Skip to content

Latest commit

 

History

History
38 lines (29 loc) · 966 Bytes

README.md

File metadata and controls

38 lines (29 loc) · 966 Bytes

Machine Translation Service

Translation flask API for the Helsinki NLP models available in the Huggingface Transformers library.

Usage

First create the directory where you want to store models (and change MODEL_PATH in config.py accordingly). Then you can download models using the command line utility. For example...

mkdir data
python download_models.py --source en --target jap

To run with Python>=3.6:

pip install -r requirements.txt
python app.py

To run with docker:

docker build -t machine-translation-service .
docker run -p 5000:5000 -v /path/to/models:/app/data -it machine-translation-service

The front end should then become available at http://localhost:5000.

Call the service with curl:

curl --location --request POST 'http://localhost:5000/translate' \
--header 'Content-Type: application/json' \
--data-raw '{
 "text":"hello",
 "source":"en",
 "target":"fr"
}'