyI4DAAAAAAAAAAAAAAAAADcEMFhAAAAAAAAAAAAAAAAAOCGCA4DAAAAAAAAAAAAAAAAADdEcBgAAAAAAAAAAAAAAAAAuCGCwwAAAAAAAAAAAAAAAADADREcBgAAAAAAAAAAAAAAAABuiOAwAAAAAAAAAAAAAAAAAHBDBIcBAAAAAAAAAAAAAAAAgBsiOAwAAAAAAAAAAAAAAAAA3BDBYQAAAAAAAAAAAAAAAADghggOAwAAAAAAAAAAAAAAAAA3RHAYAAAAAAAAAAAAAAAAALihDhUc9s0332jcuHEKDQ2Vv7+/EhIS9OKLL8rhcDSqng0bNuiRRx7RmDFjFB4eLovFooiICJ177rn67LPPWqn3AAAAAAAAAAAAAAAAANBwJsMwjLbuxLEwb948zZgxQ5IUFxengIAAbd68WQ6HQ+eff74+++wzmc1Hj5XbtWuXevbs6fq5R48eCg0N1e7du5WXlydJuuaaa/Tmm282qL6jsdlsCgoKUkFBgaxWa7PrAwAAAFoKz6oAAAAAAAAAAADtW4eYOWz16tV66KGHZDabtWjRIu3atUtJSUlKTExUZGSklixZovnz5zeoLsMw1LlzZz311FPav3+/du/erfXr1ys7O1svvviiTCaT3nnnHb3yyiutPCoAAAAAAAAAAAAAAAAAqFuHmDlswoQJ+uabb3TTTTfpP//5T7W0RYsW6YorrlBYWJgyMjJksVjqrau0tFQOh0N+fn61pt9yyy169dVXNXDgQCUlJTW778zGAAAAgPaKZ1UAAAAAAAAAAID2ze1nDrPZbFq6dKkkaerUqTXSL730UlmtVuXk5Gj58uVHrc/Hx6fOwDBJGj9+vCRpx44dTewxAAAAAAAAAAAAAAAAADSf2weHbdiwQeXl5fLx8VFCQkKNdIvFoqFDh0qS1q5d2+z2SktLJUm+vr7NrgsAAAAAAAAAAAAAAAAAmsqzrTvQ2pKTkyVJ0dHR8vSsfbhxcXFatmyZK29z/O9//5MkjRo16qh5y8rKVFZWVm8em83W7D4BAAAAAAAAAAAAAAAA6HjcPjgsLy9PkhQSElJnHmeaM29T/fDDD/r8888lSffff/9R88+dO1ezZ89uVpsAAAAAAAAAAAAAAAAAUBu3X1bSucyjl5dXnXm8vb0lSSUlJU1uJy0tTVdccYUk6dZbb9Vpp5121DIzZsxQQUFBva/09PQm9wkAAAAAAAAAAAAAAABAx+X2M4f5+PhIksrLy+vM41za0dfXt0lt5Obm6txzz1V2drbGjh2r+fPnN6ict7e3KzANAAAAAAAAAAAAAAAAAFqS288c1pAlIxuy9GRdioqK9Le//U1bt27VkCFDtGTJEgK+AAAAAAAAAAAAAAAAALQ5tw8O69Wrl6SqZR8rKipqzbN79+5qeRuqrKxMF1xwgdauXat+/frpu+++U2BgYPM6DAAAAAAAAAAAAAAAAAAtwO2DwwYPHiyLxaLS0lIlJibWSLfb7Vq3bp0kafjw4Q2ut6KiQpdddpl++uknxcXF6ccff1R4eHiL9RsAAAAAAAAAAAAAAAAAmsPtg8OsVqvGjRsnSXrjjTdqpH/00Uey2WwKCwvT2LFjG1SnYRi69tprtWTJEnXp0kVLly5Vly5dWrLbAAAAAAAAAAAAAAAAANAsbh8cJkkzZ86UyWTSwoUL9cEHH7i2JyUladq0aZKk6dOny8vLy5W2YMECxcbGatKkSTXqu+uuu/T+++8rPDxcS5cuVY8ePVp/EAAAAAAAAAAAAAAAAADQCJ5t3YFjYdSoUZozZ44efvhhTZkyRQ8//LACAgK0efNmORwOTZgwQffee2+1Mvn5+UpNTVVsbGy17atXr9aLL74oSfL19dWNN95YZ7urVq1q8bEAAAAAAAAAAAAAAAAAQEN0iOAwqWr2sEGDBum5557TH3/8oczMTA0YMEDXXXedbr/9dnl4eDSonrKyMtf79PR0paent1aXAQAAAAAAAAAAAAAAAKDJTIZhGG3dCdTNZrMpKChIBQUFslqtbd0dAAAAwIVnVQAAAAAAAAAAgPbN3NYdAAAAAAAAAAAAAAAAAAC0PILDAAAAAAAAAAAAAAAAAMANERwGAAAAAAAAAAAAAAAAAG6I4DAAAAAAAAAAAAAAAAAAcEMEhwEAAAAAAAAAAAAAAACAGyI4DAAAAAAAAAAAAAAAAADcEMFhAAAAAAAAAAAAAAAAAOCGCA4DAAAAAAAAAAAAAAAAADdEcBgAAAAAAAAAAAAAAAAAuCGCwwAAAAAAAAAAAAAAAADADREcBgAAAAAAAAAAAAAAAABuiOAwAAAAAAAAAAAAAAAAAHBDBIcBAAAAAAAAAAAAAAAAgBsiOAwAAAAAAAAAAAAAAAAA3BDBYQAAAAAAAAAAAAAAAADghggOAwAAAAAAAAAAAAAAAAA3RHAYAAAAAAAAAAAAAAAAALghgsMAAAAAAAAAAAAAAAAAwA0RHAYAAAAAAAAAAAAAAAAAbojgMAAAAAAAAAAAAAAAAABwQwSHAQAAAAAAAAAAAAAAAIAbIjgMAAAAAAAAAAAAAAAAANwQwWEAAAAAAAAAAAAAAAAA4IYIDgMAAAAAAAAAAAAAAAAAN0RwGAAAAAAAAAAAAAAAAAC4IYLDAAAAAAAAAAAAAAAAAMANERwGAAAAAAAAAAAAAAAAAG6I4DAAAAAAAAAAAAAAAAAAcEMEhwEAAAAAAAAAAAAAAACAGyI4DAAAAAAAAAAAAAAAAADcEMFhAAAAAAAAAAAAAAAAAOCGCA4DAAAAAAAAAAAAAAAAADfUoYLDvvnmG40bN06hoaHy9/dXQkKCXnzxRTkcjkbVk5mZqXfffVe33367hg0bJm9vb5lMJt1www2t1HMAAAAAAAAAAAAAAAAAaBzPtu7AsTJv3jzNmDFDkhQXF6eAgAAlJSXpzjvv1NKlS/XZZ5/JbG5YrNzixYt1zz33tGZ3AQAAAAAAAAAAAAAAAKBZOsTMYatXr9ZDDz0ks9msRYsWadeuXUpKSlJiYqIiIyO1ZMkSzZ8/v8H1Wa1WnXXWWZo5c6a++OIL3XHHHa3YewAAAAAAAAAAAAAAAABovA4RHPb444/LMAzdcMMNmjx5smv7oEGDXEFh8+bNk91ub1B9119/vX744Qc9/vjjOv/88xUaGtoq/QYAAAAAAAAAAAAAAACApnL74DCbzaalS5dKkqZOnVoj/dJLL5XValVOTo6WL19+rLsHAAAAAAAAAAAAAAAAAK3Cs6070No2bNig8vJy+fj4KCEhoUa6xWLR0KFDtWzZMq1du1bjx49vg14CgHuqrKzUwYMHtX//fiXuSNQvm3/R3v17VVRUpPge8Uron6DRg0dr6AlD5enh9rckAAAAAAAAAAAAAACOKbf/Jj45OVmSFB0dLU/P2ocbFxenZcuWufIeK2VlZSorK6s3j81mO0a9AYCGcwZ9bdy5Ub9u+VUp6SlK35eurMws5R7IVWFOoUrzSqVDkqPSUWsd67ROi7W46gdPqVtsNw0dMFS9e/dWZPdIeXby1GkJp2lA3ACZzW4/0SUAAAAAAAAAAAAAAC3O7YPD8vLyJEkhISF15nGmOfMeK3PnztXs2bOPaZsAUJ/KykrtTt+t37f/ru17tislLUV79+9VVkaWcg9WBX35lvoq72CeHI7ag76OZDKZFBkZqeBOwcr1yFVoRKh8fH2UkZahvH15Ks8plyqkvTv3au/OvTUr8JJ8I30V3j1cMXEx6te3n/4+4u8aedJIhYWFtfAeAAAAAAAAAAAAAADAfbh9cFhpaakkycvLq8483t7ekqSSkpJj0ienGTNmaNq0afXmsdls6t69+zHqEQB3VW4v15Y9W7Rl1xZtT9mulL0p2rtvr2umr5CKENmybcrKyjpq0FexiiVJZrNZIeEhKvYpVmBYoEI7hSoiKkLdunZTj+491Du2t4b2Gape0b3qnLlRkkrLS7V682oV7C9Qekq6duzYoRWJK7Rt+zZV5FZI5VJJeonS09OV/lu6VmmVXtNrkqTQ0FBFdI9QWXCZYuNjdWKfEzVi0AiNHTJWXcO7ttwOBAAAAAAAAAAAAADgOOT2wWE+Pj6SpPLy8jrzOJd29PX1PSZ9cvL29nYFpgFAU5SWl2rrnq3asmuLduzZod3pu7Vv/z5lZWQpzBGmktwSZWRkKDMrU4bDqLOeAzrgem82m6UAySfYRwFhAQqNCFVkVKS6de2muO5xOuWEUzSo1yBFRETUG/TVUD5ePjo94XQpoWaa7ZBNK5NW6rek37Rx60bt2rlLGakZ8i3wVcb+DOXm5io3N1eSlPJzipZruV7SS1XjCDAroEuAzhhyhoYPHK7evXurc0xn9enVR6HW0Gb3GwAAAAAAAAAAAACA9s7tg8MasmRkQ5aeBIBjyRn0tXnXZiXvSdbu9N3au2+vwivDVZZfpoyMDO1O2638nHyp7piv6kySOdAsn2AfBYYFKiQiRFGdo9S1S1eNPnG0hvYZqi5duigiIkIeHh6tObwGs/pbNWHkBE0YOaFGWnFxsXbu3Kmv13ytFX+sUMquFGWlZakwo1BGkSFHkUO2HTZ9vuNzff7B59XKegR7yNrFqs4xndWzZ08NPGGgRg4eqTEnjZGfj98xGh0AAAAAAAAAAAAAAK3L7YPDevXqJUlKS0tTRUVFrbPc7N69u1peAGhpFZUV2p+9X2lZaUrPTNf+g/uVeTBT+7L2KdgeLHuBXRkZGdqWsk0p6SlyFDmaFvQVHqiQTlVBX6P6jdKIE0ZUBXxFRigiIkJelrqX2D3e+Pn5aeDAgRo4cKBmaEa1tLSsNP2c+LN+3/i7QktCtWvnLiUnJ+vPLX+q/FC5KvMrlZefp7ytedqqrVqiJZKqZk2LjY1V79695R3hLc9wTw3uP1ijThqlkf1HutX+AwAAAAAAAAAAAAC4P7cPDhs8eLAsFotKS0uVmJioYcOGVUu32+1at26dJGn48OFt0UUAxwmHw6GCggLl5eUpJSNFf+z+Q5kHM3Ug54BycnOUl5engvwCFRUUKdIjUiqtmpnwQM4BFdmKGh7s5WSuWhrRJ6Rqpq/QiFAN6zNMo04cpc6dOyssIkz+Yf7qG92XoKUjREdG66pzr9JV515VbbvD4VDy3mT9nPiz1m1cp792/KXU3anK2ZujkqwSOcod2r17tytoWJI+0SdVbzwkr3AvhXQNUbce3XTF2Cs0qN8g9e7dW126dKlajhMAAAAAAAAAAAAAgHbE7YPDrFarxo0bp2+//VZvvPFGjeCwjz76SDabTWFhYRo7dmzbdBLAMVNmL1NqZqrSMtO078A++VX6yVHiUF5env5K/0urk1fLlm9Tka1IxYXFKi0slf2QXRXFFTKVmWQYDYvw2qu9tSd4SmY/szz9POUd4C3/IH8N6jlII/uNVOfOnRXSKURlvmUa0HMAQV+twGw2q090H/WJ7qObLrypWprD4VBmZqaSk5OVnJysD3/+UFu2b1Hu3lyVHSyTKqTyrHJlZWUpKzFLf3zyh6usp7enPMM9FdotVNE9onVCnxM0pP8QjUkYo36x/dp14JhhGKqorFCZvUxl5WUqs5fJx+wjh8OhiooK5RTlKL84X/ZKu8rKy2SvsKvMXqaKigqVV5Srh7WHzDKroqJCe3L3aH/BflVUVqjcXq6KigrZ7XZVOioVERahMSeOUVz3OIWHh7ebpUsBAAAAAAAAAAAAwJ25fXCYJM2cOVPfffedFi5cqLFjx2ry5MmSpKSkJE2bNk2SNH36dHl5/V8QxoIFC7RgwQKNGDFCixcvbpN+o+MoLC7Uur/WaWPyRpWUlsjL4iVvL295Wbx0YuSJ8vPxk8ViUUF5gUodpfL28pa3l7d8vXzlbal67+fjpwCfAHlZvNp1IEpLKCkr0Z6MPUrLStPeA3uVcTBDWQezdDD3oHJyc9Tdq7tMpSbl5eVp1/5d2rFvh+yH7KosrpTKmt6u8f+n/vLz85O/1V82s03eAd7yDfBVgDVAgUGBCg4JVlhImIbED9GAmAEKCQmRX6CfTL4mxXaOVXBAcMvsBLQ4s9msLl26qEuXLhozZoxuuOEGV1q5vVzr/lqnlRtW6s+tf2rPrj0KKwlTcnKydu/erYqyClXsq9D+ffu1f+1+rdEavaW3qgp7SwknJqh3796Ki4vTxgMblXsoVxWVFaqsrFRlRWXV/ysrZTJMGtZ5mCorK1VRUaFNmZuUeyhXlZWVclQ65HA4qv5f6ZDhMNQ/vL8qKqrqSc1LVWFJoRyOqjTDYcioNCRDMioNhfmEufIWlxWrorJCcqjqdYyZTCb5B/vL7muXX7CfrGFWhYWHKSIiQp2jOiuma4zG9h+r+O7xVcuhehEkCQAAAAAAAAAAAABNYTIaOg3Oce6JJ57Qww8/LEmKi4tTQECANm/eLIfDoQkTJuiLL76oNovJo48+qtmzZ2vMmDFasWJFtbrS09M1ePBg18/FxcUqKSmRt7e3AgICXNu/+OILjRo1qln9ttlsCgoKUkFBgaxWa7PqQttwOBxKyUjRuq3rtCl5k7bv2q4YU4zS09KVlpamTcmbVJxb3KJtmkwmmT3NqlSlZJZMHiaZzCbJQzKZTTJ5mNQ9pLv8vf3l6empgvICHSw7KLOH2fXy8PCQ2bPq/wM7D1RYQJg8PT11oOSA9tj2yNPTU56envLw9HC99/T0VELXBEVaI2WxWJRdmq3d+btlsVhksVjkZfGqeu9pkZeXl/pF9FOENUKenp7ak7NH63etV3ZOtnLzcpWfly9bQdUMXiWFJQo3h6u8qFx5eXkqKipq/k7ykjz8PNQ1oqt6dO6hkJAQmX3N2lO6R8EhwQoNDVWn0E6KDI9U506d1S2ym/p07aNukd3k7e3d/PbhNux2u35J+kWrNqzSn1v+1M6dO7U/db8K9hWoMq+yrbvXbGYPsxwmh2SWZKq6njj/bzKb1MXaRV4WL3l6eiq/LF8F9oKq64zZJLOHueq9yaSyojIFlAcoNze3wTPwOfkG+qrSt1K+Ib4KDAlUSHiIOkV0UueozoruEq0z+p+huO5xioyMlL+/f+vsCAC14lkVAAAAAAAAAACgfesQM4dJVbOHDRo0SM8995z++OMPZWZmasCAAbruuut0++23N2p5q8rKSuXk5NTYXlZWprKy/5uWyG63t0jf0b4VlxYrcUeiKvIqtDd9r1JTU/VD4g/aunOrbAdsKs8tl8obUJFFsoRY5OntWTUrUIUhh8Ohzn6d5ah0yG63y1ZiU2l56f/N9lNH3IlhGKq0/1+i8f//O1xKdkqDx7hf+xucd4VWNDhvYxSooOZG76oAL68AL3kHeMsv0E8B1gANiR+i/tH9FRwcLLOvWdlGdlWAV0Q3RUdGKyYqRn4+fq3ST3Q8FotFZ558ps48+cwaaflF+Vq3aZ0OZR1ScnKyUlNTtTFrowrthfLw9JCHR1VwpYdH1Xsvi5dOjzvdtW1bzjbll+fL4mmRh6eHLJ4WeXp6uv4/Oma0LBaLPDw8lGZLU2FFYVWglodnVTCmp8X1/74RVcuUenh4qKC8QHbDXjVDoaeXvC3e/zdjoaeXAnwC5Onp2SqzEFZUVCg7O1uJyYlK2pWk1H2p2pexT1kHspRzMEe2HJsO5R+S1W5V9sFsVVZWqqSwRCqUyg+Uq0AFNZZtnau5rvdevl5y+DnkE+yjwNBABYcGKzwiXFGRUerepbvOHHCm4rvHKzIyUkFBQTKZTC0+RgAAAAAAAAAAAABoLzrMzGHHK2ZjaHsFBQVKTU3VT3/+pDVb1mhP6h5l7M1QXlaeirOLVVlQKTXgLDIHmOUT5qOQqBCdM+Qc9e/VXzExMQrsFKiu3bqqT3SfJgViVFRWqKSsRCVlJbKYLHJUOqqCLwqzlVecp7LyMpWWl6q0vFTl5eUqt5erzF6mmMAYWUwWVVRUKDU3VSk5KbLb7SqvqMpjt9urfraXa0CnAfI1+6qiokK7c3Zr+8HtqrBXqKLisJe9arm6fmH9FOAZILvdrr35e5WcnSxHpUOVFZXV/u+odKhbQDdXvaVGqbId2fKz+inQGihrsFUhISEKCw1TRFiETo47Wb279VZISIgCgwIVFBQkHy+fJnyiAI4XDodDeXl5+nPnn65Asr0Ze5WZlansA9kqyClQUV6RQh2hOnjgoEpLSxtVv6eXpww/Q95B3vIP8VdwWLDCOoUpKjJKXTt31bgB49QzuqciIyMVFhbm9kv2Ak3BsyoAAAAAAAAAAED7RnBYO+f8wi2od5D8gqpmRQq0Bio4JFghwSEa02eMYjvHKiQkRCYfk7z8vdQ9srsigiP4ErsByuxl+nPHn0rclqitO7cqOSVZe9P36uD+gyo4UCCvIi8V2gqPXpGH1L17d/WK66Xo6Gh5hniqIrBCJ/Q8QYP7DNaQvkMUag1t/QEBQAdlGIYKCwu1cddGbdy9UXv27VH6vnRlZGXo4IGDys/OV2FeocKNcGUfyFZhYQOu7Ycxe5glP8nL6iW/ED8FhQUpNDxUkZGR6hLZReMHjXcFkoWHh8vLy6uVRgq0LwSHAQAAAAAAAAAAtG8Eh7Vzzi/cGs0smXxN8vTzlMXPIp8AH50cd7JiomIUHBysYo9iZTuyFR4aroiwCEWFR6lLpy7qHtld0ZHRCgkMafnBtIGMnAyt27pOf27/U9t3b9ee1D3qUtlFWfuzlJaWprT0NBmOo58CYWFhskZaVeJXosgukeoe3V2943rrxJ4n6uR+J6tfbD95enSYVVoB4LhXUlKizbs3VwWS7d2jtP1p2p+5XwcOHFDewTwV5hUqQhHKPpCt3NzcRtdv8jPJYrUoIDxA4VHh6tq9q+Ji49SvZz+dNfgs9Y7rLW9v71YYGXBsERwGAAAAAAAAAADQvhEc1s45v3C7+bGbZSu2KTc3V3n5ebIV2HTIdkhxvnEqLixWfn6+9h/cr0O2Q5Kj+e1avCwKDQlVcHCw5CPlGDnyC6yauSwoKEjBIcEKDQlVp9BOGt5zuOK7xCs4OFh+gX4KCQ6Rn49f8ztxFBWVFdq0a5P+2PaHvIq8lLWvKuBr1aZV2rZrm8pyymSUNGS9R8kzxFP+4f4KiwpT5+6dFRcTpz7xfXRWwlk6seeJ8vf3b/XxAADap/Lycu1I26FNuzdp997dSt2Xqn0Z+5SVlaXcnFzZcmyKMkUp+0C2Dh48KIejYTfizp07yzfcV+X+5YrsGqnYmFj1juutAb0GaGi/oYrrEscsoGj3CA4DAAAAAAAAAABo3wgOa+ca+4Wbw+FQdkG20rLStO/APu07uE+Z2Zk6mHNQPXx6qLy4XPn5+dqQskHb9m5TSVGJSotKZT9kV2VxpYxSQ2qJI8JLMvuaZfGzyMvfS76BvvK3+mtY3DD16tpLwcHBqvCqUI6Ro8iwSEWFR6l7ZHd1j+iurp26ysvipeLiYqWnpystLU0r/lyhlZtWav/e/crJyFHRwSJV5FdIlUfvisnHJO9wbwVFBCmiS4TGJ4zX0H5DFR0drcgukerWpZu8LCz/BQBovsrKSqXsT9Gm3ZuUnJas5JRk7dqzS/vS9yk7M1uFBwrlYfNQaWnp0SvzkuJj49WzR0/FxMTIsBoyB5t1QvwJGtJviBJ6JxyTYGygPgSHAQAAAAAAAAAAtG8Eh7Vzx/oLt4rKCmXmZqqsqExFtiLl5+drU+omJe1JUnZutvLy81SQX6BCW6EO2Q6ppKhEkR6RKi0qVV5engoLC1umI16SyhuQzyx5BHnohPgTNLD3QMXExMgv3E+VgZUa1GeQTj7hZHXr1K1l+gQAQAswDEPZ2dlKS0vTD4k/6PctvystLU1Z+7OUl5mn0pxSOYoaNvuYOcgs/07+CokM0fnDzlff+L6KiYlRQKcA9YjpoejIaJlMplYeUcficDi07+A+7cnco71Ze5WRneEKxO/j30c3Tr1RYWFhbd3NY4bgMAAAAAAAAAAAgPaN4LB27nj7wq2svEx7D+5V+oF07TuwTxkHM5SVnaWDuQeVk5ejHj495ChxKD8/X3/t/UvJ+5JVXlQue7FdjhKHZK9eX0BAgGJiYhQUGaR873x1695NPXv01Im9TtTgPoM1uPdg+Xj5tM1gAQBoJXmFefpj2x9SgZSWlqa0tDR9u/5bJackq+hgkey59gbNnilvyTvMW9YIqzp17qTu0d0VHxuviSMmqldcL3Xp0kWenp6tPp72xOFwKLcwV2mZafKu8FZ+fr7y8vK0ascq7dq/S7l5uSrIL5CtwKYiW5FKikpUVlSmSI9I5efnq6CgQPU9Pv/xxx9KSEg4hiNqW8fbsyoAAAAAAAAAAEBHQ3BYO9fRvnArLC5UWlaaMnMy1Te6r7p06sKMJwAAHKGiskLbUrdp/db12py8Wbv27FKMKUapqalKS0vT5uTNKi88+hScHh4e8g/zl4Kk0M6h6ty1s2JjYtUnro9O6nOShvYbqi7hXY7BiBqnuLRYqZmp2ntgr/YdrApGP5BzQLl5ueoX2M8V8PVr8q/KOJih0qJSlR8qV8WhiqoltBsSWHc0lsOW0A7wkk+Aj07peYqeeeIZ9e7duwUaOD50tGdVAAAAAAAAAACA4w3BYe0cX7gBAICmOJB3QOu3rVfS9iRt27VNu/fsVsbeDOUfyFdQaZDS09Nlt9uPWk9wcLBiYmIUHR2tMv8yeYR4qFdcL53Y80Ql9E3QoJ6DZPG0NKpvlZWVKioqcgVxrd25VikZKa4Ar9z8qtm7CgsKVVZUpjjfOFfezOxMVZa1QHSXWQoLDVNIcIiCg4NlM9lU7FGsAGuArMFWBQcHKzQkVOGh4YoMj9TYvmPVKayTgoODZQ2yytfHt/l9cAM8qwIAAAAAAAAAALRvBIe1c3zhBgAAWkNlZaWysrK0bMMy/fHXH0pOSVZ6WroOZhxUfla+ynLKZJQ04DHRQ/IM9pR/uL/+PvTv6hHbQ97e3lq2dZn2H9yvIluRiguLVXaoTPZDdlUWV1bN3tUST6Dekoefhyz+Fnn7e8s30Fdn9TtLYaFhCg4O1oHKA7Jb7OoU3klR4VHq0qmLukd0V/fI7ooMiZTZbG6BTnRsPKsCAAAAAAAAAAC0bwSHtXN84QYAANrKgdwDys7Mdi1X+cnqT5SckqzczFwdOnhIlQWVkqPp9fv4+Cg4OFjllnKVe5XLN8BXflY/BVoDFRQcpODgYIWFhGnCwAmugC+Ht0OhIaHqFtFN3hbvlhssmoRnVQAAAAAAAAAAgPaN4LB2ji/cAABAe1VuL1fSziSt37peKWkpCisPU2pqqux2u/bb96vcUq6w0DCFh4YrIixCnTt1rpq9K7K7enXpJV9flmY83vGsCgAAAAAAAAAA0L55tnUHAAAAcHzysnhp6AlDNfSEoW3dFQAAAAAAAAAAAAC1MLd1BwAAAAAAAAAAAAAAAAAALY/gMAAAAAAAAAAAAAAAAABwQwSHAQAAAAAAAAAAAAAAAIAbIjgMAAAAAAAAAAAAAAAAANwQwWEAAAAAAAAAAAAAAAAA4IYIDgMAAAAAAAAAAAAAAAAAN0RwGAAAAAAAAAAAAAAAAAC4IYLDAAAAAAAAAAAAAAAAAMANERwGAAAAAAAAAAAAAAAAAG6I4DAAAAAAAAAAAAAAAAAAcEMEhwEAAAAAAAAAAAAAAACAGyI4DAAAAAAAAAAAAAAAAADcEMFhAAAAAAAAAAAAAAAAAOCGCA4DAAAAAAAAAAAAAAAAADdEcBgAAAAAAAAAAAAAAAAAuCGCwwAAAAAAAAAAAAAAAADADREcBgAAAAAAAAAAAAAAAABuiOAwAAAAAAAAAAAAAAAAAHBDBIcBAAAAAAAAAAAAAAAAgBsiOAwAAAAAAAAAAAAAAAAA3FCHCg775ptvNG7cOIWGhsrf318JCQl68cUX5XA4mlTf6tWrdcEFF6hTp07y9fVVv379NGfOHJWWlrZwzwEAAAAAAAAAAAAAAACgcUyGYRht3YljYd68eZoxY4YkKS4uTgEBAdq8ebMcDofOP/98ffbZZzKbGx4r9/777+uaa65RZWWlunbtqoiICG3evFl2u11Dhw7VihUr5Ofn1+x+22w2BQUFqaCgQFartdn1AQAAAC2FZ1UAAAAAAAAAAID2rUPMHLZ69Wo99NBDMpvNWrRokXbt2qWkpCQlJiYqMjJSS5Ys0fz58xtc3549ezR16lRVVlbq6aefVnp6uhITE5WcnKw+ffpo3bp1mj59eiuOCAAAAAAAAAAAAAAAAADq1yGCwx5//HEZhqEbbrhBkydPdm0fNGiQKyhs3rx5stvtDarvmWeeUVlZmcaPH6/7779fJpNJkhQTE6M333xTkvTaa68pKyurhUcCAAAAAAAAAAAAAAAAAA3j9sFhNptNS5culSRNnTq1Rvqll14qq9WqnJwcLV++/Kj1GYahzz77rM76Ro4cqb59+8put+uLL75oZu8BAAAAAAAAAAAAAAAAoGncPjhsw4YNKi8vl4+PjxISEmqkWywWDR06VJK0du3ao9aXlpamjIwMSdKoUaNqzePc3pD6AAAAAAAAAAAAAAAAAKA1uH1wWHJysiQpOjpanp6eteaJi4urlrch9Xl7e6tLly7Nrg8AAAAAAAAAAAAAAAAAWkPt0VJuJC8vT5IUEhJSZx5nmjNvQ+oLDg6WyWRqVn1lZWUqKyurN09BQYGkquUxAQAAgPbE+YxqGEYb9wQAAAAAAAAAAAC1cfvgsNLSUkmSl5dXnXm8vb0lSSUlJce0vrlz52r27NlHbVOSunfv3qB8AAAAwLFWWFiooKCgtu4GAAAAAAAAAAAAjuD2wWE+Pj6SpPLy8jrzOGfv8vX1Pab1zZgxQ9OmTas3T35+vmJiYpSWltbhvnAbOnSo1q1b19bdOOYYd8fSEcdts9nUvXt3paeny2q1tnV3jqmO+Hk7ddSxM+6Oo6Ne2wzD0JAhQ+pcbh0AAAAAAAAAAABty+2DwxqyxGNDlp48sr78/HwZhlHr0pINrc/b29s1y9jRBAUFdagvGiXJw8Ojw41ZYtwdTUcdtyRZrdYON/aO/Hl31LEz7o6nI17bvLy8ZDab27obAAAAAAAAAAAAqIXbf4vTq1cvSVJaWpoqKipqzbN79+5qeRtSX1lZmfbv39/s+gAAAAAAAAAAAAAAAACgNbh9cNjgwYNlsVhUWlqqxMTEGul2u9217NHw4cOPWl90dLSioqIkSb/++muteZzbG1IfAAAAAAAAAAAAAAAAALQGtw8Os1qtGjdunCTpjTfeqJH+0UcfyWazKSwsTGPHjj1qfSaTSRdddFGd9f3222/atm2bLBaLzj///OZ1HgAAAAAAAAAAAAAAAACayO2DwyRp5syZMplMWrhwoT744APX9qSkJE2bNk2SNH36dHl5ebnSFixYoNjYWE2aNKlGfffff7+8vLz0ww8/6JlnnpFhGJKk1NRUXX/99ZKkG264wTXDGAAAAAAAAAAAAAAAAAAcax0iOGzUqFGaM2eOHA6HpkyZovj4eA0aNEgJCQnKysrShAkTdO+991Yrk5+fr9TUVGVmZtaor0ePHnr99ddlNps1ffp0de/eXQkJCerVq5e2b9+uIUOG6JlnnjlWw3Nbt912W1t3oU0w7o6lo467o+rIn3dHHTvjRkfA5w0AAAAAAAAAANB+mQzntFcdwFdffaXnnntOf/zxh+x2u3r16qXrrrtOt99+uzw8PKrlffTRRzV79myNGTNGK1asqLW+3377TXPnztVvv/2mQ4cOKTY2VpMnT9YDDzwgHx+fFumzzWZTUFCQCgoKZLVaW6ROAGhLXNcAuCOubQAAAAAAAAAAAGiPOlRw2PGILxoBuBuuawDcEdc2AAAAAAAAAAAAtEcdYlnJ45m3t7dmzZolb2/vtu4KALQIrmsA3BHXNgAAAAAAAAAAALRHzBwGAAAAAAAAAAAAAAAAAG6ImcMAAAAAAAAAAAAAAAAAwA0RHAYAAAAAAAAAAAAAAAAAbojgMAAAAAAAAAAAAAAAAABwQwSHAQAAAAAAAAAAAAAAAIAbIjishbz33nu6+eabdfLJJ8vb21smk0lvv/12nfnXrl2rCy64QOHh4fL29lbv3r31yCOPqKSkpNb8eXl5uu+++9SzZ095e3urU6dOuuSSS7Rly5Za848dO1Ymk6nW1znnnNMSQwbg5vbt26cFCxZo/Pjxio6OlpeXl6KionTxxRdr7dq1tZax2WyaNm2aYmJi5O3trZiYGE2bNk02m63OdhYtWqRhw4bJ399fISEh+tvf/qb169fXmT85OVmXXXaZOnXqJF9fXw0cOFAvvfSSHA5Hs8cMwP21x2sbz20AAAAAAAAAAABoLSbDMIy27oQ7iI2NVWpqqsLDw+Xv76/U1FS99dZbuvbaa2vk/fTTT3X55ZfLw8NDF198saKiovTrr79q7dq1GjVqlJYtWyZvb29X/pycHJ1yyilKTk7WKaecolNOOUUZGRn65JNP5OnpqZ9++knDhw+v1sbYsWP1888/a9asWTXa79mzp6688soW3wcA3MuDDz6op556SvHx8RozZowiIiKUnJyszz//XIZh6IMPPtBll13myn/o0CGNHj1af/75p8466ywlJCQoKSlJ3333nU466SStWrVK/v7+1dp48sknNXPmTEVHR+uSSy5RUVGRFi9erNLSUn3//fcaO3Zstfxbt27VyJEjVVxcrMsuu0xdu3bVt99+q02bNunGG2/Ua6+9dix2DYDjWHu8tvHcBgAAAAAAAAAAgNZCcFgLWbp0qXr16qWYmBjNmzdPM2bMqDU4rKSkRNHR0SooKNDq1as1ZMgQSZJhGLrjjjv08ssva+7cuXrwwQddZW6//Xa9/PLLmjZtmv71r3+5tq9evVqnnnqq+vTpo02bNsls/r+J4JxfMvLxAmiqTz/9VJ06ddKpp55abfvKlSt15plnKjAwUPv373cFs86aNUuPPfaYpk+frqeeesqV37n9kUce0ezZs13bk5OT1a9fP8XFxen3339XUFCQJGnLli0aNmyYOnfurG3btsnT09NVZsyYMfrll1/09ddf629/+5skyW6369xzz9WyZcv0008/6fTTT2+1fQLg+Ncer208twEAAAAAAAAAAKC1sKxkCxk3bpxiYmKOmu/XX39Vdna2LrzwQldgmCSZTCY9/vjjkqRXX3212peDn3/+ucxmc7UvHiXplFNO0XnnnaetW7fq559/bqGRAECViRMn1giekKRTTz1Vp59+unJzc7Vp0yZJVQGuCxcuVEBAgB555JFq+WfMmKGQkBC98cYb1a5tb731lioqKjRz5kxX8IQknXjiibr66qu1a9cu/fTTT67tO3bs0C+//KLTTz/dFRgmSRaLRU888YQk6fXXX2+ZwQNwW+3t2gYAAAAAAAAAAAC0JoLDjrGsrCxJUo8ePWqkBQcHKyQkRKmpqdq9e3e1MuHh4QoICKhRxllPXV8yLl68WHPnztULL7yg1atXt8QQAEAWi0WSXDPfJCcna//+/Ro1alSN5dV8fHx02mmnad++fdq5c6dr+4oVKyRJ48ePr1H/2WefLUnVAl/ryz9s2DAFBwcTKAugWdri2nY4ntsAAAAAAAAAAADQ0jyPngUtqVOnTpKklJSUGmkFBQXKy8uTVDVDTnx8vKtMVlaWioqKagSIOevZsWNHre1Nnjy52s9Dhw7Vhx9+WGtwGgA0RFpampYuXaqoqCgNGDBAUlUAhST16tWr1jLO7cnJydXeBwQEKCoqqt78TvW1YTKZ1LNnT61fv17FxcXy8/Nr6vAAdFBtdW07HM9tAAAAAAAAAAAAaGnMHHaMjRw5UlarVZ9//rk2bNhQLe2f//yn631+fr7r/bnnniuHw1FjWcnff/9dX331VY38knThhRfq22+/VUZGhg4dOqQ///xTV199tdatW6dx48apuLi4ZQcGoEOw2+266qqrVFZWpqeffloeHh6SqoJbJVVbQu1wVqu1Wj7n+8bmb2wbANAQbXltk3huAwAAAAAAAAAAQOth5rBjLCAgQPPnz9cNN9ygU045RZdccomioqL022+/6Y8//lDfvn21bds215eSkjR79mx9++23evbZZ7V69WqNGDFCGRkZ+vjjj9WvXz9t3LixWn5Juvvuu6v9PGjQIL3zzjuqqKjQokWL9NZbb+m22247FkMG4CYcDoeuv/56/fLLL7rxxht11VVXtXWXAKDZ2sO1jec2AAAAAAAAAAAAtBZmDmsDU6dO1TfffKNTTjlFX3zxhV555RV5enpq2bJl6tmzp6T/W35Skrp166Z169Zp6tSpSklJ0QsvvKA1a9boscce00MPPVQj/9HalqRff/21hUcFwJ0ZhqEbb7xR7733nq688kq9+uqr1dKds+TUNWuXzWarls/5vrH5G9KGc2YeAPh/7d1xjNdlHQfw9w9/EAuZQ+qCS01nAk1qgIJR7AQDEhKHiqC2EuEYLUaNScjE9E5zTEMmbpYljVPJs4YhsSxoaTGYdbm4EMqgGC2HdtbIwQly3v36o3HzOjBI8ODn6/XP/e55nu/z/Xy/fzz7/vHe8/wvJ8Pa9nZ8twEAAAAAAPBO2Tmsi0yYMCETJkzo1P6FL3wh3bp1y7Bhwzq0f/jDH87y5cs7ja+pqUmSXHzxxUd13w984ANJ4ngi4Ki1tbWluro6K1asyPXXX5+6urp069YxW3zBBRckSXbs2HHYOQ61Hxp36Pdzzz2XV155Jf369Tuq8Ue6R6lUyp///OdUVlamV69ex/qIwHvQybK2vR3fbQAAAAAAALxTdg47iWzatCm7du3K5ZdfflQ7SrS2tuaJJ55IsVjMNddcc1T3+M1vfpMkOffcc99JqcB7xFvDE9OmTctjjz3W6Rjb5D9Bh8rKymzatCnNzc0d+g4cOJANGzaksrKyfXfEJLn00kuTJOvXr+8037p16zqMSZLRo0cfcXxDQ0P+9a9/dRgPcCQn09r2dny3AQAAAAAA8E4Jh3WBQ0cKvdXu3btTXV2dYrGYu+66q0NfS0tL9u/f36Gtra0t8+fPz5/+9KfMnTs3lZWV7X07d+7Myy+/3Okef/zjH7No0aIkyXXXXXc8HgUoY21tbZk5c2ZWrFiRa6+9NitXrjxseCJJCoVCqqurs2/fvtx5550d+hYvXpw9e/akuro6hUKhvf2mm25KsVjM3Xff3eEItm3btuXRRx/N+eefn8suu6y9fcCAAamqqsqzzz6bp59+ur29paUlt912W5Jk1qxZx+XZgfJ1sq1tvtsAAAAAAAA4kQqlUqnU1UWUg+XLl2fjxo1JkhdeeCG/+93v8ulPf7p9J4nJkydn8uTJSZJvfOMbWblyZUaNGpWKior87W9/y5o1a/L666/ne9/7Xm688cYOc7/00ku58MILM378+Jx33nk5ePBg1q1blxdffDGf+9zn8uSTT+Z973tf+/i6urrMmjUrY8aMyfnnn5/evXtnx44d+clPfpKWlpbcfvvtqa2tfXdeDHDKqqmpSW1tbU4//fR89atfTbHY+STiyZMnZ8iQIUmS5ubmjBo1Ko2NjRk3blwuuuii/P73v89Pf/rTDBkyJBs3bux05OPdd9+d2267Leecc06mTJmS5ubm1NfXZ//+/Vm3bl3GjBnTYfwf/vCHfOpTn8r+/fszderUVFZW5mc/+1m2bNmS6urqPPzwwyfsfQDl4WRb23y3AQAAAAAAcCIJhx0n06dPzyOPPHLE/jvuuCM1NTVJkmeeeSaLFy/Oli1bsmfPnvTt2zeXXnppbrnllgwdOrTTtXv37s2cOXOyadOm7N69O927d8/gwYMzY8aMzJgxI926ddwAbsuWLVmyZEmef/757N69O83Nzenbt28uueSSzJkzJ+PHjz+uzw6Up/+1riXJihUrMn369Pb/X3vttdTW1mbVqlV55ZVX0q9fv0yZMiV33HHHEY/L/f73v5/7778/27ZtS48ePTJy5MjceeedGT58+GHHb9++PYsWLcqzzz6bffv25aMf/Whmz56dOXPmdFoPAf7byba2+W4DAAAAAADgRBIOAwAAAAAAAAAAKEO2WAEAAAAAAAAAAChDwmEAAAAAAAAAAABlSDgMAAAAAAAAAACgDAmHAQAAAAAAAAAAlCHhMAAAAAAAAAAAgDIkHAYAAAAAAAAAAFCGhMMAAAAAAAAAAADKkHAYAAAAAAAAAABAGRIOAwAAAAAAAAAAKEPCYQAAAAAAAAAAAGVIOAwAAAAAAAAAAKAMCYcBAAAAAAAAAACUIeEwAAAAAAAAAACAMiQcBgAAAAAAAAAAUIaEwwAAAAAAAAAAAMqQcBgAAAAAAAAAAEAZEg4DAAAAAAAAAAAoQ8JhAAAAAAAAAAAAZUg4DAAAAAAAAAAAoAwJhwEAAAAAAAAAAJQh4TAAAAAAAAAAAIAyJBwGAAAAAAAAAABQhoTDAAAAAAAAAAAAypBwGAAAAAAAAAAAQBkSDgMAAAAAAAAAAChDwmEAAAAAAAAAAABlSDgMAAAAAAAAAACgDAmHAQAAAAAAAAAAlCHhMAAAAAAAAAAAgDIkHAYAAAAAAAAAAFCGhMMAAAAAAAAAAADKkHAYAF3u6quvTqFQyC233PK246ZOnZpCoZCbb775XaoMAAAAAAAAAE5dhVKpVOrqIgB4b3v55ZfzsY99LPv27UtDQ0OGDRvWaczatWtz5ZVX5rzzzsvWrVvz/ve/vwsqBQAAAAAAAIBTh53DAOhy/fv3z7333pvW1tbMnDkzb775Zof+vXv35stf/nKS5Dvf+Y5gGAAAAAAAAAAcBeEwAE4Ks2bNyujRo9PY2JglS5Z06Fu4cGFeeuml3HjjjRk3blwXVQgAAAAAAAAApxbhMABOCoVCId/97nfTs2fP1NbWZseOHUmS5557Lg899FAqKiqydOnS9vGvvvpq5s+fn4EDB6Znz57p06dPJkyYkA0bNnSau1Qqpb6+Ptddd10GDBiQXr16pXfv3hkxYkS+9a1vpa2trdM1NTU1KRQKqaurS0NDQ6644or07ds3hUIhjY2NSZJ//vOfufXWW3PhhRfm9NNPzxlnnJEBAwbki1/8YhoaGk7MiwIAAAAAAACAoyQcBsBJ44ILLsjtt9+eAwcOZNasWXnjjTdSXV2dtra2LFu2LGeeeWaS5MUXX8zQoUNz3333pbW1NRMnTswnPvGJPPPMMxkzZkwef/zxDvO+8cYbueGGG7J+/fpUVFRk0qRJueSSS7Jt27bMmTMnM2bMOGJNGzZsyKhRo7Jr166MHz8+VVVV6datW/bt25dPfvKTWbx4cVpaWvLZz342Y8eOzRlnnJH6+vo8/fTTJ/RdAQAAAAAAAMD/UiiVSqWuLgIADnnzzTczfPjwNDY2ZsSIEe27dq1duzZJ0tramiFDhmTr1q1ZtmxZ5s6dm0KhkCTZvHlzxo0blwMHDmTnzp2pqKhon/PHP/5xrrjiivTo0aP9Xq+++momTpyY559/Pr/61a9SVVXV3ldTU5Pa2tokyT333JMFCxZ0qLOuri433XRT5s6dmwceeKBDX1NTU5qamjJ48ODj/4IAAAAAAAAA4CjZOQyAk0qxWMzy5ctz2mmnpaGhIb179863v/3t9v61a9dm69atuf766/OVr3ylPRiWJEOHDs3Xv/71NDc3Z+XKlR3mvPrqqzsEw5Lkgx/8YBYvXpwkWbNmzWHrGTx4cL72ta91am9qakqSXHbZZZ36KioqBMMAAAAAAAAA6HLFri4AAP7bRRddlKuuuiqrVq3K7Nmzc9ZZZ7X3/fznP0+STJ48+bDXjho1Kkny29/+tlNfY2Nj1q9fn7/+9a95/fXXUyqVsnfv3iTJjh07DjvfpEmTOgTQ3lpjktx6660pFosZO3ZsevbsefQPCQAAAAAAAAAnmHAYACelXr16dfh7yK5du5Ik06ZNy7Rp0454/T/+8Y/23wcPHsz06dNTX19/xPGHQmL/7Zxzzjls+2c+85nMmzcv999/fyZNmpQePXpkyJAhGT9+fGbOnJlzzz33iPcCAAAAAAAAgHeDcBgAp5TW1tYkyYQJE1JRUXHEcYMGDWr/vXTp0tTX12fw4MH55je/mWHDhqVPnz7p3r17tm/fnoEDB6ZUKh12nrfbDWzp0qWZPXt21qxZk1/84hfZtGlTGhoacu+99+YHP/jBEXc3AwAAAAAAAIB3g3AYAKeUQ0dMfulLX8qVV155VNesXr06SdoDYm+1c+fOd1TPwIEDs2DBgixYsCAHDhzIgw8+mPnz52f27NnCYQAAAAAAAAB0qW5dXQAAHIuxY8cmSZ566qmjvmbPnj1JkrPPPrtT3w9/+MPjUlfyn13Gbr755vTv3z9NTU1pamo6bnMDAAAAAAAAwLESDgPglDJlypQMGjQodXV1ueeee9LS0tKh/+DBg/nRj36UF154ob1twIABSZKHHnqow9hVq1bl0Ucf/b/qeOqpp/LrX/+6U/vmzZvz97//Pb17906fPn3+r7kBAAAAAAAA4HgQDgPglFIsFrN69eqcffbZWbhwYT7ykY/k8ssvz9SpUzNy5Mh86EMfyjXXXJO//OUv7dcsWLAgp512WhYuXJiLL744N9xwQ4YPH55rr7028+bN+7/q+OUvf5mRI0fmrLPOyqRJk/L5z38+Y8aMyYgRI9LW1pa77ror3bt3P16PDQAAAAAAAADHrNjVBQDAsRo0aFAaGxvzwAMPZPXq1dm4cWNKpVL69++fqqqqXHXVVe3HTyZJVVVVNm7cmEWLFmXz5s3Zvn17Pv7xj+fJJ5/MsGHDsmTJkmOuYfr06SkWi9mwYUMaGhry2muvpV+/fpk4cWLmzZuX0aNHH8cnBgAAAAAAAIBjVyiVSqWuLgIAAAAAAAAAAIDjy7GSAAAAAAAAAAAAZUg4DAAAAAAAAAAAoAwJhwEAAAAAAAAAAJQh4TAAAAAAAAAAAIAyJBwGAAAAAAAAAABQhoTDAAAAAAAAAAAAypBwGAAAAAAAAAAAQBkSDgMAAAAAAAAAAChDwmEAAAAAAAAAAABlSDgMAAAAAAAAAACgDAmHAQAAAAAAAAAAlCHhMAAAAAAAAAAAgDL0b/ZN0/1TMzTBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%time\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import xarray as xr\n", + "import numpy as np\n", + "import matplotlib.ticker as ticker\n", + "from matplotlib.ticker import MultipleLocator\n", + "from matplotlib.lines import Line2D\n", + "\n", + "fig = plt.figure(figsize=(30,15))\n", + "\n", + "# Change the layout/number of subplots based off number of variables desired\n", + "rows = 2\n", + "cols = 3\n", + "gs = fig.add_gridspec(rows, cols, hspace=.3, wspace=.2)\n", + "\n", + "# Rough subset for Lab Sea\n", + "w = -63.5+360\n", + "e = -47.5+360\n", + "s = 53.5\n", + "n = 65.5\n", + "subset = {\"s\":s,\"n\":n,\"e\":e,\"w\":w}\n", + "\n", + "# Add more colors as needed for number of test cases\n", + "# ** Baseline is already added as green dashed line in plotting function **\n", + "# matplotlib colors here: https://matplotlib.org/stable/gallery/color/named_colors.html\n", + "colors = [\"k\", \"aqua\", \"orange\", \"b\", \"magenta\", \"goldenrod\", \"slategrey\", \"rosybrown\"]\n", + "\n", + "# Setup plotting\n", + "#---------------\n", + "\n", + "# Loop over variables:\n", + "for i,var in enumerate(ts_var_list):\n", + " \n", + " print(\"Plotting variable:\",var)\n", + " \n", + " if var == \"RESTOM\":\n", + " ax = plt.subplot(gs[0, 0])\n", + " if var == \"TS\":\n", + " ax = plt.subplot(gs[0, 1])\n", + " if var == \"SST\":\n", + " ax = plt.subplot(gs[0, 2])\n", + " if var == \"ICEFRAC\":\n", + " ax = plt.subplot(gs[1, 0])\n", + " \n", + " \n", + " # Grab baseline case:\n", + " #--------------------\n", + "\n", + " if var == \"RESTOM\": \n", + " avg_base_FSNT,yrs_base,unit = _data_calcs(data_ts_loc,'FSNT')\n", + " avg_base_FLNT,_,_ = _data_calcs(data_ts_loc,\"FLNT\")\n", + " if len(yrs_base) < 5:\n", + " print(f\"Not a lot of climo years for {data_name}, only doing 1-yr avg for RESTOM...\")\n", + " FSNT_base = avg_base_FSNT\n", + " FLNT_base = avg_base_FLNT\n", + " else:\n", + " FSNT_base = avg_base_FSNT.rolling(time=60,center=True).mean()\n", + " FLNT_base = avg_base_FLNT.rolling(time=60,center=True).mean()\n", + "\n", + " avg_base = FSNT_base - FLNT_base\n", + " \n", + " if (var == \"TS\" or var == \"SST\"):\n", + " avg_base,yrs_base,unit = _data_calcs(data_ts_loc,var)\n", + " \n", + " if var == \"ICEFRAC\":\n", + " avg_base,yrs_base,unit = _data_calcs(data_ts_loc,var,subset)\n", + " \n", + " # Get int of years for plotting on x-axis\n", + " yrs_base_int = yrs_base.astype(int)\n", + "\n", + " # Create yearly averages\n", + " vals_base = [avg_base.sel(time=i).mean() for i in yrs_base]\n", + " \n", + " # Plot baseline data\n", + " color_dict = {\"color\":\"g\",\"marker\":\"--\"}\n", + " ax = ts_plot(ax, data_name, vals_base, yrs_base_int, unit, color_dict)\n", + "\n", + " # Loop over test cases:\n", + " #----------------------\n", + " # Create lists to hold all sets of years (for each case) and\n", + " # sets of var data (for each case)\n", + " vals_cases = []\n", + " yrs_cases = []\n", + " for case_idx, case_name in enumerate(case_names):\n", + "\n", + " if var == \"RESTOM\":\n", + " avg_case_FSNT,yrs_case,unit = _data_calcs(case_ts_locs[case_idx],'FSNT')\n", + " avg_case_FLNT,_,_ = _data_calcs(case_ts_locs[case_idx],\"FLNT\")\n", + " if len(yrs_case) < 5:\n", + " print(f\"Not a lot of climo years for {case_name}, only doing 1-yr avg for RESTOM...\")\n", + " FSNT_case = avg_case_FSNT\n", + " FLNT_case = avg_case_FLNT\n", + " color_dict = {\"color\":colors[case_idx],\"marker\":\"-*\"}\n", + " else:\n", + " FSNT_case = avg_case_FSNT.rolling(time=60,center=True).mean()\n", + " FLNT_case = avg_case_FLNT.rolling(time=60,center=True).mean()\n", + " color_dict = {\"color\":colors[case_idx],\"marker\":\"-\"}\n", + "\n", + " avg_case = FSNT_case - FLNT_case\n", + "\n", + " if (var == \"TS\" or var == \"SST\"):\n", + " avg_case,yrs_case,unit = _data_calcs(case_ts_locs[case_idx],var)\n", + " color_dict = {\"color\":colors[case_idx],\"marker\":\"-\"}\n", + " \n", + " if var == \"ICEFRAC\":\n", + " avg_case,yrs_case,unit = _data_calcs(case_ts_locs[case_idx],var,subset)\n", + " color_dict = {\"color\":colors[case_idx],\"marker\":\"-\"}\n", + " \n", + " # Get yearly averages for all available years\n", + " vals_case = [avg_case.sel(time=i).mean() for i in yrs_case]\n", + " vals_cases.append(vals_case)\n", + " \n", + " # Get int of years for plotting on x-axis\n", + " yrs_case_int = yrs_case.astype(int)\n", + " yrs_cases.append(yrs_case_int)\n", + " \n", + " # Add case to plot (ax)\n", + " ax = ts_plot(ax, case_name, vals_case, yrs_case_int, unit, color_dict)\n", + "\n", + " # End for (case names)\n", + "\n", + " # Get variable details\n", + " ax = plot_var_details(ax, var, vals_cases, vals_base)\n", + "\n", + " #Grab all unique years and find min/max years\n", + " uniq_yrs = sorted(x for v in yrs_cases for x in v)\n", + " max_year = int(max(uniq_yrs))\n", + " min_year = int(min(uniq_yrs))\n", + "\n", + " last_year = max_year - max_year % 5\n", + " if (max_year > 5) and (last_year < max_year):\n", + " last_year += 5\n", + "\n", + " first_year = min_year - min_year % 5\n", + " if min_year < 5:\n", + " first_year = 0\n", + "\n", + " ax.set_xlim(first_year, last_year)\n", + " ax.set_xlabel(\"Years\",fontsize=15,labelpad=20)\n", + " # Set the x-axis plot limits\n", + " # to guarantee data from all cases (including baseline) are on plot\n", + " ax.set_xlim(min_year, max_year+1)\n", + "\n", + " # x-axis ticks and numbers\n", + " if max_year-min_year > 120:\n", + " ax.xaxis.set_major_locator(MultipleLocator(20))\n", + " ax.xaxis.set_minor_locator(MultipleLocator(10))\n", + " if 10 <= max_year-min_year <= 120:\n", + " ax.xaxis.set_major_locator(MultipleLocator(5))\n", + " ax.xaxis.set_minor_locator(MultipleLocator(1))\n", + " if 0 < max_year-min_year < 10:\n", + " ax.xaxis.set_major_locator(MultipleLocator(1))\n", + " ax.xaxis.set_minor_locator(MultipleLocator(1))\n", + " \n", + " # End for (case loop)\n", + "# End for (variables loop)\n", + "\n", + "# Set up legend\n", + "# Gather labels based on case names and plotted line format (color, style, etc)\n", + "lines_labels = [ax.get_legend_handles_labels() for ax in fig.axes]\n", + "lines, labels = [sum(lol, []) for lol in zip(*lines_labels)]\n", + "fig.legend(lines[:case_names_len+1], labels[:case_names_len+1],\n", + " loc=\"center left\",fontsize=18,\n", + " bbox_to_anchor=(0.365, 0.25,.02,.05)) #bbox_to_anchor(x0, y0, width, height)\n", + " \n", + "#plt.savefig(\"TimeSeries_ANN.png\", facecolor='w',bbox_inches=\"tight\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7b037d2f-85c0-4849-a8f1-f4a18d3ddc31", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "NPL 2023a", + "language": "python", + "name": "npl-2023a" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}